Prediction of the Risk of Adverse Clinical Outcomes with Machine Learning Techniques in Patients with Noncommunicable Diseases
ABSTRACT: Decision-making in chronic diseases guided by clinical decision support systems that use models including multiple variables based on artificial intelligence requires scientific validation in different populations to optimize the use of limited human, financial, and clinical resources in healt...
- Autores:
-
Hernández Arango, Alejandro
Arias, María Isabel
Pérez, Viviana
Chavarría, Luis Daniel
Jaimes Barragán, Fabián Alberto
- Tipo de recurso:
- Article of investigation
- Fecha de publicación:
- 2025
- Institución:
- Universidad de Antioquia
- Repositorio:
- Repositorio UdeA
- Idioma:
- eng
- OAI Identifier:
- oai:bibliotecadigital.udea.edu.co:10495/45461
- Acceso en línea:
- https://hdl.handle.net/10495/45461
- Palabra clave:
- Sistemas de Apoyo a Decisiones Clínicas - organización & administración
Decision Support Systems, Clinical - organization & administration
Registros Electrónicos de Salud
Electronic Health Records
Servicio de Urgencia en Hospital - estadística & datos numéricos
Emergency Service, Hospital - statistics & numerical data
Hospitalización
Hospitalization
Modelos Logísticos
Logistic Models
Aprendizaje Automático
Machine Learning
Redes Neurales de la Computación
Neural Networks, Computer
Medición de Riesgo - métodos
Risk Assessment - methods
https://id.nlm.nih.gov/mesh/D020000
https://id.nlm.nih.gov/mesh/D057286
https://id.nlm.nih.gov/mesh/D004636
https://id.nlm.nih.gov/mesh/D006760
https://id.nlm.nih.gov/mesh/D016015
https://id.nlm.nih.gov/mesh/D000069550
https://id.nlm.nih.gov/mesh/D016571
https://id.nlm.nih.gov/mesh/D018570
- Rights
- openAccess
- License
- https://creativecommons.org/licenses/by/4.0/
| id |
UDEA2_43ea988992b36eb7b30ac8e4254de055 |
|---|---|
| oai_identifier_str |
oai:bibliotecadigital.udea.edu.co:10495/45461 |
| network_acronym_str |
UDEA2 |
| network_name_str |
Repositorio UdeA |
| repository_id_str |
|
| dc.title.spa.fl_str_mv |
Prediction of the Risk of Adverse Clinical Outcomes with Machine Learning Techniques in Patients with Noncommunicable Diseases |
| title |
Prediction of the Risk of Adverse Clinical Outcomes with Machine Learning Techniques in Patients with Noncommunicable Diseases |
| spellingShingle |
Prediction of the Risk of Adverse Clinical Outcomes with Machine Learning Techniques in Patients with Noncommunicable Diseases Sistemas de Apoyo a Decisiones Clínicas - organización & administración Decision Support Systems, Clinical - organization & administration Registros Electrónicos de Salud Electronic Health Records Servicio de Urgencia en Hospital - estadística & datos numéricos Emergency Service, Hospital - statistics & numerical data Hospitalización Hospitalization Modelos Logísticos Logistic Models Aprendizaje Automático Machine Learning Redes Neurales de la Computación Neural Networks, Computer Medición de Riesgo - métodos Risk Assessment - methods https://id.nlm.nih.gov/mesh/D020000 https://id.nlm.nih.gov/mesh/D057286 https://id.nlm.nih.gov/mesh/D004636 https://id.nlm.nih.gov/mesh/D006760 https://id.nlm.nih.gov/mesh/D016015 https://id.nlm.nih.gov/mesh/D000069550 https://id.nlm.nih.gov/mesh/D016571 https://id.nlm.nih.gov/mesh/D018570 |
| title_short |
Prediction of the Risk of Adverse Clinical Outcomes with Machine Learning Techniques in Patients with Noncommunicable Diseases |
| title_full |
Prediction of the Risk of Adverse Clinical Outcomes with Machine Learning Techniques in Patients with Noncommunicable Diseases |
| title_fullStr |
Prediction of the Risk of Adverse Clinical Outcomes with Machine Learning Techniques in Patients with Noncommunicable Diseases |
| title_full_unstemmed |
Prediction of the Risk of Adverse Clinical Outcomes with Machine Learning Techniques in Patients with Noncommunicable Diseases |
| title_sort |
Prediction of the Risk of Adverse Clinical Outcomes with Machine Learning Techniques in Patients with Noncommunicable Diseases |
| dc.creator.fl_str_mv |
Hernández Arango, Alejandro Arias, María Isabel Pérez, Viviana Chavarría, Luis Daniel Jaimes Barragán, Fabián Alberto |
| dc.contributor.author.none.fl_str_mv |
Hernández Arango, Alejandro Arias, María Isabel Pérez, Viviana Chavarría, Luis Daniel Jaimes Barragán, Fabián Alberto |
| dc.contributor.researchgroup.spa.fl_str_mv |
Grupo Académico de Epidemiología Clínica |
| dc.subject.decs.none.fl_str_mv |
Sistemas de Apoyo a Decisiones Clínicas - organización & administración Decision Support Systems, Clinical - organization & administration Registros Electrónicos de Salud Electronic Health Records Servicio de Urgencia en Hospital - estadística & datos numéricos Emergency Service, Hospital - statistics & numerical data Hospitalización Hospitalization Modelos Logísticos Logistic Models Aprendizaje Automático Machine Learning Redes Neurales de la Computación Neural Networks, Computer Medición de Riesgo - métodos Risk Assessment - methods |
| topic |
Sistemas de Apoyo a Decisiones Clínicas - organización & administración Decision Support Systems, Clinical - organization & administration Registros Electrónicos de Salud Electronic Health Records Servicio de Urgencia en Hospital - estadística & datos numéricos Emergency Service, Hospital - statistics & numerical data Hospitalización Hospitalization Modelos Logísticos Logistic Models Aprendizaje Automático Machine Learning Redes Neurales de la Computación Neural Networks, Computer Medición de Riesgo - métodos Risk Assessment - methods https://id.nlm.nih.gov/mesh/D020000 https://id.nlm.nih.gov/mesh/D057286 https://id.nlm.nih.gov/mesh/D004636 https://id.nlm.nih.gov/mesh/D006760 https://id.nlm.nih.gov/mesh/D016015 https://id.nlm.nih.gov/mesh/D000069550 https://id.nlm.nih.gov/mesh/D016571 https://id.nlm.nih.gov/mesh/D018570 |
| dc.subject.meshuri.none.fl_str_mv |
https://id.nlm.nih.gov/mesh/D020000 https://id.nlm.nih.gov/mesh/D057286 https://id.nlm.nih.gov/mesh/D004636 https://id.nlm.nih.gov/mesh/D006760 https://id.nlm.nih.gov/mesh/D016015 https://id.nlm.nih.gov/mesh/D000069550 https://id.nlm.nih.gov/mesh/D016571 https://id.nlm.nih.gov/mesh/D018570 |
| description |
ABSTRACT: Decision-making in chronic diseases guided by clinical decision support systems that use models including multiple variables based on artificial intelligence requires scientific validation in different populations to optimize the use of limited human, financial, and clinical resources in healthcare systems worldwide. This cohort study evaluated three machine learning algo-rithms—XGBoost, Elastic Net logistic regression, and an Artificial Neural Network—to develop a prediction model for three outcomes: mortality, hospitalization, and emergency department visits. The objective was to build a clinical decision support system for patients with noncommunicable diseases treated at the Alma Mater Hospital complex in Medellín, Colombia. We collected 4845 electronic medical record entries from 5000 patients included in the study. The median age was 71.83 years, with 63.8% women and 29.7% receiving home care. The most prevalent medical conditions were diabetes (52.9%), hypertension (67.2%), dyslipidemia (57.3%), and COPD (19.4%). For mortality prediction, the Elastic Net logistic regression model achieved an AUCROC of 0.883 (95% CI: 0.848–0.917), the XGBoost model reached an AUCROC of 0.896 (95% CI: 0.865–0.927), and the Neural Network achieved 0.886 (95% CI: 0.853–0.916). For hospitalization, the Elastic Net model had an AUCROC of 0.952 (95% CI: 0.937–0.965), the XGBoost model achieved 0.963 (95% CI: 0.952–0.974), and the Neural Network scored 0.932 (95% CI: 0.915–0.948). For emergency department visits, the AUCROC values were 0.980 (95% CI: 0.971–0.987) for Elastic Net, 0.977 (95% CI: 0.967–0.986) for XGBoost, and 0.976 (95% CI: 0.968–0.982) for the neural network. A dashboard was developed to interact with an ensemble risk categorization segmenting patient risk in the cohort to aid in clinical decision-making. A clinical decision support system based on artificial intelligence using electronic medical records possibly can help segmenting the risk in populations with Noncommunicable Diseases for effective decision-making. |
| publishDate |
2025 |
| dc.date.accessioned.none.fl_str_mv |
2025-03-11T19:56:37Z |
| dc.date.available.none.fl_str_mv |
2025-03-11T19:56:37Z |
| dc.date.issued.none.fl_str_mv |
2025 |
| dc.type.spa.fl_str_mv |
Artículo de investigación |
| dc.type.coar.spa.fl_str_mv |
http://purl.org/coar/resource_type/c_2df8fbb1 |
| dc.type.redcol.spa.fl_str_mv |
https://purl.org/redcol/resource_type/ART |
| dc.type.coarversion.spa.fl_str_mv |
http://purl.org/coar/version/c_970fb48d4fbd8a85 |
| dc.type.driver.spa.fl_str_mv |
info:eu-repo/semantics/article |
| dc.type.version.spa.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
| format |
http://purl.org/coar/resource_type/c_2df8fbb1 |
| status_str |
publishedVersion |
| dc.identifier.citation.spa.fl_str_mv |
Hernández-Arango, A., Arias, M.I., Pérez, V. et al. Prediction of the Risk of Adverse Clinical Outcomes with Machine Learning Techniques in Patients with Noncommunicable Diseases. J Med Syst 49, 19 (2025). https://doi.org/10.1007/s10916-025-02140-z |
| dc.identifier.issn.none.fl_str_mv |
0148-5598 |
| dc.identifier.uri.none.fl_str_mv |
https://hdl.handle.net/10495/45461 |
| dc.identifier.doi.none.fl_str_mv |
10.1007/s10916-025-02140-z |
| dc.identifier.eissn.none.fl_str_mv |
1573-689X |
| identifier_str_mv |
Hernández-Arango, A., Arias, M.I., Pérez, V. et al. Prediction of the Risk of Adverse Clinical Outcomes with Machine Learning Techniques in Patients with Noncommunicable Diseases. J Med Syst 49, 19 (2025). https://doi.org/10.1007/s10916-025-02140-z 0148-5598 10.1007/s10916-025-02140-z 1573-689X |
| url |
https://hdl.handle.net/10495/45461 |
| dc.language.iso.spa.fl_str_mv |
eng |
| language |
eng |
| dc.relation.ispartofjournalabbrev.spa.fl_str_mv |
J. Med. Syst. |
| dc.relation.citationendpage.spa.fl_str_mv |
13 |
| dc.relation.citationissue.spa.fl_str_mv |
19 |
| dc.relation.citationstartpage.spa.fl_str_mv |
1 |
| dc.relation.citationvolume.spa.fl_str_mv |
49 |
| dc.relation.ispartofjournal.spa.fl_str_mv |
Journal of Medical Systems |
| dc.rights.uri.spa.fl_str_mv |
https://creativecommons.org/licenses/by/4.0/ |
| dc.rights.uri.*.fl_str_mv |
http://creativecommons.org/licenses/by/2.5/co/ |
| dc.rights.accessrights.spa.fl_str_mv |
info:eu-repo/semantics/openAccess |
| dc.rights.coar.spa.fl_str_mv |
http://purl.org/coar/access_right/c_abf2 |
| rights_invalid_str_mv |
https://creativecommons.org/licenses/by/4.0/ http://creativecommons.org/licenses/by/2.5/co/ http://purl.org/coar/access_right/c_abf2 |
| eu_rights_str_mv |
openAccess |
| dc.format.extent.spa.fl_str_mv |
14 páginas |
| dc.format.mimetype.spa.fl_str_mv |
application/pdf |
| dc.publisher.spa.fl_str_mv |
Springer |
| dc.publisher.place.spa.fl_str_mv |
Nueva York, Estados Unidos |
| institution |
Universidad de Antioquia |
| bitstream.url.fl_str_mv |
https://bibliotecadigital.udea.edu.co/bitstreams/04c5e2fd-99a7-427d-80f6-ecded54bdf78/download https://bibliotecadigital.udea.edu.co/bitstreams/bc49d8e7-6888-463a-9206-edf7553c899b/download https://bibliotecadigital.udea.edu.co/bitstreams/f7dba7ab-57f1-408b-9c71-641a2b42b959/download https://bibliotecadigital.udea.edu.co/bitstreams/8f43da7c-acf6-44a7-8cd6-7d6b173c076b/download https://bibliotecadigital.udea.edu.co/bitstreams/5a91fb1b-cc0a-4106-a2ac-57a4636a0a72/download |
| bitstream.checksum.fl_str_mv |
1646d1f6b96dbbbc38035efc9239ac9c 8a4605be74aa9ea9d79846c1fba20a33 db7826a0bfd19c972d2b8b8d0657c92d 4e860741fb66a54f0bb796e6b1dd4639 4722e22743b39ab156d611712c6ccad5 |
| bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 MD5 MD5 MD5 |
| repository.name.fl_str_mv |
Repositorio Institucional de la Universidad de Antioquia |
| repository.mail.fl_str_mv |
aplicacionbibliotecadigitalbiblioteca@udea.edu.co |
| _version_ |
1851052125723820032 |
| spelling |
Hernández Arango, AlejandroArias, María IsabelPérez, VivianaChavarría, Luis DanielJaimes Barragán, Fabián AlbertoGrupo Académico de Epidemiología Clínica2025-03-11T19:56:37Z2025-03-11T19:56:37Z2025Hernández-Arango, A., Arias, M.I., Pérez, V. et al. Prediction of the Risk of Adverse Clinical Outcomes with Machine Learning Techniques in Patients with Noncommunicable Diseases. J Med Syst 49, 19 (2025). https://doi.org/10.1007/s10916-025-02140-z0148-5598https://hdl.handle.net/10495/4546110.1007/s10916-025-02140-z1573-689XABSTRACT: Decision-making in chronic diseases guided by clinical decision support systems that use models including multiple variables based on artificial intelligence requires scientific validation in different populations to optimize the use of limited human, financial, and clinical resources in healthcare systems worldwide. This cohort study evaluated three machine learning algo-rithms—XGBoost, Elastic Net logistic regression, and an Artificial Neural Network—to develop a prediction model for three outcomes: mortality, hospitalization, and emergency department visits. The objective was to build a clinical decision support system for patients with noncommunicable diseases treated at the Alma Mater Hospital complex in Medellín, Colombia. We collected 4845 electronic medical record entries from 5000 patients included in the study. The median age was 71.83 years, with 63.8% women and 29.7% receiving home care. The most prevalent medical conditions were diabetes (52.9%), hypertension (67.2%), dyslipidemia (57.3%), and COPD (19.4%). For mortality prediction, the Elastic Net logistic regression model achieved an AUCROC of 0.883 (95% CI: 0.848–0.917), the XGBoost model reached an AUCROC of 0.896 (95% CI: 0.865–0.927), and the Neural Network achieved 0.886 (95% CI: 0.853–0.916). For hospitalization, the Elastic Net model had an AUCROC of 0.952 (95% CI: 0.937–0.965), the XGBoost model achieved 0.963 (95% CI: 0.952–0.974), and the Neural Network scored 0.932 (95% CI: 0.915–0.948). For emergency department visits, the AUCROC values were 0.980 (95% CI: 0.971–0.987) for Elastic Net, 0.977 (95% CI: 0.967–0.986) for XGBoost, and 0.976 (95% CI: 0.968–0.982) for the neural network. A dashboard was developed to interact with an ensemble risk categorization segmenting patient risk in the cohort to aid in clinical decision-making. A clinical decision support system based on artificial intelligence using electronic medical records possibly can help segmenting the risk in populations with Noncommunicable Diseases for effective decision-making.COL000712114 páginasapplication/pdfengSpringerNueva York, Estados Unidoshttps://creativecommons.org/licenses/by/4.0/http://creativecommons.org/licenses/by/2.5/co/info:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2Prediction of the Risk of Adverse Clinical Outcomes with Machine Learning Techniques in Patients with Noncommunicable DiseasesArtículo de investigaciónhttp://purl.org/coar/resource_type/c_2df8fbb1https://purl.org/redcol/resource_type/ARThttp://purl.org/coar/version/c_970fb48d4fbd8a85info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionSistemas de Apoyo a Decisiones Clínicas - organización & administraciónDecision Support Systems, Clinical - organization & administrationRegistros Electrónicos de SaludElectronic Health RecordsServicio de Urgencia en Hospital - estadística & datos numéricosEmergency Service, Hospital - statistics & numerical dataHospitalizaciónHospitalizationModelos LogísticosLogistic ModelsAprendizaje AutomáticoMachine LearningRedes Neurales de la ComputaciónNeural Networks, ComputerMedición de Riesgo - métodosRisk Assessment - methodshttps://id.nlm.nih.gov/mesh/D020000https://id.nlm.nih.gov/mesh/D057286https://id.nlm.nih.gov/mesh/D004636https://id.nlm.nih.gov/mesh/D006760https://id.nlm.nih.gov/mesh/D016015https://id.nlm.nih.gov/mesh/D000069550https://id.nlm.nih.gov/mesh/D016571https://id.nlm.nih.gov/mesh/D018570J. Med. Syst.1319149Journal of Medical SystemsPublicationCC-LICENSElicense_rdflicense_rdfapplication/rdf+xml; charset=utf-8927https://bibliotecadigital.udea.edu.co/bitstreams/04c5e2fd-99a7-427d-80f6-ecded54bdf78/download1646d1f6b96dbbbc38035efc9239ac9cMD52falseAnonymousREADLICENSElicense.txtlicense.txttext/plain; charset=utf-81748https://bibliotecadigital.udea.edu.co/bitstreams/bc49d8e7-6888-463a-9206-edf7553c899b/download8a4605be74aa9ea9d79846c1fba20a33MD53falseAnonymousREADORIGINALHernandezAlejandro_2025_Prediction_Risk_Clinical.pdfHernandezAlejandro_2025_Prediction_Risk_Clinical.pdfArtículo de investigaciónapplication/pdf1328797https://bibliotecadigital.udea.edu.co/bitstreams/f7dba7ab-57f1-408b-9c71-641a2b42b959/downloaddb7826a0bfd19c972d2b8b8d0657c92dMD51trueAnonymousREADTEXTHernandezAlejandro_2025_Prediction_Risk_Clinical.pdf.txtHernandezAlejandro_2025_Prediction_Risk_Clinical.pdf.txtExtracted texttext/plain51777https://bibliotecadigital.udea.edu.co/bitstreams/8f43da7c-acf6-44a7-8cd6-7d6b173c076b/download4e860741fb66a54f0bb796e6b1dd4639MD56falseAnonymousREADTHUMBNAILHernandezAlejandro_2025_Prediction_Risk_Clinical.pdf.jpgHernandezAlejandro_2025_Prediction_Risk_Clinical.pdf.jpgGenerated Thumbnailimage/jpeg15435https://bibliotecadigital.udea.edu.co/bitstreams/5a91fb1b-cc0a-4106-a2ac-57a4636a0a72/download4722e22743b39ab156d611712c6ccad5MD57falseAnonymousREAD10495/45461oai:bibliotecadigital.udea.edu.co:10495/454612025-03-26 17:21:56.968https://creativecommons.org/licenses/by/4.0/open.accesshttps://bibliotecadigital.udea.edu.coRepositorio Institucional de la Universidad de Antioquiaaplicacionbibliotecadigitalbiblioteca@udea.edu.coTk9URTogUExBQ0UgWU9VUiBPV04gTElDRU5TRSBIRVJFClRoaXMgc2FtcGxlIGxpY2Vuc2UgaXMgcHJvdmlkZWQgZm9yIGluZm9ybWF0aW9uYWwgcHVycG9zZXMgb25seS4KCk5PTi1FWENMVVNJVkUgRElTVFJJQlVUSU9OIExJQ0VOU0UKCkJ5IHNpZ25pbmcgYW5kIHN1Ym1pdHRpbmcgdGhpcyBsaWNlbnNlLCB5b3UgKHRoZSBhdXRob3Iocykgb3IgY29weXJpZ2h0Cm93bmVyKSBncmFudHMgdG8gRFNwYWNlIFVuaXZlcnNpdHkgKERTVSkgdGhlIG5vbi1leGNsdXNpdmUgcmlnaHQgdG8gcmVwcm9kdWNlLAp0cmFuc2xhdGUgKGFzIGRlZmluZWQgYmVsb3cpLCBhbmQvb3IgZGlzdHJpYnV0ZSB5b3VyIHN1Ym1pc3Npb24gKGluY2x1ZGluZwp0aGUgYWJzdHJhY3QpIHdvcmxkd2lkZSBpbiBwcmludCBhbmQgZWxlY3Ryb25pYyBmb3JtYXQgYW5kIGluIGFueSBtZWRpdW0sCmluY2x1ZGluZyBidXQgbm90IGxpbWl0ZWQgdG8gYXVkaW8gb3IgdmlkZW8uCgpZb3UgYWdyZWUgdGhhdCBEU1UgbWF5LCB3aXRob3V0IGNoYW5naW5nIHRoZSBjb250ZW50LCB0cmFuc2xhdGUgdGhlCnN1Ym1pc3Npb24gdG8gYW55IG1lZGl1bSBvciBmb3JtYXQgZm9yIHRoZSBwdXJwb3NlIG9mIHByZXNlcnZhdGlvbi4KCllvdSBhbHNvIGFncmVlIHRoYXQgRFNVIG1heSBrZWVwIG1vcmUgdGhhbiBvbmUgY29weSBvZiB0aGlzIHN1Ym1pc3Npb24gZm9yCnB1cnBvc2VzIG9mIHNlY3VyaXR5LCBiYWNrLXVwIGFuZCBwcmVzZXJ2YXRpb24uCgpZb3UgcmVwcmVzZW50IHRoYXQgdGhlIHN1Ym1pc3Npb24gaXMgeW91ciBvcmlnaW5hbCB3b3JrLCBhbmQgdGhhdCB5b3UgaGF2ZQp0aGUgcmlnaHQgdG8gZ3JhbnQgdGhlIHJpZ2h0cyBjb250YWluZWQgaW4gdGhpcyBsaWNlbnNlLiBZb3UgYWxzbyByZXByZXNlbnQKdGhhdCB5b3VyIHN1Ym1pc3Npb24gZG9lcyBub3QsIHRvIHRoZSBiZXN0IG9mIHlvdXIga25vd2xlZGdlLCBpbmZyaW5nZSB1cG9uCmFueW9uZSdzIGNvcHlyaWdodC4KCklmIHRoZSBzdWJtaXNzaW9uIGNvbnRhaW5zIG1hdGVyaWFsIGZvciB3aGljaCB5b3UgZG8gbm90IGhvbGQgY29weXJpZ2h0LAp5b3UgcmVwcmVzZW50IHRoYXQgeW91IGhhdmUgb2J0YWluZWQgdGhlIHVucmVzdHJpY3RlZCBwZXJtaXNzaW9uIG9mIHRoZQpjb3B5cmlnaHQgb3duZXIgdG8gZ3JhbnQgRFNVIHRoZSByaWdodHMgcmVxdWlyZWQgYnkgdGhpcyBsaWNlbnNlLCBhbmQgdGhhdApzdWNoIHRoaXJkLXBhcnR5IG93bmVkIG1hdGVyaWFsIGlzIGNsZWFybHkgaWRlbnRpZmllZCBhbmQgYWNrbm93bGVkZ2VkCndpdGhpbiB0aGUgdGV4dCBvciBjb250ZW50IG9mIHRoZSBzdWJtaXNzaW9uLgoKSUYgVEhFIFNVQk1JU1NJT04gSVMgQkFTRUQgVVBPTiBXT1JLIFRIQVQgSEFTIEJFRU4gU1BPTlNPUkVEIE9SIFNVUFBPUlRFRApCWSBBTiBBR0VOQ1kgT1IgT1JHQU5JWkFUSU9OIE9USEVSIFRIQU4gRFNVLCBZT1UgUkVQUkVTRU5UIFRIQVQgWU9VIEhBVkUKRlVMRklMTEVEIEFOWSBSSUdIVCBPRiBSRVZJRVcgT1IgT1RIRVIgT0JMSUdBVElPTlMgUkVRVUlSRUQgQlkgU1VDSApDT05UUkFDVCBPUiBBR1JFRU1FTlQuCgpEU1Ugd2lsbCBjbGVhcmx5IGlkZW50aWZ5IHlvdXIgbmFtZShzKSBhcyB0aGUgYXV0aG9yKHMpIG9yIG93bmVyKHMpIG9mIHRoZQpzdWJtaXNzaW9uLCBhbmQgd2lsbCBub3QgbWFrZSBhbnkgYWx0ZXJhdGlvbiwgb3RoZXIgdGhhbiBhcyBhbGxvd2VkIGJ5IHRoaXMKbGljZW5zZSwgdG8geW91ciBzdWJtaXNzaW9uLgo= |
