Prediction of the Risk of Adverse Clinical Outcomes with Machine Learning Techniques in Patients with Noncommunicable Diseases

ABSTRACT: Decision-making in chronic diseases guided by clinical decision support systems that use models including multiple variables based on artificial intelligence requires scientific validation in different populations to optimize the use of limited human, financial, and clinical resources in healt...

Full description

Autores:
Hernández Arango, Alejandro
Arias, María Isabel
Pérez, Viviana
Chavarría, Luis Daniel
Jaimes Barragán, Fabián Alberto
Tipo de recurso:
Article of investigation
Fecha de publicación:
2025
Institución:
Universidad de Antioquia
Repositorio:
Repositorio UdeA
Idioma:
eng
OAI Identifier:
oai:bibliotecadigital.udea.edu.co:10495/45461
Acceso en línea:
https://hdl.handle.net/10495/45461
Palabra clave:
Sistemas de Apoyo a Decisiones Clínicas - organización & administración
Decision Support Systems, Clinical - organization & administration
Registros Electrónicos de Salud
Electronic Health Records
Servicio de Urgencia en Hospital - estadística & datos numéricos
Emergency Service, Hospital - statistics & numerical data
Hospitalización
Hospitalization
Modelos Logísticos
Logistic Models
Aprendizaje Automático
Machine Learning
Redes Neurales de la Computación
Neural Networks, Computer
Medición de Riesgo - métodos
Risk Assessment - methods
https://id.nlm.nih.gov/mesh/D020000
https://id.nlm.nih.gov/mesh/D057286
https://id.nlm.nih.gov/mesh/D004636
https://id.nlm.nih.gov/mesh/D006760
https://id.nlm.nih.gov/mesh/D016015
https://id.nlm.nih.gov/mesh/D000069550
https://id.nlm.nih.gov/mesh/D016571
https://id.nlm.nih.gov/mesh/D018570
Rights
openAccess
License
https://creativecommons.org/licenses/by/4.0/
id UDEA2_43ea988992b36eb7b30ac8e4254de055
oai_identifier_str oai:bibliotecadigital.udea.edu.co:10495/45461
network_acronym_str UDEA2
network_name_str Repositorio UdeA
repository_id_str
dc.title.spa.fl_str_mv Prediction of the Risk of Adverse Clinical Outcomes with Machine Learning Techniques in Patients with Noncommunicable Diseases
title Prediction of the Risk of Adverse Clinical Outcomes with Machine Learning Techniques in Patients with Noncommunicable Diseases
spellingShingle Prediction of the Risk of Adverse Clinical Outcomes with Machine Learning Techniques in Patients with Noncommunicable Diseases
Sistemas de Apoyo a Decisiones Clínicas - organización & administración
Decision Support Systems, Clinical - organization & administration
Registros Electrónicos de Salud
Electronic Health Records
Servicio de Urgencia en Hospital - estadística & datos numéricos
Emergency Service, Hospital - statistics & numerical data
Hospitalización
Hospitalization
Modelos Logísticos
Logistic Models
Aprendizaje Automático
Machine Learning
Redes Neurales de la Computación
Neural Networks, Computer
Medición de Riesgo - métodos
Risk Assessment - methods
https://id.nlm.nih.gov/mesh/D020000
https://id.nlm.nih.gov/mesh/D057286
https://id.nlm.nih.gov/mesh/D004636
https://id.nlm.nih.gov/mesh/D006760
https://id.nlm.nih.gov/mesh/D016015
https://id.nlm.nih.gov/mesh/D000069550
https://id.nlm.nih.gov/mesh/D016571
https://id.nlm.nih.gov/mesh/D018570
title_short Prediction of the Risk of Adverse Clinical Outcomes with Machine Learning Techniques in Patients with Noncommunicable Diseases
title_full Prediction of the Risk of Adverse Clinical Outcomes with Machine Learning Techniques in Patients with Noncommunicable Diseases
title_fullStr Prediction of the Risk of Adverse Clinical Outcomes with Machine Learning Techniques in Patients with Noncommunicable Diseases
title_full_unstemmed Prediction of the Risk of Adverse Clinical Outcomes with Machine Learning Techniques in Patients with Noncommunicable Diseases
title_sort Prediction of the Risk of Adverse Clinical Outcomes with Machine Learning Techniques in Patients with Noncommunicable Diseases
dc.creator.fl_str_mv Hernández Arango, Alejandro
Arias, María Isabel
Pérez, Viviana
Chavarría, Luis Daniel
Jaimes Barragán, Fabián Alberto
dc.contributor.author.none.fl_str_mv Hernández Arango, Alejandro
Arias, María Isabel
Pérez, Viviana
Chavarría, Luis Daniel
Jaimes Barragán, Fabián Alberto
dc.contributor.researchgroup.spa.fl_str_mv Grupo Académico de Epidemiología Clínica
dc.subject.decs.none.fl_str_mv Sistemas de Apoyo a Decisiones Clínicas - organización & administración
Decision Support Systems, Clinical - organization & administration
Registros Electrónicos de Salud
Electronic Health Records
Servicio de Urgencia en Hospital - estadística & datos numéricos
Emergency Service, Hospital - statistics & numerical data
Hospitalización
Hospitalization
Modelos Logísticos
Logistic Models
Aprendizaje Automático
Machine Learning
Redes Neurales de la Computación
Neural Networks, Computer
Medición de Riesgo - métodos
Risk Assessment - methods
topic Sistemas de Apoyo a Decisiones Clínicas - organización & administración
Decision Support Systems, Clinical - organization & administration
Registros Electrónicos de Salud
Electronic Health Records
Servicio de Urgencia en Hospital - estadística & datos numéricos
Emergency Service, Hospital - statistics & numerical data
Hospitalización
Hospitalization
Modelos Logísticos
Logistic Models
Aprendizaje Automático
Machine Learning
Redes Neurales de la Computación
Neural Networks, Computer
Medición de Riesgo - métodos
Risk Assessment - methods
https://id.nlm.nih.gov/mesh/D020000
https://id.nlm.nih.gov/mesh/D057286
https://id.nlm.nih.gov/mesh/D004636
https://id.nlm.nih.gov/mesh/D006760
https://id.nlm.nih.gov/mesh/D016015
https://id.nlm.nih.gov/mesh/D000069550
https://id.nlm.nih.gov/mesh/D016571
https://id.nlm.nih.gov/mesh/D018570
dc.subject.meshuri.none.fl_str_mv https://id.nlm.nih.gov/mesh/D020000
https://id.nlm.nih.gov/mesh/D057286
https://id.nlm.nih.gov/mesh/D004636
https://id.nlm.nih.gov/mesh/D006760
https://id.nlm.nih.gov/mesh/D016015
https://id.nlm.nih.gov/mesh/D000069550
https://id.nlm.nih.gov/mesh/D016571
https://id.nlm.nih.gov/mesh/D018570
description ABSTRACT: Decision-making in chronic diseases guided by clinical decision support systems that use models including multiple variables based on artificial intelligence requires scientific validation in different populations to optimize the use of limited human, financial, and clinical resources in healthcare systems worldwide. This cohort study evaluated three machine learning algo-rithms—XGBoost, Elastic Net logistic regression, and an Artificial Neural Network—to develop a prediction model for three outcomes: mortality, hospitalization, and emergency department visits. The objective was to build a clinical decision support system for patients with noncommunicable diseases treated at the Alma Mater Hospital complex in Medellín, Colombia. We collected 4845 electronic medical record entries from 5000 patients included in the study. The median age was 71.83 years, with 63.8% women and 29.7% receiving home care. The most prevalent medical conditions were diabetes (52.9%), hypertension (67.2%), dyslipidemia (57.3%), and COPD (19.4%). For mortality prediction, the Elastic Net logistic regression model achieved an AUCROC of 0.883 (95% CI: 0.848–0.917), the XGBoost model reached an AUCROC of 0.896 (95% CI: 0.865–0.927), and the Neural Network achieved 0.886 (95% CI: 0.853–0.916). For hospitalization, the Elastic Net model had an AUCROC of 0.952 (95% CI: 0.937–0.965), the XGBoost model achieved 0.963 (95% CI: 0.952–0.974), and the Neural Network scored 0.932 (95% CI: 0.915–0.948). For emergency department visits, the AUCROC values were 0.980 (95% CI: 0.971–0.987) for Elastic Net, 0.977 (95% CI: 0.967–0.986) for XGBoost, and 0.976 (95% CI: 0.968–0.982) for the neural network. A dashboard was developed to interact with an ensemble risk categorization segmenting patient risk in the cohort to aid in clinical decision-making. A clinical decision support system based on artificial intelligence using electronic medical records possibly can help segmenting the risk in populations with Noncommunicable Diseases for effective decision-making.
publishDate 2025
dc.date.accessioned.none.fl_str_mv 2025-03-11T19:56:37Z
dc.date.available.none.fl_str_mv 2025-03-11T19:56:37Z
dc.date.issued.none.fl_str_mv 2025
dc.type.spa.fl_str_mv Artículo de investigación
dc.type.coar.spa.fl_str_mv http://purl.org/coar/resource_type/c_2df8fbb1
dc.type.redcol.spa.fl_str_mv https://purl.org/redcol/resource_type/ART
dc.type.coarversion.spa.fl_str_mv http://purl.org/coar/version/c_970fb48d4fbd8a85
dc.type.driver.spa.fl_str_mv info:eu-repo/semantics/article
dc.type.version.spa.fl_str_mv info:eu-repo/semantics/publishedVersion
format http://purl.org/coar/resource_type/c_2df8fbb1
status_str publishedVersion
dc.identifier.citation.spa.fl_str_mv Hernández-Arango, A., Arias, M.I., Pérez, V. et al. Prediction of the Risk of Adverse Clinical Outcomes with Machine Learning Techniques in Patients with Noncommunicable Diseases. J Med Syst 49, 19 (2025). https://doi.org/10.1007/s10916-025-02140-z
dc.identifier.issn.none.fl_str_mv 0148-5598
dc.identifier.uri.none.fl_str_mv https://hdl.handle.net/10495/45461
dc.identifier.doi.none.fl_str_mv 10.1007/s10916-025-02140-z
dc.identifier.eissn.none.fl_str_mv 1573-689X
identifier_str_mv Hernández-Arango, A., Arias, M.I., Pérez, V. et al. Prediction of the Risk of Adverse Clinical Outcomes with Machine Learning Techniques in Patients with Noncommunicable Diseases. J Med Syst 49, 19 (2025). https://doi.org/10.1007/s10916-025-02140-z
0148-5598
10.1007/s10916-025-02140-z
1573-689X
url https://hdl.handle.net/10495/45461
dc.language.iso.spa.fl_str_mv eng
language eng
dc.relation.ispartofjournalabbrev.spa.fl_str_mv J. Med. Syst.
dc.relation.citationendpage.spa.fl_str_mv 13
dc.relation.citationissue.spa.fl_str_mv 19
dc.relation.citationstartpage.spa.fl_str_mv 1
dc.relation.citationvolume.spa.fl_str_mv 49
dc.relation.ispartofjournal.spa.fl_str_mv Journal of Medical Systems
dc.rights.uri.spa.fl_str_mv https://creativecommons.org/licenses/by/4.0/
dc.rights.uri.*.fl_str_mv http://creativecommons.org/licenses/by/2.5/co/
dc.rights.accessrights.spa.fl_str_mv info:eu-repo/semantics/openAccess
dc.rights.coar.spa.fl_str_mv http://purl.org/coar/access_right/c_abf2
rights_invalid_str_mv https://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/2.5/co/
http://purl.org/coar/access_right/c_abf2
eu_rights_str_mv openAccess
dc.format.extent.spa.fl_str_mv 14 páginas
dc.format.mimetype.spa.fl_str_mv application/pdf
dc.publisher.spa.fl_str_mv Springer
dc.publisher.place.spa.fl_str_mv Nueva York, Estados Unidos
institution Universidad de Antioquia
bitstream.url.fl_str_mv https://bibliotecadigital.udea.edu.co/bitstreams/04c5e2fd-99a7-427d-80f6-ecded54bdf78/download
https://bibliotecadigital.udea.edu.co/bitstreams/bc49d8e7-6888-463a-9206-edf7553c899b/download
https://bibliotecadigital.udea.edu.co/bitstreams/f7dba7ab-57f1-408b-9c71-641a2b42b959/download
https://bibliotecadigital.udea.edu.co/bitstreams/8f43da7c-acf6-44a7-8cd6-7d6b173c076b/download
https://bibliotecadigital.udea.edu.co/bitstreams/5a91fb1b-cc0a-4106-a2ac-57a4636a0a72/download
bitstream.checksum.fl_str_mv 1646d1f6b96dbbbc38035efc9239ac9c
8a4605be74aa9ea9d79846c1fba20a33
db7826a0bfd19c972d2b8b8d0657c92d
4e860741fb66a54f0bb796e6b1dd4639
4722e22743b39ab156d611712c6ccad5
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
MD5
MD5
repository.name.fl_str_mv Repositorio Institucional de la Universidad de Antioquia
repository.mail.fl_str_mv aplicacionbibliotecadigitalbiblioteca@udea.edu.co
_version_ 1851052125723820032
spelling Hernández Arango, AlejandroArias, María IsabelPérez, VivianaChavarría, Luis DanielJaimes Barragán, Fabián AlbertoGrupo Académico de Epidemiología Clínica2025-03-11T19:56:37Z2025-03-11T19:56:37Z2025Hernández-Arango, A., Arias, M.I., Pérez, V. et al. Prediction of the Risk of Adverse Clinical Outcomes with Machine Learning Techniques in Patients with Noncommunicable Diseases. J Med Syst 49, 19 (2025). https://doi.org/10.1007/s10916-025-02140-z0148-5598https://hdl.handle.net/10495/4546110.1007/s10916-025-02140-z1573-689XABSTRACT: Decision-making in chronic diseases guided by clinical decision support systems that use models including multiple variables based on artificial intelligence requires scientific validation in different populations to optimize the use of limited human, financial, and clinical resources in healthcare systems worldwide. This cohort study evaluated three machine learning algo-rithms—XGBoost, Elastic Net logistic regression, and an Artificial Neural Network—to develop a prediction model for three outcomes: mortality, hospitalization, and emergency department visits. The objective was to build a clinical decision support system for patients with noncommunicable diseases treated at the Alma Mater Hospital complex in Medellín, Colombia. We collected 4845 electronic medical record entries from 5000 patients included in the study. The median age was 71.83 years, with 63.8% women and 29.7% receiving home care. The most prevalent medical conditions were diabetes (52.9%), hypertension (67.2%), dyslipidemia (57.3%), and COPD (19.4%). For mortality prediction, the Elastic Net logistic regression model achieved an AUCROC of 0.883 (95% CI: 0.848–0.917), the XGBoost model reached an AUCROC of 0.896 (95% CI: 0.865–0.927), and the Neural Network achieved 0.886 (95% CI: 0.853–0.916). For hospitalization, the Elastic Net model had an AUCROC of 0.952 (95% CI: 0.937–0.965), the XGBoost model achieved 0.963 (95% CI: 0.952–0.974), and the Neural Network scored 0.932 (95% CI: 0.915–0.948). For emergency department visits, the AUCROC values were 0.980 (95% CI: 0.971–0.987) for Elastic Net, 0.977 (95% CI: 0.967–0.986) for XGBoost, and 0.976 (95% CI: 0.968–0.982) for the neural network. A dashboard was developed to interact with an ensemble risk categorization segmenting patient risk in the cohort to aid in clinical decision-making. A clinical decision support system based on artificial intelligence using electronic medical records possibly can help segmenting the risk in populations with Noncommunicable Diseases for effective decision-making.COL000712114 páginasapplication/pdfengSpringerNueva York, Estados Unidoshttps://creativecommons.org/licenses/by/4.0/http://creativecommons.org/licenses/by/2.5/co/info:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2Prediction of the Risk of Adverse Clinical Outcomes with Machine Learning Techniques in Patients with Noncommunicable DiseasesArtículo de investigaciónhttp://purl.org/coar/resource_type/c_2df8fbb1https://purl.org/redcol/resource_type/ARThttp://purl.org/coar/version/c_970fb48d4fbd8a85info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionSistemas de Apoyo a Decisiones Clínicas - organización & administraciónDecision Support Systems, Clinical - organization & administrationRegistros Electrónicos de SaludElectronic Health RecordsServicio de Urgencia en Hospital - estadística & datos numéricosEmergency Service, Hospital - statistics & numerical dataHospitalizaciónHospitalizationModelos LogísticosLogistic ModelsAprendizaje AutomáticoMachine LearningRedes Neurales de la ComputaciónNeural Networks, ComputerMedición de Riesgo - métodosRisk Assessment - methodshttps://id.nlm.nih.gov/mesh/D020000https://id.nlm.nih.gov/mesh/D057286https://id.nlm.nih.gov/mesh/D004636https://id.nlm.nih.gov/mesh/D006760https://id.nlm.nih.gov/mesh/D016015https://id.nlm.nih.gov/mesh/D000069550https://id.nlm.nih.gov/mesh/D016571https://id.nlm.nih.gov/mesh/D018570J. Med. Syst.1319149Journal of Medical SystemsPublicationCC-LICENSElicense_rdflicense_rdfapplication/rdf+xml; charset=utf-8927https://bibliotecadigital.udea.edu.co/bitstreams/04c5e2fd-99a7-427d-80f6-ecded54bdf78/download1646d1f6b96dbbbc38035efc9239ac9cMD52falseAnonymousREADLICENSElicense.txtlicense.txttext/plain; charset=utf-81748https://bibliotecadigital.udea.edu.co/bitstreams/bc49d8e7-6888-463a-9206-edf7553c899b/download8a4605be74aa9ea9d79846c1fba20a33MD53falseAnonymousREADORIGINALHernandezAlejandro_2025_Prediction_Risk_Clinical.pdfHernandezAlejandro_2025_Prediction_Risk_Clinical.pdfArtículo de investigaciónapplication/pdf1328797https://bibliotecadigital.udea.edu.co/bitstreams/f7dba7ab-57f1-408b-9c71-641a2b42b959/downloaddb7826a0bfd19c972d2b8b8d0657c92dMD51trueAnonymousREADTEXTHernandezAlejandro_2025_Prediction_Risk_Clinical.pdf.txtHernandezAlejandro_2025_Prediction_Risk_Clinical.pdf.txtExtracted texttext/plain51777https://bibliotecadigital.udea.edu.co/bitstreams/8f43da7c-acf6-44a7-8cd6-7d6b173c076b/download4e860741fb66a54f0bb796e6b1dd4639MD56falseAnonymousREADTHUMBNAILHernandezAlejandro_2025_Prediction_Risk_Clinical.pdf.jpgHernandezAlejandro_2025_Prediction_Risk_Clinical.pdf.jpgGenerated Thumbnailimage/jpeg15435https://bibliotecadigital.udea.edu.co/bitstreams/5a91fb1b-cc0a-4106-a2ac-57a4636a0a72/download4722e22743b39ab156d611712c6ccad5MD57falseAnonymousREAD10495/45461oai:bibliotecadigital.udea.edu.co:10495/454612025-03-26 17:21:56.968https://creativecommons.org/licenses/by/4.0/open.accesshttps://bibliotecadigital.udea.edu.coRepositorio Institucional de la Universidad de Antioquiaaplicacionbibliotecadigitalbiblioteca@udea.edu.coTk9URTogUExBQ0UgWU9VUiBPV04gTElDRU5TRSBIRVJFClRoaXMgc2FtcGxlIGxpY2Vuc2UgaXMgcHJvdmlkZWQgZm9yIGluZm9ybWF0aW9uYWwgcHVycG9zZXMgb25seS4KCk5PTi1FWENMVVNJVkUgRElTVFJJQlVUSU9OIExJQ0VOU0UKCkJ5IHNpZ25pbmcgYW5kIHN1Ym1pdHRpbmcgdGhpcyBsaWNlbnNlLCB5b3UgKHRoZSBhdXRob3Iocykgb3IgY29weXJpZ2h0Cm93bmVyKSBncmFudHMgdG8gRFNwYWNlIFVuaXZlcnNpdHkgKERTVSkgdGhlIG5vbi1leGNsdXNpdmUgcmlnaHQgdG8gcmVwcm9kdWNlLAp0cmFuc2xhdGUgKGFzIGRlZmluZWQgYmVsb3cpLCBhbmQvb3IgZGlzdHJpYnV0ZSB5b3VyIHN1Ym1pc3Npb24gKGluY2x1ZGluZwp0aGUgYWJzdHJhY3QpIHdvcmxkd2lkZSBpbiBwcmludCBhbmQgZWxlY3Ryb25pYyBmb3JtYXQgYW5kIGluIGFueSBtZWRpdW0sCmluY2x1ZGluZyBidXQgbm90IGxpbWl0ZWQgdG8gYXVkaW8gb3IgdmlkZW8uCgpZb3UgYWdyZWUgdGhhdCBEU1UgbWF5LCB3aXRob3V0IGNoYW5naW5nIHRoZSBjb250ZW50LCB0cmFuc2xhdGUgdGhlCnN1Ym1pc3Npb24gdG8gYW55IG1lZGl1bSBvciBmb3JtYXQgZm9yIHRoZSBwdXJwb3NlIG9mIHByZXNlcnZhdGlvbi4KCllvdSBhbHNvIGFncmVlIHRoYXQgRFNVIG1heSBrZWVwIG1vcmUgdGhhbiBvbmUgY29weSBvZiB0aGlzIHN1Ym1pc3Npb24gZm9yCnB1cnBvc2VzIG9mIHNlY3VyaXR5LCBiYWNrLXVwIGFuZCBwcmVzZXJ2YXRpb24uCgpZb3UgcmVwcmVzZW50IHRoYXQgdGhlIHN1Ym1pc3Npb24gaXMgeW91ciBvcmlnaW5hbCB3b3JrLCBhbmQgdGhhdCB5b3UgaGF2ZQp0aGUgcmlnaHQgdG8gZ3JhbnQgdGhlIHJpZ2h0cyBjb250YWluZWQgaW4gdGhpcyBsaWNlbnNlLiBZb3UgYWxzbyByZXByZXNlbnQKdGhhdCB5b3VyIHN1Ym1pc3Npb24gZG9lcyBub3QsIHRvIHRoZSBiZXN0IG9mIHlvdXIga25vd2xlZGdlLCBpbmZyaW5nZSB1cG9uCmFueW9uZSdzIGNvcHlyaWdodC4KCklmIHRoZSBzdWJtaXNzaW9uIGNvbnRhaW5zIG1hdGVyaWFsIGZvciB3aGljaCB5b3UgZG8gbm90IGhvbGQgY29weXJpZ2h0LAp5b3UgcmVwcmVzZW50IHRoYXQgeW91IGhhdmUgb2J0YWluZWQgdGhlIHVucmVzdHJpY3RlZCBwZXJtaXNzaW9uIG9mIHRoZQpjb3B5cmlnaHQgb3duZXIgdG8gZ3JhbnQgRFNVIHRoZSByaWdodHMgcmVxdWlyZWQgYnkgdGhpcyBsaWNlbnNlLCBhbmQgdGhhdApzdWNoIHRoaXJkLXBhcnR5IG93bmVkIG1hdGVyaWFsIGlzIGNsZWFybHkgaWRlbnRpZmllZCBhbmQgYWNrbm93bGVkZ2VkCndpdGhpbiB0aGUgdGV4dCBvciBjb250ZW50IG9mIHRoZSBzdWJtaXNzaW9uLgoKSUYgVEhFIFNVQk1JU1NJT04gSVMgQkFTRUQgVVBPTiBXT1JLIFRIQVQgSEFTIEJFRU4gU1BPTlNPUkVEIE9SIFNVUFBPUlRFRApCWSBBTiBBR0VOQ1kgT1IgT1JHQU5JWkFUSU9OIE9USEVSIFRIQU4gRFNVLCBZT1UgUkVQUkVTRU5UIFRIQVQgWU9VIEhBVkUKRlVMRklMTEVEIEFOWSBSSUdIVCBPRiBSRVZJRVcgT1IgT1RIRVIgT0JMSUdBVElPTlMgUkVRVUlSRUQgQlkgU1VDSApDT05UUkFDVCBPUiBBR1JFRU1FTlQuCgpEU1Ugd2lsbCBjbGVhcmx5IGlkZW50aWZ5IHlvdXIgbmFtZShzKSBhcyB0aGUgYXV0aG9yKHMpIG9yIG93bmVyKHMpIG9mIHRoZQpzdWJtaXNzaW9uLCBhbmQgd2lsbCBub3QgbWFrZSBhbnkgYWx0ZXJhdGlvbiwgb3RoZXIgdGhhbiBhcyBhbGxvd2VkIGJ5IHRoaXMKbGljZW5zZSwgdG8geW91ciBzdWJtaXNzaW9uLgo=