A sequential chemical kinetics-CFD-chemical kinetics methodology to predict HCCI combustion and main emissions

ABSTRACT: This study presents the development of a new HCCI simulation methodology. The proposed method is based on the sequential coupling of CFD analysis prior to autoignition, followed by multi-zone chemical kinetics analysis of the combustion process during the closed valve period. The methodolo...

Full description

Autores:
Bedoya Caro, Iván Darío
Cadavid, Francisco Javier
Saxena, Samveg
Dibble, Robert W.
Tipo de recurso:
Article of investigation
Fecha de publicación:
2012
Institución:
Universidad de Antioquia
Repositorio:
Repositorio UdeA
Idioma:
eng
OAI Identifier:
oai:bibliotecadigital.udea.edu.co:10495/37306
Acceso en línea:
https://hdl.handle.net/10495/37306
Palabra clave:
Monóxido de carbono
Carbon monoxide
Dinámica de fluidos
Fluid dynamics
HCCI engines (Homogeneous charge compression ignition)
Ignition timing
Combustion and combustion processes
Emisiones
Simulation and modeling
Emissions
Rights
openAccess
License
https://creativecommons.org/licenses/by-nc/4.0/
id UDEA2_41a6158a3799fc7dfa102a5c8d0958fc
oai_identifier_str oai:bibliotecadigital.udea.edu.co:10495/37306
network_acronym_str UDEA2
network_name_str Repositorio UdeA
repository_id_str
dc.title.spa.fl_str_mv A sequential chemical kinetics-CFD-chemical kinetics methodology to predict HCCI combustion and main emissions
title A sequential chemical kinetics-CFD-chemical kinetics methodology to predict HCCI combustion and main emissions
spellingShingle A sequential chemical kinetics-CFD-chemical kinetics methodology to predict HCCI combustion and main emissions
Monóxido de carbono
Carbon monoxide
Dinámica de fluidos
Fluid dynamics
HCCI engines (Homogeneous charge compression ignition)
Ignition timing
Combustion and combustion processes
Emisiones
Simulation and modeling
Emissions
title_short A sequential chemical kinetics-CFD-chemical kinetics methodology to predict HCCI combustion and main emissions
title_full A sequential chemical kinetics-CFD-chemical kinetics methodology to predict HCCI combustion and main emissions
title_fullStr A sequential chemical kinetics-CFD-chemical kinetics methodology to predict HCCI combustion and main emissions
title_full_unstemmed A sequential chemical kinetics-CFD-chemical kinetics methodology to predict HCCI combustion and main emissions
title_sort A sequential chemical kinetics-CFD-chemical kinetics methodology to predict HCCI combustion and main emissions
dc.creator.fl_str_mv Bedoya Caro, Iván Darío
Cadavid, Francisco Javier
Saxena, Samveg
Dibble, Robert W.
dc.contributor.author.none.fl_str_mv Bedoya Caro, Iván Darío
Cadavid, Francisco Javier
Saxena, Samveg
Dibble, Robert W.
dc.contributor.researchgroup.spa.fl_str_mv Ciencia y Tecnología del Gas y Uso Racional de la Energía (GASURE)
dc.subject.lemb.none.fl_str_mv Monóxido de carbono
Carbon monoxide
Dinámica de fluidos
Fluid dynamics
topic Monóxido de carbono
Carbon monoxide
Dinámica de fluidos
Fluid dynamics
HCCI engines (Homogeneous charge compression ignition)
Ignition timing
Combustion and combustion processes
Emisiones
Simulation and modeling
Emissions
dc.subject.proposal.spa.fl_str_mv HCCI engines (Homogeneous charge compression ignition)
Ignition timing
Combustion and combustion processes
Emisiones
Simulation and modeling
Emissions
description ABSTRACT: This study presents the development of a new HCCI simulation methodology. The proposed method is based on the sequential coupling of CFD analysis prior to autoignition, followed by multi-zone chemical kinetics analysis of the combustion process during the closed valve period. The methodology is divided into three steps: 1) a 1-zone chemical kinetic model (Chemkin Pro) is used to determine either the intake conditions at IVC to achieve a desired ignition timing or the ignition timing corresponding with given IVC conditions, 2) the ignition timing and IVC conditions are used as input parameters in a CFD model (Fluent 6.3) to calculate the charge temperature profile and mass distribution prior to autoignition, and 3) the temperature profile and mass distribution are fed into a multi-zone chemical kinetic model (Chemkin Pro) to determine the main combustion characteristics. Different numbers of zones have been tested in the multi-zone step to determine the effectiveness of the general methodology. 40 zones are needed to achieve acceptable thermal stratification resolution to accurately predict peak heat release rates, peak pressures rise rates and ringing intensity. However, a simplified 12-zone reduced model is developed and validated to study combustion variables. Simulation results for the main combustion variables and emissions are compared with experimental results from a multicylinder HCCI engine fueled with biogas (60% CH4 + 40% CO2), and operating at different intake conditions. Comparisons between the proposed numerical methodology and experimental results show good agreement for power output (measured as IMEPg), indicated efficiency, burn duration, peak pressure, individual ringing intensity, and HC and NOx emissions. CO emissions are very sensitive to the input parameters of the 12-zone reduced model. However, when the peak temperature after ignition of boundary layer zones is properly handled; CO emissions are reasonably well predicted. According to the results, the methodology can successfully predict combustion parameters and emissions for HCCI engines in which the fuel and air are well mixed prior to ignition. Compared with previous sequential methodologies, the method proposed here allows for reduced number of zones, more uniform temperature profiles prior to ignition, more accurate estimation of mass located in each zone, reduced computing time and more accurate predictions of peak heat release rates, peak pressure rise rates, and ringing intensity.
publishDate 2012
dc.date.issued.none.fl_str_mv 2012
dc.date.accessioned.none.fl_str_mv 2023-11-13T23:52:19Z
dc.date.available.none.fl_str_mv 2023-11-13T23:52:19Z
dc.type.spa.fl_str_mv Artículo de investigación
dc.type.coar.spa.fl_str_mv http://purl.org/coar/resource_type/c_2df8fbb1
dc.type.redcol.spa.fl_str_mv https://purl.org/redcol/resource_type/ART
dc.type.driver.spa.fl_str_mv info:eu-repo/semantics/article
dc.type.version.spa.fl_str_mv info:eu-repo/semantics/acceptedVersion
format http://purl.org/coar/resource_type/c_2df8fbb1
status_str acceptedVersion
dc.identifier.citation.spa.fl_str_mv Bedoya, Iván & Cadavid, Francisco & Saxena, Samveg & Dibble, Robert & Aceves, S.M. & Flowers, Daniel. (2012). A Sequential Chemical Kinetics-CFD-Chemical Kinetics Methodology to Predict HCCI Combustion and Main Emissions. SAE Technical Paper Series. 2012-01-1119. 10.4271/2012-01-1119.
dc.identifier.issn.none.fl_str_mv 0148-7191
dc.identifier.uri.none.fl_str_mv https://hdl.handle.net/10495/37306
dc.identifier.doi.none.fl_str_mv 10.4271/2012-01-1119
dc.identifier.eissn.none.fl_str_mv 0096-5170
identifier_str_mv Bedoya, Iván & Cadavid, Francisco & Saxena, Samveg & Dibble, Robert & Aceves, S.M. & Flowers, Daniel. (2012). A Sequential Chemical Kinetics-CFD-Chemical Kinetics Methodology to Predict HCCI Combustion and Main Emissions. SAE Technical Paper Series. 2012-01-1119. 10.4271/2012-01-1119.
0148-7191
10.4271/2012-01-1119
0096-5170
url https://hdl.handle.net/10495/37306
dc.language.iso.spa.fl_str_mv eng
language eng
dc.relation.citationendpage.spa.fl_str_mv 22
dc.relation.citationstartpage.spa.fl_str_mv 1
dc.relation.citationvolume.spa.fl_str_mv 2012- 01-1119
dc.relation.ispartofjournal.spa.fl_str_mv SAE Technical Papers
dc.rights.uri.spa.fl_str_mv https://creativecommons.org/licenses/by-nc/4.0/
dc.rights.uri.*.fl_str_mv http://creativecommons.org/licenses/by-nc/2.5/co/
dc.rights.accessrights.spa.fl_str_mv info:eu-repo/semantics/openAccess
dc.rights.coar.spa.fl_str_mv http://purl.org/coar/access_right/c_abf2
rights_invalid_str_mv https://creativecommons.org/licenses/by-nc/4.0/
http://creativecommons.org/licenses/by-nc/2.5/co/
http://purl.org/coar/access_right/c_abf2
eu_rights_str_mv openAccess
dc.format.extent.spa.fl_str_mv 22
dc.format.mimetype.spa.fl_str_mv application/pdf
dc.publisher.spa.fl_str_mv SAE International
dc.publisher.place.spa.fl_str_mv Estados Unidos
institution Universidad de Antioquia
bitstream.url.fl_str_mv https://bibliotecadigital.udea.edu.co/bitstreams/2c9688c4-d108-43bf-b097-c461f0c1fbad/download
https://bibliotecadigital.udea.edu.co/bitstreams/e0d7686c-751b-43bb-8a4d-0d4727b4837b/download
https://bibliotecadigital.udea.edu.co/bitstreams/9ad527f1-1e47-4747-be7d-4aa468add767/download
https://bibliotecadigital.udea.edu.co/bitstreams/203e09c5-ded9-437b-ba28-30429b430311/download
https://bibliotecadigital.udea.edu.co/bitstreams/8978ca13-b2df-4738-81f3-b989c15a9ad7/download
bitstream.checksum.fl_str_mv c0c92b0ffc8b7d22d9cf56754a416a76
8a4605be74aa9ea9d79846c1fba20a33
1756e328d4882f60dea26eb0d945c685
ec8190b6376797513612587615ce6865
a50e0c894d8fafd9304192e8c5a05998
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
MD5
MD5
repository.name.fl_str_mv Repositorio Institucional de la Universidad de Antioquia
repository.mail.fl_str_mv aplicacionbibliotecadigitalbiblioteca@udea.edu.co
_version_ 1851052151463215104
spelling Bedoya Caro, Iván DaríoCadavid, Francisco JavierSaxena, SamvegDibble, Robert W.Ciencia y Tecnología del Gas y Uso Racional de la Energía (GASURE)2023-11-13T23:52:19Z2023-11-13T23:52:19Z2012Bedoya, Iván & Cadavid, Francisco & Saxena, Samveg & Dibble, Robert & Aceves, S.M. & Flowers, Daniel. (2012). A Sequential Chemical Kinetics-CFD-Chemical Kinetics Methodology to Predict HCCI Combustion and Main Emissions. SAE Technical Paper Series. 2012-01-1119. 10.4271/2012-01-1119.0148-7191https://hdl.handle.net/10495/3730610.4271/2012-01-11190096-5170ABSTRACT: This study presents the development of a new HCCI simulation methodology. The proposed method is based on the sequential coupling of CFD analysis prior to autoignition, followed by multi-zone chemical kinetics analysis of the combustion process during the closed valve period. The methodology is divided into three steps: 1) a 1-zone chemical kinetic model (Chemkin Pro) is used to determine either the intake conditions at IVC to achieve a desired ignition timing or the ignition timing corresponding with given IVC conditions, 2) the ignition timing and IVC conditions are used as input parameters in a CFD model (Fluent 6.3) to calculate the charge temperature profile and mass distribution prior to autoignition, and 3) the temperature profile and mass distribution are fed into a multi-zone chemical kinetic model (Chemkin Pro) to determine the main combustion characteristics. Different numbers of zones have been tested in the multi-zone step to determine the effectiveness of the general methodology. 40 zones are needed to achieve acceptable thermal stratification resolution to accurately predict peak heat release rates, peak pressures rise rates and ringing intensity. However, a simplified 12-zone reduced model is developed and validated to study combustion variables. Simulation results for the main combustion variables and emissions are compared with experimental results from a multicylinder HCCI engine fueled with biogas (60% CH4 + 40% CO2), and operating at different intake conditions. Comparisons between the proposed numerical methodology and experimental results show good agreement for power output (measured as IMEPg), indicated efficiency, burn duration, peak pressure, individual ringing intensity, and HC and NOx emissions. CO emissions are very sensitive to the input parameters of the 12-zone reduced model. However, when the peak temperature after ignition of boundary layer zones is properly handled; CO emissions are reasonably well predicted. According to the results, the methodology can successfully predict combustion parameters and emissions for HCCI engines in which the fuel and air are well mixed prior to ignition. Compared with previous sequential methodologies, the method proposed here allows for reduced number of zones, more uniform temperature profiles prior to ignition, more accurate estimation of mass located in each zone, reduced computing time and more accurate predictions of peak heat release rates, peak pressure rise rates, and ringing intensity.COL004040222application/pdfengSAE InternationalEstados Unidoshttps://creativecommons.org/licenses/by-nc/4.0/http://creativecommons.org/licenses/by-nc/2.5/co/info:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2A sequential chemical kinetics-CFD-chemical kinetics methodology to predict HCCI combustion and main emissionsArtículo de investigaciónhttp://purl.org/coar/resource_type/c_2df8fbb1https://purl.org/redcol/resource_type/ARTinfo:eu-repo/semantics/articleinfo:eu-repo/semantics/acceptedVersionMonóxido de carbonoCarbon monoxideDinámica de fluidosFluid dynamicsHCCI engines (Homogeneous charge compression ignition)Ignition timingCombustion and combustion processesEmisionesSimulation and modelingEmissions2212012- 01-1119SAE Technical PapersPublicationCC-LICENSElicense_rdflicense_rdfapplication/rdf+xml; charset=utf-8933https://bibliotecadigital.udea.edu.co/bitstreams/2c9688c4-d108-43bf-b097-c461f0c1fbad/downloadc0c92b0ffc8b7d22d9cf56754a416a76MD52falseAnonymousREADLICENSElicense.txtlicense.txttext/plain; charset=utf-81748https://bibliotecadigital.udea.edu.co/bitstreams/e0d7686c-751b-43bb-8a4d-0d4727b4837b/download8a4605be74aa9ea9d79846c1fba20a33MD53falseAnonymousREADORIGINALBedoyaIvan_2012_SequentialChemicalKinetics.pdfBedoyaIvan_2012_SequentialChemicalKinetics.pdfArtículo de investigaciónapplication/pdf782028https://bibliotecadigital.udea.edu.co/bitstreams/9ad527f1-1e47-4747-be7d-4aa468add767/download1756e328d4882f60dea26eb0d945c685MD51trueAnonymousREADTEXTBedoyaIvan_2012_SequentialChemicalKinetics.pdf.txtBedoyaIvan_2012_SequentialChemicalKinetics.pdf.txtExtracted texttext/plain70450https://bibliotecadigital.udea.edu.co/bitstreams/203e09c5-ded9-437b-ba28-30429b430311/downloadec8190b6376797513612587615ce6865MD56falseAnonymousREADTHUMBNAILBedoyaIvan_2012_SequentialChemicalKinetics.pdf.jpgBedoyaIvan_2012_SequentialChemicalKinetics.pdf.jpgGenerated Thumbnailimage/jpeg15413https://bibliotecadigital.udea.edu.co/bitstreams/8978ca13-b2df-4738-81f3-b989c15a9ad7/downloada50e0c894d8fafd9304192e8c5a05998MD57falseAnonymousREAD10495/37306oai:bibliotecadigital.udea.edu.co:10495/373062025-03-26 17:44:54.012https://creativecommons.org/licenses/by-nc/4.0/open.accesshttps://bibliotecadigital.udea.edu.coRepositorio Institucional de la Universidad de Antioquiaaplicacionbibliotecadigitalbiblioteca@udea.edu.coTk9URTogUExBQ0UgWU9VUiBPV04gTElDRU5TRSBIRVJFClRoaXMgc2FtcGxlIGxpY2Vuc2UgaXMgcHJvdmlkZWQgZm9yIGluZm9ybWF0aW9uYWwgcHVycG9zZXMgb25seS4KCk5PTi1FWENMVVNJVkUgRElTVFJJQlVUSU9OIExJQ0VOU0UKCkJ5IHNpZ25pbmcgYW5kIHN1Ym1pdHRpbmcgdGhpcyBsaWNlbnNlLCB5b3UgKHRoZSBhdXRob3Iocykgb3IgY29weXJpZ2h0Cm93bmVyKSBncmFudHMgdG8gRFNwYWNlIFVuaXZlcnNpdHkgKERTVSkgdGhlIG5vbi1leGNsdXNpdmUgcmlnaHQgdG8gcmVwcm9kdWNlLAp0cmFuc2xhdGUgKGFzIGRlZmluZWQgYmVsb3cpLCBhbmQvb3IgZGlzdHJpYnV0ZSB5b3VyIHN1Ym1pc3Npb24gKGluY2x1ZGluZwp0aGUgYWJzdHJhY3QpIHdvcmxkd2lkZSBpbiBwcmludCBhbmQgZWxlY3Ryb25pYyBmb3JtYXQgYW5kIGluIGFueSBtZWRpdW0sCmluY2x1ZGluZyBidXQgbm90IGxpbWl0ZWQgdG8gYXVkaW8gb3IgdmlkZW8uCgpZb3UgYWdyZWUgdGhhdCBEU1UgbWF5LCB3aXRob3V0IGNoYW5naW5nIHRoZSBjb250ZW50LCB0cmFuc2xhdGUgdGhlCnN1Ym1pc3Npb24gdG8gYW55IG1lZGl1bSBvciBmb3JtYXQgZm9yIHRoZSBwdXJwb3NlIG9mIHByZXNlcnZhdGlvbi4KCllvdSBhbHNvIGFncmVlIHRoYXQgRFNVIG1heSBrZWVwIG1vcmUgdGhhbiBvbmUgY29weSBvZiB0aGlzIHN1Ym1pc3Npb24gZm9yCnB1cnBvc2VzIG9mIHNlY3VyaXR5LCBiYWNrLXVwIGFuZCBwcmVzZXJ2YXRpb24uCgpZb3UgcmVwcmVzZW50IHRoYXQgdGhlIHN1Ym1pc3Npb24gaXMgeW91ciBvcmlnaW5hbCB3b3JrLCBhbmQgdGhhdCB5b3UgaGF2ZQp0aGUgcmlnaHQgdG8gZ3JhbnQgdGhlIHJpZ2h0cyBjb250YWluZWQgaW4gdGhpcyBsaWNlbnNlLiBZb3UgYWxzbyByZXByZXNlbnQKdGhhdCB5b3VyIHN1Ym1pc3Npb24gZG9lcyBub3QsIHRvIHRoZSBiZXN0IG9mIHlvdXIga25vd2xlZGdlLCBpbmZyaW5nZSB1cG9uCmFueW9uZSdzIGNvcHlyaWdodC4KCklmIHRoZSBzdWJtaXNzaW9uIGNvbnRhaW5zIG1hdGVyaWFsIGZvciB3aGljaCB5b3UgZG8gbm90IGhvbGQgY29weXJpZ2h0LAp5b3UgcmVwcmVzZW50IHRoYXQgeW91IGhhdmUgb2J0YWluZWQgdGhlIHVucmVzdHJpY3RlZCBwZXJtaXNzaW9uIG9mIHRoZQpjb3B5cmlnaHQgb3duZXIgdG8gZ3JhbnQgRFNVIHRoZSByaWdodHMgcmVxdWlyZWQgYnkgdGhpcyBsaWNlbnNlLCBhbmQgdGhhdApzdWNoIHRoaXJkLXBhcnR5IG93bmVkIG1hdGVyaWFsIGlzIGNsZWFybHkgaWRlbnRpZmllZCBhbmQgYWNrbm93bGVkZ2VkCndpdGhpbiB0aGUgdGV4dCBvciBjb250ZW50IG9mIHRoZSBzdWJtaXNzaW9uLgoKSUYgVEhFIFNVQk1JU1NJT04gSVMgQkFTRUQgVVBPTiBXT1JLIFRIQVQgSEFTIEJFRU4gU1BPTlNPUkVEIE9SIFNVUFBPUlRFRApCWSBBTiBBR0VOQ1kgT1IgT1JHQU5JWkFUSU9OIE9USEVSIFRIQU4gRFNVLCBZT1UgUkVQUkVTRU5UIFRIQVQgWU9VIEhBVkUKRlVMRklMTEVEIEFOWSBSSUdIVCBPRiBSRVZJRVcgT1IgT1RIRVIgT0JMSUdBVElPTlMgUkVRVUlSRUQgQlkgU1VDSApDT05UUkFDVCBPUiBBR1JFRU1FTlQuCgpEU1Ugd2lsbCBjbGVhcmx5IGlkZW50aWZ5IHlvdXIgbmFtZShzKSBhcyB0aGUgYXV0aG9yKHMpIG9yIG93bmVyKHMpIG9mIHRoZQpzdWJtaXNzaW9uLCBhbmQgd2lsbCBub3QgbWFrZSBhbnkgYWx0ZXJhdGlvbiwgb3RoZXIgdGhhbiBhcyBhbGxvd2VkIGJ5IHRoaXMKbGljZW5zZSwgdG8geW91ciBzdWJtaXNzaW9uLgo=