Properties of the hypergeometric function type I distribution

ABSTRACT: The hypergeometric function type I distribution with the pdf proportional to x () ( ) − x F α β γ − x ν− γ− 1 2 1 , ; ; 1 1 1 occurs as the distribution of the product of two independent beta variables. In this article, we study several properties and stochastic representations of this dis...

Full description

Autores:
Nagar, Daya Krishna
Álvarez Chalarca, José Ángel
Tipo de recurso:
Article of investigation
Fecha de publicación:
2005
Institución:
Universidad de Antioquia
Repositorio:
Repositorio UdeA
Idioma:
eng
OAI Identifier:
oai:bibliotecadigital.udea.edu.co:10495/30862
Acceso en línea:
https://hdl.handle.net/10495/30862
Palabra clave:
Funciones hipergeométricas
Hypergeometric functions
Distribución hipergeométrica
Hypergeometric distribution
Variables beta
Rights
openAccess
License
https://creativecommons.org/licenses/by-nc-nd/4.0/
id UDEA2_3e059bc6ee855434974efbe16e29331c
oai_identifier_str oai:bibliotecadigital.udea.edu.co:10495/30862
network_acronym_str UDEA2
network_name_str Repositorio UdeA
repository_id_str
dc.title.spa.fl_str_mv Properties of the hypergeometric function type I distribution
title Properties of the hypergeometric function type I distribution
spellingShingle Properties of the hypergeometric function type I distribution
Funciones hipergeométricas
Hypergeometric functions
Distribución hipergeométrica
Hypergeometric distribution
Variables beta
title_short Properties of the hypergeometric function type I distribution
title_full Properties of the hypergeometric function type I distribution
title_fullStr Properties of the hypergeometric function type I distribution
title_full_unstemmed Properties of the hypergeometric function type I distribution
title_sort Properties of the hypergeometric function type I distribution
dc.creator.fl_str_mv Nagar, Daya Krishna
Álvarez Chalarca, José Ángel
dc.contributor.author.none.fl_str_mv Nagar, Daya Krishna
Álvarez Chalarca, José Ángel
dc.contributor.researchgroup.spa.fl_str_mv Análisis Multivariado
dc.subject.lemb.none.fl_str_mv Funciones hipergeométricas
Hypergeometric functions
Distribución hipergeométrica
Hypergeometric distribution
topic Funciones hipergeométricas
Hypergeometric functions
Distribución hipergeométrica
Hypergeometric distribution
Variables beta
dc.subject.proposal.spa.fl_str_mv Variables beta
description ABSTRACT: The hypergeometric function type I distribution with the pdf proportional to x () ( ) − x F α β γ − x ν− γ− 1 2 1 , ; ; 1 1 1 occurs as the distribution of the product of two independent beta variables. In this article, we study several properties and stochastic representations of this distribution.
publishDate 2005
dc.date.issued.none.fl_str_mv 2005
dc.date.accessioned.none.fl_str_mv 2022-09-25T17:23:29Z
dc.date.available.none.fl_str_mv 2022-09-25T17:23:29Z
dc.type.spa.fl_str_mv Artículo de investigación
dc.type.coar.spa.fl_str_mv http://purl.org/coar/resource_type/c_2df8fbb1
dc.type.redcol.spa.fl_str_mv https://purl.org/redcol/resource_type/ART
dc.type.coarversion.spa.fl_str_mv http://purl.org/coar/version/c_970fb48d4fbd8a85
dc.type.driver.spa.fl_str_mv info:eu-repo/semantics/article
dc.type.version.spa.fl_str_mv info:eu-repo/semantics/publishedVersion
format http://purl.org/coar/resource_type/c_2df8fbb1
status_str publishedVersion
dc.identifier.issn.none.fl_str_mv 0972-3617
dc.identifier.uri.none.fl_str_mv https://hdl.handle.net/10495/30862
identifier_str_mv 0972-3617
url https://hdl.handle.net/10495/30862
dc.language.iso.spa.fl_str_mv eng
language eng
dc.relation.citationendpage.spa.fl_str_mv 351
dc.relation.citationissue.spa.fl_str_mv 3
dc.relation.citationstartpage.spa.fl_str_mv 341
dc.relation.citationvolume.spa.fl_str_mv 5
dc.relation.ispartofjournal.spa.fl_str_mv Advances and Applications in Statistics
dc.rights.uri.spa.fl_str_mv https://creativecommons.org/licenses/by-nc-nd/4.0/
dc.rights.uri.*.fl_str_mv http://creativecommons.org/licenses/by-nc-nd/2.5/co/
dc.rights.accessrights.spa.fl_str_mv info:eu-repo/semantics/openAccess
dc.rights.coar.spa.fl_str_mv http://purl.org/coar/access_right/c_abf2
rights_invalid_str_mv https://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/2.5/co/
http://purl.org/coar/access_right/c_abf2
eu_rights_str_mv openAccess
dc.format.extent.spa.fl_str_mv 11
dc.format.mimetype.spa.fl_str_mv application/pdf
dc.publisher.spa.fl_str_mv Pushpa Publishing House
dc.publisher.place.spa.fl_str_mv India
institution Universidad de Antioquia
bitstream.url.fl_str_mv https://bibliotecadigital.udea.edu.co/bitstreams/f99917e3-667e-4bec-9272-14e8458f05d7/download
https://bibliotecadigital.udea.edu.co/bitstreams/95e83cb5-55da-48cd-830d-f0a52fe927d7/download
https://bibliotecadigital.udea.edu.co/bitstreams/ae982edd-9eab-4ba0-be12-f5b8a3a8f04b/download
https://bibliotecadigital.udea.edu.co/bitstreams/ded2c19b-d262-46e5-8f6f-5ed52165017a/download
https://bibliotecadigital.udea.edu.co/bitstreams/87c296ef-536e-4fc9-97f6-2f000dbd8d02/download
bitstream.checksum.fl_str_mv df3456d6955a005d49910790ef2fa10d
b88b088d9957e670ce3b3fbe2eedbc13
8a4605be74aa9ea9d79846c1fba20a33
a463f102ef171492336c791fe65d1a48
4983f2cb08f2f9ef71c0c29c6e9d14dc
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
MD5
MD5
repository.name.fl_str_mv Repositorio Institucional de la Universidad de Antioquia
repository.mail.fl_str_mv aplicacionbibliotecadigitalbiblioteca@udea.edu.co
_version_ 1851052420494262272
spelling Nagar, Daya KrishnaÁlvarez Chalarca, José ÁngelAnálisis Multivariado2022-09-25T17:23:29Z2022-09-25T17:23:29Z20050972-3617https://hdl.handle.net/10495/30862ABSTRACT: The hypergeometric function type I distribution with the pdf proportional to x () ( ) − x F α β γ − x ν− γ− 1 2 1 , ; ; 1 1 1 occurs as the distribution of the product of two independent beta variables. In this article, we study several properties and stochastic representations of this distribution.COL000053211application/pdfengPushpa Publishing HouseIndiahttps://creativecommons.org/licenses/by-nc-nd/4.0/http://creativecommons.org/licenses/by-nc-nd/2.5/co/info:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2Properties of the hypergeometric function type I distributionArtículo de investigaciónhttp://purl.org/coar/resource_type/c_2df8fbb1https://purl.org/redcol/resource_type/ARThttp://purl.org/coar/version/c_970fb48d4fbd8a85info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionFunciones hipergeométricasHypergeometric functionsDistribución hipergeométricaHypergeometric distributionVariables beta35133415Advances and Applications in StatisticsPublicationORIGINALNagarDaya_2005_PropertiesHypergeometric.pdfNagarDaya_2005_PropertiesHypergeometric.pdfArtículo de investigaciónapplication/pdf129459https://bibliotecadigital.udea.edu.co/bitstreams/f99917e3-667e-4bec-9272-14e8458f05d7/downloaddf3456d6955a005d49910790ef2fa10dMD51trueAnonymousREADCC-LICENSElicense_rdflicense_rdfapplication/rdf+xml; charset=utf-8823https://bibliotecadigital.udea.edu.co/bitstreams/95e83cb5-55da-48cd-830d-f0a52fe927d7/downloadb88b088d9957e670ce3b3fbe2eedbc13MD52falseAnonymousREADLICENSElicense.txtlicense.txttext/plain; charset=utf-81748https://bibliotecadigital.udea.edu.co/bitstreams/ae982edd-9eab-4ba0-be12-f5b8a3a8f04b/download8a4605be74aa9ea9d79846c1fba20a33MD53falseAnonymousREADTEXTNagarDaya_2005_PropertiesHypergeometric.pdf.txtNagarDaya_2005_PropertiesHypergeometric.pdf.txtExtracted texttext/plain16652https://bibliotecadigital.udea.edu.co/bitstreams/ded2c19b-d262-46e5-8f6f-5ed52165017a/downloada463f102ef171492336c791fe65d1a48MD54falseAnonymousREADTHUMBNAILNagarDaya_2005_PropertiesHypergeometric.pdf.jpgNagarDaya_2005_PropertiesHypergeometric.pdf.jpgGenerated Thumbnailimage/jpeg8148https://bibliotecadigital.udea.edu.co/bitstreams/87c296ef-536e-4fc9-97f6-2f000dbd8d02/download4983f2cb08f2f9ef71c0c29c6e9d14dcMD55falseAnonymousREAD10495/30862oai:bibliotecadigital.udea.edu.co:10495/308622025-03-26 22:04:27.446https://creativecommons.org/licenses/by-nc-nd/4.0/open.accesshttps://bibliotecadigital.udea.edu.coRepositorio Institucional de la Universidad de Antioquiaaplicacionbibliotecadigitalbiblioteca@udea.edu.coTk9URTogUExBQ0UgWU9VUiBPV04gTElDRU5TRSBIRVJFClRoaXMgc2FtcGxlIGxpY2Vuc2UgaXMgcHJvdmlkZWQgZm9yIGluZm9ybWF0aW9uYWwgcHVycG9zZXMgb25seS4KCk5PTi1FWENMVVNJVkUgRElTVFJJQlVUSU9OIExJQ0VOU0UKCkJ5IHNpZ25pbmcgYW5kIHN1Ym1pdHRpbmcgdGhpcyBsaWNlbnNlLCB5b3UgKHRoZSBhdXRob3Iocykgb3IgY29weXJpZ2h0Cm93bmVyKSBncmFudHMgdG8gRFNwYWNlIFVuaXZlcnNpdHkgKERTVSkgdGhlIG5vbi1leGNsdXNpdmUgcmlnaHQgdG8gcmVwcm9kdWNlLAp0cmFuc2xhdGUgKGFzIGRlZmluZWQgYmVsb3cpLCBhbmQvb3IgZGlzdHJpYnV0ZSB5b3VyIHN1Ym1pc3Npb24gKGluY2x1ZGluZwp0aGUgYWJzdHJhY3QpIHdvcmxkd2lkZSBpbiBwcmludCBhbmQgZWxlY3Ryb25pYyBmb3JtYXQgYW5kIGluIGFueSBtZWRpdW0sCmluY2x1ZGluZyBidXQgbm90IGxpbWl0ZWQgdG8gYXVkaW8gb3IgdmlkZW8uCgpZb3UgYWdyZWUgdGhhdCBEU1UgbWF5LCB3aXRob3V0IGNoYW5naW5nIHRoZSBjb250ZW50LCB0cmFuc2xhdGUgdGhlCnN1Ym1pc3Npb24gdG8gYW55IG1lZGl1bSBvciBmb3JtYXQgZm9yIHRoZSBwdXJwb3NlIG9mIHByZXNlcnZhdGlvbi4KCllvdSBhbHNvIGFncmVlIHRoYXQgRFNVIG1heSBrZWVwIG1vcmUgdGhhbiBvbmUgY29weSBvZiB0aGlzIHN1Ym1pc3Npb24gZm9yCnB1cnBvc2VzIG9mIHNlY3VyaXR5LCBiYWNrLXVwIGFuZCBwcmVzZXJ2YXRpb24uCgpZb3UgcmVwcmVzZW50IHRoYXQgdGhlIHN1Ym1pc3Npb24gaXMgeW91ciBvcmlnaW5hbCB3b3JrLCBhbmQgdGhhdCB5b3UgaGF2ZQp0aGUgcmlnaHQgdG8gZ3JhbnQgdGhlIHJpZ2h0cyBjb250YWluZWQgaW4gdGhpcyBsaWNlbnNlLiBZb3UgYWxzbyByZXByZXNlbnQKdGhhdCB5b3VyIHN1Ym1pc3Npb24gZG9lcyBub3QsIHRvIHRoZSBiZXN0IG9mIHlvdXIga25vd2xlZGdlLCBpbmZyaW5nZSB1cG9uCmFueW9uZSdzIGNvcHlyaWdodC4KCklmIHRoZSBzdWJtaXNzaW9uIGNvbnRhaW5zIG1hdGVyaWFsIGZvciB3aGljaCB5b3UgZG8gbm90IGhvbGQgY29weXJpZ2h0LAp5b3UgcmVwcmVzZW50IHRoYXQgeW91IGhhdmUgb2J0YWluZWQgdGhlIHVucmVzdHJpY3RlZCBwZXJtaXNzaW9uIG9mIHRoZQpjb3B5cmlnaHQgb3duZXIgdG8gZ3JhbnQgRFNVIHRoZSByaWdodHMgcmVxdWlyZWQgYnkgdGhpcyBsaWNlbnNlLCBhbmQgdGhhdApzdWNoIHRoaXJkLXBhcnR5IG93bmVkIG1hdGVyaWFsIGlzIGNsZWFybHkgaWRlbnRpZmllZCBhbmQgYWNrbm93bGVkZ2VkCndpdGhpbiB0aGUgdGV4dCBvciBjb250ZW50IG9mIHRoZSBzdWJtaXNzaW9uLgoKSUYgVEhFIFNVQk1JU1NJT04gSVMgQkFTRUQgVVBPTiBXT1JLIFRIQVQgSEFTIEJFRU4gU1BPTlNPUkVEIE9SIFNVUFBPUlRFRApCWSBBTiBBR0VOQ1kgT1IgT1JHQU5JWkFUSU9OIE9USEVSIFRIQU4gRFNVLCBZT1UgUkVQUkVTRU5UIFRIQVQgWU9VIEhBVkUKRlVMRklMTEVEIEFOWSBSSUdIVCBPRiBSRVZJRVcgT1IgT1RIRVIgT0JMSUdBVElPTlMgUkVRVUlSRUQgQlkgU1VDSApDT05UUkFDVCBPUiBBR1JFRU1FTlQuCgpEU1Ugd2lsbCBjbGVhcmx5IGlkZW50aWZ5IHlvdXIgbmFtZShzKSBhcyB0aGUgYXV0aG9yKHMpIG9yIG93bmVyKHMpIG9mIHRoZQpzdWJtaXNzaW9uLCBhbmQgd2lsbCBub3QgbWFrZSBhbnkgYWx0ZXJhdGlvbiwgb3RoZXIgdGhhbiBhcyBhbGxvd2VkIGJ5IHRoaXMKbGljZW5zZSwgdG8geW91ciBzdWJtaXNzaW9uLgo=