Predicting multidimensional poverty with machine learning algorithms : an open data source approach using spatial data

ABSTRACT: This paper presents a methodology to estimate the multidimensional poverty index using spatial data at the street block level. The data used in this study were obtained from Open Street Maps and ESA’s land use cover, which are freely available sources of spatial information. The study empl...

Full description

Autores:
Muñetón Santa, Guberney
Manrique Ruiz, Luis Carlos
Tipo de recurso:
Article of investigation
Fecha de publicación:
2023
Institución:
Universidad de Antioquia
Repositorio:
Repositorio UdeA
Idioma:
eng
OAI Identifier:
oai:bibliotecadigital.udea.edu.co:10495/34949
Acceso en línea:
https://hdl.handle.net/10495/34949
Palabra clave:
Multidimensional poverty index
Spatial analysis
Poverty
Machine learning
Indice de pobreza multidimensional
Pobreza
Análisis espacial
Medellín, Colombia
Rights
openAccess
License
https://creativecommons.org/licenses/by/4.0/
id UDEA2_3c4ef0392998eb3a6ab255760193c10c
oai_identifier_str oai:bibliotecadigital.udea.edu.co:10495/34949
network_acronym_str UDEA2
network_name_str Repositorio UdeA
repository_id_str
dc.title.spa.fl_str_mv Predicting multidimensional poverty with machine learning algorithms : an open data source approach using spatial data
title Predicting multidimensional poverty with machine learning algorithms : an open data source approach using spatial data
spellingShingle Predicting multidimensional poverty with machine learning algorithms : an open data source approach using spatial data
Multidimensional poverty index
Spatial analysis
Poverty
Machine learning
Indice de pobreza multidimensional
Pobreza
Análisis espacial
Medellín, Colombia
title_short Predicting multidimensional poverty with machine learning algorithms : an open data source approach using spatial data
title_full Predicting multidimensional poverty with machine learning algorithms : an open data source approach using spatial data
title_fullStr Predicting multidimensional poverty with machine learning algorithms : an open data source approach using spatial data
title_full_unstemmed Predicting multidimensional poverty with machine learning algorithms : an open data source approach using spatial data
title_sort Predicting multidimensional poverty with machine learning algorithms : an open data source approach using spatial data
dc.creator.fl_str_mv Muñetón Santa, Guberney
Manrique Ruiz, Luis Carlos
dc.contributor.author.none.fl_str_mv Muñetón Santa, Guberney
Manrique Ruiz, Luis Carlos
dc.contributor.researchgroup.spa.fl_str_mv Recursos Estratégicos Región y Dinámicas Socioambientales
dc.subject.proposal.spa.fl_str_mv Multidimensional poverty index
Spatial analysis
Poverty
Machine learning
Indice de pobreza multidimensional
Pobreza
Análisis espacial
Medellín, Colombia
topic Multidimensional poverty index
Spatial analysis
Poverty
Machine learning
Indice de pobreza multidimensional
Pobreza
Análisis espacial
Medellín, Colombia
description ABSTRACT: This paper presents a methodology to estimate the multidimensional poverty index using spatial data at the street block level. The data used in this study were obtained from Open Street Maps and ESA’s land use cover, which are freely available sources of spatial information. The study employs five machine-learning algorithms, including Catboost, Lightboost, and Random Forest, to estimate the multidimensional poverty index with spatial granularity. The results indicate that these models achieve promising performance in predicting poverty levels in Medellín, Colombia. The results showed that the Random Forest algorithm achieved the highest performance, with an MAE of 0.07504. Furthermore, the spatial distribution of the multidimensional poverty estimate was highly correlated with the true values of the distribution. This work contributes to predicting multidimensional poverty by demonstrating the potential of machine learning algorithms to utilize accessible spatial data. By providing evidence of the feasibility of estimating poverty levels at a granular spatial level, this methodology offers a powerful tool for policymakers to make poverty social interventions with low-cost evidence. Furthermore, this study has important implications for poverty eradication efforts in developing countries, where access to reliable data remains challenging.
publishDate 2023
dc.date.accessioned.none.fl_str_mv 2023-05-10T18:34:59Z
dc.date.available.none.fl_str_mv 2023-05-10T18:34:59Z
dc.date.issued.none.fl_str_mv 2023
dc.type.spa.fl_str_mv Artículo de investigación
dc.type.coar.spa.fl_str_mv http://purl.org/coar/resource_type/c_2df8fbb1
dc.type.redcol.spa.fl_str_mv https://purl.org/redcol/resource_type/ART
dc.type.coarversion.spa.fl_str_mv http://purl.org/coar/version/c_970fb48d4fbd8a85
dc.type.driver.spa.fl_str_mv info:eu-repo/semantics/article
dc.type.version.spa.fl_str_mv info:eu-repo/semantics/publishedVersion
format http://purl.org/coar/resource_type/c_2df8fbb1
status_str publishedVersion
dc.identifier.uri.none.fl_str_mv https://hdl.handle.net/10495/34949
dc.identifier.eissn.none.fl_str_mv 2076-0760
url https://hdl.handle.net/10495/34949
identifier_str_mv 2076-0760
dc.language.iso.spa.fl_str_mv eng
language eng
dc.relation.citationendpage.spa.fl_str_mv 21
dc.relation.citationissue.spa.fl_str_mv 5
dc.relation.citationstartpage.spa.fl_str_mv 1
dc.relation.citationvolume.spa.fl_str_mv 12
dc.relation.ispartofjournal.spa.fl_str_mv Social Science
dc.rights.uri.spa.fl_str_mv https://creativecommons.org/licenses/by/4.0/
dc.rights.uri.*.fl_str_mv http://creativecommons.org/licenses/by/2.5/co/
dc.rights.accessrights.spa.fl_str_mv info:eu-repo/semantics/openAccess
dc.rights.coar.spa.fl_str_mv http://purl.org/coar/access_right/c_abf2
rights_invalid_str_mv https://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/2.5/co/
http://purl.org/coar/access_right/c_abf2
eu_rights_str_mv openAccess
dc.format.extent.spa.fl_str_mv 21
dc.format.mimetype.spa.fl_str_mv application/pdf
dc.publisher.spa.fl_str_mv MDPI
institution Universidad de Antioquia
bitstream.url.fl_str_mv https://bibliotecadigital.udea.edu.co/bitstreams/095a8c12-33d3-4d1e-8be0-61325026694c/download
https://bibliotecadigital.udea.edu.co/bitstreams/3299dc28-b75b-414f-a628-d2a93e04386f/download
https://bibliotecadigital.udea.edu.co/bitstreams/19ec66be-3be2-494e-976b-1d444bfd39f9/download
https://bibliotecadigital.udea.edu.co/bitstreams/013fbeec-784a-41ea-a27b-4706c0a6714d/download
https://bibliotecadigital.udea.edu.co/bitstreams/6d732ea0-da2e-4903-8841-adff789b163a/download
bitstream.checksum.fl_str_mv 00d90bb3015a1900ecb5549f0b61acec
1646d1f6b96dbbbc38035efc9239ac9c
8a4605be74aa9ea9d79846c1fba20a33
2c3358466865692b0f8f48227a132e9c
8973ea8374918c676438e09066cfc3ef
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
MD5
MD5
repository.name.fl_str_mv Repositorio Institucional de la Universidad de Antioquia
repository.mail.fl_str_mv aplicacionbibliotecadigitalbiblioteca@udea.edu.co
_version_ 1851052399205023744
spelling Muñetón Santa, GuberneyManrique Ruiz, Luis CarlosRecursos Estratégicos Región y Dinámicas Socioambientales2023-05-10T18:34:59Z2023-05-10T18:34:59Z2023https://hdl.handle.net/10495/349492076-0760ABSTRACT: This paper presents a methodology to estimate the multidimensional poverty index using spatial data at the street block level. The data used in this study were obtained from Open Street Maps and ESA’s land use cover, which are freely available sources of spatial information. The study employs five machine-learning algorithms, including Catboost, Lightboost, and Random Forest, to estimate the multidimensional poverty index with spatial granularity. The results indicate that these models achieve promising performance in predicting poverty levels in Medellín, Colombia. The results showed that the Random Forest algorithm achieved the highest performance, with an MAE of 0.07504. Furthermore, the spatial distribution of the multidimensional poverty estimate was highly correlated with the true values of the distribution. This work contributes to predicting multidimensional poverty by demonstrating the potential of machine learning algorithms to utilize accessible spatial data. By providing evidence of the feasibility of estimating poverty levels at a granular spatial level, this methodology offers a powerful tool for policymakers to make poverty social interventions with low-cost evidence. Furthermore, this study has important implications for poverty eradication efforts in developing countries, where access to reliable data remains challenging.21application/pdfengMDPIhttps://creativecommons.org/licenses/by/4.0/http://creativecommons.org/licenses/by/2.5/co/info:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2Predicting multidimensional poverty with machine learning algorithms : an open data source approach using spatial dataArtículo de investigaciónhttp://purl.org/coar/resource_type/c_2df8fbb1https://purl.org/redcol/resource_type/ARThttp://purl.org/coar/version/c_970fb48d4fbd8a85info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionMultidimensional poverty indexSpatial analysisPovertyMachine learningIndice de pobreza multidimensionalPobrezaAnálisis espacialMedellín, Colombia215112Social SciencePublicationORIGINALMuñetonGuberney_2023_PredictingMultidimensionalPoverty.pdfMuñetonGuberney_2023_PredictingMultidimensionalPoverty.pdfArtículo de investigaciónapplication/pdf37990446https://bibliotecadigital.udea.edu.co/bitstreams/095a8c12-33d3-4d1e-8be0-61325026694c/download00d90bb3015a1900ecb5549f0b61acecMD51trueAnonymousREADCC-LICENSElicense_rdflicense_rdfapplication/rdf+xml; charset=utf-8927https://bibliotecadigital.udea.edu.co/bitstreams/3299dc28-b75b-414f-a628-d2a93e04386f/download1646d1f6b96dbbbc38035efc9239ac9cMD52falseAnonymousREADLICENSElicense.txtlicense.txttext/plain; charset=utf-81748https://bibliotecadigital.udea.edu.co/bitstreams/19ec66be-3be2-494e-976b-1d444bfd39f9/download8a4605be74aa9ea9d79846c1fba20a33MD53falseAnonymousREADTEXTMuñetonGuberney_2023_PredictingMultidimensionalPoverty.pdf.txtMuñetonGuberney_2023_PredictingMultidimensionalPoverty.pdf.txtExtracted texttext/plain61778https://bibliotecadigital.udea.edu.co/bitstreams/013fbeec-784a-41ea-a27b-4706c0a6714d/download2c3358466865692b0f8f48227a132e9cMD54falseAnonymousREADTHUMBNAILMuñetonGuberney_2023_PredictingMultidimensionalPoverty.pdf.jpgMuñetonGuberney_2023_PredictingMultidimensionalPoverty.pdf.jpgGenerated Thumbnailimage/jpeg15826https://bibliotecadigital.udea.edu.co/bitstreams/6d732ea0-da2e-4903-8841-adff789b163a/download8973ea8374918c676438e09066cfc3efMD55falseAnonymousREAD10495/34949oai:bibliotecadigital.udea.edu.co:10495/349492025-03-26 21:41:00.668https://creativecommons.org/licenses/by/4.0/open.accesshttps://bibliotecadigital.udea.edu.coRepositorio Institucional de la Universidad de Antioquiaaplicacionbibliotecadigitalbiblioteca@udea.edu.coTk9URTogUExBQ0UgWU9VUiBPV04gTElDRU5TRSBIRVJFClRoaXMgc2FtcGxlIGxpY2Vuc2UgaXMgcHJvdmlkZWQgZm9yIGluZm9ybWF0aW9uYWwgcHVycG9zZXMgb25seS4KCk5PTi1FWENMVVNJVkUgRElTVFJJQlVUSU9OIExJQ0VOU0UKCkJ5IHNpZ25pbmcgYW5kIHN1Ym1pdHRpbmcgdGhpcyBsaWNlbnNlLCB5b3UgKHRoZSBhdXRob3Iocykgb3IgY29weXJpZ2h0Cm93bmVyKSBncmFudHMgdG8gRFNwYWNlIFVuaXZlcnNpdHkgKERTVSkgdGhlIG5vbi1leGNsdXNpdmUgcmlnaHQgdG8gcmVwcm9kdWNlLAp0cmFuc2xhdGUgKGFzIGRlZmluZWQgYmVsb3cpLCBhbmQvb3IgZGlzdHJpYnV0ZSB5b3VyIHN1Ym1pc3Npb24gKGluY2x1ZGluZwp0aGUgYWJzdHJhY3QpIHdvcmxkd2lkZSBpbiBwcmludCBhbmQgZWxlY3Ryb25pYyBmb3JtYXQgYW5kIGluIGFueSBtZWRpdW0sCmluY2x1ZGluZyBidXQgbm90IGxpbWl0ZWQgdG8gYXVkaW8gb3IgdmlkZW8uCgpZb3UgYWdyZWUgdGhhdCBEU1UgbWF5LCB3aXRob3V0IGNoYW5naW5nIHRoZSBjb250ZW50LCB0cmFuc2xhdGUgdGhlCnN1Ym1pc3Npb24gdG8gYW55IG1lZGl1bSBvciBmb3JtYXQgZm9yIHRoZSBwdXJwb3NlIG9mIHByZXNlcnZhdGlvbi4KCllvdSBhbHNvIGFncmVlIHRoYXQgRFNVIG1heSBrZWVwIG1vcmUgdGhhbiBvbmUgY29weSBvZiB0aGlzIHN1Ym1pc3Npb24gZm9yCnB1cnBvc2VzIG9mIHNlY3VyaXR5LCBiYWNrLXVwIGFuZCBwcmVzZXJ2YXRpb24uCgpZb3UgcmVwcmVzZW50IHRoYXQgdGhlIHN1Ym1pc3Npb24gaXMgeW91ciBvcmlnaW5hbCB3b3JrLCBhbmQgdGhhdCB5b3UgaGF2ZQp0aGUgcmlnaHQgdG8gZ3JhbnQgdGhlIHJpZ2h0cyBjb250YWluZWQgaW4gdGhpcyBsaWNlbnNlLiBZb3UgYWxzbyByZXByZXNlbnQKdGhhdCB5b3VyIHN1Ym1pc3Npb24gZG9lcyBub3QsIHRvIHRoZSBiZXN0IG9mIHlvdXIga25vd2xlZGdlLCBpbmZyaW5nZSB1cG9uCmFueW9uZSdzIGNvcHlyaWdodC4KCklmIHRoZSBzdWJtaXNzaW9uIGNvbnRhaW5zIG1hdGVyaWFsIGZvciB3aGljaCB5b3UgZG8gbm90IGhvbGQgY29weXJpZ2h0LAp5b3UgcmVwcmVzZW50IHRoYXQgeW91IGhhdmUgb2J0YWluZWQgdGhlIHVucmVzdHJpY3RlZCBwZXJtaXNzaW9uIG9mIHRoZQpjb3B5cmlnaHQgb3duZXIgdG8gZ3JhbnQgRFNVIHRoZSByaWdodHMgcmVxdWlyZWQgYnkgdGhpcyBsaWNlbnNlLCBhbmQgdGhhdApzdWNoIHRoaXJkLXBhcnR5IG93bmVkIG1hdGVyaWFsIGlzIGNsZWFybHkgaWRlbnRpZmllZCBhbmQgYWNrbm93bGVkZ2VkCndpdGhpbiB0aGUgdGV4dCBvciBjb250ZW50IG9mIHRoZSBzdWJtaXNzaW9uLgoKSUYgVEhFIFNVQk1JU1NJT04gSVMgQkFTRUQgVVBPTiBXT1JLIFRIQVQgSEFTIEJFRU4gU1BPTlNPUkVEIE9SIFNVUFBPUlRFRApCWSBBTiBBR0VOQ1kgT1IgT1JHQU5JWkFUSU9OIE9USEVSIFRIQU4gRFNVLCBZT1UgUkVQUkVTRU5UIFRIQVQgWU9VIEhBVkUKRlVMRklMTEVEIEFOWSBSSUdIVCBPRiBSRVZJRVcgT1IgT1RIRVIgT0JMSUdBVElPTlMgUkVRVUlSRUQgQlkgU1VDSApDT05UUkFDVCBPUiBBR1JFRU1FTlQuCgpEU1Ugd2lsbCBjbGVhcmx5IGlkZW50aWZ5IHlvdXIgbmFtZShzKSBhcyB0aGUgYXV0aG9yKHMpIG9yIG93bmVyKHMpIG9mIHRoZQpzdWJtaXNzaW9uLCBhbmQgd2lsbCBub3QgbWFrZSBhbnkgYWx0ZXJhdGlvbiwgb3RoZXIgdGhhbiBhcyBhbGxvd2VkIGJ5IHRoaXMKbGljZW5zZSwgdG8geW91ciBzdWJtaXNzaW9uLgo=