Predicting multidimensional poverty with machine learning algorithms : an open data source approach using spatial data
ABSTRACT: This paper presents a methodology to estimate the multidimensional poverty index using spatial data at the street block level. The data used in this study were obtained from Open Street Maps and ESA’s land use cover, which are freely available sources of spatial information. The study empl...
- Autores:
-
Muñetón Santa, Guberney
Manrique Ruiz, Luis Carlos
- Tipo de recurso:
- Article of investigation
- Fecha de publicación:
- 2023
- Institución:
- Universidad de Antioquia
- Repositorio:
- Repositorio UdeA
- Idioma:
- eng
- OAI Identifier:
- oai:bibliotecadigital.udea.edu.co:10495/34949
- Acceso en línea:
- https://hdl.handle.net/10495/34949
- Palabra clave:
- Multidimensional poverty index
Spatial analysis
Poverty
Machine learning
Indice de pobreza multidimensional
Pobreza
Análisis espacial
Medellín, Colombia
- Rights
- openAccess
- License
- https://creativecommons.org/licenses/by/4.0/
| id |
UDEA2_3c4ef0392998eb3a6ab255760193c10c |
|---|---|
| oai_identifier_str |
oai:bibliotecadigital.udea.edu.co:10495/34949 |
| network_acronym_str |
UDEA2 |
| network_name_str |
Repositorio UdeA |
| repository_id_str |
|
| dc.title.spa.fl_str_mv |
Predicting multidimensional poverty with machine learning algorithms : an open data source approach using spatial data |
| title |
Predicting multidimensional poverty with machine learning algorithms : an open data source approach using spatial data |
| spellingShingle |
Predicting multidimensional poverty with machine learning algorithms : an open data source approach using spatial data Multidimensional poverty index Spatial analysis Poverty Machine learning Indice de pobreza multidimensional Pobreza Análisis espacial Medellín, Colombia |
| title_short |
Predicting multidimensional poverty with machine learning algorithms : an open data source approach using spatial data |
| title_full |
Predicting multidimensional poverty with machine learning algorithms : an open data source approach using spatial data |
| title_fullStr |
Predicting multidimensional poverty with machine learning algorithms : an open data source approach using spatial data |
| title_full_unstemmed |
Predicting multidimensional poverty with machine learning algorithms : an open data source approach using spatial data |
| title_sort |
Predicting multidimensional poverty with machine learning algorithms : an open data source approach using spatial data |
| dc.creator.fl_str_mv |
Muñetón Santa, Guberney Manrique Ruiz, Luis Carlos |
| dc.contributor.author.none.fl_str_mv |
Muñetón Santa, Guberney Manrique Ruiz, Luis Carlos |
| dc.contributor.researchgroup.spa.fl_str_mv |
Recursos Estratégicos Región y Dinámicas Socioambientales |
| dc.subject.proposal.spa.fl_str_mv |
Multidimensional poverty index Spatial analysis Poverty Machine learning Indice de pobreza multidimensional Pobreza Análisis espacial Medellín, Colombia |
| topic |
Multidimensional poverty index Spatial analysis Poverty Machine learning Indice de pobreza multidimensional Pobreza Análisis espacial Medellín, Colombia |
| description |
ABSTRACT: This paper presents a methodology to estimate the multidimensional poverty index using spatial data at the street block level. The data used in this study were obtained from Open Street Maps and ESA’s land use cover, which are freely available sources of spatial information. The study employs five machine-learning algorithms, including Catboost, Lightboost, and Random Forest, to estimate the multidimensional poverty index with spatial granularity. The results indicate that these models achieve promising performance in predicting poverty levels in Medellín, Colombia. The results showed that the Random Forest algorithm achieved the highest performance, with an MAE of 0.07504. Furthermore, the spatial distribution of the multidimensional poverty estimate was highly correlated with the true values of the distribution. This work contributes to predicting multidimensional poverty by demonstrating the potential of machine learning algorithms to utilize accessible spatial data. By providing evidence of the feasibility of estimating poverty levels at a granular spatial level, this methodology offers a powerful tool for policymakers to make poverty social interventions with low-cost evidence. Furthermore, this study has important implications for poverty eradication efforts in developing countries, where access to reliable data remains challenging. |
| publishDate |
2023 |
| dc.date.accessioned.none.fl_str_mv |
2023-05-10T18:34:59Z |
| dc.date.available.none.fl_str_mv |
2023-05-10T18:34:59Z |
| dc.date.issued.none.fl_str_mv |
2023 |
| dc.type.spa.fl_str_mv |
Artículo de investigación |
| dc.type.coar.spa.fl_str_mv |
http://purl.org/coar/resource_type/c_2df8fbb1 |
| dc.type.redcol.spa.fl_str_mv |
https://purl.org/redcol/resource_type/ART |
| dc.type.coarversion.spa.fl_str_mv |
http://purl.org/coar/version/c_970fb48d4fbd8a85 |
| dc.type.driver.spa.fl_str_mv |
info:eu-repo/semantics/article |
| dc.type.version.spa.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
| format |
http://purl.org/coar/resource_type/c_2df8fbb1 |
| status_str |
publishedVersion |
| dc.identifier.uri.none.fl_str_mv |
https://hdl.handle.net/10495/34949 |
| dc.identifier.eissn.none.fl_str_mv |
2076-0760 |
| url |
https://hdl.handle.net/10495/34949 |
| identifier_str_mv |
2076-0760 |
| dc.language.iso.spa.fl_str_mv |
eng |
| language |
eng |
| dc.relation.citationendpage.spa.fl_str_mv |
21 |
| dc.relation.citationissue.spa.fl_str_mv |
5 |
| dc.relation.citationstartpage.spa.fl_str_mv |
1 |
| dc.relation.citationvolume.spa.fl_str_mv |
12 |
| dc.relation.ispartofjournal.spa.fl_str_mv |
Social Science |
| dc.rights.uri.spa.fl_str_mv |
https://creativecommons.org/licenses/by/4.0/ |
| dc.rights.uri.*.fl_str_mv |
http://creativecommons.org/licenses/by/2.5/co/ |
| dc.rights.accessrights.spa.fl_str_mv |
info:eu-repo/semantics/openAccess |
| dc.rights.coar.spa.fl_str_mv |
http://purl.org/coar/access_right/c_abf2 |
| rights_invalid_str_mv |
https://creativecommons.org/licenses/by/4.0/ http://creativecommons.org/licenses/by/2.5/co/ http://purl.org/coar/access_right/c_abf2 |
| eu_rights_str_mv |
openAccess |
| dc.format.extent.spa.fl_str_mv |
21 |
| dc.format.mimetype.spa.fl_str_mv |
application/pdf |
| dc.publisher.spa.fl_str_mv |
MDPI |
| institution |
Universidad de Antioquia |
| bitstream.url.fl_str_mv |
https://bibliotecadigital.udea.edu.co/bitstreams/095a8c12-33d3-4d1e-8be0-61325026694c/download https://bibliotecadigital.udea.edu.co/bitstreams/3299dc28-b75b-414f-a628-d2a93e04386f/download https://bibliotecadigital.udea.edu.co/bitstreams/19ec66be-3be2-494e-976b-1d444bfd39f9/download https://bibliotecadigital.udea.edu.co/bitstreams/013fbeec-784a-41ea-a27b-4706c0a6714d/download https://bibliotecadigital.udea.edu.co/bitstreams/6d732ea0-da2e-4903-8841-adff789b163a/download |
| bitstream.checksum.fl_str_mv |
00d90bb3015a1900ecb5549f0b61acec 1646d1f6b96dbbbc38035efc9239ac9c 8a4605be74aa9ea9d79846c1fba20a33 2c3358466865692b0f8f48227a132e9c 8973ea8374918c676438e09066cfc3ef |
| bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 MD5 MD5 MD5 |
| repository.name.fl_str_mv |
Repositorio Institucional de la Universidad de Antioquia |
| repository.mail.fl_str_mv |
aplicacionbibliotecadigitalbiblioteca@udea.edu.co |
| _version_ |
1851052399205023744 |
| spelling |
Muñetón Santa, GuberneyManrique Ruiz, Luis CarlosRecursos Estratégicos Región y Dinámicas Socioambientales2023-05-10T18:34:59Z2023-05-10T18:34:59Z2023https://hdl.handle.net/10495/349492076-0760ABSTRACT: This paper presents a methodology to estimate the multidimensional poverty index using spatial data at the street block level. The data used in this study were obtained from Open Street Maps and ESA’s land use cover, which are freely available sources of spatial information. The study employs five machine-learning algorithms, including Catboost, Lightboost, and Random Forest, to estimate the multidimensional poverty index with spatial granularity. The results indicate that these models achieve promising performance in predicting poverty levels in Medellín, Colombia. The results showed that the Random Forest algorithm achieved the highest performance, with an MAE of 0.07504. Furthermore, the spatial distribution of the multidimensional poverty estimate was highly correlated with the true values of the distribution. This work contributes to predicting multidimensional poverty by demonstrating the potential of machine learning algorithms to utilize accessible spatial data. By providing evidence of the feasibility of estimating poverty levels at a granular spatial level, this methodology offers a powerful tool for policymakers to make poverty social interventions with low-cost evidence. Furthermore, this study has important implications for poverty eradication efforts in developing countries, where access to reliable data remains challenging.21application/pdfengMDPIhttps://creativecommons.org/licenses/by/4.0/http://creativecommons.org/licenses/by/2.5/co/info:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2Predicting multidimensional poverty with machine learning algorithms : an open data source approach using spatial dataArtículo de investigaciónhttp://purl.org/coar/resource_type/c_2df8fbb1https://purl.org/redcol/resource_type/ARThttp://purl.org/coar/version/c_970fb48d4fbd8a85info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionMultidimensional poverty indexSpatial analysisPovertyMachine learningIndice de pobreza multidimensionalPobrezaAnálisis espacialMedellín, Colombia215112Social SciencePublicationORIGINALMuñetonGuberney_2023_PredictingMultidimensionalPoverty.pdfMuñetonGuberney_2023_PredictingMultidimensionalPoverty.pdfArtículo de investigaciónapplication/pdf37990446https://bibliotecadigital.udea.edu.co/bitstreams/095a8c12-33d3-4d1e-8be0-61325026694c/download00d90bb3015a1900ecb5549f0b61acecMD51trueAnonymousREADCC-LICENSElicense_rdflicense_rdfapplication/rdf+xml; charset=utf-8927https://bibliotecadigital.udea.edu.co/bitstreams/3299dc28-b75b-414f-a628-d2a93e04386f/download1646d1f6b96dbbbc38035efc9239ac9cMD52falseAnonymousREADLICENSElicense.txtlicense.txttext/plain; charset=utf-81748https://bibliotecadigital.udea.edu.co/bitstreams/19ec66be-3be2-494e-976b-1d444bfd39f9/download8a4605be74aa9ea9d79846c1fba20a33MD53falseAnonymousREADTEXTMuñetonGuberney_2023_PredictingMultidimensionalPoverty.pdf.txtMuñetonGuberney_2023_PredictingMultidimensionalPoverty.pdf.txtExtracted texttext/plain61778https://bibliotecadigital.udea.edu.co/bitstreams/013fbeec-784a-41ea-a27b-4706c0a6714d/download2c3358466865692b0f8f48227a132e9cMD54falseAnonymousREADTHUMBNAILMuñetonGuberney_2023_PredictingMultidimensionalPoverty.pdf.jpgMuñetonGuberney_2023_PredictingMultidimensionalPoverty.pdf.jpgGenerated Thumbnailimage/jpeg15826https://bibliotecadigital.udea.edu.co/bitstreams/6d732ea0-da2e-4903-8841-adff789b163a/download8973ea8374918c676438e09066cfc3efMD55falseAnonymousREAD10495/34949oai:bibliotecadigital.udea.edu.co:10495/349492025-03-26 21:41:00.668https://creativecommons.org/licenses/by/4.0/open.accesshttps://bibliotecadigital.udea.edu.coRepositorio Institucional de la Universidad de Antioquiaaplicacionbibliotecadigitalbiblioteca@udea.edu.coTk9URTogUExBQ0UgWU9VUiBPV04gTElDRU5TRSBIRVJFClRoaXMgc2FtcGxlIGxpY2Vuc2UgaXMgcHJvdmlkZWQgZm9yIGluZm9ybWF0aW9uYWwgcHVycG9zZXMgb25seS4KCk5PTi1FWENMVVNJVkUgRElTVFJJQlVUSU9OIExJQ0VOU0UKCkJ5IHNpZ25pbmcgYW5kIHN1Ym1pdHRpbmcgdGhpcyBsaWNlbnNlLCB5b3UgKHRoZSBhdXRob3Iocykgb3IgY29weXJpZ2h0Cm93bmVyKSBncmFudHMgdG8gRFNwYWNlIFVuaXZlcnNpdHkgKERTVSkgdGhlIG5vbi1leGNsdXNpdmUgcmlnaHQgdG8gcmVwcm9kdWNlLAp0cmFuc2xhdGUgKGFzIGRlZmluZWQgYmVsb3cpLCBhbmQvb3IgZGlzdHJpYnV0ZSB5b3VyIHN1Ym1pc3Npb24gKGluY2x1ZGluZwp0aGUgYWJzdHJhY3QpIHdvcmxkd2lkZSBpbiBwcmludCBhbmQgZWxlY3Ryb25pYyBmb3JtYXQgYW5kIGluIGFueSBtZWRpdW0sCmluY2x1ZGluZyBidXQgbm90IGxpbWl0ZWQgdG8gYXVkaW8gb3IgdmlkZW8uCgpZb3UgYWdyZWUgdGhhdCBEU1UgbWF5LCB3aXRob3V0IGNoYW5naW5nIHRoZSBjb250ZW50LCB0cmFuc2xhdGUgdGhlCnN1Ym1pc3Npb24gdG8gYW55IG1lZGl1bSBvciBmb3JtYXQgZm9yIHRoZSBwdXJwb3NlIG9mIHByZXNlcnZhdGlvbi4KCllvdSBhbHNvIGFncmVlIHRoYXQgRFNVIG1heSBrZWVwIG1vcmUgdGhhbiBvbmUgY29weSBvZiB0aGlzIHN1Ym1pc3Npb24gZm9yCnB1cnBvc2VzIG9mIHNlY3VyaXR5LCBiYWNrLXVwIGFuZCBwcmVzZXJ2YXRpb24uCgpZb3UgcmVwcmVzZW50IHRoYXQgdGhlIHN1Ym1pc3Npb24gaXMgeW91ciBvcmlnaW5hbCB3b3JrLCBhbmQgdGhhdCB5b3UgaGF2ZQp0aGUgcmlnaHQgdG8gZ3JhbnQgdGhlIHJpZ2h0cyBjb250YWluZWQgaW4gdGhpcyBsaWNlbnNlLiBZb3UgYWxzbyByZXByZXNlbnQKdGhhdCB5b3VyIHN1Ym1pc3Npb24gZG9lcyBub3QsIHRvIHRoZSBiZXN0IG9mIHlvdXIga25vd2xlZGdlLCBpbmZyaW5nZSB1cG9uCmFueW9uZSdzIGNvcHlyaWdodC4KCklmIHRoZSBzdWJtaXNzaW9uIGNvbnRhaW5zIG1hdGVyaWFsIGZvciB3aGljaCB5b3UgZG8gbm90IGhvbGQgY29weXJpZ2h0LAp5b3UgcmVwcmVzZW50IHRoYXQgeW91IGhhdmUgb2J0YWluZWQgdGhlIHVucmVzdHJpY3RlZCBwZXJtaXNzaW9uIG9mIHRoZQpjb3B5cmlnaHQgb3duZXIgdG8gZ3JhbnQgRFNVIHRoZSByaWdodHMgcmVxdWlyZWQgYnkgdGhpcyBsaWNlbnNlLCBhbmQgdGhhdApzdWNoIHRoaXJkLXBhcnR5IG93bmVkIG1hdGVyaWFsIGlzIGNsZWFybHkgaWRlbnRpZmllZCBhbmQgYWNrbm93bGVkZ2VkCndpdGhpbiB0aGUgdGV4dCBvciBjb250ZW50IG9mIHRoZSBzdWJtaXNzaW9uLgoKSUYgVEhFIFNVQk1JU1NJT04gSVMgQkFTRUQgVVBPTiBXT1JLIFRIQVQgSEFTIEJFRU4gU1BPTlNPUkVEIE9SIFNVUFBPUlRFRApCWSBBTiBBR0VOQ1kgT1IgT1JHQU5JWkFUSU9OIE9USEVSIFRIQU4gRFNVLCBZT1UgUkVQUkVTRU5UIFRIQVQgWU9VIEhBVkUKRlVMRklMTEVEIEFOWSBSSUdIVCBPRiBSRVZJRVcgT1IgT1RIRVIgT0JMSUdBVElPTlMgUkVRVUlSRUQgQlkgU1VDSApDT05UUkFDVCBPUiBBR1JFRU1FTlQuCgpEU1Ugd2lsbCBjbGVhcmx5IGlkZW50aWZ5IHlvdXIgbmFtZShzKSBhcyB0aGUgYXV0aG9yKHMpIG9yIG93bmVyKHMpIG9mIHRoZQpzdWJtaXNzaW9uLCBhbmQgd2lsbCBub3QgbWFrZSBhbnkgYWx0ZXJhdGlvbiwgb3RoZXIgdGhhbiBhcyBhbGxvd2VkIGJ5IHRoaXMKbGljZW5zZSwgdG8geW91ciBzdWJtaXNzaW9uLgo= |
