Harmonized-Multinational qEEG norms (HarMNqEEG)

ABSTRACT: This paper extends frequency domain quantitative electroencephalography (qEEG) methods pursuing higher sensitivity to detect Brain Developmental Disorders. Prior qEEG work lacked integration of cross-spectral information omitting important functional connectivity descriptors. Lack of geogr...

Full description

Autores:
Tobón Quintero, Carlos Andrés
Ochoa Gómez, John Fredy
Li, Min
Wang, Ying
López Naranjo, Carlos
Hu, Shiang
García Reyes, Ronaldo César
Paz Linares, Deirel
Areces González, Ariosky
Abd Hamid, Aini Ismafairus
Evans, Alan C.
Savostyanov, Alexander N.
Calzada Reyes, Ana
Villringer, Arno
García Agustín, Daysi
Yao, Dezhong
Dong, Li
Aubert Vázquez, Eduardo
Reza, Faruque
Razzaq, Fuleah Abdul
Omar, Hazim
Abdullah, Jafri Malin
Galler, Janina R.
Prichep, Leslie S.
Galán García, Lidice
Morales Chacón, Lilia
Valdés Sosa, Mitchell J.
Tröndle, Marius
Mohd Zulkifly, Mohd Faizal
Rahman, Muhammad Riddha Bin Abdul
Milakhina, Natalya S.
Langer, Nicolas
Rudych, Pavel
Koenig, Thomas
Virues Alba, Trinidad A.
Lei, Xu
Bringas Vega, Maria L.
Bosch Bayard, Jorge F.
Valdés Sosa, Pedro Antonio
Tipo de recurso:
Article of investigation
Fecha de publicación:
2022
Institución:
Universidad de Antioquia
Repositorio:
Repositorio UdeA
Idioma:
eng
OAI Identifier:
oai:bibliotecadigital.udea.edu.co:10495/42133
Acceso en línea:
https://hdl.handle.net/10495/42133
Palabra clave:
Éncefalo
Brain
Encefalopatías
Brain Diseases
Mapeo Encefálico
Brain Mapping
Electroencefalografía
Electroencephalography
COVID-19
https://id.nlm.nih.gov/mesh/D001921
https://id.nlm.nih.gov/mesh/D001927
https://id.nlm.nih.gov/mesh/D001931
https://id.nlm.nih.gov/mesh/D000086382
https://id.nlm.nih.gov/mesh/D004569
Rights
openAccess
License
http://creativecommons.org/licenses/by-nc-nd/2.5/co/
Description
Summary:ABSTRACT: This paper extends frequency domain quantitative electroencephalography (qEEG) methods pursuing higher sensitivity to detect Brain Developmental Disorders. Prior qEEG work lacked integration of cross-spectral information omitting important functional connectivity descriptors. Lack of geographical diversity precluded accounting for site-specific variance, increasing qEEG nuisance variance. We ameliorate these weaknesses. (i) Create lifespan Riemannian multinational qEEG norms for cross-spectral tensors. These norms result from the HarMNqEEG project fostered by the Global Brain Consortium. We calculate the norms with data from 9 countries, 12 devices, and 14 studies, including 1564 subjects. Instead of raw data, only anonymized metadata and EEG cross-spectral tensors were shared. After visual and automatic quality control, developmental equations for the mean and standard deviation of qEEG traditional and Riemannian DPs were calculated using additive mixed-effects models. We demonstrate qEEG "batch effects" and provide methods to calculate harmonized z-scores. (ii) We also show that harmonized Riemannian norms produce z-scores with increased diagnostic accuracy predicting brain dysfunction produced by malnutrition in the first year of life and detecting COVID induced brain dysfunction. (iii) We offer open code and data to calculate different individual z-scores from the HarMNqEEG dataset. These results contribute to developing bias-free, low-cost neuroimaging technologies applicable in various health settings.