Wilks’ Factorization of the Complex Matrix Variate Dirichlet Distributions
ABSTRACT: In this paper, it has been shown that the complex matrix variate Dirichlet type I density factors into the complex matrix variate beta type I densities. Similar result has also been derived for the complex matrix variate Dirichlet type II density. Also, by using certain matrix transformati...
- Autores:
-
Nagar, Daya Krishna
Cui, Xinping
Gupta, Arjun Kumar
- Tipo de recurso:
- Article of investigation
- Fecha de publicación:
- 2002
- Institución:
- Universidad de Antioquia
- Repositorio:
- Repositorio UdeA
- Idioma:
- eng
- OAI Identifier:
- oai:bibliotecadigital.udea.edu.co:10495/30420
- Acceso en línea:
- https://hdl.handle.net/10495/30420
https://revistas.ucm.es/index.php/REMA/article/view/16673
- Palabra clave:
- Transformación Celular Neoplásica
Cell Transformation, Neoplastic
Análisis espectral
Spectrum analysis
Función gama
Matriz aleatoria compleja
Distribución de Dirichlet
Distribución Wishart
- Rights
- openAccess
- License
- https://creativecommons.org/licenses/by/4.0/
| id |
UDEA2_34edda1800654ea266d718458331230a |
|---|---|
| oai_identifier_str |
oai:bibliotecadigital.udea.edu.co:10495/30420 |
| network_acronym_str |
UDEA2 |
| network_name_str |
Repositorio UdeA |
| repository_id_str |
|
| dc.title.spa.fl_str_mv |
Wilks’ Factorization of the Complex Matrix Variate Dirichlet Distributions |
| title |
Wilks’ Factorization of the Complex Matrix Variate Dirichlet Distributions |
| spellingShingle |
Wilks’ Factorization of the Complex Matrix Variate Dirichlet Distributions Transformación Celular Neoplásica Cell Transformation, Neoplastic Análisis espectral Spectrum analysis Función gama Matriz aleatoria compleja Distribución de Dirichlet Distribución Wishart |
| title_short |
Wilks’ Factorization of the Complex Matrix Variate Dirichlet Distributions |
| title_full |
Wilks’ Factorization of the Complex Matrix Variate Dirichlet Distributions |
| title_fullStr |
Wilks’ Factorization of the Complex Matrix Variate Dirichlet Distributions |
| title_full_unstemmed |
Wilks’ Factorization of the Complex Matrix Variate Dirichlet Distributions |
| title_sort |
Wilks’ Factorization of the Complex Matrix Variate Dirichlet Distributions |
| dc.creator.fl_str_mv |
Nagar, Daya Krishna Cui, Xinping Gupta, Arjun Kumar |
| dc.contributor.author.none.fl_str_mv |
Nagar, Daya Krishna Cui, Xinping Gupta, Arjun Kumar |
| dc.contributor.researchgroup.spa.fl_str_mv |
Análisis Multivariado |
| dc.subject.decs.none.fl_str_mv |
Transformación Celular Neoplásica Cell Transformation, Neoplastic |
| topic |
Transformación Celular Neoplásica Cell Transformation, Neoplastic Análisis espectral Spectrum analysis Función gama Matriz aleatoria compleja Distribución de Dirichlet Distribución Wishart |
| dc.subject.lemb.none.fl_str_mv |
Análisis espectral Spectrum analysis |
| dc.subject.proposal.spa.fl_str_mv |
Función gama Matriz aleatoria compleja Distribución de Dirichlet Distribución Wishart |
| description |
ABSTRACT: In this paper, it has been shown that the complex matrix variate Dirichlet type I density factors into the complex matrix variate beta type I densities. Similar result has also been derived for the complex matrix variate Dirichlet type II density. Also, by using certain matrix transformations, the complex matrix variate Dirichlet distributions have been generated from the complex matrix beta distributions. Further, several results on the product of complex Wishart and complex beta matrices with a set of complex Dirichlet type I matrices have been derived. |
| publishDate |
2002 |
| dc.date.issued.none.fl_str_mv |
2002 |
| dc.date.accessioned.none.fl_str_mv |
2022-09-05T21:10:55Z |
| dc.date.available.none.fl_str_mv |
2022-09-05T21:10:55Z |
| dc.type.spa.fl_str_mv |
Artículo de investigación |
| dc.type.coar.spa.fl_str_mv |
http://purl.org/coar/resource_type/c_2df8fbb1 |
| dc.type.redcol.spa.fl_str_mv |
https://purl.org/redcol/resource_type/ART |
| dc.type.coarversion.spa.fl_str_mv |
http://purl.org/coar/version/c_970fb48d4fbd8a85 |
| dc.type.driver.spa.fl_str_mv |
info:eu-repo/semantics/article |
| dc.type.version.spa.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
| format |
http://purl.org/coar/resource_type/c_2df8fbb1 |
| status_str |
publishedVersion |
| dc.identifier.citation.spa.fl_str_mv |
Cui, X., K. Gupta, A., & K. Nagar, D. (2005). Wilks’ Factorization of the Complex Matrix Variate Dirichlet Distributions. Revista Matemática Complutense, 18(2), 315 - 328. https://doi.org/10.5209/rev_REMA.2005.v18.n2.16673 |
| dc.identifier.issn.none.fl_str_mv |
1139-1138 |
| dc.identifier.uri.none.fl_str_mv |
https://hdl.handle.net/10495/30420 |
| dc.identifier.doi.none.fl_str_mv |
10.5209/rev_REMA.2005.v18.n2.16673 |
| dc.identifier.eissn.none.fl_str_mv |
1988-2807 |
| dc.identifier.url.spa.fl_str_mv |
https://revistas.ucm.es/index.php/REMA/article/view/16673 |
| identifier_str_mv |
Cui, X., K. Gupta, A., & K. Nagar, D. (2005). Wilks’ Factorization of the Complex Matrix Variate Dirichlet Distributions. Revista Matemática Complutense, 18(2), 315 - 328. https://doi.org/10.5209/rev_REMA.2005.v18.n2.16673 1139-1138 10.5209/rev_REMA.2005.v18.n2.16673 1988-2807 |
| url |
https://hdl.handle.net/10495/30420 https://revistas.ucm.es/index.php/REMA/article/view/16673 |
| dc.language.iso.spa.fl_str_mv |
eng |
| language |
eng |
| dc.relation.ispartofjournalabbrev.spa.fl_str_mv |
Rev. Mat. Complut. |
| dc.relation.citationendpage.spa.fl_str_mv |
328 |
| dc.relation.citationissue.spa.fl_str_mv |
2 |
| dc.relation.citationstartpage.spa.fl_str_mv |
315 |
| dc.relation.citationvolume.spa.fl_str_mv |
18 |
| dc.relation.ispartofjournal.spa.fl_str_mv |
Revista Matemática Complutense |
| dc.rights.uri.spa.fl_str_mv |
https://creativecommons.org/licenses/by/4.0/ |
| dc.rights.uri.*.fl_str_mv |
http://creativecommons.org/licenses/by/2.5/co/ |
| dc.rights.accessrights.spa.fl_str_mv |
info:eu-repo/semantics/openAccess |
| dc.rights.coar.spa.fl_str_mv |
http://purl.org/coar/access_right/c_abf2 |
| rights_invalid_str_mv |
https://creativecommons.org/licenses/by/4.0/ http://creativecommons.org/licenses/by/2.5/co/ http://purl.org/coar/access_right/c_abf2 |
| eu_rights_str_mv |
openAccess |
| dc.format.extent.spa.fl_str_mv |
14 |
| dc.format.mimetype.spa.fl_str_mv |
application/pdf |
| dc.publisher.spa.fl_str_mv |
Springer |
| dc.publisher.place.spa.fl_str_mv |
Madrid, España |
| institution |
Universidad de Antioquia |
| bitstream.url.fl_str_mv |
https://bibliotecadigital.udea.edu.co/bitstreams/07aada89-c135-4a30-8422-e77c2d4d6734/download https://bibliotecadigital.udea.edu.co/bitstreams/3dd5b8fc-15b4-4b86-9d14-21a0ad0bcc45/download https://bibliotecadigital.udea.edu.co/bitstreams/0ac36301-9fc6-4c77-968a-8bf222df74ce/download https://bibliotecadigital.udea.edu.co/bitstreams/c9a233a3-738d-420f-84d5-c5bd94f49088/download https://bibliotecadigital.udea.edu.co/bitstreams/887ec677-cec5-47c4-ae38-4ac6809ab174/download |
| bitstream.checksum.fl_str_mv |
1646d1f6b96dbbbc38035efc9239ac9c 8a4605be74aa9ea9d79846c1fba20a33 47b15db129be81127ffe04024a15090b 9fa5a7ced425069a84aff329bd69d90a 77e9a94998a6c44b921b8bf1430c99dc |
| bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 MD5 MD5 MD5 |
| repository.name.fl_str_mv |
Repositorio Institucional de la Universidad de Antioquia |
| repository.mail.fl_str_mv |
aplicacionbibliotecadigitalbiblioteca@udea.edu.co |
| _version_ |
1851052220481536000 |
| spelling |
Nagar, Daya KrishnaCui, XinpingGupta, Arjun KumarAnálisis Multivariado2022-09-05T21:10:55Z2022-09-05T21:10:55Z2002Cui, X., K. Gupta, A., & K. Nagar, D. (2005). Wilks’ Factorization of the Complex Matrix Variate Dirichlet Distributions. Revista Matemática Complutense, 18(2), 315 - 328. https://doi.org/10.5209/rev_REMA.2005.v18.n2.166731139-1138https://hdl.handle.net/10495/3042010.5209/rev_REMA.2005.v18.n2.166731988-2807https://revistas.ucm.es/index.php/REMA/article/view/16673ABSTRACT: In this paper, it has been shown that the complex matrix variate Dirichlet type I density factors into the complex matrix variate beta type I densities. Similar result has also been derived for the complex matrix variate Dirichlet type II density. Also, by using certain matrix transformations, the complex matrix variate Dirichlet distributions have been generated from the complex matrix beta distributions. Further, several results on the product of complex Wishart and complex beta matrices with a set of complex Dirichlet type I matrices have been derived.COL000053214application/pdfengSpringerMadrid, Españahttps://creativecommons.org/licenses/by/4.0/http://creativecommons.org/licenses/by/2.5/co/info:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2Wilks’ Factorization of the Complex Matrix Variate Dirichlet DistributionsArtículo de investigaciónhttp://purl.org/coar/resource_type/c_2df8fbb1https://purl.org/redcol/resource_type/ARThttp://purl.org/coar/version/c_970fb48d4fbd8a85info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionTransformación Celular NeoplásicaCell Transformation, NeoplasticAnálisis espectralSpectrum analysisFunción gamaMatriz aleatoria complejaDistribución de DirichletDistribución WishartRev. Mat. Complut.328231518Revista Matemática ComplutensePublicationCC-LICENSElicense_rdflicense_rdfapplication/rdf+xml; charset=utf-8927https://bibliotecadigital.udea.edu.co/bitstreams/07aada89-c135-4a30-8422-e77c2d4d6734/download1646d1f6b96dbbbc38035efc9239ac9cMD52falseAnonymousREADLICENSElicense.txtlicense.txttext/plain; charset=utf-81748https://bibliotecadigital.udea.edu.co/bitstreams/3dd5b8fc-15b4-4b86-9d14-21a0ad0bcc45/download8a4605be74aa9ea9d79846c1fba20a33MD53falseAnonymousREADORIGINALNagarDaya_2011_PropertiesBivariateConfluent.pdfNagarDaya_2011_PropertiesBivariateConfluent.pdfArtículo de investigaciónapplication/pdf254263https://bibliotecadigital.udea.edu.co/bitstreams/0ac36301-9fc6-4c77-968a-8bf222df74ce/download47b15db129be81127ffe04024a15090bMD54trueAnonymousREADTEXTNagarDaya_2011_PropertiesBivariateConfluent.pdf.txtNagarDaya_2011_PropertiesBivariateConfluent.pdf.txtExtracted texttext/plain29511https://bibliotecadigital.udea.edu.co/bitstreams/c9a233a3-738d-420f-84d5-c5bd94f49088/download9fa5a7ced425069a84aff329bd69d90aMD55falseAnonymousREADTHUMBNAILNagarDaya_2011_PropertiesBivariateConfluent.pdf.jpgNagarDaya_2011_PropertiesBivariateConfluent.pdf.jpgGenerated Thumbnailimage/jpeg8175https://bibliotecadigital.udea.edu.co/bitstreams/887ec677-cec5-47c4-ae38-4ac6809ab174/download77e9a94998a6c44b921b8bf1430c99dcMD56falseAnonymousREAD10495/30420oai:bibliotecadigital.udea.edu.co:10495/304202025-03-26 18:50:06.972https://creativecommons.org/licenses/by/4.0/open.accesshttps://bibliotecadigital.udea.edu.coRepositorio Institucional de la Universidad de Antioquiaaplicacionbibliotecadigitalbiblioteca@udea.edu.coTk9URTogUExBQ0UgWU9VUiBPV04gTElDRU5TRSBIRVJFClRoaXMgc2FtcGxlIGxpY2Vuc2UgaXMgcHJvdmlkZWQgZm9yIGluZm9ybWF0aW9uYWwgcHVycG9zZXMgb25seS4KCk5PTi1FWENMVVNJVkUgRElTVFJJQlVUSU9OIExJQ0VOU0UKCkJ5IHNpZ25pbmcgYW5kIHN1Ym1pdHRpbmcgdGhpcyBsaWNlbnNlLCB5b3UgKHRoZSBhdXRob3Iocykgb3IgY29weXJpZ2h0Cm93bmVyKSBncmFudHMgdG8gRFNwYWNlIFVuaXZlcnNpdHkgKERTVSkgdGhlIG5vbi1leGNsdXNpdmUgcmlnaHQgdG8gcmVwcm9kdWNlLAp0cmFuc2xhdGUgKGFzIGRlZmluZWQgYmVsb3cpLCBhbmQvb3IgZGlzdHJpYnV0ZSB5b3VyIHN1Ym1pc3Npb24gKGluY2x1ZGluZwp0aGUgYWJzdHJhY3QpIHdvcmxkd2lkZSBpbiBwcmludCBhbmQgZWxlY3Ryb25pYyBmb3JtYXQgYW5kIGluIGFueSBtZWRpdW0sCmluY2x1ZGluZyBidXQgbm90IGxpbWl0ZWQgdG8gYXVkaW8gb3IgdmlkZW8uCgpZb3UgYWdyZWUgdGhhdCBEU1UgbWF5LCB3aXRob3V0IGNoYW5naW5nIHRoZSBjb250ZW50LCB0cmFuc2xhdGUgdGhlCnN1Ym1pc3Npb24gdG8gYW55IG1lZGl1bSBvciBmb3JtYXQgZm9yIHRoZSBwdXJwb3NlIG9mIHByZXNlcnZhdGlvbi4KCllvdSBhbHNvIGFncmVlIHRoYXQgRFNVIG1heSBrZWVwIG1vcmUgdGhhbiBvbmUgY29weSBvZiB0aGlzIHN1Ym1pc3Npb24gZm9yCnB1cnBvc2VzIG9mIHNlY3VyaXR5LCBiYWNrLXVwIGFuZCBwcmVzZXJ2YXRpb24uCgpZb3UgcmVwcmVzZW50IHRoYXQgdGhlIHN1Ym1pc3Npb24gaXMgeW91ciBvcmlnaW5hbCB3b3JrLCBhbmQgdGhhdCB5b3UgaGF2ZQp0aGUgcmlnaHQgdG8gZ3JhbnQgdGhlIHJpZ2h0cyBjb250YWluZWQgaW4gdGhpcyBsaWNlbnNlLiBZb3UgYWxzbyByZXByZXNlbnQKdGhhdCB5b3VyIHN1Ym1pc3Npb24gZG9lcyBub3QsIHRvIHRoZSBiZXN0IG9mIHlvdXIga25vd2xlZGdlLCBpbmZyaW5nZSB1cG9uCmFueW9uZSdzIGNvcHlyaWdodC4KCklmIHRoZSBzdWJtaXNzaW9uIGNvbnRhaW5zIG1hdGVyaWFsIGZvciB3aGljaCB5b3UgZG8gbm90IGhvbGQgY29weXJpZ2h0LAp5b3UgcmVwcmVzZW50IHRoYXQgeW91IGhhdmUgb2J0YWluZWQgdGhlIHVucmVzdHJpY3RlZCBwZXJtaXNzaW9uIG9mIHRoZQpjb3B5cmlnaHQgb3duZXIgdG8gZ3JhbnQgRFNVIHRoZSByaWdodHMgcmVxdWlyZWQgYnkgdGhpcyBsaWNlbnNlLCBhbmQgdGhhdApzdWNoIHRoaXJkLXBhcnR5IG93bmVkIG1hdGVyaWFsIGlzIGNsZWFybHkgaWRlbnRpZmllZCBhbmQgYWNrbm93bGVkZ2VkCndpdGhpbiB0aGUgdGV4dCBvciBjb250ZW50IG9mIHRoZSBzdWJtaXNzaW9uLgoKSUYgVEhFIFNVQk1JU1NJT04gSVMgQkFTRUQgVVBPTiBXT1JLIFRIQVQgSEFTIEJFRU4gU1BPTlNPUkVEIE9SIFNVUFBPUlRFRApCWSBBTiBBR0VOQ1kgT1IgT1JHQU5JWkFUSU9OIE9USEVSIFRIQU4gRFNVLCBZT1UgUkVQUkVTRU5UIFRIQVQgWU9VIEhBVkUKRlVMRklMTEVEIEFOWSBSSUdIVCBPRiBSRVZJRVcgT1IgT1RIRVIgT0JMSUdBVElPTlMgUkVRVUlSRUQgQlkgU1VDSApDT05UUkFDVCBPUiBBR1JFRU1FTlQuCgpEU1Ugd2lsbCBjbGVhcmx5IGlkZW50aWZ5IHlvdXIgbmFtZShzKSBhcyB0aGUgYXV0aG9yKHMpIG9yIG93bmVyKHMpIG9mIHRoZQpzdWJtaXNzaW9uLCBhbmQgd2lsbCBub3QgbWFrZSBhbnkgYWx0ZXJhdGlvbiwgb3RoZXIgdGhhbiBhcyBhbGxvd2VkIGJ5IHRoaXMKbGljZW5zZSwgdG8geW91ciBzdWJtaXNzaW9uLgo= |
