Anomaly Classification in Industrial Internet of Things

ABSTRACT : This thesis presents an IIoT Anomaly Classification Framework designed to detect and categorize anomalies, including failures, attacks, and other significant events. The research addresses the critical need for robust anomaly detection and classification in IIoT systems by providing a com...

Full description

Autores:
Rodríguez López, Martha Lucía
Tipo de recurso:
Article of investigation
Fecha de publicación:
2025
Institución:
Universidad de Antioquia
Repositorio:
Repositorio UdeA
Idioma:
eng
OAI Identifier:
oai:bibliotecadigital.udea.edu.co:10495/45192
Acceso en línea:
https://hdl.handle.net/10495/45192
Palabra clave:
Anomaly detection (Computer security)
Detección de anomalías (Seguridad informática)
Seguridad en computadores
Computer security
Confiabilidad (ingeniería)
Reliability (engineering)
Internet de las cosas
Internet of things
Industrial Internet of Things (IIoT)
http://aims.fao.org/aos/agrovoc/c_e4315b22
http://id.loc.gov/authorities/subjects/sh2005007675
Rights
openAccess
License
https://creativecommons.org/licenses/by-nc-sa/4.0/
id UDEA2_2fe0881d03434d2617b2ecd2d4a2dbc8
oai_identifier_str oai:bibliotecadigital.udea.edu.co:10495/45192
network_acronym_str UDEA2
network_name_str Repositorio UdeA
repository_id_str
dc.title.spa.fl_str_mv Anomaly Classification in Industrial Internet of Things
title Anomaly Classification in Industrial Internet of Things
spellingShingle Anomaly Classification in Industrial Internet of Things
Anomaly detection (Computer security)
Detección de anomalías (Seguridad informática)
Seguridad en computadores
Computer security
Confiabilidad (ingeniería)
Reliability (engineering)
Internet de las cosas
Internet of things
Industrial Internet of Things (IIoT)
http://aims.fao.org/aos/agrovoc/c_e4315b22
http://id.loc.gov/authorities/subjects/sh2005007675
title_short Anomaly Classification in Industrial Internet of Things
title_full Anomaly Classification in Industrial Internet of Things
title_fullStr Anomaly Classification in Industrial Internet of Things
title_full_unstemmed Anomaly Classification in Industrial Internet of Things
title_sort Anomaly Classification in Industrial Internet of Things
dc.creator.fl_str_mv Rodríguez López, Martha Lucía
dc.contributor.advisor.none.fl_str_mv Múnera Ramírez, Danny Alexandro
Tobón Vallejo, Diana Patricia
dc.contributor.author.none.fl_str_mv Rodríguez López, Martha Lucía
dc.contributor.researchgroup.spa.fl_str_mv Intelligent Information Systems Lab.
dc.subject.lcsh.spa.fl_str_mv Anomaly detection (Computer security)
Detección de anomalías (Seguridad informática)
topic Anomaly detection (Computer security)
Detección de anomalías (Seguridad informática)
Seguridad en computadores
Computer security
Confiabilidad (ingeniería)
Reliability (engineering)
Internet de las cosas
Internet of things
Industrial Internet of Things (IIoT)
http://aims.fao.org/aos/agrovoc/c_e4315b22
http://id.loc.gov/authorities/subjects/sh2005007675
dc.subject.lemb.none.fl_str_mv Seguridad en computadores
Computer security
Confiabilidad (ingeniería)
Reliability (engineering)
dc.subject.agrovoc.none.fl_str_mv Internet de las cosas
Internet of things
dc.subject.proposal.spa.fl_str_mv Industrial Internet of Things (IIoT)
dc.subject.agrovocuri.none.fl_str_mv http://aims.fao.org/aos/agrovoc/c_e4315b22
dc.subject.lcshuri.spa.fl_str_mv http://id.loc.gov/authorities/subjects/sh2005007675
description ABSTRACT : This thesis presents an IIoT Anomaly Classification Framework designed to detect and categorize anomalies, including failures, attacks, and other significant events. The research addresses the critical need for robust anomaly detection and classification in IIoT systems by providing a comprehensive and scalable solution adaptable to various industrial contexts. The framework enhances modern industrial operations’ reliability, security, and efficiency, paving the way for more resilient and intelligent IIoT systems.
publishDate 2025
dc.date.accessioned.none.fl_str_mv 2025-02-24T21:24:50Z
dc.date.available.none.fl_str_mv 2025-02-24T21:24:50Z
dc.date.issued.none.fl_str_mv 2025
dc.type.spa.fl_str_mv Tesis/Trabajo de grado - Monografía - Doctorado
dc.type.coar.fl_str_mv http://purl.org/coar/resource_type/c_db06
dc.type.coar.spa.fl_str_mv http://purl.org/coar/resource_type/c_2df8fbb1
dc.type.redcol.spa.fl_str_mv https://purl.org/redcol/resource_type/TD
dc.type.coarversion.spa.fl_str_mv http://purl.org/coar/version/c_b1a7d7d4d402bcce
dc.type.driver.spa.fl_str_mv info:eu-repo/semantics/doctoralThesis
dc.type.version.spa.fl_str_mv info:eu-repo/semantics/draft
format http://purl.org/coar/resource_type/c_2df8fbb1
status_str draft
dc.identifier.uri.none.fl_str_mv https://hdl.handle.net/10495/45192
url https://hdl.handle.net/10495/45192
dc.language.iso.spa.fl_str_mv eng
language eng
dc.rights.uri.spa.fl_str_mv https://creativecommons.org/licenses/by-nc-sa/4.0/
dc.rights.accessrights.spa.fl_str_mv info:eu-repo/semantics/openAccess
dc.rights.coar.spa.fl_str_mv http://purl.org/coar/access_right/c_abf2
rights_invalid_str_mv https://creativecommons.org/licenses/by-nc-sa/4.0/
http://purl.org/coar/access_right/c_abf2
eu_rights_str_mv openAccess
dc.format.extent.spa.fl_str_mv 172 páginas
dc.format.mimetype.spa.fl_str_mv application/pdf
dc.publisher.spa.fl_str_mv Universidad de Antioquia
dc.publisher.place.spa.fl_str_mv Medellín, Colombia
dc.publisher.faculty.spa.fl_str_mv Facultad de Ingeniería. Doctorado en Ingeniería Electrónica y de Computación
institution Universidad de Antioquia
bitstream.url.fl_str_mv https://bibliotecadigital.udea.edu.co/bitstreams/b024108e-279f-4106-a1da-8b42daf0eaa5/download
https://bibliotecadigital.udea.edu.co/bitstreams/f44c6063-c14d-4fe2-b4f8-ebadde297165/download
https://bibliotecadigital.udea.edu.co/bitstreams/adfadc6f-638b-4141-9fbb-02dc9b67d194/download
https://bibliotecadigital.udea.edu.co/bitstreams/a8fa330c-e4ad-44f7-86b8-09335544cd63/download
bitstream.checksum.fl_str_mv 724bc7c96c87f11283c4a3965b8ee4fc
8a4605be74aa9ea9d79846c1fba20a33
837ccfa9fedc8b828960e5683aac0d43
fa4b04d36412df0c7e9306171c16c1b6
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
MD5
repository.name.fl_str_mv Repositorio Institucional de la Universidad de Antioquia
repository.mail.fl_str_mv aplicacionbibliotecadigitalbiblioteca@udea.edu.co
_version_ 1851052298885660672
spelling Múnera Ramírez, Danny AlexandroTobón Vallejo, Diana PatriciaRodríguez López, Martha LucíaIntelligent Information Systems Lab.2025-02-24T21:24:50Z2025-02-24T21:24:50Z2025https://hdl.handle.net/10495/45192ABSTRACT : This thesis presents an IIoT Anomaly Classification Framework designed to detect and categorize anomalies, including failures, attacks, and other significant events. The research addresses the critical need for robust anomaly detection and classification in IIoT systems by providing a comprehensive and scalable solution adaptable to various industrial contexts. The framework enhances modern industrial operations’ reliability, security, and efficiency, paving the way for more resilient and intelligent IIoT systems.COL0025934DoctoradoDoctor en Ingeniería Electrónica y de la Computación172 páginasapplication/pdfengUniversidad de AntioquiaMedellín, ColombiaFacultad de Ingeniería. Doctorado en Ingeniería Electrónica y de Computaciónhttps://creativecommons.org/licenses/by-nc-sa/4.0/info:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2Anomaly detection (Computer security)Detección de anomalías (Seguridad informática)Seguridad en computadoresComputer securityConfiabilidad (ingeniería)Reliability (engineering)Internet de las cosasInternet of thingsIndustrial Internet of Things (IIoT)http://aims.fao.org/aos/agrovoc/c_e4315b22http://id.loc.gov/authorities/subjects/sh2005007675Anomaly Classification in Industrial Internet of ThingsTesis/Trabajo de grado - Monografía - Doctoradohttp://purl.org/coar/resource_type/c_2df8fbb1http://purl.org/coar/resource_type/c_db06https://purl.org/redcol/resource_type/TDhttp://purl.org/coar/version/c_b1a7d7d4d402bcceinfo:eu-repo/semantics/doctoralThesisinfo:eu-repo/semantics/draftPublicationORIGINALRodriguezMartha_2025_AnomalyClassificationIIoTRodriguezMartha_2025_AnomalyClassificationIIoTTesis doctoralapplication/pdf5001163https://bibliotecadigital.udea.edu.co/bitstreams/b024108e-279f-4106-a1da-8b42daf0eaa5/download724bc7c96c87f11283c4a3965b8ee4fcMD51trueAnonymousREADLICENSElicense.txtlicense.txttext/plain; charset=utf-81748https://bibliotecadigital.udea.edu.co/bitstreams/f44c6063-c14d-4fe2-b4f8-ebadde297165/download8a4605be74aa9ea9d79846c1fba20a33MD52falseAnonymousREADTEXTRodriguezMartha_2025_AnomalyClassificationIIoT.txtRodriguezMartha_2025_AnomalyClassificationIIoT.txtExtracted texttext/plain100381https://bibliotecadigital.udea.edu.co/bitstreams/adfadc6f-638b-4141-9fbb-02dc9b67d194/download837ccfa9fedc8b828960e5683aac0d43MD53falseAnonymousREADTHUMBNAILRodriguezMartha_2025_AnomalyClassificationIIoT.jpgRodriguezMartha_2025_AnomalyClassificationIIoT.jpgGenerated Thumbnailimage/jpeg6894https://bibliotecadigital.udea.edu.co/bitstreams/a8fa330c-e4ad-44f7-86b8-09335544cd63/downloadfa4b04d36412df0c7e9306171c16c1b6MD54falseAnonymousREAD10495/45192oai:bibliotecadigital.udea.edu.co:10495/451922025-03-26 20:07:28.244https://creativecommons.org/licenses/by-nc-sa/4.0/open.accesshttps://bibliotecadigital.udea.edu.coRepositorio Institucional de la Universidad de Antioquiaaplicacionbibliotecadigitalbiblioteca@udea.edu.coTk9URTogUExBQ0UgWU9VUiBPV04gTElDRU5TRSBIRVJFClRoaXMgc2FtcGxlIGxpY2Vuc2UgaXMgcHJvdmlkZWQgZm9yIGluZm9ybWF0aW9uYWwgcHVycG9zZXMgb25seS4KCk5PTi1FWENMVVNJVkUgRElTVFJJQlVUSU9OIExJQ0VOU0UKCkJ5IHNpZ25pbmcgYW5kIHN1Ym1pdHRpbmcgdGhpcyBsaWNlbnNlLCB5b3UgKHRoZSBhdXRob3Iocykgb3IgY29weXJpZ2h0Cm93bmVyKSBncmFudHMgdG8gRFNwYWNlIFVuaXZlcnNpdHkgKERTVSkgdGhlIG5vbi1leGNsdXNpdmUgcmlnaHQgdG8gcmVwcm9kdWNlLAp0cmFuc2xhdGUgKGFzIGRlZmluZWQgYmVsb3cpLCBhbmQvb3IgZGlzdHJpYnV0ZSB5b3VyIHN1Ym1pc3Npb24gKGluY2x1ZGluZwp0aGUgYWJzdHJhY3QpIHdvcmxkd2lkZSBpbiBwcmludCBhbmQgZWxlY3Ryb25pYyBmb3JtYXQgYW5kIGluIGFueSBtZWRpdW0sCmluY2x1ZGluZyBidXQgbm90IGxpbWl0ZWQgdG8gYXVkaW8gb3IgdmlkZW8uCgpZb3UgYWdyZWUgdGhhdCBEU1UgbWF5LCB3aXRob3V0IGNoYW5naW5nIHRoZSBjb250ZW50LCB0cmFuc2xhdGUgdGhlCnN1Ym1pc3Npb24gdG8gYW55IG1lZGl1bSBvciBmb3JtYXQgZm9yIHRoZSBwdXJwb3NlIG9mIHByZXNlcnZhdGlvbi4KCllvdSBhbHNvIGFncmVlIHRoYXQgRFNVIG1heSBrZWVwIG1vcmUgdGhhbiBvbmUgY29weSBvZiB0aGlzIHN1Ym1pc3Npb24gZm9yCnB1cnBvc2VzIG9mIHNlY3VyaXR5LCBiYWNrLXVwIGFuZCBwcmVzZXJ2YXRpb24uCgpZb3UgcmVwcmVzZW50IHRoYXQgdGhlIHN1Ym1pc3Npb24gaXMgeW91ciBvcmlnaW5hbCB3b3JrLCBhbmQgdGhhdCB5b3UgaGF2ZQp0aGUgcmlnaHQgdG8gZ3JhbnQgdGhlIHJpZ2h0cyBjb250YWluZWQgaW4gdGhpcyBsaWNlbnNlLiBZb3UgYWxzbyByZXByZXNlbnQKdGhhdCB5b3VyIHN1Ym1pc3Npb24gZG9lcyBub3QsIHRvIHRoZSBiZXN0IG9mIHlvdXIga25vd2xlZGdlLCBpbmZyaW5nZSB1cG9uCmFueW9uZSdzIGNvcHlyaWdodC4KCklmIHRoZSBzdWJtaXNzaW9uIGNvbnRhaW5zIG1hdGVyaWFsIGZvciB3aGljaCB5b3UgZG8gbm90IGhvbGQgY29weXJpZ2h0LAp5b3UgcmVwcmVzZW50IHRoYXQgeW91IGhhdmUgb2J0YWluZWQgdGhlIHVucmVzdHJpY3RlZCBwZXJtaXNzaW9uIG9mIHRoZQpjb3B5cmlnaHQgb3duZXIgdG8gZ3JhbnQgRFNVIHRoZSByaWdodHMgcmVxdWlyZWQgYnkgdGhpcyBsaWNlbnNlLCBhbmQgdGhhdApzdWNoIHRoaXJkLXBhcnR5IG93bmVkIG1hdGVyaWFsIGlzIGNsZWFybHkgaWRlbnRpZmllZCBhbmQgYWNrbm93bGVkZ2VkCndpdGhpbiB0aGUgdGV4dCBvciBjb250ZW50IG9mIHRoZSBzdWJtaXNzaW9uLgoKSUYgVEhFIFNVQk1JU1NJT04gSVMgQkFTRUQgVVBPTiBXT1JLIFRIQVQgSEFTIEJFRU4gU1BPTlNPUkVEIE9SIFNVUFBPUlRFRApCWSBBTiBBR0VOQ1kgT1IgT1JHQU5JWkFUSU9OIE9USEVSIFRIQU4gRFNVLCBZT1UgUkVQUkVTRU5UIFRIQVQgWU9VIEhBVkUKRlVMRklMTEVEIEFOWSBSSUdIVCBPRiBSRVZJRVcgT1IgT1RIRVIgT0JMSUdBVElPTlMgUkVRVUlSRUQgQlkgU1VDSApDT05UUkFDVCBPUiBBR1JFRU1FTlQuCgpEU1Ugd2lsbCBjbGVhcmx5IGlkZW50aWZ5IHlvdXIgbmFtZShzKSBhcyB0aGUgYXV0aG9yKHMpIG9yIG93bmVyKHMpIG9mIHRoZQpzdWJtaXNzaW9uLCBhbmQgd2lsbCBub3QgbWFrZSBhbnkgYWx0ZXJhdGlvbiwgb3RoZXIgdGhhbiBhcyBhbGxvd2VkIGJ5IHRoaXMKbGljZW5zZSwgdG8geW91ciBzdWJtaXNzaW9uLgo=