Anomaly Classification in Industrial Internet of Things

ABSTRACT : This thesis presents an IIoT Anomaly Classification Framework designed to detect and categorize anomalies, including failures, attacks, and other significant events. The research addresses the critical need for robust anomaly detection and classification in IIoT systems by providing a com...

Full description

Autores:
Rodríguez López, Martha Lucía
Tipo de recurso:
Article of investigation
Fecha de publicación:
2025
Institución:
Universidad de Antioquia
Repositorio:
Repositorio UdeA
Idioma:
eng
OAI Identifier:
oai:bibliotecadigital.udea.edu.co:10495/45192
Acceso en línea:
https://hdl.handle.net/10495/45192
Palabra clave:
Anomaly detection (Computer security)
Detección de anomalías (Seguridad informática)
Seguridad en computadores
Computer security
Confiabilidad (ingeniería)
Reliability (engineering)
Internet de las cosas
Internet of things
Industrial Internet of Things (IIoT)
http://aims.fao.org/aos/agrovoc/c_e4315b22
http://id.loc.gov/authorities/subjects/sh2005007675
Rights
openAccess
License
https://creativecommons.org/licenses/by-nc-sa/4.0/
Description
Summary:ABSTRACT : This thesis presents an IIoT Anomaly Classification Framework designed to detect and categorize anomalies, including failures, attacks, and other significant events. The research addresses the critical need for robust anomaly detection and classification in IIoT systems by providing a comprehensive and scalable solution adaptable to various industrial contexts. The framework enhances modern industrial operations’ reliability, security, and efficiency, paving the way for more resilient and intelligent IIoT systems.