A Partial Classification of Simple Regular Representations of Bimodules Type Over the Field of Laurent Series
In this paper, we use Galois descent techniques to find suitable representatives of the regular simple representations of the species of type (2, 2) over, where n is a positive integer and is the field of Laurent series over the complexes. These regular representations are essential for the definiti...
- Autores:
-
Reynoso Mercado, David
Giraldo Salazar, Hernán Alonso
Hernández Rizzo, Pedro Jesús
- Tipo de recurso:
- Article of investigation
- Fecha de publicación:
- 2025
- Institución:
- Universidad de Antioquia
- Repositorio:
- Repositorio UdeA
- Idioma:
- eng
- OAI Identifier:
- oai:bibliotecadigital.udea.edu.co:10495/45680
- Acceso en línea:
- https://hdl.handle.net/10495/45680
- Palabra clave:
- Serie de Laurent
Laurent series
Teoría de Galois
Galois theory
Álgebras de Lie
Lie algebras
Álgebras lineales
Algebras, linear
Complejos (Matemáticas)
Complexes
Algebras, linear
Regular simple representations
Representaciones simples regulares
http://id.loc.gov/authorities/subjects/sh85075083
- Rights
- openAccess
- License
- http://creativecommons.org/licenses/by/4.0/
| Summary: | In this paper, we use Galois descent techniques to find suitable representatives of the regular simple representations of the species of type (2, 2) over, where n is a positive integer and is the field of Laurent series over the complexes. These regular representations are essential for the definition of canonical algebras. Our work is inspired by the work done for species of type (1, 4) on k in Geiss and Reynoso-Mercado (Bol. Soc. Mat. Mex. 30(3):87, 2024). We presents all the regular simple representations on the n-crown quiver, and from these, we establish a partial classification of regular simple representations of bimodules type (2, 2). |
|---|
