A Partial Classification of Simple Regular Representations of Bimodules Type Over the Field of Laurent Series

In this paper, we use Galois descent techniques to find suitable representatives of the regular simple representations of the species of type (2, 2) over, where n is a positive integer and is the field of Laurent series over the complexes. These regular representations are essential for the definiti...

Full description

Autores:
Reynoso Mercado, David
Giraldo Salazar, Hernán Alonso
Hernández Rizzo, Pedro Jesús
Tipo de recurso:
Article of investigation
Fecha de publicación:
2025
Institución:
Universidad de Antioquia
Repositorio:
Repositorio UdeA
Idioma:
eng
OAI Identifier:
oai:bibliotecadigital.udea.edu.co:10495/45680
Acceso en línea:
https://hdl.handle.net/10495/45680
Palabra clave:
Serie de Laurent
Laurent series
Teoría de Galois
Galois theory
Álgebras de Lie
Lie algebras
Álgebras lineales
Algebras, linear
Complejos (Matemáticas)
Complexes
Algebras, linear
Regular simple representations
Representaciones simples regulares
http://id.loc.gov/authorities/subjects/sh85075083
Rights
openAccess
License
http://creativecommons.org/licenses/by/4.0/
Description
Summary:In this paper, we use Galois descent techniques to find suitable representatives of the regular simple representations of the species of type (2, 2) over, where n is a positive integer and is the field of Laurent series over the complexes. These regular representations are essential for the definition of canonical algebras. Our work is inspired by the work done for species of type (1, 4) on k in Geiss and Reynoso-Mercado (Bol. Soc. Mat. Mex. 30(3):87, 2024). We presents all the regular simple representations on the n-crown quiver, and from these, we establish a partial classification of regular simple representations of bimodules type (2, 2).