Evaluation of Strategies Based on Wavelet-ICA and ICLabel for Artifact Correction in EEG Recordings

ABSTRACT: In quantitative electroencephalography, it is of vital importance to eliminate non-neural components, as these can lead to an erroneous analysis of the ac quired signals, limiting their use in diagnosis and other clinical applications. In light of this drawback, preprocessing pipelines bas...

Full description

Autores:
Zapata Saldarriaga, Luisa María
Vargas Serna, Angie Dahiana
Gil Gutiérrez, Jesica
Mantilla Ramos, Yorguin José
Ochoa Gómez, John Fredy
Tipo de recurso:
Article of investigation
Fecha de publicación:
2023
Institución:
Universidad de Antioquia
Repositorio:
Repositorio UdeA
Idioma:
eng
OAI Identifier:
oai:bibliotecadigital.udea.edu.co:10495/42132
Acceso en línea:
https://hdl.handle.net/10495/42132
Palabra clave:
Enfermedad de Alzheimer
Alzheimer Disease
Artefactos
Artifacts
Lóbulo Parietal
Parietal Lobe
Electroencefalografía
Electroencephalography
https://id.nlm.nih.gov/mesh/D000544
https://id.nlm.nih.gov/mesh/D016477
https://id.nlm.nih.gov/mesh/D010296
https://id.nlm.nih.gov/mesh/D004569
Rights
openAccess
License
http://creativecommons.org/licenses/by-nc-sa/2.5/co/
id UDEA2_2dfde8fc12fc92f98c4998badb8fae36
oai_identifier_str oai:bibliotecadigital.udea.edu.co:10495/42132
network_acronym_str UDEA2
network_name_str Repositorio UdeA
repository_id_str
dc.title.spa.fl_str_mv Evaluation of Strategies Based on Wavelet-ICA and ICLabel for Artifact Correction in EEG Recordings
dc.title.translated.spa.fl_str_mv Evaluación de estrategias basadas en Wavelet-ICA e ICLabel para la corrección de artefactos sobre registros EEG
title Evaluation of Strategies Based on Wavelet-ICA and ICLabel for Artifact Correction in EEG Recordings
spellingShingle Evaluation of Strategies Based on Wavelet-ICA and ICLabel for Artifact Correction in EEG Recordings
Enfermedad de Alzheimer
Alzheimer Disease
Artefactos
Artifacts
Lóbulo Parietal
Parietal Lobe
Electroencefalografía
Electroencephalography
https://id.nlm.nih.gov/mesh/D000544
https://id.nlm.nih.gov/mesh/D016477
https://id.nlm.nih.gov/mesh/D010296
https://id.nlm.nih.gov/mesh/D004569
title_short Evaluation of Strategies Based on Wavelet-ICA and ICLabel for Artifact Correction in EEG Recordings
title_full Evaluation of Strategies Based on Wavelet-ICA and ICLabel for Artifact Correction in EEG Recordings
title_fullStr Evaluation of Strategies Based on Wavelet-ICA and ICLabel for Artifact Correction in EEG Recordings
title_full_unstemmed Evaluation of Strategies Based on Wavelet-ICA and ICLabel for Artifact Correction in EEG Recordings
title_sort Evaluation of Strategies Based on Wavelet-ICA and ICLabel for Artifact Correction in EEG Recordings
dc.creator.fl_str_mv Zapata Saldarriaga, Luisa María
Vargas Serna, Angie Dahiana
Gil Gutiérrez, Jesica
Mantilla Ramos, Yorguin José
Ochoa Gómez, John Fredy
dc.contributor.author.none.fl_str_mv Zapata Saldarriaga, Luisa María
Vargas Serna, Angie Dahiana
Gil Gutiérrez, Jesica
Mantilla Ramos, Yorguin José
Ochoa Gómez, John Fredy
dc.contributor.researchgroup.spa.fl_str_mv Grupo Neuropsicología y Conducta
dc.subject.decs.none.fl_str_mv Enfermedad de Alzheimer
Alzheimer Disease
Artefactos
Artifacts
Lóbulo Parietal
Parietal Lobe
Electroencefalografía
Electroencephalography
topic Enfermedad de Alzheimer
Alzheimer Disease
Artefactos
Artifacts
Lóbulo Parietal
Parietal Lobe
Electroencefalografía
Electroencephalography
https://id.nlm.nih.gov/mesh/D000544
https://id.nlm.nih.gov/mesh/D016477
https://id.nlm.nih.gov/mesh/D010296
https://id.nlm.nih.gov/mesh/D004569
dc.subject.meshuri.none.fl_str_mv https://id.nlm.nih.gov/mesh/D000544
https://id.nlm.nih.gov/mesh/D016477
https://id.nlm.nih.gov/mesh/D010296
https://id.nlm.nih.gov/mesh/D004569
description ABSTRACT: In quantitative electroencephalography, it is of vital importance to eliminate non-neural components, as these can lead to an erroneous analysis of the ac quired signals, limiting their use in diagnosis and other clinical applications. In light of this drawback, preprocessing pipelines based on the joint use of the Wavelet Transform and the Independent Com ponent Analysis technique (wICA) were proposed in the 2000s. Recently, with the advent of data-driven methods, deep learning models were developed for the automatic labeling of independent components, which constitutes an opportunity for the optimiza tion of ICA-based techniques. In this paper, ICLabel, one of these deep learning models, was added to the ICA methodology in order to explore its improve ment. To assess the usefulness of this approach, it was compared to different pipelines which feature the use of wICA and ICLabel independently and a lack thereof. The impact of each pipeline was mea sured by its capacity to highlight known statisti cal differences between asymptomatic carriers of the PSEN-1 E280A mutation and a healthy control group. Specifically, the between-group effect size and the P-values were calculated to compare the pipelines. The results show that using ICLabel for ar tifact removal can improve the effect size (ES) and that, by leveraging it with wICA, an artifact smooth ing approach that is less prone to the loss of neural information can be built.
publishDate 2023
dc.date.issued.none.fl_str_mv 2023
dc.date.accessioned.none.fl_str_mv 2024-09-15T16:08:36Z
dc.date.available.none.fl_str_mv 2024-09-15T16:08:36Z
dc.type.spa.fl_str_mv Artículo de investigación
dc.type.coar.spa.fl_str_mv http://purl.org/coar/resource_type/c_2df8fbb1
dc.type.redcol.spa.fl_str_mv https://purl.org/redcol/resource_type/ART
dc.type.coarversion.spa.fl_str_mv http://purl.org/coar/version/c_970fb48d4fbd8a85
dc.type.driver.spa.fl_str_mv info:eu-repo/semantics/article
dc.type.version.spa.fl_str_mv info:eu-repo/semantics/publishedVersion
format http://purl.org/coar/resource_type/c_2df8fbb1
status_str publishedVersion
dc.identifier.citation.spa.fl_str_mv Zapata-Saldarriaga, Luisa-María, Angie-Dahiana Vargas-Serna, Jesica Gil-Gutiérrez, Yorguin-Jose Mantilla-Ramos, and John-Fredy Ochoa-Gómez. 2023. “Evaluation of Strategies Based on Wavelet-ICA and ICLabel for Artifact Correction in EEG Recordings”. Revista Científica 46 (1):61-76. https://doi.org/10.14483/23448350.19068.
dc.identifier.issn.none.fl_str_mv 0124-2253
dc.identifier.uri.none.fl_str_mv https://hdl.handle.net/10495/42132
dc.identifier.doi.none.fl_str_mv 10.14483/23448350.19068
dc.identifier.eissn.none.fl_str_mv 2344-8350
identifier_str_mv Zapata-Saldarriaga, Luisa-María, Angie-Dahiana Vargas-Serna, Jesica Gil-Gutiérrez, Yorguin-Jose Mantilla-Ramos, and John-Fredy Ochoa-Gómez. 2023. “Evaluation of Strategies Based on Wavelet-ICA and ICLabel for Artifact Correction in EEG Recordings”. Revista Científica 46 (1):61-76. https://doi.org/10.14483/23448350.19068.
0124-2253
10.14483/23448350.19068
2344-8350
url https://hdl.handle.net/10495/42132
dc.language.iso.spa.fl_str_mv eng
language eng
dc.relation.ispartofjournalabbrev.spa.fl_str_mv Rev. Cient.
dc.relation.citationendpage.spa.fl_str_mv 76
dc.relation.citationissue.spa.fl_str_mv 1
dc.relation.citationstartpage.spa.fl_str_mv 61
dc.relation.citationvolume.spa.fl_str_mv 46
dc.relation.ispartofjournal.spa.fl_str_mv Revista Científica
dc.rights.uri.*.fl_str_mv http://creativecommons.org/licenses/by-nc-sa/2.5/co/
dc.rights.uri.spa.fl_str_mv https://creativecommons.org/licenses/by-nc-sa/4.0/
dc.rights.accessrights.spa.fl_str_mv info:eu-repo/semantics/openAccess
dc.rights.coar.spa.fl_str_mv http://purl.org/coar/access_right/c_abf2
rights_invalid_str_mv http://creativecommons.org/licenses/by-nc-sa/2.5/co/
https://creativecommons.org/licenses/by-nc-sa/4.0/
http://purl.org/coar/access_right/c_abf2
eu_rights_str_mv openAccess
dc.format.extent.spa.fl_str_mv 16 páginas
dc.format.mimetype.spa.fl_str_mv application/pdf
dc.publisher.spa.fl_str_mv Universidad Distrital Francisco José de Caldas
dc.publisher.place.spa.fl_str_mv Bogotá, Colombia
institution Universidad de Antioquia
bitstream.url.fl_str_mv https://bibliotecadigital.udea.edu.co/bitstreams/6cd6e807-29e7-4111-8d77-e3376a9ef5cc/download
https://bibliotecadigital.udea.edu.co/bitstreams/ab337965-5fc4-4ccb-87f9-4491f6a9644b/download
https://bibliotecadigital.udea.edu.co/bitstreams/0a09d0dd-2f2e-45e8-a378-ae4053045b6e/download
https://bibliotecadigital.udea.edu.co/bitstreams/8952ca70-5904-4348-9cfd-a7a7f82dc41e/download
https://bibliotecadigital.udea.edu.co/bitstreams/44fbe376-5f76-4e35-bf51-4d2d3ef97235/download
bitstream.checksum.fl_str_mv a200962bf0d0a15d78de2b86804bae58
e2060682c9c70d4d30c83c51448f4eed
8a4605be74aa9ea9d79846c1fba20a33
78a5d2be75b66789f762994eee5045e2
a17d777637a477a3d88fc94055ac47c0
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
MD5
MD5
repository.name.fl_str_mv Repositorio Institucional de la Universidad de Antioquia
repository.mail.fl_str_mv aplicacionbibliotecadigitalbiblioteca@udea.edu.co
_version_ 1851052478822350848
spelling Zapata Saldarriaga, Luisa MaríaVargas Serna, Angie DahianaGil Gutiérrez, JesicaMantilla Ramos, Yorguin JoséOchoa Gómez, John FredyGrupo Neuropsicología y Conducta2024-09-15T16:08:36Z2024-09-15T16:08:36Z2023Zapata-Saldarriaga, Luisa-María, Angie-Dahiana Vargas-Serna, Jesica Gil-Gutiérrez, Yorguin-Jose Mantilla-Ramos, and John-Fredy Ochoa-Gómez. 2023. “Evaluation of Strategies Based on Wavelet-ICA and ICLabel for Artifact Correction in EEG Recordings”. Revista Científica 46 (1):61-76. https://doi.org/10.14483/23448350.19068.0124-2253https://hdl.handle.net/10495/4213210.14483/23448350.190682344-8350ABSTRACT: In quantitative electroencephalography, it is of vital importance to eliminate non-neural components, as these can lead to an erroneous analysis of the ac quired signals, limiting their use in diagnosis and other clinical applications. In light of this drawback, preprocessing pipelines based on the joint use of the Wavelet Transform and the Independent Com ponent Analysis technique (wICA) were proposed in the 2000s. Recently, with the advent of data-driven methods, deep learning models were developed for the automatic labeling of independent components, which constitutes an opportunity for the optimiza tion of ICA-based techniques. In this paper, ICLabel, one of these deep learning models, was added to the ICA methodology in order to explore its improve ment. To assess the usefulness of this approach, it was compared to different pipelines which feature the use of wICA and ICLabel independently and a lack thereof. The impact of each pipeline was mea sured by its capacity to highlight known statisti cal differences between asymptomatic carriers of the PSEN-1 E280A mutation and a healthy control group. Specifically, the between-group effect size and the P-values were calculated to compare the pipelines. The results show that using ICLabel for ar tifact removal can improve the effect size (ES) and that, by leveraging it with wICA, an artifact smooth ing approach that is less prone to the loss of neural information can be built.RESUMEN: En la electroencefalografía cuantitativa es de vital importancia la eliminación de componentes no neuronales, ya que estos pueden conducir a un análisis erróneo de las señales adquiridas, limitando su uso al diagnóstico y otras aplicaciones clínicas. Dado este inconveniente, en la década de 2000 se propusieron flujos de preprocesamiento basados en el uso conjunto de la Transformada Wavelet y la técnica de Análisis de Componentes Independientes (wICA). Recientemente, con la llegada de los métodos basados en datos, se desarrollaron modelos de aprendizaje profundo para el etiquetado automático de componentes independientes, lo que generó una oportunidad para la optimización de las técnicas basadas en ICA. En este estudio, se añadió ICLabel, uno de estos modelos de aprendizaje profundo, a la metodología de wICA para explorar su mejora. Para evaluar la utilidad de este enfoque, se comparó con diferentes flujos que muestran el uso de wICA e ICLabel de forma independiente y en su ausencia. El impacto de cada flujo se midió mediante su capacidad para resaltar diferencias estadísticas conocidas entre los portadores asintomáticos de la mutación PSEN-1 E280A y un grupo de control sano. Se calcularon específicamente el tamaño del efecto entre grupos y los valores P para comparar los flujos. Los resultados muestran que el uso de ICLabel para la eliminación de artefactos puede mejorar el tamaño del efecto (ES) y que, al aprovecharlo con wICA, se puede construir un enfoque de suavizado de artefactos menos susceptible a la pérdida de información neuronal.Colombia. Ministerio de Ciencia, Tecnología e Innovación - MinCienciasCOL000755116 páginasapplication/pdfengUniversidad Distrital Francisco José de CaldasBogotá, Colombiahttp://creativecommons.org/licenses/by-nc-sa/2.5/co/https://creativecommons.org/licenses/by-nc-sa/4.0/info:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2Evaluation of Strategies Based on Wavelet-ICA and ICLabel for Artifact Correction in EEG RecordingsEvaluación de estrategias basadas en Wavelet-ICA e ICLabel para la corrección de artefactos sobre registros EEGArtículo de investigaciónhttp://purl.org/coar/resource_type/c_2df8fbb1https://purl.org/redcol/resource_type/ARThttp://purl.org/coar/version/c_970fb48d4fbd8a85info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionEnfermedad de AlzheimerAlzheimer DiseaseArtefactosArtifactsLóbulo ParietalParietal LobeElectroencefalografíaElectroencephalographyhttps://id.nlm.nih.gov/mesh/D000544https://id.nlm.nih.gov/mesh/D016477https://id.nlm.nih.gov/mesh/D010296https://id.nlm.nih.gov/mesh/D004569Rev. Cient.7616146Revista CientíficaIdentificación de biomarcadores preclínicos en enfermedad de Alzheimer a través de un seguimiento longitudinal de a actividad eléctrica cerebral en poblaciones con riesgo genéticoMinCiencias 111577757635RoR:03fd5ne08PublicationORIGINALZapataLuisa_2023_Evaluation_Strategies_Wavelet-ICA.pdfZapataLuisa_2023_Evaluation_Strategies_Wavelet-ICA.pdfArtículo de investigaciónapplication/pdf2418930https://bibliotecadigital.udea.edu.co/bitstreams/6cd6e807-29e7-4111-8d77-e3376a9ef5cc/downloada200962bf0d0a15d78de2b86804bae58MD51trueAnonymousREADCC-LICENSElicense_rdflicense_rdfapplication/rdf+xml; charset=utf-81051https://bibliotecadigital.udea.edu.co/bitstreams/ab337965-5fc4-4ccb-87f9-4491f6a9644b/downloade2060682c9c70d4d30c83c51448f4eedMD52falseAnonymousREADLICENSElicense.txtlicense.txttext/plain; charset=utf-81748https://bibliotecadigital.udea.edu.co/bitstreams/0a09d0dd-2f2e-45e8-a378-ae4053045b6e/download8a4605be74aa9ea9d79846c1fba20a33MD53falseAnonymousREADTEXTZapataLuisa_2023_Evaluation_Strategies_Wavelet-ICA.pdf.txtZapataLuisa_2023_Evaluation_Strategies_Wavelet-ICA.pdf.txtExtracted texttext/plain54679https://bibliotecadigital.udea.edu.co/bitstreams/8952ca70-5904-4348-9cfd-a7a7f82dc41e/download78a5d2be75b66789f762994eee5045e2MD54falseAnonymousREADTHUMBNAILZapataLuisa_2023_Evaluation_Strategies_Wavelet-ICA.pdf.jpgZapataLuisa_2023_Evaluation_Strategies_Wavelet-ICA.pdf.jpgGenerated Thumbnailimage/jpeg14351https://bibliotecadigital.udea.edu.co/bitstreams/44fbe376-5f76-4e35-bf51-4d2d3ef97235/downloada17d777637a477a3d88fc94055ac47c0MD55falseAnonymousREAD10495/42132oai:bibliotecadigital.udea.edu.co:10495/421322025-03-26 22:59:34.541http://creativecommons.org/licenses/by-nc-sa/2.5/co/open.accesshttps://bibliotecadigital.udea.edu.coRepositorio Institucional de la Universidad de Antioquiaaplicacionbibliotecadigitalbiblioteca@udea.edu.coTk9URTogUExBQ0UgWU9VUiBPV04gTElDRU5TRSBIRVJFClRoaXMgc2FtcGxlIGxpY2Vuc2UgaXMgcHJvdmlkZWQgZm9yIGluZm9ybWF0aW9uYWwgcHVycG9zZXMgb25seS4KCk5PTi1FWENMVVNJVkUgRElTVFJJQlVUSU9OIExJQ0VOU0UKCkJ5IHNpZ25pbmcgYW5kIHN1Ym1pdHRpbmcgdGhpcyBsaWNlbnNlLCB5b3UgKHRoZSBhdXRob3Iocykgb3IgY29weXJpZ2h0Cm93bmVyKSBncmFudHMgdG8gRFNwYWNlIFVuaXZlcnNpdHkgKERTVSkgdGhlIG5vbi1leGNsdXNpdmUgcmlnaHQgdG8gcmVwcm9kdWNlLAp0cmFuc2xhdGUgKGFzIGRlZmluZWQgYmVsb3cpLCBhbmQvb3IgZGlzdHJpYnV0ZSB5b3VyIHN1Ym1pc3Npb24gKGluY2x1ZGluZwp0aGUgYWJzdHJhY3QpIHdvcmxkd2lkZSBpbiBwcmludCBhbmQgZWxlY3Ryb25pYyBmb3JtYXQgYW5kIGluIGFueSBtZWRpdW0sCmluY2x1ZGluZyBidXQgbm90IGxpbWl0ZWQgdG8gYXVkaW8gb3IgdmlkZW8uCgpZb3UgYWdyZWUgdGhhdCBEU1UgbWF5LCB3aXRob3V0IGNoYW5naW5nIHRoZSBjb250ZW50LCB0cmFuc2xhdGUgdGhlCnN1Ym1pc3Npb24gdG8gYW55IG1lZGl1bSBvciBmb3JtYXQgZm9yIHRoZSBwdXJwb3NlIG9mIHByZXNlcnZhdGlvbi4KCllvdSBhbHNvIGFncmVlIHRoYXQgRFNVIG1heSBrZWVwIG1vcmUgdGhhbiBvbmUgY29weSBvZiB0aGlzIHN1Ym1pc3Npb24gZm9yCnB1cnBvc2VzIG9mIHNlY3VyaXR5LCBiYWNrLXVwIGFuZCBwcmVzZXJ2YXRpb24uCgpZb3UgcmVwcmVzZW50IHRoYXQgdGhlIHN1Ym1pc3Npb24gaXMgeW91ciBvcmlnaW5hbCB3b3JrLCBhbmQgdGhhdCB5b3UgaGF2ZQp0aGUgcmlnaHQgdG8gZ3JhbnQgdGhlIHJpZ2h0cyBjb250YWluZWQgaW4gdGhpcyBsaWNlbnNlLiBZb3UgYWxzbyByZXByZXNlbnQKdGhhdCB5b3VyIHN1Ym1pc3Npb24gZG9lcyBub3QsIHRvIHRoZSBiZXN0IG9mIHlvdXIga25vd2xlZGdlLCBpbmZyaW5nZSB1cG9uCmFueW9uZSdzIGNvcHlyaWdodC4KCklmIHRoZSBzdWJtaXNzaW9uIGNvbnRhaW5zIG1hdGVyaWFsIGZvciB3aGljaCB5b3UgZG8gbm90IGhvbGQgY29weXJpZ2h0LAp5b3UgcmVwcmVzZW50IHRoYXQgeW91IGhhdmUgb2J0YWluZWQgdGhlIHVucmVzdHJpY3RlZCBwZXJtaXNzaW9uIG9mIHRoZQpjb3B5cmlnaHQgb3duZXIgdG8gZ3JhbnQgRFNVIHRoZSByaWdodHMgcmVxdWlyZWQgYnkgdGhpcyBsaWNlbnNlLCBhbmQgdGhhdApzdWNoIHRoaXJkLXBhcnR5IG93bmVkIG1hdGVyaWFsIGlzIGNsZWFybHkgaWRlbnRpZmllZCBhbmQgYWNrbm93bGVkZ2VkCndpdGhpbiB0aGUgdGV4dCBvciBjb250ZW50IG9mIHRoZSBzdWJtaXNzaW9uLgoKSUYgVEhFIFNVQk1JU1NJT04gSVMgQkFTRUQgVVBPTiBXT1JLIFRIQVQgSEFTIEJFRU4gU1BPTlNPUkVEIE9SIFNVUFBPUlRFRApCWSBBTiBBR0VOQ1kgT1IgT1JHQU5JWkFUSU9OIE9USEVSIFRIQU4gRFNVLCBZT1UgUkVQUkVTRU5UIFRIQVQgWU9VIEhBVkUKRlVMRklMTEVEIEFOWSBSSUdIVCBPRiBSRVZJRVcgT1IgT1RIRVIgT0JMSUdBVElPTlMgUkVRVUlSRUQgQlkgU1VDSApDT05UUkFDVCBPUiBBR1JFRU1FTlQuCgpEU1Ugd2lsbCBjbGVhcmx5IGlkZW50aWZ5IHlvdXIgbmFtZShzKSBhcyB0aGUgYXV0aG9yKHMpIG9yIG93bmVyKHMpIG9mIHRoZQpzdWJtaXNzaW9uLCBhbmQgd2lsbCBub3QgbWFrZSBhbnkgYWx0ZXJhdGlvbiwgb3RoZXIgdGhhbiBhcyBhbGxvd2VkIGJ5IHRoaXMKbGljZW5zZSwgdG8geW91ciBzdWJtaXNzaW9uLgo=