Monocytes, Macrophages, and Interleukin 27: Double-edged Swords in the Control and Immunopathogenesis of Chikungunya virus infection

ABSTRACT: Global warming together with an uncontrolled increase in the deforestation and growth of human populations in both urban and rural areas has converted various zoonotic and vector-borne agents into the most important causes of emerging infectious diseases worldwide. An example of this is th...

Full description

Autores:
Valdés López, Juan Felipe
Tipo de recurso:
Doctoral thesis
Fecha de publicación:
2024
Institución:
Universidad de Antioquia
Repositorio:
Repositorio UdeA
Idioma:
eng
OAI Identifier:
oai:bibliotecadigital.udea.edu.co:10495/40060
Acceso en línea:
https://hdl.handle.net/10495/40060
Palabra clave:
Monocitos
Monocytes
Macrófagos
Macrophages
Virus chikungunya
Chikungunya virus
Interleucina 27
Interleukin-27
inmunopatogenesis
Respuesta antiviral
Respuesta inflamatoria
https://id.nlm.nih.gov/mesh/D009000
https://id.nlm.nih.gov/mesh/D008264
https://id.nlm.nih.gov/mesh/D002646
https://id.nlm.nih.gov/mesh/D064094
Rights
openAccess
License
An error occurred getting the license - uri.
id UDEA2_2dd20ccd603d99c02165f3705df08fa3
oai_identifier_str oai:bibliotecadigital.udea.edu.co:10495/40060
network_acronym_str UDEA2
network_name_str Repositorio UdeA
repository_id_str
dc.title.spa.fl_str_mv Monocytes, Macrophages, and Interleukin 27: Double-edged Swords in the Control and Immunopathogenesis of Chikungunya virus infection
title Monocytes, Macrophages, and Interleukin 27: Double-edged Swords in the Control and Immunopathogenesis of Chikungunya virus infection
spellingShingle Monocytes, Macrophages, and Interleukin 27: Double-edged Swords in the Control and Immunopathogenesis of Chikungunya virus infection
Monocitos
Monocytes
Macrófagos
Macrophages
Virus chikungunya
Chikungunya virus
Interleucina 27
Interleukin-27
inmunopatogenesis
Respuesta antiviral
Respuesta inflamatoria
https://id.nlm.nih.gov/mesh/D009000
https://id.nlm.nih.gov/mesh/D008264
https://id.nlm.nih.gov/mesh/D002646
https://id.nlm.nih.gov/mesh/D064094
title_short Monocytes, Macrophages, and Interleukin 27: Double-edged Swords in the Control and Immunopathogenesis of Chikungunya virus infection
title_full Monocytes, Macrophages, and Interleukin 27: Double-edged Swords in the Control and Immunopathogenesis of Chikungunya virus infection
title_fullStr Monocytes, Macrophages, and Interleukin 27: Double-edged Swords in the Control and Immunopathogenesis of Chikungunya virus infection
title_full_unstemmed Monocytes, Macrophages, and Interleukin 27: Double-edged Swords in the Control and Immunopathogenesis of Chikungunya virus infection
title_sort Monocytes, Macrophages, and Interleukin 27: Double-edged Swords in the Control and Immunopathogenesis of Chikungunya virus infection
dc.creator.fl_str_mv Valdés López, Juan Felipe
dc.contributor.advisor.none.fl_str_mv Urcuqui Inchima, Silvio
Velilla Hernández, Paula Andrea
Rojas López, Mauricio
Navas Navas, María Cristina
Rodenhuis Zybert, Izabela
Smit, Jolanda
dc.contributor.author.none.fl_str_mv Valdés López, Juan Felipe
dc.contributor.researchgroup.spa.fl_str_mv Inmunovirología
dc.subject.decs.none.fl_str_mv Monocitos
Monocytes
Macrófagos
Macrophages
Virus chikungunya
Chikungunya virus
Interleucina 27
Interleukin-27
topic Monocitos
Monocytes
Macrófagos
Macrophages
Virus chikungunya
Chikungunya virus
Interleucina 27
Interleukin-27
inmunopatogenesis
Respuesta antiviral
Respuesta inflamatoria
https://id.nlm.nih.gov/mesh/D009000
https://id.nlm.nih.gov/mesh/D008264
https://id.nlm.nih.gov/mesh/D002646
https://id.nlm.nih.gov/mesh/D064094
dc.subject.proposal.spa.fl_str_mv inmunopatogenesis
Respuesta antiviral
Respuesta inflamatoria
dc.subject.meshuri.none.fl_str_mv https://id.nlm.nih.gov/mesh/D009000
https://id.nlm.nih.gov/mesh/D008264
https://id.nlm.nih.gov/mesh/D002646
https://id.nlm.nih.gov/mesh/D064094
description ABSTRACT: Global warming together with an uncontrolled increase in the deforestation and growth of human populations in both urban and rural areas has converted various zoonotic and vector-borne agents into the most important causes of emerging infectious diseases worldwide. An example of this is the recent outbreaks of Chikungunya virus (CHIKV), a re-emerging arbovirus member of Togaviridae family, Alphavirus genus, which is transmitted to humans by the bites of female mosquitoes of Aedes genus. CHIKV is the etiological agent of chikungunya fever (CHIKF), a self-limiting disease that occurs in approximately 95% of individuals infected with the virus. The acute phase of CHIKF is characterized by fever and severe acute polyarthralgia and myalgia, which usually disappear 2-3 weeks after CHIKV infection. However, about 55% of the affected individuals develop a subacute or chronic state of the disease in which some arthrogenic symptoms such as joint swelling, joint stiffness, arthralgia, arthritis, and tendonitis can last for months to years. Although many aspects of CHIKV pathogenesis in humans are unknown, different reports suggest that CHIKF is associated with the development of immunopathology linked to high levels of pro-inflammatory factors. To date, the chronicity of CHIKV-dependent arthritis has been related to a strong and persistent inflammatory response. Moreover, in CHIKV-infected patients and mice, the musculoskeletal and joint tissues exhibit significant infiltration by monocytes and macrophages. These myeloid phagocytic cells, integral components of the innate immune response, play a crucial role in recognizing viral infections and inducting innate antiviral response to control viral replication into the cells and spread into the tissues. However, the role of monocytes and macrophages in the control and/or immunopathogenesis of CHIKV infection in humans is poorly understood. Therefore, the research presented in this thesis focuses on the question: What is the role of human monocytes and macrophages in the induction of innate immune pro-inflammatory and antiviral responses to CHIKV infection, and their role in the control and/or immunopathogenesis of acute and chronic CHIKF? In Chapter 1, I performed a state-of-the-art update about CHIKV biology, CHIKF pathogenesis, and the innate immune antiviral mechanisms involved in the recognition and control of CHIKV infection. Then, In Chapter 2, I describe the kinetics of CHIKV replication, cytokines production, and mRNA expression of Toll-like receptors (TLRs), Interferons (IFNs), and Interferon-stimulated genes (ISGs) in primary human monocytes and monocyte-derived macrophages (MDMs) infected with CHIKV. I found that both monocytes and MDMs are susceptible and permissive cells to CHIKV infection in vitro. Additionally, monocytes and MDMs induce differential pro-inflammatory and antiviral responses against CHIKV infection, a process dependent on the production of pro-inflammatory cytokines and the induction of ISGs-dependent antiviral response involved in the control of viral replication. However, CHIKV-infected MDMs induce antiviral response independent of IFN-I expression. Then, in Chapter 3, I described that CHIKV infection inhibits the expression of all types of IFN in human MDMs, and identified the Interleukin 27 (IL27) as a new inductor of antiviral state and control of CHIKV replication through the activation of JAK-STAT signaling pathway and the induction of ISGs. Next, in Chapter 4, I describe the molecular mechanism involved in transcriptional regulation of IL27 in CHIKV-infected MDMs. I found that IL27p28 and EBI3 genes have a differential transcriptional regulation dependent on activation of the TLR1/2-MyD88-NF-kB pathway in the case of EBI3, and TLR3-TRIF-IRF1 pathway in the case of IL27p28. Moreover, using previously published transcriptomic data of murine BMDM, and an in vitro model of human MDMs stimulated with TLR agonists, I describe a synergistic effect of MyD88- and TRIF-dependent TLRs in the induction of IL27 and the establishment of antiviral response in macrophages. Moreover, I found that TLR4, the only TLR that signals through both MyD88 and TRIF in macrophages, induces a robust antiviral response dependent on IL27 production. Considering the interferon-like antiviral properties of IL27 described in previous chapters, in Chapter 5, I performed a comparative analysis of transcriptional profile of human MDMs stimulated with the different types of IFN or IL27. I found that all types of IFN and IL27 induce activation of JAK-STAT signaling pathway promoting a common pro-inflammatory and antiviral response dependent on ISG expression, that interfered with CHIKV and DENV-2 replication in human MDMs. Therefore, in this chapter, I postulate that IL27 could be a new type of interferon, the type V IFN (IFNπ). Lastly, in Chapter 6, I have summarized and discussed the key results of this thesis. Together, the data presented in this thesis showed that human monocytes, macrophages, and IL27 play a key role in both the control and immunopathogenesis of CHIKV infection in humans and mice, by promoting innate immune pro-inflammatory and antiviral responses that implement the antiviral state in cells to control viral replication. Also, promoting robust STAT1-dependent pro-inflammatory responses which in context of chronic CHIKV infection, promotes an uncontrolled and persistent inflammatory state that contributes to the development of chronic arthrogenic signs in CHIKF patients. This suggests that regulation of monocyte/macrophage activation and/or IL27-dependent JAK-STAT signaling pathway activation are promising therapeutic targets to control the development of chronic arthralgia in CHIKF patients.
publishDate 2024
dc.date.accessioned.none.fl_str_mv 2024-06-14T15:25:50Z
dc.date.available.none.fl_str_mv 2024-06-14T15:25:50Z
dc.date.issued.none.fl_str_mv 2024
dc.type.spa.fl_str_mv Tesis/Trabajo de grado - Monografía - Doctorado
dc.type.coar.spa.fl_str_mv http://purl.org/coar/resource_type/c_db06
dc.type.redcol.spa.fl_str_mv https://purl.org/redcol/resource_type/TD
dc.type.coarversion.spa.fl_str_mv http://purl.org/coar/version/c_b1a7d7d4d402bcce
dc.type.driver.spa.fl_str_mv info:eu-repo/semantics/doctoralThesis
dc.type.version.spa.fl_str_mv info:eu-repo/semantics/draft
format http://purl.org/coar/resource_type/c_db06
status_str draft
dc.identifier.uri.none.fl_str_mv https://hdl.handle.net/10495/40060
url https://hdl.handle.net/10495/40060
dc.language.iso.spa.fl_str_mv eng
language eng
dc.rights.uri.*.fl_str_mv An error occurred getting the license - uri.
An error occurred getting the license - uri.
dc.rights.uri.spa.fl_str_mv https://creativecommons.org/licenses/by-nc-sa/4.0/
dc.rights.accessrights.spa.fl_str_mv info:eu-repo/semantics/openAccess
dc.rights.coar.spa.fl_str_mv http://purl.org/coar/access_right/c_abf2
rights_invalid_str_mv An error occurred getting the license - uri.
https://creativecommons.org/licenses/by-nc-sa/4.0/
http://purl.org/coar/access_right/c_abf2
eu_rights_str_mv openAccess
dc.format.extent.spa.fl_str_mv 224 páginas
dc.format.mimetype.spa.fl_str_mv application/pdf
dc.publisher.spa.fl_str_mv Universidad de Antioquia
dc.publisher.place.spa.fl_str_mv Medellín, Colombia
dc.publisher.faculty.spa.fl_str_mv Corporación Académica Ciencias Básicas Biomédicas. Doctorado en Ciencias Básicas Biomédicas
institution Universidad de Antioquia
bitstream.url.fl_str_mv https://bibliotecadigital.udea.edu.co/bitstreams/59348757-834b-49a2-a5eb-d8a4b80b93ba/download
https://bibliotecadigital.udea.edu.co/bitstreams/483bb3c3-4ce1-45cc-8066-d4e38ed8e61c/download
https://bibliotecadigital.udea.edu.co/bitstreams/8484fad7-a37b-4014-affe-156b50bb6382/download
https://bibliotecadigital.udea.edu.co/bitstreams/36b05a43-d022-450b-8ece-faefb063f7d2/download
https://bibliotecadigital.udea.edu.co/bitstreams/ab56fb8d-f4bf-4cc0-b863-b828c7ae2abc/download
https://bibliotecadigital.udea.edu.co/bitstreams/eb8cfa18-7434-42d7-a2a4-9f48f923b39b/download
https://bibliotecadigital.udea.edu.co/bitstreams/ab613236-a831-4dff-9a4d-f981ab8b13ea/download
https://bibliotecadigital.udea.edu.co/bitstreams/dc3c1f91-9a00-4c38-9c3a-91995cf22397/download
https://bibliotecadigital.udea.edu.co/bitstreams/86a0d326-565c-4587-9470-cc4e37e4145e/download
https://bibliotecadigital.udea.edu.co/bitstreams/a15639b5-7a9c-4d98-90b4-e712514e2b78/download
https://bibliotecadigital.udea.edu.co/bitstreams/6e4639ce-a72a-4d15-8acd-4c7f0e7a8307/download
https://bibliotecadigital.udea.edu.co/bitstreams/0ce8b27f-4766-4cf2-8e9e-1a357cdb4509/download
https://bibliotecadigital.udea.edu.co/bitstreams/537126f0-7119-4ddb-9fa9-a93dc8528efc/download
https://bibliotecadigital.udea.edu.co/bitstreams/4a8714d0-18e7-4bde-bc36-44a67737674d/download
https://bibliotecadigital.udea.edu.co/bitstreams/f310598d-2095-4eaf-a57f-acf263c95948/download
https://bibliotecadigital.udea.edu.co/bitstreams/c9ef2527-1e83-4a46-89f3-dff4a64d6f95/download
https://bibliotecadigital.udea.edu.co/bitstreams/f9c5bfa9-a96a-492c-b947-2e794a872bbd/download
https://bibliotecadigital.udea.edu.co/bitstreams/edc7c768-2904-439b-9fcc-b98c6b9f423c/download
bitstream.checksum.fl_str_mv d41d8cd98f00b204e9800998ecf8427e
8a4605be74aa9ea9d79846c1fba20a33
42038b7c0c2e9ac5707dadfb860b39ce
e2051e222d977fd1d78fc7ecb36dd42a
6c94743e854b3f81bc54485bddecd65e
f63ed040f2b649f462445e6964dc3ea5
75c1b683152d2c03d9c41cf0344d1166
2212c97ee1016c37d30b546658c8c894
d6520b7dee2c796cfa110c9f907e8967
511333c5ac5ed32e49b622c7c560a5b8
eca37d59f93af48667b017d5b7bdb3c8
dc30ac8276115e2a8fe4bdcc8c968819
185a1a51b01b7bc5daa4282e6458f7b7
6a5c90dab256701e911da7fa76056117
af416cdff20795e75658df3af07ba9a6
0e950603088daac6604220f0a4ee3f64
e2b51420ab38469f7355e898f2e3adbe
6f16f4878f630c964c88fe66d079ac7a
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
MD5
MD5
MD5
MD5
MD5
MD5
MD5
MD5
MD5
MD5
MD5
MD5
MD5
MD5
MD5
repository.name.fl_str_mv Repositorio Institucional de la Universidad de Antioquia
repository.mail.fl_str_mv aplicacionbibliotecadigitalbiblioteca@udea.edu.co
_version_ 1851052468077592576
spelling Urcuqui Inchima, SilvioVelilla Hernández, Paula AndreaRojas López, MauricioNavas Navas, María CristinaRodenhuis Zybert, IzabelaSmit, JolandaValdés López, Juan FelipeInmunovirología2024-06-14T15:25:50Z2024-06-14T15:25:50Z2024https://hdl.handle.net/10495/40060ABSTRACT: Global warming together with an uncontrolled increase in the deforestation and growth of human populations in both urban and rural areas has converted various zoonotic and vector-borne agents into the most important causes of emerging infectious diseases worldwide. An example of this is the recent outbreaks of Chikungunya virus (CHIKV), a re-emerging arbovirus member of Togaviridae family, Alphavirus genus, which is transmitted to humans by the bites of female mosquitoes of Aedes genus. CHIKV is the etiological agent of chikungunya fever (CHIKF), a self-limiting disease that occurs in approximately 95% of individuals infected with the virus. The acute phase of CHIKF is characterized by fever and severe acute polyarthralgia and myalgia, which usually disappear 2-3 weeks after CHIKV infection. However, about 55% of the affected individuals develop a subacute or chronic state of the disease in which some arthrogenic symptoms such as joint swelling, joint stiffness, arthralgia, arthritis, and tendonitis can last for months to years. Although many aspects of CHIKV pathogenesis in humans are unknown, different reports suggest that CHIKF is associated with the development of immunopathology linked to high levels of pro-inflammatory factors. To date, the chronicity of CHIKV-dependent arthritis has been related to a strong and persistent inflammatory response. Moreover, in CHIKV-infected patients and mice, the musculoskeletal and joint tissues exhibit significant infiltration by monocytes and macrophages. These myeloid phagocytic cells, integral components of the innate immune response, play a crucial role in recognizing viral infections and inducting innate antiviral response to control viral replication into the cells and spread into the tissues. However, the role of monocytes and macrophages in the control and/or immunopathogenesis of CHIKV infection in humans is poorly understood. Therefore, the research presented in this thesis focuses on the question: What is the role of human monocytes and macrophages in the induction of innate immune pro-inflammatory and antiviral responses to CHIKV infection, and their role in the control and/or immunopathogenesis of acute and chronic CHIKF? In Chapter 1, I performed a state-of-the-art update about CHIKV biology, CHIKF pathogenesis, and the innate immune antiviral mechanisms involved in the recognition and control of CHIKV infection. Then, In Chapter 2, I describe the kinetics of CHIKV replication, cytokines production, and mRNA expression of Toll-like receptors (TLRs), Interferons (IFNs), and Interferon-stimulated genes (ISGs) in primary human monocytes and monocyte-derived macrophages (MDMs) infected with CHIKV. I found that both monocytes and MDMs are susceptible and permissive cells to CHIKV infection in vitro. Additionally, monocytes and MDMs induce differential pro-inflammatory and antiviral responses against CHIKV infection, a process dependent on the production of pro-inflammatory cytokines and the induction of ISGs-dependent antiviral response involved in the control of viral replication. However, CHIKV-infected MDMs induce antiviral response independent of IFN-I expression. Then, in Chapter 3, I described that CHIKV infection inhibits the expression of all types of IFN in human MDMs, and identified the Interleukin 27 (IL27) as a new inductor of antiviral state and control of CHIKV replication through the activation of JAK-STAT signaling pathway and the induction of ISGs. Next, in Chapter 4, I describe the molecular mechanism involved in transcriptional regulation of IL27 in CHIKV-infected MDMs. I found that IL27p28 and EBI3 genes have a differential transcriptional regulation dependent on activation of the TLR1/2-MyD88-NF-kB pathway in the case of EBI3, and TLR3-TRIF-IRF1 pathway in the case of IL27p28. Moreover, using previously published transcriptomic data of murine BMDM, and an in vitro model of human MDMs stimulated with TLR agonists, I describe a synergistic effect of MyD88- and TRIF-dependent TLRs in the induction of IL27 and the establishment of antiviral response in macrophages. Moreover, I found that TLR4, the only TLR that signals through both MyD88 and TRIF in macrophages, induces a robust antiviral response dependent on IL27 production. Considering the interferon-like antiviral properties of IL27 described in previous chapters, in Chapter 5, I performed a comparative analysis of transcriptional profile of human MDMs stimulated with the different types of IFN or IL27. I found that all types of IFN and IL27 induce activation of JAK-STAT signaling pathway promoting a common pro-inflammatory and antiviral response dependent on ISG expression, that interfered with CHIKV and DENV-2 replication in human MDMs. Therefore, in this chapter, I postulate that IL27 could be a new type of interferon, the type V IFN (IFNπ). Lastly, in Chapter 6, I have summarized and discussed the key results of this thesis. Together, the data presented in this thesis showed that human monocytes, macrophages, and IL27 play a key role in both the control and immunopathogenesis of CHIKV infection in humans and mice, by promoting innate immune pro-inflammatory and antiviral responses that implement the antiviral state in cells to control viral replication. Also, promoting robust STAT1-dependent pro-inflammatory responses which in context of chronic CHIKV infection, promotes an uncontrolled and persistent inflammatory state that contributes to the development of chronic arthrogenic signs in CHIKF patients. This suggests that regulation of monocyte/macrophage activation and/or IL27-dependent JAK-STAT signaling pathway activation are promising therapeutic targets to control the development of chronic arthralgia in CHIKF patients.RESUMEN: El calentamiento global, junto con un aumento descontrolado en la deforestación y el crecimiento de las poblaciones humanas tanto en zonas urbanas como rurales, han convertido a diversos agentes zoonóticos y transmitidos por vectores en las causas más importantes de enfermedades infecciosas emergentes en todo el mundo. Un ejemplo de esto son los recientes brotes del virus Chikungunya (CHIKV), un arbovirus reemergente miembro de la familia Togaviridae, género Alphavirus, que se transmite a los humanos por la picadura de mosquitos hembra del género Aedes. CHIKV es el agente etiológico de la fiebre chikungunya (CHIKF), una enfermedad autolimitada que ocurre en aproximadamente el 95% de las personas infectadas con el virus. La fase aguda de CHIKF se caracteriza por fiebre y graves poliartralgias y mialgias agudas, que suelen desaparecer 2-3 semanas después de la infección por CHIKV. Sin embargo, alrededor del 55% de los individuos afectados desarrollan un estado subagudo o crónico de la enfermedad en el que algunos síntomas artrogénicos, como hinchazón y rigidez de las articulaciones, artralgia, artritis y tendinitis, pueden durar meses o años. Aunque se desconocen muchos aspectos de la patogénesis del CHIKV en humanos, diferentes informes sugieren que el CHIKF está asociado con el desarrollo de inmunopatología relacionada con altos niveles de factores proinflamatorios. Hasta la fecha, la cronicidad de la artritis dependiente de CHIKV se ha relacionado con una respuesta inflamatoria fuerte y persistente. Además, en pacientes y ratones infectados por CHIKV, los tejidos musculoesqueléticos y articulares exhiben una infiltración significativa por monocitos y macrófagos. Estas células fagocíticas mieloides, componentes integrales de la respuesta inmune innata, desempeñan un papel crucial en el reconocimiento de infecciones virales y en la inducción de una respuesta antiviral innata para controlar la replicación viral en las células y su propagación a los tejidos. Sin embargo, el papel de los monocitos y macrófagos en el control y/o la inmunopatogénesis de la infección por CHIKV en humanos no se conoce bien. Por lo tanto, la investigación presentada en esta tesis se centra en la pregunta: ¿Cuál es el papel de los monocitos y macrófagos humanos en la inducción de respuestas inmunes proinflamatorias y antivirales innatas a la infección por CHIKV, y su papel en el control y/o inmunopatogénesis de la CHIKF aguda y crónica? En el Capítulo 1, realicé una actualización de los últimos avances sobre la biología del CHIKV, la patogénesis del CHIKF y los mecanismos antivirales inmunes innatos implicados en el reconocimiento y control de la infección por CHIKV. Luego, en el Capítulo 2, describo la cinética de replicación del CHIKV, producción de citocinas y expresión de ARNm de receptores tipo Toll (TLR), interferones (IFN) y genes estimulados por interferón (ISG) en monocitos y macrófagos-derivados de monocitos (MDM) primarios humanos, infectados con CHIKV. Se encontró que tanto los monocitos como los MDM son células susceptibles y permisivas a la infección por CHIKV in vitro. Además, los monocitos y los MDM inducen respuestas proinflamatorias y antivirales diferenciales contra la infección por CHIKV, un proceso que depende de la producción de citocinas proinflamatorias y de la inducción de una respuesta antiviral dependiente de ISG implicada en el control de la replicación viral. Sin embargo, los MDM infectados con CHIKV inducen una respuesta antiviral independiente de la expresión de IFN-I. Luego, en el Capítulo 3, describí que la infección por CHIKV inhibe la expresión de todos los tipos de IFN en MDM humanos, e identifiqué a la interleucina 27 (IL27) como un nuevo inductor del estado antiviral implicado en el control de la replicación de CHIKV mediante la activación de la vía de señalización JAK-STAT y la inducción de ISG. A continuación, en el Capítulo 4, describí el mecanismo molecular implicado en la regulación transcripcional de IL27 en MDM infectados con CHIKV. Encontré que los genes IL27p28 y EBI3 tienen una regulación transcripcional diferencial dependiente de la activación de la vía TLR1/2-MyD88-NF-kB en el caso de EBI3, y de la vía TLR3-TRIF-IRF1 en el caso de IL27p28. Además, utilizando datos transcriptómicos previamente publicados de BMDM murinos, y un modelo in vitro de MDM humanos estimulados con agonistas de TLR, describí un efecto sinérgico de los TLR dependientes de MyD88 y TRIF en la inducción de IL27 y el establecimiento de una respuesta antiviral en macrófagos. Además, descubrí que TLR4, el único TLR que señaliza a través de MyD88 y TRIF en macrófagos, induce una respuesta antiviral sólida que depende de la producción de IL27. Teniendo en cuenta las propiedades antivirales de la IL27 descritas en capítulos anteriores, en el Capítulo 5 realicé un análisis comparativo del perfil transcripcional de MDM humanos estimulados con los diferentes tipos de IFN o IL27. Descubrí que todos los tipos de IFN e IL27 inducen la activación de la vía de señalización JAK-STAT promoviendo una respuesta proinflamatoria y antiviral común dependiente de la expresión de ISG, la cual interfiere con la replicación de CHIKV y DENV-2 en MDM humanos. Por lo tanto, en este capítulo postulo que la IL27 podría ser un nuevo tipo de interferón, el IFN tipo V (IFNπ). Por último, en el Capítulo 6, resumí y discutí los resultados clave de esta tesis. En conjunto, los datos presentados en esta tesis mostraron que los monocitos, macrófagos e IL27 desempeñan un papel clave tanto en el control como en la inmunopatogénesis de la infección por CHIKV en humanos y ratones, al promover respuestas inmunes proinflamatorias y antivirales que inducen el estado antiviral en las células para controlar la replicación viral. Además, promueven respuestas proinflamatorias sólidas dependientes de STAT1 que, en el contexto de la infección crónica por CHIKV, promueve un estado inflamatorio persistente y descontrolado que contribuye al desarrollo de signos artrogénicos crónicos en pacientes con CHIKF. Esto sugiere que la regulación de la activación de monocitos/macrófagos y/o la activación de la vía de señalización JAK-STAT dependiente de IL27 son blancos terapéuticos prometedores para controlar el desarrollo de artralgia crónica en pacientes con CHIKF.TESIS CON DISTINCIÓN: Summa Cum Laude (Excelente)DoctoradoDoctor en Ciencias Básicas Biomédicas con énfasis en Virología224 páginasapplication/pdfengUniversidad de AntioquiaMedellín, ColombiaCorporación Académica Ciencias Básicas Biomédicas. Doctorado en Ciencias Básicas BiomédicasAn error occurred getting the license - uri.An error occurred getting the license - uri.https://creativecommons.org/licenses/by-nc-sa/4.0/info:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2Monocytes, Macrophages, and Interleukin 27: Double-edged Swords in the Control and Immunopathogenesis of Chikungunya virus infectionTesis/Trabajo de grado - Monografía - Doctoradohttp://purl.org/coar/resource_type/c_db06https://purl.org/redcol/resource_type/TDhttp://purl.org/coar/version/c_b1a7d7d4d402bcceinfo:eu-repo/semantics/doctoralThesisinfo:eu-repo/semantics/draftMonocitosMonocytesMacrófagosMacrophagesVirus chikungunyaChikungunya virusInterleucina 27Interleukin-27inmunopatogenesisRespuesta antiviralRespuesta inflamatoriahttps://id.nlm.nih.gov/mesh/D009000https://id.nlm.nih.gov/mesh/D008264https://id.nlm.nih.gov/mesh/D002646https://id.nlm.nih.gov/mesh/D064094PublicationCC-LICENSElicense_rdflicense_rdfapplication/rdf+xml; charset=utf-80https://bibliotecadigital.udea.edu.co/bitstreams/59348757-834b-49a2-a5eb-d8a4b80b93ba/downloadd41d8cd98f00b204e9800998ecf8427eMD510falseAnonymousREADLICENSElicense.txtlicense.txttext/plain; charset=utf-81748https://bibliotecadigital.udea.edu.co/bitstreams/483bb3c3-4ce1-45cc-8066-d4e38ed8e61c/download8a4605be74aa9ea9d79846c1fba20a33MD511falseAnonymousREADORIGINALValdesJuan_2024_MonocytesMacrophagesInterleukin27.pdfValdesJuan_2024_MonocytesMacrophagesInterleukin27.pdfTesis doctoralapplication/pdf7374116https://bibliotecadigital.udea.edu.co/bitstreams/8484fad7-a37b-4014-affe-156b50bb6382/download42038b7c0c2e9ac5707dadfb860b39ceMD51trueAnonymousREADAnexoA_Capitulo-1_Articulo.pdfAnexoA_Capitulo-1_Articulo.pdfArticulo original (publicado)application/pdf6170072https://bibliotecadigital.udea.edu.co/bitstreams/36b05a43-d022-450b-8ece-faefb063f7d2/downloade2051e222d977fd1d78fc7ecb36dd42aMD52falseAnonymousREADAnexoB_Capitulo-2_Articulo.pdfAnexoB_Capitulo-2_Articulo.pdfArticulo original (publicado)application/pdf3033572https://bibliotecadigital.udea.edu.co/bitstreams/ab56fb8d-f4bf-4cc0-b863-b828c7ae2abc/download6c94743e854b3f81bc54485bddecd65eMD53falseAnonymousREADAnexoC_Capitulo-3_Articulo.pdfAnexoC_Capitulo-3_Articulo.pdfArticulo original (publicado)application/pdf2423937https://bibliotecadigital.udea.edu.co/bitstreams/eb8cfa18-7434-42d7-a2a4-9f48f923b39b/downloadf63ed040f2b649f462445e6964dc3ea5MD54falseAnonymousREADAnexoD_Capitulo-4_Articulo.pdfAnexoD_Capitulo-4_Articulo.pdfArticulo original (publicado)application/pdf5573036https://bibliotecadigital.udea.edu.co/bitstreams/ab613236-a831-4dff-9a4d-f981ab8b13ea/download75c1b683152d2c03d9c41cf0344d1166MD55falseAnonymousREADAnexoE_Capitulo-5_Articulo.rarAnexoE_Capitulo-5_Articulo.rarapplication/octet-stream12453885https://bibliotecadigital.udea.edu.co/bitstreams/dc3c1f91-9a00-4c38-9c3a-91995cf22397/download2212c97ee1016c37d30b546658c8c894MD59falseAnonymousREADTEXTValdesJuan_2024_MonocytesMacrophagesInterleukin27.pdf.txtValdesJuan_2024_MonocytesMacrophagesInterleukin27.pdf.txtExtracted texttext/plain100573https://bibliotecadigital.udea.edu.co/bitstreams/86a0d326-565c-4587-9470-cc4e37e4145e/downloadd6520b7dee2c796cfa110c9f907e8967MD512falseAnonymousREADAnexoA_Capitulo-1_Articulo.pdf.txtAnexoA_Capitulo-1_Articulo.pdf.txtExtracted texttext/plain87762https://bibliotecadigital.udea.edu.co/bitstreams/a15639b5-7a9c-4d98-90b4-e712514e2b78/download511333c5ac5ed32e49b622c7c560a5b8MD514falseAnonymousREADAnexoB_Capitulo-2_Articulo.pdf.txtAnexoB_Capitulo-2_Articulo.pdf.txtExtracted texttext/plain71104https://bibliotecadigital.udea.edu.co/bitstreams/6e4639ce-a72a-4d15-8acd-4c7f0e7a8307/downloadeca37d59f93af48667b017d5b7bdb3c8MD516falseAnonymousREADAnexoC_Capitulo-3_Articulo.pdf.txtAnexoC_Capitulo-3_Articulo.pdf.txtExtracted texttext/plain66967https://bibliotecadigital.udea.edu.co/bitstreams/0ce8b27f-4766-4cf2-8e9e-1a357cdb4509/downloaddc30ac8276115e2a8fe4bdcc8c968819MD518falseAnonymousREADAnexoD_Capitulo-4_Articulo.pdf.txtAnexoD_Capitulo-4_Articulo.pdf.txtExtracted texttext/plain100500https://bibliotecadigital.udea.edu.co/bitstreams/537126f0-7119-4ddb-9fa9-a93dc8528efc/download185a1a51b01b7bc5daa4282e6458f7b7MD520falseAnonymousREADTHUMBNAILValdesJuan_2024_MonocytesMacrophagesInterleukin27.pdf.jpgValdesJuan_2024_MonocytesMacrophagesInterleukin27.pdf.jpgGenerated Thumbnailimage/jpeg8247https://bibliotecadigital.udea.edu.co/bitstreams/4a8714d0-18e7-4bde-bc36-44a67737674d/download6a5c90dab256701e911da7fa76056117MD513falseAnonymousREADAnexoA_Capitulo-1_Articulo.pdf.jpgAnexoA_Capitulo-1_Articulo.pdf.jpgGenerated Thumbnailimage/jpeg15613https://bibliotecadigital.udea.edu.co/bitstreams/f310598d-2095-4eaf-a57f-acf263c95948/downloadaf416cdff20795e75658df3af07ba9a6MD515falseAnonymousREADAnexoB_Capitulo-2_Articulo.pdf.jpgAnexoB_Capitulo-2_Articulo.pdf.jpgGenerated Thumbnailimage/jpeg14859https://bibliotecadigital.udea.edu.co/bitstreams/c9ef2527-1e83-4a46-89f3-dff4a64d6f95/download0e950603088daac6604220f0a4ee3f64MD517falseAnonymousREADAnexoC_Capitulo-3_Articulo.pdf.jpgAnexoC_Capitulo-3_Articulo.pdf.jpgGenerated Thumbnailimage/jpeg15011https://bibliotecadigital.udea.edu.co/bitstreams/f9c5bfa9-a96a-492c-b947-2e794a872bbd/downloade2b51420ab38469f7355e898f2e3adbeMD519falseAnonymousREADAnexoD_Capitulo-4_Articulo.pdf.jpgAnexoD_Capitulo-4_Articulo.pdf.jpgGenerated Thumbnailimage/jpeg16373https://bibliotecadigital.udea.edu.co/bitstreams/edc7c768-2904-439b-9fcc-b98c6b9f423c/download6f16f4878f630c964c88fe66d079ac7aMD521falseAnonymousREAD10495/40060oai:bibliotecadigital.udea.edu.co:10495/400602025-03-26 22:48:57.887An error occurred getting the license - uri.open.accesshttps://bibliotecadigital.udea.edu.coRepositorio Institucional de la Universidad de Antioquiaaplicacionbibliotecadigitalbiblioteca@udea.edu.coTk9URTogUExBQ0UgWU9VUiBPV04gTElDRU5TRSBIRVJFClRoaXMgc2FtcGxlIGxpY2Vuc2UgaXMgcHJvdmlkZWQgZm9yIGluZm9ybWF0aW9uYWwgcHVycG9zZXMgb25seS4KCk5PTi1FWENMVVNJVkUgRElTVFJJQlVUSU9OIExJQ0VOU0UKCkJ5IHNpZ25pbmcgYW5kIHN1Ym1pdHRpbmcgdGhpcyBsaWNlbnNlLCB5b3UgKHRoZSBhdXRob3Iocykgb3IgY29weXJpZ2h0Cm93bmVyKSBncmFudHMgdG8gRFNwYWNlIFVuaXZlcnNpdHkgKERTVSkgdGhlIG5vbi1leGNsdXNpdmUgcmlnaHQgdG8gcmVwcm9kdWNlLAp0cmFuc2xhdGUgKGFzIGRlZmluZWQgYmVsb3cpLCBhbmQvb3IgZGlzdHJpYnV0ZSB5b3VyIHN1Ym1pc3Npb24gKGluY2x1ZGluZwp0aGUgYWJzdHJhY3QpIHdvcmxkd2lkZSBpbiBwcmludCBhbmQgZWxlY3Ryb25pYyBmb3JtYXQgYW5kIGluIGFueSBtZWRpdW0sCmluY2x1ZGluZyBidXQgbm90IGxpbWl0ZWQgdG8gYXVkaW8gb3IgdmlkZW8uCgpZb3UgYWdyZWUgdGhhdCBEU1UgbWF5LCB3aXRob3V0IGNoYW5naW5nIHRoZSBjb250ZW50LCB0cmFuc2xhdGUgdGhlCnN1Ym1pc3Npb24gdG8gYW55IG1lZGl1bSBvciBmb3JtYXQgZm9yIHRoZSBwdXJwb3NlIG9mIHByZXNlcnZhdGlvbi4KCllvdSBhbHNvIGFncmVlIHRoYXQgRFNVIG1heSBrZWVwIG1vcmUgdGhhbiBvbmUgY29weSBvZiB0aGlzIHN1Ym1pc3Npb24gZm9yCnB1cnBvc2VzIG9mIHNlY3VyaXR5LCBiYWNrLXVwIGFuZCBwcmVzZXJ2YXRpb24uCgpZb3UgcmVwcmVzZW50IHRoYXQgdGhlIHN1Ym1pc3Npb24gaXMgeW91ciBvcmlnaW5hbCB3b3JrLCBhbmQgdGhhdCB5b3UgaGF2ZQp0aGUgcmlnaHQgdG8gZ3JhbnQgdGhlIHJpZ2h0cyBjb250YWluZWQgaW4gdGhpcyBsaWNlbnNlLiBZb3UgYWxzbyByZXByZXNlbnQKdGhhdCB5b3VyIHN1Ym1pc3Npb24gZG9lcyBub3QsIHRvIHRoZSBiZXN0IG9mIHlvdXIga25vd2xlZGdlLCBpbmZyaW5nZSB1cG9uCmFueW9uZSdzIGNvcHlyaWdodC4KCklmIHRoZSBzdWJtaXNzaW9uIGNvbnRhaW5zIG1hdGVyaWFsIGZvciB3aGljaCB5b3UgZG8gbm90IGhvbGQgY29weXJpZ2h0LAp5b3UgcmVwcmVzZW50IHRoYXQgeW91IGhhdmUgb2J0YWluZWQgdGhlIHVucmVzdHJpY3RlZCBwZXJtaXNzaW9uIG9mIHRoZQpjb3B5cmlnaHQgb3duZXIgdG8gZ3JhbnQgRFNVIHRoZSByaWdodHMgcmVxdWlyZWQgYnkgdGhpcyBsaWNlbnNlLCBhbmQgdGhhdApzdWNoIHRoaXJkLXBhcnR5IG93bmVkIG1hdGVyaWFsIGlzIGNsZWFybHkgaWRlbnRpZmllZCBhbmQgYWNrbm93bGVkZ2VkCndpdGhpbiB0aGUgdGV4dCBvciBjb250ZW50IG9mIHRoZSBzdWJtaXNzaW9uLgoKSUYgVEhFIFNVQk1JU1NJT04gSVMgQkFTRUQgVVBPTiBXT1JLIFRIQVQgSEFTIEJFRU4gU1BPTlNPUkVEIE9SIFNVUFBPUlRFRApCWSBBTiBBR0VOQ1kgT1IgT1JHQU5JWkFUSU9OIE9USEVSIFRIQU4gRFNVLCBZT1UgUkVQUkVTRU5UIFRIQVQgWU9VIEhBVkUKRlVMRklMTEVEIEFOWSBSSUdIVCBPRiBSRVZJRVcgT1IgT1RIRVIgT0JMSUdBVElPTlMgUkVRVUlSRUQgQlkgU1VDSApDT05UUkFDVCBPUiBBR1JFRU1FTlQuCgpEU1Ugd2lsbCBjbGVhcmx5IGlkZW50aWZ5IHlvdXIgbmFtZShzKSBhcyB0aGUgYXV0aG9yKHMpIG9yIG93bmVyKHMpIG9mIHRoZQpzdWJtaXNzaW9uLCBhbmQgd2lsbCBub3QgbWFrZSBhbnkgYWx0ZXJhdGlvbiwgb3RoZXIgdGhhbiBhcyBhbGxvd2VkIGJ5IHRoaXMKbGljZW5zZSwgdG8geW91ciBzdWJtaXNzaW9uLgo=