Structure of associated sets to Midy’s property
ABSTRACT: Let b be a positive integer greater than 1, N a positive integer relatively prime to b, |b|N the order of b in the multiplicative group UN of positive integers less than N and relatively primes to N, and x ∈ UN . It is well known that when we write the fraction x N in base b, it is periodi...
- Autores:
-
García Pulgarín, Gilberto
Castillo Gómez, Jhon Hermes
Velásquez Soto, Juan Miguel
- Tipo de recurso:
- Article of investigation
- Fecha de publicación:
- 2012
- Institución:
- Universidad de Antioquia
- Repositorio:
- Repositorio UdeA
- Idioma:
- eng
- OAI Identifier:
- oai:bibliotecadigital.udea.edu.co:10495/44305
- Acceso en línea:
- https://hdl.handle.net/10495/44305
- Palabra clave:
- Fracciones
Fractions
Números primos
Numbers, prime
Propiedad de Midy
Representación decimal
Grupo multiplicativo de unidades
Periodo (matemáticas)
- Rights
- openAccess
- License
- https://creativecommons.org/licenses/by-nc-nd/4.0/
| id |
UDEA2_2c08662256d881f9cfbabcb360f0b962 |
|---|---|
| oai_identifier_str |
oai:bibliotecadigital.udea.edu.co:10495/44305 |
| network_acronym_str |
UDEA2 |
| network_name_str |
Repositorio UdeA |
| repository_id_str |
|
| dc.title.spa.fl_str_mv |
Structure of associated sets to Midy’s property |
| title |
Structure of associated sets to Midy’s property |
| spellingShingle |
Structure of associated sets to Midy’s property Fracciones Fractions Números primos Numbers, prime Propiedad de Midy Representación decimal Grupo multiplicativo de unidades Periodo (matemáticas) |
| title_short |
Structure of associated sets to Midy’s property |
| title_full |
Structure of associated sets to Midy’s property |
| title_fullStr |
Structure of associated sets to Midy’s property |
| title_full_unstemmed |
Structure of associated sets to Midy’s property |
| title_sort |
Structure of associated sets to Midy’s property |
| dc.creator.fl_str_mv |
García Pulgarín, Gilberto Castillo Gómez, Jhon Hermes Velásquez Soto, Juan Miguel |
| dc.contributor.author.none.fl_str_mv |
García Pulgarín, Gilberto Castillo Gómez, Jhon Hermes Velásquez Soto, Juan Miguel |
| dc.contributor.researchgroup.spa.fl_str_mv |
Álgebra, Teoría de Números y Aplicaciones: ERM |
| dc.subject.lemb.none.fl_str_mv |
Fracciones Fractions Números primos Numbers, prime |
| topic |
Fracciones Fractions Números primos Numbers, prime Propiedad de Midy Representación decimal Grupo multiplicativo de unidades Periodo (matemáticas) |
| dc.subject.proposal.spa.fl_str_mv |
Propiedad de Midy Representación decimal Grupo multiplicativo de unidades Periodo (matemáticas) |
| description |
ABSTRACT: Let b be a positive integer greater than 1, N a positive integer relatively prime to b, |b|N the order of b in the multiplicative group UN of positive integers less than N and relatively primes to N, and x ∈ UN . It is well known that when we write the fraction x N in base b, it is periodic. Let d, k be positive integers with d ≥ 2 and such that |b|N = dk and x N = 0.a1a2 · · · a|b|N with the bar indicating the period and ai are digits in base b. We separate the period a1a2 · · · a|b|N in d blocks of length k and let Aj = [a(j−1)k+1a(j−1)k+2 · · · ajk]b be the number represented in base b by the j − th block and Sd(x) = Pdj=1 Aj . If for all x ∈ UN , the sum Sd(x) is a multiple of bk − 1 we say that N has Midy’s property for b and d. In this work we present some interesting properties of the set of positive integers d such that N has Midy’s property to for b and d. |
| publishDate |
2012 |
| dc.date.issued.none.fl_str_mv |
2012 |
| dc.date.accessioned.none.fl_str_mv |
2025-01-22T13:55:30Z |
| dc.date.available.none.fl_str_mv |
2025-01-22T13:55:30Z |
| dc.type.spa.fl_str_mv |
Artículo de investigación |
| dc.type.coar.spa.fl_str_mv |
http://purl.org/coar/resource_type/c_2df8fbb1 |
| dc.type.redcol.spa.fl_str_mv |
https://purl.org/redcol/resource_type/ART |
| dc.type.coarversion.spa.fl_str_mv |
http://purl.org/coar/version/c_970fb48d4fbd8a85 |
| dc.type.driver.spa.fl_str_mv |
info:eu-repo/semantics/article |
| dc.type.version.spa.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
| format |
http://purl.org/coar/resource_type/c_2df8fbb1 |
| status_str |
publishedVersion |
| dc.identifier.issn.none.fl_str_mv |
0120-6788 |
| dc.identifier.uri.none.fl_str_mv |
https://hdl.handle.net/10495/44305 |
| identifier_str_mv |
0120-6788 |
| url |
https://hdl.handle.net/10495/44305 |
| dc.language.iso.spa.fl_str_mv |
eng |
| language |
eng |
| dc.relation.ispartofjournalabbrev.spa.fl_str_mv |
Mat. Ense. Univ. |
| dc.relation.citationendpage.spa.fl_str_mv |
28 |
| dc.relation.citationissue.spa.fl_str_mv |
1 |
| dc.relation.citationstartpage.spa.fl_str_mv |
21 |
| dc.relation.citationvolume.spa.fl_str_mv |
20 |
| dc.relation.ispartofjournal.spa.fl_str_mv |
Matemáticas: Enseñanza Universitaria |
| dc.rights.uri.spa.fl_str_mv |
https://creativecommons.org/licenses/by-nc-nd/4.0/ |
| dc.rights.uri.*.fl_str_mv |
http://creativecommons.org/licenses/by-nc-nd/2.5/co/ |
| dc.rights.accessrights.spa.fl_str_mv |
info:eu-repo/semantics/openAccess |
| dc.rights.coar.spa.fl_str_mv |
http://purl.org/coar/access_right/c_abf2 |
| rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-nd/4.0/ http://creativecommons.org/licenses/by-nc-nd/2.5/co/ http://purl.org/coar/access_right/c_abf2 |
| eu_rights_str_mv |
openAccess |
| dc.format.extent.spa.fl_str_mv |
8 páginas |
| dc.format.mimetype.spa.fl_str_mv |
application/pdf |
| dc.publisher.spa.fl_str_mv |
Universidad del Valle, Corporación Escuela Regional de Matemáticas |
| dc.publisher.place.spa.fl_str_mv |
Cali, Colombia |
| institution |
Universidad de Antioquia |
| bitstream.url.fl_str_mv |
https://bibliotecadigital.udea.edu.co/bitstreams/dd7cb82a-08ce-41fd-9ee9-6a552f5ce3d0/download https://bibliotecadigital.udea.edu.co/bitstreams/fb1f460c-dd80-435f-a2cc-d6977ddb7ffc/download https://bibliotecadigital.udea.edu.co/bitstreams/1df2ebf3-020c-432a-999f-e4bd2abf5bb3/download https://bibliotecadigital.udea.edu.co/bitstreams/def3c475-9d7d-4f36-b73d-b8f410053b28/download https://bibliotecadigital.udea.edu.co/bitstreams/f0359f86-c0c7-43c0-b88f-c7043553cd77/download |
| bitstream.checksum.fl_str_mv |
2fb3254e5417f6da31cd251a0c729efa b88b088d9957e670ce3b3fbe2eedbc13 8a4605be74aa9ea9d79846c1fba20a33 689a3b5c72d47517a3de4c4fc5739424 430a4c2845f5bd1b34afcc5afded808d |
| bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 MD5 MD5 MD5 |
| repository.name.fl_str_mv |
Repositorio Institucional de la Universidad de Antioquia |
| repository.mail.fl_str_mv |
aplicacionbibliotecadigitalbiblioteca@udea.edu.co |
| _version_ |
1851052134980648960 |
| spelling |
García Pulgarín, GilbertoCastillo Gómez, Jhon HermesVelásquez Soto, Juan MiguelÁlgebra, Teoría de Números y Aplicaciones: ERM2025-01-22T13:55:30Z2025-01-22T13:55:30Z20120120-6788https://hdl.handle.net/10495/44305ABSTRACT: Let b be a positive integer greater than 1, N a positive integer relatively prime to b, |b|N the order of b in the multiplicative group UN of positive integers less than N and relatively primes to N, and x ∈ UN . It is well known that when we write the fraction x N in base b, it is periodic. Let d, k be positive integers with d ≥ 2 and such that |b|N = dk and x N = 0.a1a2 · · · a|b|N with the bar indicating the period and ai are digits in base b. We separate the period a1a2 · · · a|b|N in d blocks of length k and let Aj = [a(j−1)k+1a(j−1)k+2 · · · ajk]b be the number represented in base b by the j − th block and Sd(x) = Pdj=1 Aj . If for all x ∈ UN , the sum Sd(x) is a multiple of bk − 1 we say that N has Midy’s property for b and d. In this work we present some interesting properties of the set of positive integers d such that N has Midy’s property to for b and d.COL00172178 páginasapplication/pdfengUniversidad del Valle, Corporación Escuela Regional de MatemáticasCali, Colombiahttps://creativecommons.org/licenses/by-nc-nd/4.0/http://creativecommons.org/licenses/by-nc-nd/2.5/co/info:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2Structure of associated sets to Midy’s propertyArtículo de investigaciónhttp://purl.org/coar/resource_type/c_2df8fbb1https://purl.org/redcol/resource_type/ARThttp://purl.org/coar/version/c_970fb48d4fbd8a85info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionFraccionesFractionsNúmeros primosNumbers, primePropiedad de MidyRepresentación decimalGrupo multiplicativo de unidadesPeriodo (matemáticas)Mat. Ense. Univ.2812120Matemáticas: Enseñanza UniversitariaPublicationORIGINALGarciaGilberto_2012_Structure_Property_Midy.pdfGarciaGilberto_2012_Structure_Property_Midy.pdfArtículo de investigaciónapplication/pdf365614https://bibliotecadigital.udea.edu.co/bitstreams/dd7cb82a-08ce-41fd-9ee9-6a552f5ce3d0/download2fb3254e5417f6da31cd251a0c729efaMD51trueAnonymousREADCC-LICENSElicense_rdflicense_rdfapplication/rdf+xml; charset=utf-8823https://bibliotecadigital.udea.edu.co/bitstreams/fb1f460c-dd80-435f-a2cc-d6977ddb7ffc/downloadb88b088d9957e670ce3b3fbe2eedbc13MD52falseAnonymousREADLICENSElicense.txtlicense.txttext/plain; charset=utf-81748https://bibliotecadigital.udea.edu.co/bitstreams/1df2ebf3-020c-432a-999f-e4bd2abf5bb3/download8a4605be74aa9ea9d79846c1fba20a33MD53falseAnonymousREADTEXTGarciaGilberto_2012_Structure_Property_Midy.pdf.txtGarciaGilberto_2012_Structure_Property_Midy.pdf.txtExtracted texttext/plain17963https://bibliotecadigital.udea.edu.co/bitstreams/def3c475-9d7d-4f36-b73d-b8f410053b28/download689a3b5c72d47517a3de4c4fc5739424MD56falseAnonymousREADTHUMBNAILGarciaGilberto_2012_Structure_Property_Midy.pdf.jpgGarciaGilberto_2012_Structure_Property_Midy.pdf.jpgGenerated Thumbnailimage/jpeg12880https://bibliotecadigital.udea.edu.co/bitstreams/f0359f86-c0c7-43c0-b88f-c7043553cd77/download430a4c2845f5bd1b34afcc5afded808dMD57falseAnonymousREAD10495/44305oai:bibliotecadigital.udea.edu.co:10495/443052025-03-26 17:30:20.644https://creativecommons.org/licenses/by-nc-nd/4.0/open.accesshttps://bibliotecadigital.udea.edu.coRepositorio Institucional de la Universidad de Antioquiaaplicacionbibliotecadigitalbiblioteca@udea.edu.coTk9URTogUExBQ0UgWU9VUiBPV04gTElDRU5TRSBIRVJFClRoaXMgc2FtcGxlIGxpY2Vuc2UgaXMgcHJvdmlkZWQgZm9yIGluZm9ybWF0aW9uYWwgcHVycG9zZXMgb25seS4KCk5PTi1FWENMVVNJVkUgRElTVFJJQlVUSU9OIExJQ0VOU0UKCkJ5IHNpZ25pbmcgYW5kIHN1Ym1pdHRpbmcgdGhpcyBsaWNlbnNlLCB5b3UgKHRoZSBhdXRob3Iocykgb3IgY29weXJpZ2h0Cm93bmVyKSBncmFudHMgdG8gRFNwYWNlIFVuaXZlcnNpdHkgKERTVSkgdGhlIG5vbi1leGNsdXNpdmUgcmlnaHQgdG8gcmVwcm9kdWNlLAp0cmFuc2xhdGUgKGFzIGRlZmluZWQgYmVsb3cpLCBhbmQvb3IgZGlzdHJpYnV0ZSB5b3VyIHN1Ym1pc3Npb24gKGluY2x1ZGluZwp0aGUgYWJzdHJhY3QpIHdvcmxkd2lkZSBpbiBwcmludCBhbmQgZWxlY3Ryb25pYyBmb3JtYXQgYW5kIGluIGFueSBtZWRpdW0sCmluY2x1ZGluZyBidXQgbm90IGxpbWl0ZWQgdG8gYXVkaW8gb3IgdmlkZW8uCgpZb3UgYWdyZWUgdGhhdCBEU1UgbWF5LCB3aXRob3V0IGNoYW5naW5nIHRoZSBjb250ZW50LCB0cmFuc2xhdGUgdGhlCnN1Ym1pc3Npb24gdG8gYW55IG1lZGl1bSBvciBmb3JtYXQgZm9yIHRoZSBwdXJwb3NlIG9mIHByZXNlcnZhdGlvbi4KCllvdSBhbHNvIGFncmVlIHRoYXQgRFNVIG1heSBrZWVwIG1vcmUgdGhhbiBvbmUgY29weSBvZiB0aGlzIHN1Ym1pc3Npb24gZm9yCnB1cnBvc2VzIG9mIHNlY3VyaXR5LCBiYWNrLXVwIGFuZCBwcmVzZXJ2YXRpb24uCgpZb3UgcmVwcmVzZW50IHRoYXQgdGhlIHN1Ym1pc3Npb24gaXMgeW91ciBvcmlnaW5hbCB3b3JrLCBhbmQgdGhhdCB5b3UgaGF2ZQp0aGUgcmlnaHQgdG8gZ3JhbnQgdGhlIHJpZ2h0cyBjb250YWluZWQgaW4gdGhpcyBsaWNlbnNlLiBZb3UgYWxzbyByZXByZXNlbnQKdGhhdCB5b3VyIHN1Ym1pc3Npb24gZG9lcyBub3QsIHRvIHRoZSBiZXN0IG9mIHlvdXIga25vd2xlZGdlLCBpbmZyaW5nZSB1cG9uCmFueW9uZSdzIGNvcHlyaWdodC4KCklmIHRoZSBzdWJtaXNzaW9uIGNvbnRhaW5zIG1hdGVyaWFsIGZvciB3aGljaCB5b3UgZG8gbm90IGhvbGQgY29weXJpZ2h0LAp5b3UgcmVwcmVzZW50IHRoYXQgeW91IGhhdmUgb2J0YWluZWQgdGhlIHVucmVzdHJpY3RlZCBwZXJtaXNzaW9uIG9mIHRoZQpjb3B5cmlnaHQgb3duZXIgdG8gZ3JhbnQgRFNVIHRoZSByaWdodHMgcmVxdWlyZWQgYnkgdGhpcyBsaWNlbnNlLCBhbmQgdGhhdApzdWNoIHRoaXJkLXBhcnR5IG93bmVkIG1hdGVyaWFsIGlzIGNsZWFybHkgaWRlbnRpZmllZCBhbmQgYWNrbm93bGVkZ2VkCndpdGhpbiB0aGUgdGV4dCBvciBjb250ZW50IG9mIHRoZSBzdWJtaXNzaW9uLgoKSUYgVEhFIFNVQk1JU1NJT04gSVMgQkFTRUQgVVBPTiBXT1JLIFRIQVQgSEFTIEJFRU4gU1BPTlNPUkVEIE9SIFNVUFBPUlRFRApCWSBBTiBBR0VOQ1kgT1IgT1JHQU5JWkFUSU9OIE9USEVSIFRIQU4gRFNVLCBZT1UgUkVQUkVTRU5UIFRIQVQgWU9VIEhBVkUKRlVMRklMTEVEIEFOWSBSSUdIVCBPRiBSRVZJRVcgT1IgT1RIRVIgT0JMSUdBVElPTlMgUkVRVUlSRUQgQlkgU1VDSApDT05UUkFDVCBPUiBBR1JFRU1FTlQuCgpEU1Ugd2lsbCBjbGVhcmx5IGlkZW50aWZ5IHlvdXIgbmFtZShzKSBhcyB0aGUgYXV0aG9yKHMpIG9yIG93bmVyKHMpIG9mIHRoZQpzdWJtaXNzaW9uLCBhbmQgd2lsbCBub3QgbWFrZSBhbnkgYWx0ZXJhdGlvbiwgb3RoZXIgdGhhbiBhcyBhbGxvd2VkIGJ5IHRoaXMKbGljZW5zZSwgdG8geW91ciBzdWJtaXNzaW9uLgo= |
