Magnetic shielding of exomoons beyond the circumplanetary habitable edge

ABSTRACT: With most planets and planetary candidates detected in the stellar habitable zone (HZ) being super-Earths and gas giants rather than Earth-like planets, we naturally wonder if their moons could be habitable. The first detection of such an exomoon has now become feasible, and due to observa...

Full description

Autores:
Heller, René
Zuluaga Callejas, Jorge Iván
Tipo de recurso:
Article of investigation
Fecha de publicación:
2013
Institución:
Universidad de Antioquia
Repositorio:
Repositorio UdeA
Idioma:
eng
OAI Identifier:
oai:bibliotecadigital.udea.edu.co:10495/8529
Acceso en línea:
http://hdl.handle.net/10495/8529
Palabra clave:
Planetas
Planets
Astrobiología
Astrobiology
Mecánica celeste
Mechanics, celestial
Campos magnéticos
Magnetic fields
Satélites
Satellites
http://aims.fao.org/aos/agrovoc/c_14093
http://vocabularies.unesco.org/thesaurus/concept1582
Rights
openAccess
License
https://creativecommons.org/licenses/by-sa/4.0/
id UDEA2_2bc2859d4330d9122be99b474c36ac2c
oai_identifier_str oai:bibliotecadigital.udea.edu.co:10495/8529
network_acronym_str UDEA2
network_name_str Repositorio UdeA
repository_id_str
dc.title.spa.fl_str_mv Magnetic shielding of exomoons beyond the circumplanetary habitable edge
title Magnetic shielding of exomoons beyond the circumplanetary habitable edge
spellingShingle Magnetic shielding of exomoons beyond the circumplanetary habitable edge
Planetas
Planets
Astrobiología
Astrobiology
Mecánica celeste
Mechanics, celestial
Campos magnéticos
Magnetic fields
Satélites
Satellites
http://aims.fao.org/aos/agrovoc/c_14093
http://vocabularies.unesco.org/thesaurus/concept1582
title_short Magnetic shielding of exomoons beyond the circumplanetary habitable edge
title_full Magnetic shielding of exomoons beyond the circumplanetary habitable edge
title_fullStr Magnetic shielding of exomoons beyond the circumplanetary habitable edge
title_full_unstemmed Magnetic shielding of exomoons beyond the circumplanetary habitable edge
title_sort Magnetic shielding of exomoons beyond the circumplanetary habitable edge
dc.creator.fl_str_mv Heller, René
Zuluaga Callejas, Jorge Iván
dc.contributor.author.none.fl_str_mv Heller, René
Zuluaga Callejas, Jorge Iván
dc.contributor.researchgroup.spa.fl_str_mv Grupo de Fisica y Astrofisica Computacional (FACOM)
dc.subject.decs.none.fl_str_mv Planetas
Planets
topic Planetas
Planets
Astrobiología
Astrobiology
Mecánica celeste
Mechanics, celestial
Campos magnéticos
Magnetic fields
Satélites
Satellites
http://aims.fao.org/aos/agrovoc/c_14093
http://vocabularies.unesco.org/thesaurus/concept1582
dc.subject.unesco.none.fl_str_mv Astrobiología
Astrobiology
dc.subject.lemb.none.fl_str_mv Mecánica celeste
Mechanics, celestial
Campos magnéticos
Magnetic fields
dc.subject.agrovoc.none.fl_str_mv Satélites
Satellites
dc.subject.agrovocuri.none.fl_str_mv http://aims.fao.org/aos/agrovoc/c_14093
dc.subject.unescouri.none.fl_str_mv http://vocabularies.unesco.org/thesaurus/concept1582
description ABSTRACT: With most planets and planetary candidates detected in the stellar habitable zone (HZ) being super-Earths and gas giants rather than Earth-like planets, we naturally wonder if their moons could be habitable. The first detection of such an exomoon has now become feasible, and due to observational biases it will be at least twice as massive as Mars. However, formation models predict that moons can hardly be as massive as Earth. Hence, a giant planet’s magnetosphere could be the only possibility for such a moon to be shielded from cosmic and stellar high-energy radiation. Yet, the planetary radiation belt could also have detrimental effects on exomoon habitability. Here we synthesize models for the evolution of the magnetic environment of giant planets with thresholds from the runaway greenhouse (RG) effect to assess the habitability of exomoons. For modest eccentricities, we find that satellites around Neptune-sized planets in the center of the HZ around K dwarf stars will either be in an RG state and not be habitable, or they will be in wide orbits where they will not be affected by the planetary magnetosphere. Saturn-like planets have stronger fields, and Jupiter-like planets could coat close-in habitable moons soon after formation. Moons at distances between about 5 and 20 planetary radii from a giant planet can be habitable from an illumination and tidal heating point of view, but still the planetary magnetosphere would critically influence their habitability.
publishDate 2013
dc.date.issued.none.fl_str_mv 2013
dc.date.accessioned.none.fl_str_mv 2017-10-10T20:12:16Z
dc.date.available.none.fl_str_mv 2017-10-10T20:12:16Z
dc.type.spa.fl_str_mv Artículo de investigación
dc.type.coar.spa.fl_str_mv http://purl.org/coar/resource_type/c_2df8fbb1
dc.type.redcol.spa.fl_str_mv https://purl.org/redcol/resource_type/ART
dc.type.coarversion.spa.fl_str_mv http://purl.org/coar/version/c_970fb48d4fbd8a85
dc.type.driver.spa.fl_str_mv info:eu-repo/semantics/article
dc.type.version.spa.fl_str_mv info:eu-repo/semantics/publishedVersion
format http://purl.org/coar/resource_type/c_2df8fbb1
status_str publishedVersion
dc.identifier.citation.spa.fl_str_mv Heller, R., & Zuluaga Callejas, J. I. (2013). Magnetic shielding of exomoons beyond the circumplanetary habitable edge. Astrophysical Journal. 776, 1-6. DOI:10.1088/2041-8205/776/2/L33
dc.identifier.issn.none.fl_str_mv 0004-637X
dc.identifier.uri.none.fl_str_mv http://hdl.handle.net/10495/8529
dc.identifier.doi.none.fl_str_mv 10.1088/2041-8205/776/2/L33
dc.identifier.eissn.none.fl_str_mv 1538-4357
identifier_str_mv Heller, R., & Zuluaga Callejas, J. I. (2013). Magnetic shielding of exomoons beyond the circumplanetary habitable edge. Astrophysical Journal. 776, 1-6. DOI:10.1088/2041-8205/776/2/L33
0004-637X
10.1088/2041-8205/776/2/L33
1538-4357
url http://hdl.handle.net/10495/8529
dc.language.iso.spa.fl_str_mv eng
language eng
dc.relation.ispartofjournalabbrev.spa.fl_str_mv Astrophys. J.
dc.relation.citationendpage.spa.fl_str_mv 6
dc.relation.citationissue.spa.fl_str_mv 2
dc.relation.citationstartpage.spa.fl_str_mv 1
dc.relation.citationvolume.spa.fl_str_mv 776
dc.relation.ispartofjournal.spa.fl_str_mv Astrophysical Journal
dc.rights.uri.spa.fl_str_mv https://creativecommons.org/licenses/by-sa/4.0/
dc.rights.uri.*.fl_str_mv http://creativecommons.org/licenses/by-sa/2.5/co/
dc.rights.accessrights.*.fl_str_mv Atribución-CompartirIgual 2.5 Colombia (CC BY-SA 2.5 CO)
dc.rights.accessrights.spa.fl_str_mv info:eu-repo/semantics/openAccess
dc.rights.coar.spa.fl_str_mv http://purl.org/coar/access_right/c_abf2
rights_invalid_str_mv https://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/2.5/co/
Atribución-CompartirIgual 2.5 Colombia (CC BY-SA 2.5 CO)
http://purl.org/coar/access_right/c_abf2
eu_rights_str_mv openAccess
dc.format.mimetype.spa.fl_str_mv application/pdf
dc.publisher.spa.fl_str_mv Institute of Physics Publishing (IOP)
dc.publisher.place.spa.fl_str_mv Chicago, Estados Unidos
institution Universidad de Antioquia
bitstream.url.fl_str_mv https://bibliotecadigital.udea.edu.co/bitstreams/42242c92-0941-40f9-8336-4707bc0105ca/download
https://bibliotecadigital.udea.edu.co/bitstreams/0d91e52d-547c-4e6c-a2c3-f04eb6451c88/download
https://bibliotecadigital.udea.edu.co/bitstreams/0fb5ed03-b22e-4e9e-85b7-8f0bc45d3a65/download
https://bibliotecadigital.udea.edu.co/bitstreams/4f3a2678-02e5-4197-ab6a-64047b356873/download
https://bibliotecadigital.udea.edu.co/bitstreams/b287bb4f-e13f-40f8-a62e-dc3b41cd7ca8/download
https://bibliotecadigital.udea.edu.co/bitstreams/9ac102b7-1d0d-4566-8187-d480d3c5e540/download
https://bibliotecadigital.udea.edu.co/bitstreams/7ef5e777-2670-4087-a448-6ad4e9ca2a5b/download
bitstream.checksum.fl_str_mv d53dd93349b9721149a127d642663f6c
4afdbb8c545fd630ea7db775da747b2f
d41d8cd98f00b204e9800998ecf8427e
d41d8cd98f00b204e9800998ecf8427e
8a4605be74aa9ea9d79846c1fba20a33
35efb25c77a29b7899ec4ed12ce98113
67f27f995525a3454787dd0071cab220
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
MD5
MD5
MD5
MD5
repository.name.fl_str_mv Repositorio Institucional de la Universidad de Antioquia
repository.mail.fl_str_mv aplicacionbibliotecadigitalbiblioteca@udea.edu.co
_version_ 1851052629308735488
spelling Heller, RenéZuluaga Callejas, Jorge IvánGrupo de Fisica y Astrofisica Computacional (FACOM)2017-10-10T20:12:16Z2017-10-10T20:12:16Z2013Heller, R., & Zuluaga Callejas, J. I. (2013). Magnetic shielding of exomoons beyond the circumplanetary habitable edge. Astrophysical Journal. 776, 1-6. DOI:10.1088/2041-8205/776/2/L330004-637Xhttp://hdl.handle.net/10495/852910.1088/2041-8205/776/2/L331538-4357ABSTRACT: With most planets and planetary candidates detected in the stellar habitable zone (HZ) being super-Earths and gas giants rather than Earth-like planets, we naturally wonder if their moons could be habitable. The first detection of such an exomoon has now become feasible, and due to observational biases it will be at least twice as massive as Mars. However, formation models predict that moons can hardly be as massive as Earth. Hence, a giant planet’s magnetosphere could be the only possibility for such a moon to be shielded from cosmic and stellar high-energy radiation. Yet, the planetary radiation belt could also have detrimental effects on exomoon habitability. Here we synthesize models for the evolution of the magnetic environment of giant planets with thresholds from the runaway greenhouse (RG) effect to assess the habitability of exomoons. For modest eccentricities, we find that satellites around Neptune-sized planets in the center of the HZ around K dwarf stars will either be in an RG state and not be habitable, or they will be in wide orbits where they will not be affected by the planetary magnetosphere. Saturn-like planets have stronger fields, and Jupiter-like planets could coat close-in habitable moons soon after formation. Moons at distances between about 5 and 20 planetary radii from a giant planet can be habitable from an illumination and tidal heating point of view, but still the planetary magnetosphere would critically influence their habitability.COL0038262application/pdfengInstitute of Physics Publishing (IOP)Chicago, Estados Unidoshttps://creativecommons.org/licenses/by-sa/4.0/http://creativecommons.org/licenses/by-sa/2.5/co/Atribución-CompartirIgual 2.5 Colombia (CC BY-SA 2.5 CO)info:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2Magnetic shielding of exomoons beyond the circumplanetary habitable edgeArtículo de investigaciónhttp://purl.org/coar/resource_type/c_2df8fbb1https://purl.org/redcol/resource_type/ARThttp://purl.org/coar/version/c_970fb48d4fbd8a85info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionPlanetasPlanetsAstrobiologíaAstrobiologyMecánica celesteMechanics, celestialCampos magnéticosMagnetic fieldsSatélitesSatelliteshttp://aims.fao.org/aos/agrovoc/c_14093http://vocabularies.unesco.org/thesaurus/concept1582Astrophys. J.621776Astrophysical JournalPublicationORIGINALZuluagaJorge_2013_MagneticShieldingExomoons.pdfZuluagaJorge_2013_MagneticShieldingExomoons.pdfArtículo de investigaciónapplication/pdf893597https://bibliotecadigital.udea.edu.co/bitstreams/42242c92-0941-40f9-8336-4707bc0105ca/downloadd53dd93349b9721149a127d642663f6cMD51trueAnonymousREADCC-LICENSElicense_urllicense_urltext/plain; charset=utf-849https://bibliotecadigital.udea.edu.co/bitstreams/0d91e52d-547c-4e6c-a2c3-f04eb6451c88/download4afdbb8c545fd630ea7db775da747b2fMD52falseAnonymousREADlicense_textlicense_texttext/html; charset=utf-80https://bibliotecadigital.udea.edu.co/bitstreams/0fb5ed03-b22e-4e9e-85b7-8f0bc45d3a65/downloadd41d8cd98f00b204e9800998ecf8427eMD53falseAnonymousREADlicense_rdflicense_rdfapplication/rdf+xml; charset=utf-80https://bibliotecadigital.udea.edu.co/bitstreams/4f3a2678-02e5-4197-ab6a-64047b356873/downloadd41d8cd98f00b204e9800998ecf8427eMD54falseAnonymousREADLICENSElicense.txtlicense.txttext/plain; charset=utf-81748https://bibliotecadigital.udea.edu.co/bitstreams/b287bb4f-e13f-40f8-a62e-dc3b41cd7ca8/download8a4605be74aa9ea9d79846c1fba20a33MD55falseAnonymousREADTEXTZuluagaJorge_2013_MagneticShieldingExomoons.pdf.txtZuluagaJorge_2013_MagneticShieldingExomoons.pdf.txtExtracted texttext/plain34866https://bibliotecadigital.udea.edu.co/bitstreams/9ac102b7-1d0d-4566-8187-d480d3c5e540/download35efb25c77a29b7899ec4ed12ce98113MD56falseAnonymousREADTHUMBNAILZuluagaJorge_2013_MagneticShieldingExomoons.pdf.jpgZuluagaJorge_2013_MagneticShieldingExomoons.pdf.jpgGenerated Thumbnailimage/jpeg17806https://bibliotecadigital.udea.edu.co/bitstreams/7ef5e777-2670-4087-a448-6ad4e9ca2a5b/download67f27f995525a3454787dd0071cab220MD57falseAnonymousREAD10495/8529oai:bibliotecadigital.udea.edu.co:10495/85292025-03-27 01:18:29.051https://creativecommons.org/licenses/by-sa/4.0/open.accesshttps://bibliotecadigital.udea.edu.coRepositorio Institucional de la Universidad de Antioquiaaplicacionbibliotecadigitalbiblioteca@udea.edu.coTk9URTogUExBQ0UgWU9VUiBPV04gTElDRU5TRSBIRVJFClRoaXMgc2FtcGxlIGxpY2Vuc2UgaXMgcHJvdmlkZWQgZm9yIGluZm9ybWF0aW9uYWwgcHVycG9zZXMgb25seS4KCk5PTi1FWENMVVNJVkUgRElTVFJJQlVUSU9OIExJQ0VOU0UKCkJ5IHNpZ25pbmcgYW5kIHN1Ym1pdHRpbmcgdGhpcyBsaWNlbnNlLCB5b3UgKHRoZSBhdXRob3Iocykgb3IgY29weXJpZ2h0Cm93bmVyKSBncmFudHMgdG8gRFNwYWNlIFVuaXZlcnNpdHkgKERTVSkgdGhlIG5vbi1leGNsdXNpdmUgcmlnaHQgdG8gcmVwcm9kdWNlLAp0cmFuc2xhdGUgKGFzIGRlZmluZWQgYmVsb3cpLCBhbmQvb3IgZGlzdHJpYnV0ZSB5b3VyIHN1Ym1pc3Npb24gKGluY2x1ZGluZwp0aGUgYWJzdHJhY3QpIHdvcmxkd2lkZSBpbiBwcmludCBhbmQgZWxlY3Ryb25pYyBmb3JtYXQgYW5kIGluIGFueSBtZWRpdW0sCmluY2x1ZGluZyBidXQgbm90IGxpbWl0ZWQgdG8gYXVkaW8gb3IgdmlkZW8uCgpZb3UgYWdyZWUgdGhhdCBEU1UgbWF5LCB3aXRob3V0IGNoYW5naW5nIHRoZSBjb250ZW50LCB0cmFuc2xhdGUgdGhlCnN1Ym1pc3Npb24gdG8gYW55IG1lZGl1bSBvciBmb3JtYXQgZm9yIHRoZSBwdXJwb3NlIG9mIHByZXNlcnZhdGlvbi4KCllvdSBhbHNvIGFncmVlIHRoYXQgRFNVIG1heSBrZWVwIG1vcmUgdGhhbiBvbmUgY29weSBvZiB0aGlzIHN1Ym1pc3Npb24gZm9yCnB1cnBvc2VzIG9mIHNlY3VyaXR5LCBiYWNrLXVwIGFuZCBwcmVzZXJ2YXRpb24uCgpZb3UgcmVwcmVzZW50IHRoYXQgdGhlIHN1Ym1pc3Npb24gaXMgeW91ciBvcmlnaW5hbCB3b3JrLCBhbmQgdGhhdCB5b3UgaGF2ZQp0aGUgcmlnaHQgdG8gZ3JhbnQgdGhlIHJpZ2h0cyBjb250YWluZWQgaW4gdGhpcyBsaWNlbnNlLiBZb3UgYWxzbyByZXByZXNlbnQKdGhhdCB5b3VyIHN1Ym1pc3Npb24gZG9lcyBub3QsIHRvIHRoZSBiZXN0IG9mIHlvdXIga25vd2xlZGdlLCBpbmZyaW5nZSB1cG9uCmFueW9uZSdzIGNvcHlyaWdodC4KCklmIHRoZSBzdWJtaXNzaW9uIGNvbnRhaW5zIG1hdGVyaWFsIGZvciB3aGljaCB5b3UgZG8gbm90IGhvbGQgY29weXJpZ2h0LAp5b3UgcmVwcmVzZW50IHRoYXQgeW91IGhhdmUgb2J0YWluZWQgdGhlIHVucmVzdHJpY3RlZCBwZXJtaXNzaW9uIG9mIHRoZQpjb3B5cmlnaHQgb3duZXIgdG8gZ3JhbnQgRFNVIHRoZSByaWdodHMgcmVxdWlyZWQgYnkgdGhpcyBsaWNlbnNlLCBhbmQgdGhhdApzdWNoIHRoaXJkLXBhcnR5IG93bmVkIG1hdGVyaWFsIGlzIGNsZWFybHkgaWRlbnRpZmllZCBhbmQgYWNrbm93bGVkZ2VkCndpdGhpbiB0aGUgdGV4dCBvciBjb250ZW50IG9mIHRoZSBzdWJtaXNzaW9uLgoKSUYgVEhFIFNVQk1JU1NJT04gSVMgQkFTRUQgVVBPTiBXT1JLIFRIQVQgSEFTIEJFRU4gU1BPTlNPUkVEIE9SIFNVUFBPUlRFRApCWSBBTiBBR0VOQ1kgT1IgT1JHQU5JWkFUSU9OIE9USEVSIFRIQU4gRFNVLCBZT1UgUkVQUkVTRU5UIFRIQVQgWU9VIEhBVkUKRlVMRklMTEVEIEFOWSBSSUdIVCBPRiBSRVZJRVcgT1IgT1RIRVIgT0JMSUdBVElPTlMgUkVRVUlSRUQgQlkgU1VDSApDT05UUkFDVCBPUiBBR1JFRU1FTlQuCgpEU1Ugd2lsbCBjbGVhcmx5IGlkZW50aWZ5IHlvdXIgbmFtZShzKSBhcyB0aGUgYXV0aG9yKHMpIG9yIG93bmVyKHMpIG9mIHRoZQpzdWJtaXNzaW9uLCBhbmQgd2lsbCBub3QgbWFrZSBhbnkgYWx0ZXJhdGlvbiwgb3RoZXIgdGhhbiBhcyBhbGxvd2VkIGJ5IHRoaXMKbGljZW5zZSwgdG8geW91ciBzdWJtaXNzaW9uLgo=