Acoustic animal identification using unsupervised learning

ABSTRACT: 1. Passive acoustic monitoring is usually presented as a complementary approach to monitoring wildlife communities and assessing ecosystem conditions. Automaticspecies detection methods support biodiversity monitoring and analysis by providing information on the presence–absence of species...

Full description

Autores:
Guerrero Muriel, María José
Bedoya Acevedo, Carol
López Hincapié, José David
Isaza Narváez, Claudia Victoria
Daza Rojas, Juan Manuel
Tipo de recurso:
Article of investigation
Fecha de publicación:
2023
Institución:
Universidad de Antioquia
Repositorio:
Repositorio UdeA
Idioma:
eng
OAI Identifier:
oai:bibliotecadigital.udea.edu.co:10495/36240
Acceso en línea:
https://hdl.handle.net/10495/36240
Palabra clave:
Vocalización Animal
Vocalization, Animal
Especies
Species
Sonido
Sound
Diversidad biológica
Biological diversity
Paisaje sonoro
Rights
openAccess
License
http://creativecommons.org/licenses/by-nc-nd/2.5/co/
id UDEA2_2b3aadbf9a0f76656882cae92bcf084a
oai_identifier_str oai:bibliotecadigital.udea.edu.co:10495/36240
network_acronym_str UDEA2
network_name_str Repositorio UdeA
repository_id_str
dc.title.spa.fl_str_mv Acoustic animal identification using unsupervised learning
title Acoustic animal identification using unsupervised learning
spellingShingle Acoustic animal identification using unsupervised learning
Vocalización Animal
Vocalization, Animal
Especies
Species
Sonido
Sound
Diversidad biológica
Biological diversity
Paisaje sonoro
title_short Acoustic animal identification using unsupervised learning
title_full Acoustic animal identification using unsupervised learning
title_fullStr Acoustic animal identification using unsupervised learning
title_full_unstemmed Acoustic animal identification using unsupervised learning
title_sort Acoustic animal identification using unsupervised learning
dc.creator.fl_str_mv Guerrero Muriel, María José
Bedoya Acevedo, Carol
López Hincapié, José David
Isaza Narváez, Claudia Victoria
Daza Rojas, Juan Manuel
dc.contributor.author.none.fl_str_mv Guerrero Muriel, María José
Bedoya Acevedo, Carol
López Hincapié, José David
Isaza Narváez, Claudia Victoria
Daza Rojas, Juan Manuel
dc.contributor.researchgroup.spa.fl_str_mv Sistemas Embebidos e Inteligencia Computacional (SISTEMIC)
dc.subject.decs.none.fl_str_mv Vocalización Animal
Vocalization, Animal
Especies
Species
topic Vocalización Animal
Vocalization, Animal
Especies
Species
Sonido
Sound
Diversidad biológica
Biological diversity
Paisaje sonoro
dc.subject.lemb.none.fl_str_mv Sonido
Sound
Diversidad biológica
Biological diversity
dc.subject.proposal.spa.fl_str_mv Paisaje sonoro
description ABSTRACT: 1. Passive acoustic monitoring is usually presented as a complementary approach to monitoring wildlife communities and assessing ecosystem conditions. Automaticspecies detection methods support biodiversity monitoring and analysis by providing information on the presence–absence of species, which allows understanding the ecosystem structure. Therefore, different alternatives have been proposed to identify species. However, the algorithms are parameterized to identify specific species. Analysing multiple species would help to monitor and quantify biodiversity, as it includes the different taxonomic groups present in the soundscape. 2. We present an unsupervised methodology for multi-species call recognition from ecological soundscapes. The proposal is based on a clustering algorithm, specifically the learning algorithm for multivariate data analysis (LAMDA) 3pi algorithm, which automatically suggests the number of clusters associated with the sonotypes. Emphasis was made on improving the segmentation of the audio to analyse the whole soundscape without parameterizing the algorithm according to each taxonomic group. 3. To estimate the performance of our proposal, we used four datasets from different locations, years and habitats. These datasets contain sounds from the four major taxonomic groups that dominate terrestrial soundscapes (birds, amphibians, mammals and insects) in audible and ultrasonic spectra. The methodology presents performances between 75% and 96% in presence–absence species recognition. 4. Using the clusters proposed by our methodology, the whole soundscape biodiversity was measured and compared with the estimate of four acoustic indices (ACI, NP, SO and BI). Our approach performs biodiversity assessments similar to acoustic indices with the advantage of providing information about acoustic communities without the need for prior knowledge of the species present in the audio recordings.
publishDate 2023
dc.date.accessioned.none.fl_str_mv 2023-08-16T19:36:51Z
dc.date.available.none.fl_str_mv 2023-08-16T19:36:51Z
dc.date.issued.none.fl_str_mv 2023
dc.type.spa.fl_str_mv Artículo de investigación
dc.type.coar.spa.fl_str_mv http://purl.org/coar/resource_type/c_2df8fbb1
dc.type.redcol.spa.fl_str_mv https://purl.org/redcol/resource_type/ART
dc.type.coarversion.spa.fl_str_mv http://purl.org/coar/version/c_970fb48d4fbd8a85
dc.type.driver.spa.fl_str_mv info:eu-repo/semantics/article
dc.type.version.spa.fl_str_mv info:eu-repo/semantics/publishedVersion
format http://purl.org/coar/resource_type/c_2df8fbb1
status_str publishedVersion
dc.identifier.citation.spa.fl_str_mv M. J. Guerrero, C. L. Bedoya, J. D. López, J. M. Daza, and C. Isaza, “Acoustic animal identification using unsupervised learning,” Methods Ecol. Evol., vol. 14, no. 6, pp. 1500–1514, 2023, doi: 10.1111/2041-210X.14103.
dc.identifier.uri.none.fl_str_mv https://hdl.handle.net/10495/36240
dc.identifier.doi.none.fl_str_mv 10.1111/2041-210X.14103
dc.identifier.eissn.none.fl_str_mv 2041-210X
identifier_str_mv M. J. Guerrero, C. L. Bedoya, J. D. López, J. M. Daza, and C. Isaza, “Acoustic animal identification using unsupervised learning,” Methods Ecol. Evol., vol. 14, no. 6, pp. 1500–1514, 2023, doi: 10.1111/2041-210X.14103.
10.1111/2041-210X.14103
2041-210X
url https://hdl.handle.net/10495/36240
dc.language.iso.spa.fl_str_mv eng
language eng
dc.relation.ispartofjournalabbrev.spa.fl_str_mv Methods. Ecol. Evol.
dc.relation.citationendpage.spa.fl_str_mv 1514
dc.relation.citationissue.spa.fl_str_mv 6
dc.relation.citationstartpage.spa.fl_str_mv 1500
dc.relation.citationvolume.spa.fl_str_mv 14
dc.relation.ispartofjournal.spa.fl_str_mv Methods in Ecology and Evolution
dc.rights.uri.*.fl_str_mv http://creativecommons.org/licenses/by-nc-nd/2.5/co/
dc.rights.uri.spa.fl_str_mv https://creativecommons.org/licenses/by-nc-nd/4.0/
dc.rights.accessrights.spa.fl_str_mv info:eu-repo/semantics/openAccess
dc.rights.coar.spa.fl_str_mv http://purl.org/coar/access_right/c_abf2
rights_invalid_str_mv http://creativecommons.org/licenses/by-nc-nd/2.5/co/
https://creativecommons.org/licenses/by-nc-nd/4.0/
http://purl.org/coar/access_right/c_abf2
eu_rights_str_mv openAccess
dc.format.extent.spa.fl_str_mv 15
dc.format.mimetype.spa.fl_str_mv application/pdf
dc.publisher.spa.fl_str_mv Wiley; British Ecological Society
dc.publisher.place.spa.fl_str_mv Hoboken, Estados Unidos
institution Universidad de Antioquia
bitstream.url.fl_str_mv https://bibliotecadigital.udea.edu.co/bitstreams/dba453d9-d002-48e8-9098-176733c50fa0/download
https://bibliotecadigital.udea.edu.co/bitstreams/c86fb0f1-bd5b-4ed8-934d-3f1f52678cc8/download
https://bibliotecadigital.udea.edu.co/bitstreams/3ec2aeff-97ce-46b6-b3c4-013d86f5cd22/download
https://bibliotecadigital.udea.edu.co/bitstreams/dd6812b8-e92e-4fb1-a9f1-2c120963392b/download
https://bibliotecadigital.udea.edu.co/bitstreams/47a5a152-7950-414d-b780-18ac326212e7/download
bitstream.checksum.fl_str_mv d7d4c231cf9d05c1b1e9ca0aacb07089
b88b088d9957e670ce3b3fbe2eedbc13
8a4605be74aa9ea9d79846c1fba20a33
c38792835edc52187f591a2695387838
f6128bb8b46823daaf93720df67c4950
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
MD5
MD5
repository.name.fl_str_mv Repositorio Institucional de la Universidad de Antioquia
repository.mail.fl_str_mv aplicacionbibliotecadigitalbiblioteca@udea.edu.co
_version_ 1851052400333291520
spelling Guerrero Muriel, María JoséBedoya Acevedo, CarolLópez Hincapié, José DavidIsaza Narváez, Claudia VictoriaDaza Rojas, Juan ManuelSistemas Embebidos e Inteligencia Computacional (SISTEMIC)2023-08-16T19:36:51Z2023-08-16T19:36:51Z2023M. J. Guerrero, C. L. Bedoya, J. D. López, J. M. Daza, and C. Isaza, “Acoustic animal identification using unsupervised learning,” Methods Ecol. Evol., vol. 14, no. 6, pp. 1500–1514, 2023, doi: 10.1111/2041-210X.14103.https://hdl.handle.net/10495/3624010.1111/2041-210X.141032041-210XABSTRACT: 1. Passive acoustic monitoring is usually presented as a complementary approach to monitoring wildlife communities and assessing ecosystem conditions. Automaticspecies detection methods support biodiversity monitoring and analysis by providing information on the presence–absence of species, which allows understanding the ecosystem structure. Therefore, different alternatives have been proposed to identify species. However, the algorithms are parameterized to identify specific species. Analysing multiple species would help to monitor and quantify biodiversity, as it includes the different taxonomic groups present in the soundscape. 2. We present an unsupervised methodology for multi-species call recognition from ecological soundscapes. The proposal is based on a clustering algorithm, specifically the learning algorithm for multivariate data analysis (LAMDA) 3pi algorithm, which automatically suggests the number of clusters associated with the sonotypes. Emphasis was made on improving the segmentation of the audio to analyse the whole soundscape without parameterizing the algorithm according to each taxonomic group. 3. To estimate the performance of our proposal, we used four datasets from different locations, years and habitats. These datasets contain sounds from the four major taxonomic groups that dominate terrestrial soundscapes (birds, amphibians, mammals and insects) in audible and ultrasonic spectra. The methodology presents performances between 75% and 96% in presence–absence species recognition. 4. Using the clusters proposed by our methodology, the whole soundscape biodiversity was measured and compared with the estimate of four acoustic indices (ACI, NP, SO and BI). Our approach performs biodiversity assessments similar to acoustic indices with the advantage of providing information about acoustic communities without the need for prior knowledge of the species present in the audio recordings.COL001071715application/pdfengWiley; British Ecological SocietyHoboken, Estados Unidoshttp://creativecommons.org/licenses/by-nc-nd/2.5/co/https://creativecommons.org/licenses/by-nc-nd/4.0/info:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2Acoustic animal identification using unsupervised learningArtículo de investigaciónhttp://purl.org/coar/resource_type/c_2df8fbb1https://purl.org/redcol/resource_type/ARThttp://purl.org/coar/version/c_970fb48d4fbd8a85info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionVocalización AnimalVocalization, AnimalEspeciesSpeciesSonidoSoundDiversidad biológicaBiological diversityPaisaje sonoroMethods. Ecol. Evol.15146150014Methods in Ecology and EvolutionPublicationORIGINALGuerreroMaria_2023_AcousticAnimalIdentification.pdfGuerreroMaria_2023_AcousticAnimalIdentification.pdfArtículo de investigaciónapplication/pdf4931843https://bibliotecadigital.udea.edu.co/bitstreams/dba453d9-d002-48e8-9098-176733c50fa0/downloadd7d4c231cf9d05c1b1e9ca0aacb07089MD51trueAnonymousREADCC-LICENSElicense_rdflicense_rdfapplication/rdf+xml; charset=utf-8823https://bibliotecadigital.udea.edu.co/bitstreams/c86fb0f1-bd5b-4ed8-934d-3f1f52678cc8/downloadb88b088d9957e670ce3b3fbe2eedbc13MD52falseAnonymousREADLICENSElicense.txtlicense.txttext/plain; charset=utf-81748https://bibliotecadigital.udea.edu.co/bitstreams/3ec2aeff-97ce-46b6-b3c4-013d86f5cd22/download8a4605be74aa9ea9d79846c1fba20a33MD53falseAnonymousREADTEXTGuerreroMaria_2023_AcousticAnimalIdentification.pdf.txtGuerreroMaria_2023_AcousticAnimalIdentification.pdf.txtExtracted texttext/plain79475https://bibliotecadigital.udea.edu.co/bitstreams/dd6812b8-e92e-4fb1-a9f1-2c120963392b/downloadc38792835edc52187f591a2695387838MD54falseAnonymousREADTHUMBNAILGuerreroMaria_2023_AcousticAnimalIdentification.pdf.jpgGuerreroMaria_2023_AcousticAnimalIdentification.pdf.jpgGenerated Thumbnailimage/jpeg14590https://bibliotecadigital.udea.edu.co/bitstreams/47a5a152-7950-414d-b780-18ac326212e7/downloadf6128bb8b46823daaf93720df67c4950MD55falseAnonymousREAD10495/36240oai:bibliotecadigital.udea.edu.co:10495/362402025-03-26 21:41:39.221http://creativecommons.org/licenses/by-nc-nd/2.5/co/open.accesshttps://bibliotecadigital.udea.edu.coRepositorio Institucional de la Universidad de Antioquiaaplicacionbibliotecadigitalbiblioteca@udea.edu.coTk9URTogUExBQ0UgWU9VUiBPV04gTElDRU5TRSBIRVJFClRoaXMgc2FtcGxlIGxpY2Vuc2UgaXMgcHJvdmlkZWQgZm9yIGluZm9ybWF0aW9uYWwgcHVycG9zZXMgb25seS4KCk5PTi1FWENMVVNJVkUgRElTVFJJQlVUSU9OIExJQ0VOU0UKCkJ5IHNpZ25pbmcgYW5kIHN1Ym1pdHRpbmcgdGhpcyBsaWNlbnNlLCB5b3UgKHRoZSBhdXRob3Iocykgb3IgY29weXJpZ2h0Cm93bmVyKSBncmFudHMgdG8gRFNwYWNlIFVuaXZlcnNpdHkgKERTVSkgdGhlIG5vbi1leGNsdXNpdmUgcmlnaHQgdG8gcmVwcm9kdWNlLAp0cmFuc2xhdGUgKGFzIGRlZmluZWQgYmVsb3cpLCBhbmQvb3IgZGlzdHJpYnV0ZSB5b3VyIHN1Ym1pc3Npb24gKGluY2x1ZGluZwp0aGUgYWJzdHJhY3QpIHdvcmxkd2lkZSBpbiBwcmludCBhbmQgZWxlY3Ryb25pYyBmb3JtYXQgYW5kIGluIGFueSBtZWRpdW0sCmluY2x1ZGluZyBidXQgbm90IGxpbWl0ZWQgdG8gYXVkaW8gb3IgdmlkZW8uCgpZb3UgYWdyZWUgdGhhdCBEU1UgbWF5LCB3aXRob3V0IGNoYW5naW5nIHRoZSBjb250ZW50LCB0cmFuc2xhdGUgdGhlCnN1Ym1pc3Npb24gdG8gYW55IG1lZGl1bSBvciBmb3JtYXQgZm9yIHRoZSBwdXJwb3NlIG9mIHByZXNlcnZhdGlvbi4KCllvdSBhbHNvIGFncmVlIHRoYXQgRFNVIG1heSBrZWVwIG1vcmUgdGhhbiBvbmUgY29weSBvZiB0aGlzIHN1Ym1pc3Npb24gZm9yCnB1cnBvc2VzIG9mIHNlY3VyaXR5LCBiYWNrLXVwIGFuZCBwcmVzZXJ2YXRpb24uCgpZb3UgcmVwcmVzZW50IHRoYXQgdGhlIHN1Ym1pc3Npb24gaXMgeW91ciBvcmlnaW5hbCB3b3JrLCBhbmQgdGhhdCB5b3UgaGF2ZQp0aGUgcmlnaHQgdG8gZ3JhbnQgdGhlIHJpZ2h0cyBjb250YWluZWQgaW4gdGhpcyBsaWNlbnNlLiBZb3UgYWxzbyByZXByZXNlbnQKdGhhdCB5b3VyIHN1Ym1pc3Npb24gZG9lcyBub3QsIHRvIHRoZSBiZXN0IG9mIHlvdXIga25vd2xlZGdlLCBpbmZyaW5nZSB1cG9uCmFueW9uZSdzIGNvcHlyaWdodC4KCklmIHRoZSBzdWJtaXNzaW9uIGNvbnRhaW5zIG1hdGVyaWFsIGZvciB3aGljaCB5b3UgZG8gbm90IGhvbGQgY29weXJpZ2h0LAp5b3UgcmVwcmVzZW50IHRoYXQgeW91IGhhdmUgb2J0YWluZWQgdGhlIHVucmVzdHJpY3RlZCBwZXJtaXNzaW9uIG9mIHRoZQpjb3B5cmlnaHQgb3duZXIgdG8gZ3JhbnQgRFNVIHRoZSByaWdodHMgcmVxdWlyZWQgYnkgdGhpcyBsaWNlbnNlLCBhbmQgdGhhdApzdWNoIHRoaXJkLXBhcnR5IG93bmVkIG1hdGVyaWFsIGlzIGNsZWFybHkgaWRlbnRpZmllZCBhbmQgYWNrbm93bGVkZ2VkCndpdGhpbiB0aGUgdGV4dCBvciBjb250ZW50IG9mIHRoZSBzdWJtaXNzaW9uLgoKSUYgVEhFIFNVQk1JU1NJT04gSVMgQkFTRUQgVVBPTiBXT1JLIFRIQVQgSEFTIEJFRU4gU1BPTlNPUkVEIE9SIFNVUFBPUlRFRApCWSBBTiBBR0VOQ1kgT1IgT1JHQU5JWkFUSU9OIE9USEVSIFRIQU4gRFNVLCBZT1UgUkVQUkVTRU5UIFRIQVQgWU9VIEhBVkUKRlVMRklMTEVEIEFOWSBSSUdIVCBPRiBSRVZJRVcgT1IgT1RIRVIgT0JMSUdBVElPTlMgUkVRVUlSRUQgQlkgU1VDSApDT05UUkFDVCBPUiBBR1JFRU1FTlQuCgpEU1Ugd2lsbCBjbGVhcmx5IGlkZW50aWZ5IHlvdXIgbmFtZShzKSBhcyB0aGUgYXV0aG9yKHMpIG9yIG93bmVyKHMpIG9mIHRoZQpzdWJtaXNzaW9uLCBhbmQgd2lsbCBub3QgbWFrZSBhbnkgYWx0ZXJhdGlvbiwgb3RoZXIgdGhhbiBhcyBhbGxvd2VkIGJ5IHRoaXMKbGljZW5zZSwgdG8geW91ciBzdWJtaXNzaW9uLgo=