Acoustic animal identification using unsupervised learning
ABSTRACT: 1. Passive acoustic monitoring is usually presented as a complementary approach to monitoring wildlife communities and assessing ecosystem conditions. Automaticspecies detection methods support biodiversity monitoring and analysis by providing information on the presence–absence of species...
- Autores:
-
Guerrero Muriel, María José
Bedoya Acevedo, Carol
López Hincapié, José David
Isaza Narváez, Claudia Victoria
Daza Rojas, Juan Manuel
- Tipo de recurso:
- Article of investigation
- Fecha de publicación:
- 2023
- Institución:
- Universidad de Antioquia
- Repositorio:
- Repositorio UdeA
- Idioma:
- eng
- OAI Identifier:
- oai:bibliotecadigital.udea.edu.co:10495/36240
- Acceso en línea:
- https://hdl.handle.net/10495/36240
- Palabra clave:
- Vocalización Animal
Vocalization, Animal
Especies
Species
Sonido
Sound
Diversidad biológica
Biological diversity
Paisaje sonoro
- Rights
- openAccess
- License
- http://creativecommons.org/licenses/by-nc-nd/2.5/co/
| id |
UDEA2_2b3aadbf9a0f76656882cae92bcf084a |
|---|---|
| oai_identifier_str |
oai:bibliotecadigital.udea.edu.co:10495/36240 |
| network_acronym_str |
UDEA2 |
| network_name_str |
Repositorio UdeA |
| repository_id_str |
|
| dc.title.spa.fl_str_mv |
Acoustic animal identification using unsupervised learning |
| title |
Acoustic animal identification using unsupervised learning |
| spellingShingle |
Acoustic animal identification using unsupervised learning Vocalización Animal Vocalization, Animal Especies Species Sonido Sound Diversidad biológica Biological diversity Paisaje sonoro |
| title_short |
Acoustic animal identification using unsupervised learning |
| title_full |
Acoustic animal identification using unsupervised learning |
| title_fullStr |
Acoustic animal identification using unsupervised learning |
| title_full_unstemmed |
Acoustic animal identification using unsupervised learning |
| title_sort |
Acoustic animal identification using unsupervised learning |
| dc.creator.fl_str_mv |
Guerrero Muriel, María José Bedoya Acevedo, Carol López Hincapié, José David Isaza Narváez, Claudia Victoria Daza Rojas, Juan Manuel |
| dc.contributor.author.none.fl_str_mv |
Guerrero Muriel, María José Bedoya Acevedo, Carol López Hincapié, José David Isaza Narváez, Claudia Victoria Daza Rojas, Juan Manuel |
| dc.contributor.researchgroup.spa.fl_str_mv |
Sistemas Embebidos e Inteligencia Computacional (SISTEMIC) |
| dc.subject.decs.none.fl_str_mv |
Vocalización Animal Vocalization, Animal Especies Species |
| topic |
Vocalización Animal Vocalization, Animal Especies Species Sonido Sound Diversidad biológica Biological diversity Paisaje sonoro |
| dc.subject.lemb.none.fl_str_mv |
Sonido Sound Diversidad biológica Biological diversity |
| dc.subject.proposal.spa.fl_str_mv |
Paisaje sonoro |
| description |
ABSTRACT: 1. Passive acoustic monitoring is usually presented as a complementary approach to monitoring wildlife communities and assessing ecosystem conditions. Automaticspecies detection methods support biodiversity monitoring and analysis by providing information on the presence–absence of species, which allows understanding the ecosystem structure. Therefore, different alternatives have been proposed to identify species. However, the algorithms are parameterized to identify specific species. Analysing multiple species would help to monitor and quantify biodiversity, as it includes the different taxonomic groups present in the soundscape. 2. We present an unsupervised methodology for multi-species call recognition from ecological soundscapes. The proposal is based on a clustering algorithm, specifically the learning algorithm for multivariate data analysis (LAMDA) 3pi algorithm, which automatically suggests the number of clusters associated with the sonotypes. Emphasis was made on improving the segmentation of the audio to analyse the whole soundscape without parameterizing the algorithm according to each taxonomic group. 3. To estimate the performance of our proposal, we used four datasets from different locations, years and habitats. These datasets contain sounds from the four major taxonomic groups that dominate terrestrial soundscapes (birds, amphibians, mammals and insects) in audible and ultrasonic spectra. The methodology presents performances between 75% and 96% in presence–absence species recognition. 4. Using the clusters proposed by our methodology, the whole soundscape biodiversity was measured and compared with the estimate of four acoustic indices (ACI, NP, SO and BI). Our approach performs biodiversity assessments similar to acoustic indices with the advantage of providing information about acoustic communities without the need for prior knowledge of the species present in the audio recordings. |
| publishDate |
2023 |
| dc.date.accessioned.none.fl_str_mv |
2023-08-16T19:36:51Z |
| dc.date.available.none.fl_str_mv |
2023-08-16T19:36:51Z |
| dc.date.issued.none.fl_str_mv |
2023 |
| dc.type.spa.fl_str_mv |
Artículo de investigación |
| dc.type.coar.spa.fl_str_mv |
http://purl.org/coar/resource_type/c_2df8fbb1 |
| dc.type.redcol.spa.fl_str_mv |
https://purl.org/redcol/resource_type/ART |
| dc.type.coarversion.spa.fl_str_mv |
http://purl.org/coar/version/c_970fb48d4fbd8a85 |
| dc.type.driver.spa.fl_str_mv |
info:eu-repo/semantics/article |
| dc.type.version.spa.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
| format |
http://purl.org/coar/resource_type/c_2df8fbb1 |
| status_str |
publishedVersion |
| dc.identifier.citation.spa.fl_str_mv |
M. J. Guerrero, C. L. Bedoya, J. D. López, J. M. Daza, and C. Isaza, “Acoustic animal identification using unsupervised learning,” Methods Ecol. Evol., vol. 14, no. 6, pp. 1500–1514, 2023, doi: 10.1111/2041-210X.14103. |
| dc.identifier.uri.none.fl_str_mv |
https://hdl.handle.net/10495/36240 |
| dc.identifier.doi.none.fl_str_mv |
10.1111/2041-210X.14103 |
| dc.identifier.eissn.none.fl_str_mv |
2041-210X |
| identifier_str_mv |
M. J. Guerrero, C. L. Bedoya, J. D. López, J. M. Daza, and C. Isaza, “Acoustic animal identification using unsupervised learning,” Methods Ecol. Evol., vol. 14, no. 6, pp. 1500–1514, 2023, doi: 10.1111/2041-210X.14103. 10.1111/2041-210X.14103 2041-210X |
| url |
https://hdl.handle.net/10495/36240 |
| dc.language.iso.spa.fl_str_mv |
eng |
| language |
eng |
| dc.relation.ispartofjournalabbrev.spa.fl_str_mv |
Methods. Ecol. Evol. |
| dc.relation.citationendpage.spa.fl_str_mv |
1514 |
| dc.relation.citationissue.spa.fl_str_mv |
6 |
| dc.relation.citationstartpage.spa.fl_str_mv |
1500 |
| dc.relation.citationvolume.spa.fl_str_mv |
14 |
| dc.relation.ispartofjournal.spa.fl_str_mv |
Methods in Ecology and Evolution |
| dc.rights.uri.*.fl_str_mv |
http://creativecommons.org/licenses/by-nc-nd/2.5/co/ |
| dc.rights.uri.spa.fl_str_mv |
https://creativecommons.org/licenses/by-nc-nd/4.0/ |
| dc.rights.accessrights.spa.fl_str_mv |
info:eu-repo/semantics/openAccess |
| dc.rights.coar.spa.fl_str_mv |
http://purl.org/coar/access_right/c_abf2 |
| rights_invalid_str_mv |
http://creativecommons.org/licenses/by-nc-nd/2.5/co/ https://creativecommons.org/licenses/by-nc-nd/4.0/ http://purl.org/coar/access_right/c_abf2 |
| eu_rights_str_mv |
openAccess |
| dc.format.extent.spa.fl_str_mv |
15 |
| dc.format.mimetype.spa.fl_str_mv |
application/pdf |
| dc.publisher.spa.fl_str_mv |
Wiley; British Ecological Society |
| dc.publisher.place.spa.fl_str_mv |
Hoboken, Estados Unidos |
| institution |
Universidad de Antioquia |
| bitstream.url.fl_str_mv |
https://bibliotecadigital.udea.edu.co/bitstreams/dba453d9-d002-48e8-9098-176733c50fa0/download https://bibliotecadigital.udea.edu.co/bitstreams/c86fb0f1-bd5b-4ed8-934d-3f1f52678cc8/download https://bibliotecadigital.udea.edu.co/bitstreams/3ec2aeff-97ce-46b6-b3c4-013d86f5cd22/download https://bibliotecadigital.udea.edu.co/bitstreams/dd6812b8-e92e-4fb1-a9f1-2c120963392b/download https://bibliotecadigital.udea.edu.co/bitstreams/47a5a152-7950-414d-b780-18ac326212e7/download |
| bitstream.checksum.fl_str_mv |
d7d4c231cf9d05c1b1e9ca0aacb07089 b88b088d9957e670ce3b3fbe2eedbc13 8a4605be74aa9ea9d79846c1fba20a33 c38792835edc52187f591a2695387838 f6128bb8b46823daaf93720df67c4950 |
| bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 MD5 MD5 MD5 |
| repository.name.fl_str_mv |
Repositorio Institucional de la Universidad de Antioquia |
| repository.mail.fl_str_mv |
aplicacionbibliotecadigitalbiblioteca@udea.edu.co |
| _version_ |
1851052400333291520 |
| spelling |
Guerrero Muriel, María JoséBedoya Acevedo, CarolLópez Hincapié, José DavidIsaza Narváez, Claudia VictoriaDaza Rojas, Juan ManuelSistemas Embebidos e Inteligencia Computacional (SISTEMIC)2023-08-16T19:36:51Z2023-08-16T19:36:51Z2023M. J. Guerrero, C. L. Bedoya, J. D. López, J. M. Daza, and C. Isaza, “Acoustic animal identification using unsupervised learning,” Methods Ecol. Evol., vol. 14, no. 6, pp. 1500–1514, 2023, doi: 10.1111/2041-210X.14103.https://hdl.handle.net/10495/3624010.1111/2041-210X.141032041-210XABSTRACT: 1. Passive acoustic monitoring is usually presented as a complementary approach to monitoring wildlife communities and assessing ecosystem conditions. Automaticspecies detection methods support biodiversity monitoring and analysis by providing information on the presence–absence of species, which allows understanding the ecosystem structure. Therefore, different alternatives have been proposed to identify species. However, the algorithms are parameterized to identify specific species. Analysing multiple species would help to monitor and quantify biodiversity, as it includes the different taxonomic groups present in the soundscape. 2. We present an unsupervised methodology for multi-species call recognition from ecological soundscapes. The proposal is based on a clustering algorithm, specifically the learning algorithm for multivariate data analysis (LAMDA) 3pi algorithm, which automatically suggests the number of clusters associated with the sonotypes. Emphasis was made on improving the segmentation of the audio to analyse the whole soundscape without parameterizing the algorithm according to each taxonomic group. 3. To estimate the performance of our proposal, we used four datasets from different locations, years and habitats. These datasets contain sounds from the four major taxonomic groups that dominate terrestrial soundscapes (birds, amphibians, mammals and insects) in audible and ultrasonic spectra. The methodology presents performances between 75% and 96% in presence–absence species recognition. 4. Using the clusters proposed by our methodology, the whole soundscape biodiversity was measured and compared with the estimate of four acoustic indices (ACI, NP, SO and BI). Our approach performs biodiversity assessments similar to acoustic indices with the advantage of providing information about acoustic communities without the need for prior knowledge of the species present in the audio recordings.COL001071715application/pdfengWiley; British Ecological SocietyHoboken, Estados Unidoshttp://creativecommons.org/licenses/by-nc-nd/2.5/co/https://creativecommons.org/licenses/by-nc-nd/4.0/info:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2Acoustic animal identification using unsupervised learningArtículo de investigaciónhttp://purl.org/coar/resource_type/c_2df8fbb1https://purl.org/redcol/resource_type/ARThttp://purl.org/coar/version/c_970fb48d4fbd8a85info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionVocalización AnimalVocalization, AnimalEspeciesSpeciesSonidoSoundDiversidad biológicaBiological diversityPaisaje sonoroMethods. Ecol. Evol.15146150014Methods in Ecology and EvolutionPublicationORIGINALGuerreroMaria_2023_AcousticAnimalIdentification.pdfGuerreroMaria_2023_AcousticAnimalIdentification.pdfArtículo de investigaciónapplication/pdf4931843https://bibliotecadigital.udea.edu.co/bitstreams/dba453d9-d002-48e8-9098-176733c50fa0/downloadd7d4c231cf9d05c1b1e9ca0aacb07089MD51trueAnonymousREADCC-LICENSElicense_rdflicense_rdfapplication/rdf+xml; charset=utf-8823https://bibliotecadigital.udea.edu.co/bitstreams/c86fb0f1-bd5b-4ed8-934d-3f1f52678cc8/downloadb88b088d9957e670ce3b3fbe2eedbc13MD52falseAnonymousREADLICENSElicense.txtlicense.txttext/plain; charset=utf-81748https://bibliotecadigital.udea.edu.co/bitstreams/3ec2aeff-97ce-46b6-b3c4-013d86f5cd22/download8a4605be74aa9ea9d79846c1fba20a33MD53falseAnonymousREADTEXTGuerreroMaria_2023_AcousticAnimalIdentification.pdf.txtGuerreroMaria_2023_AcousticAnimalIdentification.pdf.txtExtracted texttext/plain79475https://bibliotecadigital.udea.edu.co/bitstreams/dd6812b8-e92e-4fb1-a9f1-2c120963392b/downloadc38792835edc52187f591a2695387838MD54falseAnonymousREADTHUMBNAILGuerreroMaria_2023_AcousticAnimalIdentification.pdf.jpgGuerreroMaria_2023_AcousticAnimalIdentification.pdf.jpgGenerated Thumbnailimage/jpeg14590https://bibliotecadigital.udea.edu.co/bitstreams/47a5a152-7950-414d-b780-18ac326212e7/downloadf6128bb8b46823daaf93720df67c4950MD55falseAnonymousREAD10495/36240oai:bibliotecadigital.udea.edu.co:10495/362402025-03-26 21:41:39.221http://creativecommons.org/licenses/by-nc-nd/2.5/co/open.accesshttps://bibliotecadigital.udea.edu.coRepositorio Institucional de la Universidad de Antioquiaaplicacionbibliotecadigitalbiblioteca@udea.edu.coTk9URTogUExBQ0UgWU9VUiBPV04gTElDRU5TRSBIRVJFClRoaXMgc2FtcGxlIGxpY2Vuc2UgaXMgcHJvdmlkZWQgZm9yIGluZm9ybWF0aW9uYWwgcHVycG9zZXMgb25seS4KCk5PTi1FWENMVVNJVkUgRElTVFJJQlVUSU9OIExJQ0VOU0UKCkJ5IHNpZ25pbmcgYW5kIHN1Ym1pdHRpbmcgdGhpcyBsaWNlbnNlLCB5b3UgKHRoZSBhdXRob3Iocykgb3IgY29weXJpZ2h0Cm93bmVyKSBncmFudHMgdG8gRFNwYWNlIFVuaXZlcnNpdHkgKERTVSkgdGhlIG5vbi1leGNsdXNpdmUgcmlnaHQgdG8gcmVwcm9kdWNlLAp0cmFuc2xhdGUgKGFzIGRlZmluZWQgYmVsb3cpLCBhbmQvb3IgZGlzdHJpYnV0ZSB5b3VyIHN1Ym1pc3Npb24gKGluY2x1ZGluZwp0aGUgYWJzdHJhY3QpIHdvcmxkd2lkZSBpbiBwcmludCBhbmQgZWxlY3Ryb25pYyBmb3JtYXQgYW5kIGluIGFueSBtZWRpdW0sCmluY2x1ZGluZyBidXQgbm90IGxpbWl0ZWQgdG8gYXVkaW8gb3IgdmlkZW8uCgpZb3UgYWdyZWUgdGhhdCBEU1UgbWF5LCB3aXRob3V0IGNoYW5naW5nIHRoZSBjb250ZW50LCB0cmFuc2xhdGUgdGhlCnN1Ym1pc3Npb24gdG8gYW55IG1lZGl1bSBvciBmb3JtYXQgZm9yIHRoZSBwdXJwb3NlIG9mIHByZXNlcnZhdGlvbi4KCllvdSBhbHNvIGFncmVlIHRoYXQgRFNVIG1heSBrZWVwIG1vcmUgdGhhbiBvbmUgY29weSBvZiB0aGlzIHN1Ym1pc3Npb24gZm9yCnB1cnBvc2VzIG9mIHNlY3VyaXR5LCBiYWNrLXVwIGFuZCBwcmVzZXJ2YXRpb24uCgpZb3UgcmVwcmVzZW50IHRoYXQgdGhlIHN1Ym1pc3Npb24gaXMgeW91ciBvcmlnaW5hbCB3b3JrLCBhbmQgdGhhdCB5b3UgaGF2ZQp0aGUgcmlnaHQgdG8gZ3JhbnQgdGhlIHJpZ2h0cyBjb250YWluZWQgaW4gdGhpcyBsaWNlbnNlLiBZb3UgYWxzbyByZXByZXNlbnQKdGhhdCB5b3VyIHN1Ym1pc3Npb24gZG9lcyBub3QsIHRvIHRoZSBiZXN0IG9mIHlvdXIga25vd2xlZGdlLCBpbmZyaW5nZSB1cG9uCmFueW9uZSdzIGNvcHlyaWdodC4KCklmIHRoZSBzdWJtaXNzaW9uIGNvbnRhaW5zIG1hdGVyaWFsIGZvciB3aGljaCB5b3UgZG8gbm90IGhvbGQgY29weXJpZ2h0LAp5b3UgcmVwcmVzZW50IHRoYXQgeW91IGhhdmUgb2J0YWluZWQgdGhlIHVucmVzdHJpY3RlZCBwZXJtaXNzaW9uIG9mIHRoZQpjb3B5cmlnaHQgb3duZXIgdG8gZ3JhbnQgRFNVIHRoZSByaWdodHMgcmVxdWlyZWQgYnkgdGhpcyBsaWNlbnNlLCBhbmQgdGhhdApzdWNoIHRoaXJkLXBhcnR5IG93bmVkIG1hdGVyaWFsIGlzIGNsZWFybHkgaWRlbnRpZmllZCBhbmQgYWNrbm93bGVkZ2VkCndpdGhpbiB0aGUgdGV4dCBvciBjb250ZW50IG9mIHRoZSBzdWJtaXNzaW9uLgoKSUYgVEhFIFNVQk1JU1NJT04gSVMgQkFTRUQgVVBPTiBXT1JLIFRIQVQgSEFTIEJFRU4gU1BPTlNPUkVEIE9SIFNVUFBPUlRFRApCWSBBTiBBR0VOQ1kgT1IgT1JHQU5JWkFUSU9OIE9USEVSIFRIQU4gRFNVLCBZT1UgUkVQUkVTRU5UIFRIQVQgWU9VIEhBVkUKRlVMRklMTEVEIEFOWSBSSUdIVCBPRiBSRVZJRVcgT1IgT1RIRVIgT0JMSUdBVElPTlMgUkVRVUlSRUQgQlkgU1VDSApDT05UUkFDVCBPUiBBR1JFRU1FTlQuCgpEU1Ugd2lsbCBjbGVhcmx5IGlkZW50aWZ5IHlvdXIgbmFtZShzKSBhcyB0aGUgYXV0aG9yKHMpIG9yIG93bmVyKHMpIG9mIHRoZQpzdWJtaXNzaW9uLCBhbmQgd2lsbCBub3QgbWFrZSBhbnkgYWx0ZXJhdGlvbiwgb3RoZXIgdGhhbiBhcyBhbGxvd2VkIGJ5IHRoaXMKbGljZW5zZSwgdG8geW91ciBzdWJtaXNzaW9uLgo= |
