Patrones de diversidad genética en cinco especies de aves Passeriformes codistribuidas en un gradiente ambiental

El entendimiento de los procesos evolutivos que influyen sobre la distribución de la diversidad genética en poblaciones naturales es un tema clave de la biología evolutiva. El rango de distribución geográfica de las especies es uno de los mayores determinantes de la diversidad genética. Para investi...

Full description

Autores:
Restrepo Arias, Julieth Marcela
Tipo de recurso:
Fecha de publicación:
2023
Institución:
Universidad de Antioquia
Repositorio:
Repositorio UdeA
Idioma:
spa
OAI Identifier:
oai:bibliotecadigital.udea.edu.co:10495/45695
Acceso en línea:
https://hdl.handle.net/10495/45695
Palabra clave:
Aves - Distribución geográfica
Birds - Geographical distribution
Aves - Adaptación
Birds - Adaptation
Aves - Ecología
Birds - Ecology
Passeriformes
Variación genética
Genetic variation
Microsatélite
Microsatellites
http://aims.fao.org/aos/agrovoc/c_5616
http://aims.fao.org/aos/agrovoc/c_15975
http://aims.fao.org/aos/agrovoc/c_36574
http://id.loc.gov/authorities/subjects/sh85014319
http://id.loc.gov/authorities/subjects/sh2008004304
http://id.loc.gov/authorities/subjects/sh2005020407
ODS 15: Vida de ecosistemas terrestres. Proteger, restablecer y promover el uso sostenible de los ecosistemas terrestres, gestionar sosteniblemente los bosques, luchar contra la desertificación, detener e invertir la degradación de las tierras y detener la pérdida de biodiversidad
Rights
openAccess
License
http://creativecommons.org/licenses/by-nc-sa/4.0/
id UDEA2_28a7e0c61fb46a1a0746eb791660f892
oai_identifier_str oai:bibliotecadigital.udea.edu.co:10495/45695
network_acronym_str UDEA2
network_name_str Repositorio UdeA
repository_id_str
dc.title.spa.fl_str_mv Patrones de diversidad genética en cinco especies de aves Passeriformes codistribuidas en un gradiente ambiental
title Patrones de diversidad genética en cinco especies de aves Passeriformes codistribuidas en un gradiente ambiental
spellingShingle Patrones de diversidad genética en cinco especies de aves Passeriformes codistribuidas en un gradiente ambiental
Aves - Distribución geográfica
Birds - Geographical distribution
Aves - Adaptación
Birds - Adaptation
Aves - Ecología
Birds - Ecology
Passeriformes
Variación genética
Genetic variation
Microsatélite
Microsatellites
http://aims.fao.org/aos/agrovoc/c_5616
http://aims.fao.org/aos/agrovoc/c_15975
http://aims.fao.org/aos/agrovoc/c_36574
http://id.loc.gov/authorities/subjects/sh85014319
http://id.loc.gov/authorities/subjects/sh2008004304
http://id.loc.gov/authorities/subjects/sh2005020407
ODS 15: Vida de ecosistemas terrestres. Proteger, restablecer y promover el uso sostenible de los ecosistemas terrestres, gestionar sosteniblemente los bosques, luchar contra la desertificación, detener e invertir la degradación de las tierras y detener la pérdida de biodiversidad
title_short Patrones de diversidad genética en cinco especies de aves Passeriformes codistribuidas en un gradiente ambiental
title_full Patrones de diversidad genética en cinco especies de aves Passeriformes codistribuidas en un gradiente ambiental
title_fullStr Patrones de diversidad genética en cinco especies de aves Passeriformes codistribuidas en un gradiente ambiental
title_full_unstemmed Patrones de diversidad genética en cinco especies de aves Passeriformes codistribuidas en un gradiente ambiental
title_sort Patrones de diversidad genética en cinco especies de aves Passeriformes codistribuidas en un gradiente ambiental
dc.creator.fl_str_mv Restrepo Arias, Julieth Marcela
dc.contributor.advisor.none.fl_str_mv González Quevedo, Catalina
Pérez Collazos, Ernesto
Soto Calderón, Iván Darío
Rivera Gutiérrez, Héctor Fabio
dc.contributor.author.none.fl_str_mv Restrepo Arias, Julieth Marcela
dc.contributor.researchgroup.none.fl_str_mv Ecología y Evolución de Vertebrados
dc.subject.lcsh.none.fl_str_mv Aves - Distribución geográfica
Birds - Geographical distribution
Aves - Adaptación
Birds - Adaptation
Aves - Ecología
Birds - Ecology
topic Aves - Distribución geográfica
Birds - Geographical distribution
Aves - Adaptación
Birds - Adaptation
Aves - Ecología
Birds - Ecology
Passeriformes
Variación genética
Genetic variation
Microsatélite
Microsatellites
http://aims.fao.org/aos/agrovoc/c_5616
http://aims.fao.org/aos/agrovoc/c_15975
http://aims.fao.org/aos/agrovoc/c_36574
http://id.loc.gov/authorities/subjects/sh85014319
http://id.loc.gov/authorities/subjects/sh2008004304
http://id.loc.gov/authorities/subjects/sh2005020407
ODS 15: Vida de ecosistemas terrestres. Proteger, restablecer y promover el uso sostenible de los ecosistemas terrestres, gestionar sosteniblemente los bosques, luchar contra la desertificación, detener e invertir la degradación de las tierras y detener la pérdida de biodiversidad
dc.subject.agrovoc.none.fl_str_mv Passeriformes
Variación genética
Genetic variation
Microsatélite
Microsatellites
dc.subject.agrovocuri.none.fl_str_mv http://aims.fao.org/aos/agrovoc/c_5616
http://aims.fao.org/aos/agrovoc/c_15975
http://aims.fao.org/aos/agrovoc/c_36574
dc.subject.lcshuri.none.fl_str_mv http://id.loc.gov/authorities/subjects/sh85014319
http://id.loc.gov/authorities/subjects/sh2008004304
http://id.loc.gov/authorities/subjects/sh2005020407
dc.subject.ods.none.fl_str_mv ODS 15: Vida de ecosistemas terrestres. Proteger, restablecer y promover el uso sostenible de los ecosistemas terrestres, gestionar sosteniblemente los bosques, luchar contra la desertificación, detener e invertir la degradación de las tierras y detener la pérdida de biodiversidad
description El entendimiento de los procesos evolutivos que influyen sobre la distribución de la diversidad genética en poblaciones naturales es un tema clave de la biología evolutiva. El rango de distribución geográfica de las especies es uno de los mayores determinantes de la diversidad genética. Para investigar cómo las fuerzas evolutivas moldean los patrones de diversidad en las especies y proporcionar un panorama completo del potencial evolutivo, evaluamos la diversidad genética neutral y adaptativa en especies ampliamente distribuidas y especies de distribución restringida. Aquí, examinamos la diversidad genética en loci neutrales y adaptativos en especies de aves que difieren en su rango de distribución y están co-distribuidas en un gradiente ambiental en el cañón del río Cauca, en Antioquia, Colombia. Específicamente, tomamos muestras en ocho sitios de muestreo a lo largo del cañón del río Cauca de un total de cinco especies de aves, dos de distribución restringida y tres de amplia distribución. Evaluamos la diversidad genética en microsatélites y en receptores tipo Toll (TLR), una familia de genes involucrados en la respuesta inmune innata. Comparamos diferentes métricas de diversidad genética y patrones de estructuración genética entre poblaciones en ambos tipos de marcadores. Encontramos una mayor diversidad genética en especies de amplia de distribución que en especies de distribución restringida, tanto en loci microsatélites como en TLRs. La estructuración genética de todas las especies fue baja tanto en loci neutrales como en loci adaptativos, pero fue en general significativa para microsatélites. Nuestros resultados aportan a la evidencia de que el rango de distribución es importante en el mantenimiento de la diversidad genética y además sugieren que la diversidad en TLRs puede ser mantenida por selección balanceante, y que hay un alto flujo génico que mantiene las variantes alélicas en las poblaciones.
publishDate 2023
dc.date.issued.none.fl_str_mv 2023
dc.date.accessioned.none.fl_str_mv 2025-04-11T19:25:44Z
dc.type.none.fl_str_mv Trabajo de grado - Maestría
dc.type.redcol.none.fl_str_mv http://purl.org/redcol/resource_type/TM
dc.type.content.none.fl_str_mv Text
dc.type.coarversion.none.fl_str_mv http://purl.org/coar/version/c_b1a7d7d4d402bcce
dc.type.driver.none.fl_str_mv info:eu-repo/semantics/masterThesis
dc.type.version.none.fl_str_mv info:eu-repo/semantics/draft
status_str draft
dc.identifier.citation.none.fl_str_mv Restrepo Arias, J. (2023). Patrones de diversidad genética en cinco especies de aves Passeriformes codistribuidas en un gradiente ambiental [Tesis de maestría]. Universidad de Antioquia, Medellín, Colombia.
dc.identifier.uri.none.fl_str_mv https://hdl.handle.net/10495/45695
identifier_str_mv Restrepo Arias, J. (2023). Patrones de diversidad genética en cinco especies de aves Passeriformes codistribuidas en un gradiente ambiental [Tesis de maestría]. Universidad de Antioquia, Medellín, Colombia.
url https://hdl.handle.net/10495/45695
dc.language.iso.none.fl_str_mv spa
language spa
dc.relation.references.none.fl_str_mv Alcaide, M., & Edwards, S. V. (2011). Molecular evolution of the toll-like receptor multigene family in birds. Molecular Biology and Evolution, 28(5), 1703–1715. https://doi.org/10.1093/molbev/msq351
Antonides, J., Mathur, S., & DeWoody, A. (2019). Episodic positive diversifying selection on key immune system genes in major avian lineages. Genetica, 147(5–6), 337–350. https://doi.org/10.1007/s10709-019-00081-3
Antonides, J., Mathur, S., Sundaram, M., Ricklefs, R., & Dewoody, J. A. (2019). Immunogenetic response of the bananaquit in the face of malarial parasites. BMC Evolutionary Biology, 19(1), 1–12. https://doi.org/10.1186/s12862-019-1435-y
Arnelas, I., Ernesto, P., Josefa, L., Devesa, J. A., & Catal, P. (2022). Challenging the Taxonomic Value of Genetically Controlled Carpological Traits. 1–22.
Bainová, H., Králová, T., Bryjová, A., Albrecht, T., Bryja, J., & Vinkler, M. (2014). First evidence of independent pseudogenization of Toll-like receptor 5 in passerine birds. Developmental and Comparative Immunology, 45(1), 151–155. https://doi.org/10.1016/j.dci.2014.02.010
Bichet, C., Moodley, Y., Penn, D. J., Sorci, G., & Garnier, S. (2015). Genetic structure in insular and mainland populations of house sparrows (Passer domesticus) and their hemosporidian parasites. Ecology and Evolution, 5(8), 1639–1652. https://doi.org/10.1002/ece3.1452
BirdLife International. (2022). Thryophilus sernai. The IUCN Red List of Threatened Species 2022: e.T103889265A209060851. 8235.
BirdLife International. (2023). BirdLife International IUCN Red List for birds.
Blackburn, T. M., Gaston, K. J., Quinn, R. M., Arnold, H., & Gregory, R. D. (1997). Of mice and wrens: The relation between abundance and geographic range size in British mammals and birds. Philosophical Transactions of the Royal Society B: Biological Sciences, 352(1352), 419–427. https://doi.org/10.1098/rstb.1997.0030
Brawn, J. D., Collins, T. M., Medinat, M., & Bermingham, E. (1996). Associations between physical isolation and geographical variation within three species of Neotropical birds. Haffer 1969.
Brown, J. H. (1984). On the relationship beween abundance and distribution of species. American Naturalist, 124(2), 255–279. https://doi.org/10.1086/284267
Brumfield, R. T., Beerli, P., Nickerson, D. A., & Edwards, S. V. (2003). The utility of single nucleotide polymorphisms in inferences of population history. Trends in Ecology and Evolution, 18(5), 249–256. https://doi.org/10.1016/S0169-5347(03)00018-1
Burney, C. W., & Brumfield, R. T. (2009). Ecology Predicts Levels of Genetic Differentiation in Neotropical Birds. 174(3). https://doi.org/10.1086/603613
Corrêa, T. C., Del Lama, S. N., De Souza, J. R., & Miño, C. I. (2016). Genetic structuring among populations of the great egret, Ardea alba egretta, in major Brazilian wetlands. Aquatic Conservation: Marine and Freshwater Ecosystems, 26(2), 333–349. https://doi.org/10.1002/aqc.2588
Dalton, D. L., Vermaak, E., Smit-Robinson, H. A., & Kotze, A. (2016). Lack of diversity at innate immunity Toll-like receptor genes in the Critically Endangered White-winged Flufftail (Sarothrura ayresi). Scientific Reports, 6(November), 1–8. https://doi.org/10.1038/srep36757
Darfour-Oduro, K. A., Megens, H. J., Roca, A. L., Groenen, M. A. M., & Schook, L. B. (2015). Adaptive evolution of Toll-like receptors (TLRs) in the family Suidae. PLoS ONE, 10(4), 1– 16. https://doi.org/10.1371/journal.pone.0124069
DeWoody, J. A., Harder, A. M., Mathur, S., & Willoughby, J. R. (2021). The long-standing significance of genetic diversity in conservation. Molecular Ecology, 30(17), 4147–4154. https://doi.org/10.1111/mec.16051
Earl, D. A., & vonHoldt, B. M. (2012). STRUCTURE HARVESTER: A website and program for visualizing STRUCTURE output and implementing the Evanno method. Conservation Genetics Resources, 4(2), 359–361. https://doi.org/10.1007/s12686-011-9548-7
Ellegren, H. (2004). Microsatellites: Simple sequences with complex evolution. Nature Reviews Genetics, 5(6), 435–445. https://doi.org/10.1038/nrg1348
Evanno, G., Regnaut, S., & Goudet, J. (2005). Detecting the number of clusters of individuals using the software STRUCTURE: A simulation study. Molecular Ecology, 14(8), 2611–2620. https://doi.org/10.1111/j.1365-294X.2005.02553.x
Evans, S. R., & Sheldon, B. C. (2008). Interspecific patterns of genetic diversity in birds: Correlations with extinction risk. Conservation Biology, 22(4), 1016–1025. https://doi.org/10.1111/j.1523-1739.2008.00972.x
Excoffier, L., & Lischer, H. E. L. (2010). Arlequin suite ver 3.5: A new series of programs to perform population genetics analyses under Linux and Windows. Molecular Ecology Resources, 10(3), 564–567. https://doi.org/10.1111/j.1755-0998.2010.02847.x
Fisher, R. A. (1930). The Genetical Theory of Natural Selection. Oxford University Press, Oxford.
Foster, J. T., Allan, G. J., Chan, A. P., Rabinowicz, P. D., Ravel, J., Jackson, P. J., & Keim, P. (2010). Single nucleotide polymorphisms for assessing genetic diversity in castor bean (Ricinus communis). BMC Plant Biology, 10. https://doi.org/10.1186/1471-2229-10-13
Frankham, R. (1996). Relationship of Genetic Variation to Population Size in Wildlife. Conservation Biology, 10(6), 1500–1508. https://doi.org/10.1046/j.1523-1739.1996.10061500.x
Frankham, R. (2005). Genetics and extinction. Biological Conservation, 126(2), 131–140. https://doi.org/10.1016/j.biocon.2005.05.002
Frankham, R. (2015). Genetic rescue of small inbred populations: meta-analysis reveals large and consistent benefits of gene flow. Molecular Ecology, 24(11), 2610–2618. https://doi.org/10.1111/mec.13139
Frankham, R., Briscoe, D., & Ballou, J. (2002). Introduction to conservation genetics (Cambridge).
Garnatje, T., Pérez-Collazos, E., Pellicer, J., & Catalán, P. (2013). Balearic insular isolation and large continental spread framed the phylogeography of the western Mediterranean Cheirolophus intybaceus s.l. (Asteraceae). Plant Biology, 15(1), 166–175. https://doi.org/10.1111/j.1438-8677.2012.00632.x
Gaston, K. J. (1996). The multiple forms of the interspecific abundance-distribution relationship. Oikos, 76(2), 211–220.
Gilroy, D. L., van Oosterhout, C., Komdeur, J., & Richardson, D. S. (2017). Toll-like receptor variation in the bottlenecked population of the endangered Seychelles warbler. Animal Conservation, 20(3), 235–250. https://doi.org/10.1111/acv.12307
Glazier, D. S. (1986). Temporal Variability of Abundance and the Distribution of Species. Oikos, 47(3), 309. https://doi.org/10.2307/3565442
Gonzalez-Quevedo, C., Spurgin, L. G., Illera, J. C., & Richardson, D. S. (2015). Drift, not selection, shapes toll-like receptor variation among oceanic island populations. Molecular Ecology, 24(23), 5852–5863. https://doi.org/10.1111/mec.13437
Grueber, C. E., & Jamieson, I. G. (2013). Primers for amplification of innate immunity toll-like receptor loci in threatened birds of the Apterygiformes, Gruiformes, Psittaciformes and Passeriformes. Conservation Genetics Resources, 5(4), 1043–1047. https://doi.org/10.1007/s12686-013-9965-x
Grueber, C. E., Knafler, G. J., King, T. M., Senior, A. M., Grosser, S., Robertson, B., Weston, K. A., Brekke, P., Harris, C. L. W., & Jamieson, I. G. (2015). Toll-like receptor diversity in 10 threatened bird species: relationship with microsatellite heterozygosity. Conservation Genetics, 16(3), 595–611. https://doi.org/10.1007/s10592-014-0685-x
Grueber, C. E., Wallis, G. P., & Jamieson, I. G. (2014). Episodic positive selection in the evolution of avian toll-like receptor innate immunity genes. PLoS ONE, 9(3). https://doi.org/10.1371/journal.pone.0089632
Grueber, C. E., Wallis, G. P., King, T. M., & Jamieson, I. G. (2012). Variation at Innate Immunity Toll-Like Receptor Genes in a Bottlenecked Population of a New Zealand Robin. PLoS ONE, 7(9). https://doi.org/10.1371/journal.pone.0045011
Hartmann, S. A., Schaefer, H. M., & Segelbacher, G. (2014). Genetic depletion at adaptive but not neutral loci in an endangered bird species. Molecular Ecology, 23(23), 5712–5725. https://doi.org/10.1111/mec.12975
Hoffmann, A. A., & Willi, Y. (2008). Detecting genetic responses to environmental change. Nature Reviews Genetics, 9(6), 421–432. https://doi.org/10.1038/nrg2339
Holderegger, R., Kamm, U., & Gugerli, F. (2006). Adaptive vs. neutral genetic diversity: Implications for landscape genetics. Landscape Ecology, 21(6), 797–807. https://doi.org/10.1007/s10980-005-5245-9
Idárraga-Piedrahíta, Á., González-Caro, S., Duque, Á. J., Jiménez-Montoya, J., González-M., R., Parra, J. L., & Rivera-Gutiérrez, H. F. (2022). Drivers of beta diversity along a precipitation gradient in tropical forests of the Cauca River Canyon in Colombia. Journal of Vegetation Science, 33(2), 1–11. https://doi.org/10.1111/jvs.13110
Jarne, P., & Lagoda, P. J. L. (1996). Microsatellites, from molecules to populations and back. Trends in Ecology and Evolution, 11(10), 424–429. https://doi.org/10.1016/0169-5347(96)10049-5
Jombart, T. (2008). Adegenet: A R package for the multivariate analysis of genetic markers. Bioinformatics, 24(11), 1403–1405. https://doi.org/10.1093/bioinformatics/btn129
Kearse, M., Moir, R., Wilson, A., Stones-Havas, S., Cheung, M., Sturrock, S., Buxton, S., Cooper, A., Markowitz, S., Duran, C., Thierer, T., Ashton, B., Meintjes, P., & Drummond, A. (2012). Geneious Basic: An integrated and extendable desktop software platform for the organization and analysis of sequence data. Bioinformatics, 28(12), 1647–1649. https://doi.org/10.1093/bioinformatics/bts199
Kimura, M. (1983). The Neutral Theory of Molecular Evolution. Cambridge University Press.
Kirk, H., & Freeland, J. R. (2011). Applications and implications of neutral versus non-neutral markers in molecular ecology. International Journal of Molecular Sciences, 12(6), 3966–3988. https://doi.org/10.3390/ijms12063966
Krabbe, M., & Rahbek, C. (2010). Causality of the Relationship between Geographic Distribution and Species Abundance. 85(1), 3–25.
Kumar, S., Stecher, G., Li, M., Knyaz, C., & Tamura, K. (2018). MEGA X: Molecular evolutionary genetics analysis across computing platforms. Molecular Biology and Evolution, 35(6), 1547–1549. https://doi.org/10.1093/molbev/msy096
Lande, R. (1988). Genetics and demography in biological conservation. Science, 241, 1455–1460.
Latta, R. G. (2004). Gene flow, adaptive population divergence and comparative population structure across loci. New Phytologist, 161(1), 51–58. https://doi.org/10.1046/j.1469-8137.2003.00920.x
LEE, J.-W., JANG, B.-S., DAWSON, D., BURKE, T., & HATCHWELL, B. (2009). Fine-scale genetic structure and its consequence in breeding aggregations of a passerine bird. 2728–2739. https://doi.org/10.1111/j.1365-294X.2009.04228.x
Leigh, J. W., & Bryant, D. (2015). POPART: Full-feature software for haplotype network construction. Methods in Ecology and Evolution, 6(9), 1110–1116. https://doi.org/10.1111/2041-210X.12410
Lenormand, T. (2002). Gene flow and the limits to natural selection. Trends in Ecology and Evolution, 17(4), 183–189. https://doi.org/10.1016/S0169-5347(02)02497-7
Levy, E., Byrne, M., Coates, D. J., Macdonald, B. M., McArthur, S., & Van Leeuwen, S. (2016). Contrasting influences of geographic range and distribution of populations on patterns of genetic diversity in two sympatric Pilbara acacias. PLoS ONE, 11(10), 1–18. https://doi.org/10.1371/journal.pone.0163995
Librado, P., & Rozas, J. (2009). DnaSP v5: A software for comprehensive analysis of DNA polymorphism data. Bioinformatics, 25(11), 1451–1452. https://doi.org/10.1093/bioinformatics/btp187
Linhart, Y. B., & Grant, M. C. (1996). Evolutionary significance of local genetic differentiation in plants. Annual Review of Ecology and Systematics, 27, 237–277. https://doi.org/10.1146/annurev.ecolsys.27.1.237
Maglianesi, M. A. (2009). Establecimiento y manejo de una estación del Programa de Monitoreo y Sobrevivencia Invernal ( MoSI ) en un bosque tropical seco. 32.
Martínez-Alvarado, D., González-Quevedo, C., Illera, J. C., & Rivera-Gutiérrez, H. F. (2019). Prevalencia, diversidad y especificidad de haemosporidios aviares en un gradiente ambiental en el neotrópico. Universidad de Antioquia.
Maruyama, T., & Fuerst, P. A. (1985). Population bottlenecks and nonequilibrium models in population genetics. II. Number of alleles in a small population that was formed by a recent bottleneck. Genetics, 111(3), 675–689. https://doi.org/10.1093/genetics/111.3.675
Mayr, E. (1942). Systematics and the Origin of Species. (Columbia U).
Mayr, E. (1969). Bird speciation in the tropics. Biological Journal of the Linnean Ociety, 1((1-2)), 1–17.
Miller, S. A., Dykes, D. D., & Polesky, H. F. (1988). A simple salting out procedure for extracting DNA from human nucleated cells. Nucleic Acids Research, 16(3), 1215. https://doi.org/10.1093/nar/16.3.1215
Minias, P., & Vinkler, M. (2022). Selection Balancing at Innate Immune Genes: Adaptive Polymorphism Maintenance in Toll-Like Receptors. Molecular Biology and Evolution, 39(5), 1–9. https://doi.org/10.1093/molbev/msac102
Moore, R. P., Robinson, W. D., Lovette, I. J., & Robinson, T. R. (2008). Experimental evidence for extreme dispersal limitation in tropical forest birds. Ecology Letters, 11(9), 960–968. https://doi.org/10.1111/j.1461-0248.2008.01196.x
MORINHA, F., DÁVILA, J., BASTOS, E., CABRAL, J., FRÍAS, Ó., GONZÁLEZ, J., TRAVASSOS, P., CARVALHO, D., MILÁ, B., & BLANCO, G. (2017). Extreme genetic structure in a social bird species despite high dispersal capacity. 0–2. https://doi.org/10.1111/ijlh.12426
Murrell, B., Moola, S., Mabona, A., Weighill, T., Sheward, D., Pond, S. L. K., & Scheffler, K. (2013). FUBAR : A Fast , Unconstrained Bayesian AppRoximation for Inferring Selection. 30(5), 1196–1205. https://doi.org/10.1093/molbev/mst030
Murrell, B., Wertheim, J. O., Moola, S., Weighill, T., Scheffler, K., & Pond, S. L. K. (2012). Detecting Individual Sites Subject to Episodic Diversifying Selection. 8(7). https://doi.org/10.1371/journal.pgen.1002764
Musher, L. J., Giakoumis, M., Albert, J., Del-Rio, G., Rego, M., Thom, G., Aleixo, A., Ribas, C. C., Brumfield, R. T., Smith, B. T., & Cracraft, J. (2022). River network rearrangements promote speciation in lowland Amazonian birds. Science Advances, 8(14), 1–16. https://doi.org/10.1126/sciadv.abn1099
Nadeem, M. A., Nawaz, M. A., Shahid, M. Q., Doğan, Y., Comertpay, G., Yıldız, M., Hatipoğlu, R., Ahmad, F., Alsaleh, A., Labhane, N., Özkan, H., Chung, G., & Baloch, F. S. (2018). DNA molecular markers in plant breeding: current status and recent advancements in genomic selection and genome editing. Biotechnology and Biotechnological Equipment, 32(2), 261–285. https://doi.org/10.1080/13102818.2017.1400401
Nei, M., Maruyama, T., & Chakraborty, R. (1975). The Bottleneck Effect and Genetic Variability in Populations Author (s): Masatoshi Nei , Takeo Maruyama and Ranajit Chakraborty Reviewed work (s): Published by: Society for the Study of Evolution Stable. Evolution, 29(1), 1–10. https://www.jstor.org/stable/2407137?origin=crossref
Pond, S. L. K., Frost, S. D. W., & Muse, S. V. (2005). HyPhy : hypothesis testing using phylogenies. 21(5), 676–679. https://doi.org/10.1093/bioinformatics/bti079
Pritchard, J. K., Stephens, M., & Donnelly, P. (2000). Inference of population structure using multilocus genotype data. Genetics, 155(2), 945–959. https://doi.org/10.1093/genetics/155.2.945
Puechmaille, S. J. (2016). The program structure does not reliably recover the correct population structure when sampling is uneven: Subsampling and new estimators alleviate the problem. Molecular Ecology Resources, 16(3), 608–627. https://doi.org/10.1111/1755-0998.12512
Raymond, M., & Rousset, F. (1995). Genpop 1.2 Population genetics software for exact test and ecumenicism. Computer Notes, 248–249.
Reed, D. H., & Frankham, R. (2003). Correlation between fitness and genetic diversity. Conservation Biology, 17(1), 230–237. https://doi.org/10.1046/j.1523-1739.2003.01236.x
Renjifo, L. M., Amaya-Villarreal, Á. M., & Velásquez-Tibatá, J. B.-G. y J. (2016). Libro rojo de aves de Colombia, Volumen II: Ecosistemas abiertos, secos, insulares, acuáticos continentales, marinos, tierras altas del Darién y Sierra Nevada de Santa Marta y bosques húmedos del centro, norte y oriente del país. Editorial Pontificia Universidad Javeriana e Instituto Alexander von Humboldt.
Rivera-Gutiérrez, H. ., Lentijo Jímenez, G. ., Chinome-Torres, G. ., Llano-Mejía, J., Martinez Alvarado, D., González-Quevedo, C., Gomez-Ahumada, M. ., & Parra, J. . (2018). Aves del Cañón del río Cauca: Guía ilustrada de la avifauna en el área de influencia del proyecto HidroItuango. EPM, Universidad de Antioquia.
Roach, J. C., Glusman, G., Rowen, L., Kaur, A., Purcell, M. K., Smith, K. D., Hood, L. E., & Aderem, A. (2005). The evolution of vertebrate Toll-like receptors. 102(27).
Rocha, E. P. C., Smith, J. M., Hurst, L. D., Holden, M. T. G., Cooper, J. E., Smith, N. H., & Feil, E. J. (2006). Comparisons of dN/dS are time dependent for closely related bacterial genomes. Journal of Theoretical Biology, 239(2), 226–235. https://doi.org/10.1016/j.jtbi.2005.08.037
Schuelke, M. (2000). An economic method for the fluorescent labeling of PCR fragments. Nature Biotechnology, 18(2), 233–234. https://doi.org/10.1038/72708
Seutin, G., White, B. N., & Boag, P. T. (1991). Preservation of avian blood and tissue samples for DNA analyses. Canadian Journal of Zoology, 69(1), 82–90. https://doi.org/10.1139/z91-013
Slatkin, M. (1987). Gene flow and the geographic structure of natural populations. Science, 236(4803), 787–792. https://doi.org/10.1126/science.3576198
Spielman, D., Brook, B. W., & Frankham, R. (2004). Most species are not driven to extinction before genetic factors impact them. Proceedings of the National Academy of Sciences of the United States of America, 101(42), 15261–15264. https://doi.org/10.1073/pnas.0403809101
Spurgin, L. G., & Richardson, D. S. (2010). How pathogens drive genetic diversity: MHC, mechanisms and misunderstandings. Proceedings of the Royal Society B: Biological Sciences, 277(1684), 979–988. https://doi.org/10.1098/rspb.2009.2084
Stephens, M., & Donnelly, P. (2003). A Comparison of Bayesian Methods for Haplotype Reconstruction from Population Genotype Data. American Journal of Human Genetics, 73(5), 1162–1169. https://doi.org/10.1086/379378
Tajima, F. (1989). Statistical method for testing the neutral mutation hypothesis by DNA polymorphism. Genetics, 123(3), 585–595. https://doi.org/10.1093/genetics/123.3.585
Teixeira, J. C., & Huber, C. D. (2021). The inflated significance of neutral genetic diversity in conservation genetics. Proceedings of the National Academy of Sciences of the United States of America, 118(10), 1–10. https://doi.org/10.1073/pnas.2015096118
Van Oosterhout, C., Hutchinson, W. F., Wills, D. P. M., & Shipley, P. (2004). MICRO-CHECKER: Software for identifying and correcting genotyping errors in microsatellite data. Molecular Ecology Notes, 4(3), 535–538. https://doi.org/10.1111/j.1471-8286.2004.00684.x
Vellend, M., & Geber, M. A. (2005). Connections between species diversity and genetic diversity. Ecology Letters, 8(7), 767–781. https://doi.org/10.1111/j.1461-0248.2005.00775.x
Velová, H., Gutowska-Ding, M. W., Burt, D. W., & Vinkler, M. (2018). Toll-like receptor evolution in birds: Gene duplication, pseudogenization, and diversifying selection. Molecular Biology and Evolution, 35(9), 2170–2184. https://doi.org/10.1093/molbev/msy119
Verberk, W. (2012). Explaining General Patterns in Species Abundance and Distributions. Nature Education Knowledge, 3(10), 38.
Voelker, G., Marks, B. D., Kahindo, C., A’genonga, U., Bapeamoni, F., Duffie, L. E., Huntley, J. W., Mulotwa, E., Rosenbaum, S. A., & Light, J. E. (2013). River barriers and cryptic biodiversity in an evolutionary museum. Ecology and Evolution, 3(3), 536–545. https://doi.org/10.1002/ece3.482
Wang, I. J., & Bradburd, G. S. (2014). Isolation by environment. Molecular Ecology, 23(23), 5649–5662. https://doi.org/10.1111/mec.12938
Wang, P., Liu, S., Hu, J., Zhang, J., Wang, Z., Xu, J., Yao, H., Wang, B., Chen, D., Zhang, Z., & Liu, Y. (2022). Disentangling the relative roles of geographical and ecological factors in driving genomic variations of a widely distributed bird across a longitudinal gradient. Journal of Avian Biology, 2022(7), 1–11. https://doi.org/10.1111/jav.02979
Weaver, S., Shank, S. D., Spielman, S. J., Li, M., Muse, S. V, & Pond, S. L. K. (2018). Datamonkey 2 . 0 : A Modern Web Application for Characterizing Selective and Other Evolutionary Processes. 35(3), 773–777. https://doi.org/10.1093/molbev/msx335
Whitlock, M. C. (2004). Selection and Drift in Metapopulations. Ecology, Genetics and Evolution of Metapopulations, 153–173. https://doi.org/10.1016/B978-012323448-3/50009-X
Włodarczyk, R., Těšický, M., Vinkler, M., Novotný, M., Remisiewicz, M., Janiszewski, T., & Minias, P. (2023). Divergent evolution drives high diversity of toll-like receptors (TLRs) in passerine birds: Buntings and finches. Developmental and Comparative Immunology, 144(March). https://doi.org/10.1016/j.dci.2023.104704
Xu, W., Zhou, X., Fang, W., & Chen, X. (2020). Genetic diversity of toll-like receptor genes in the vulnerable Chinese egret (Egretta eulophotes). PLoS ONE, 15(5), 1–21. https://doi.org/10.1371/journal.pone.0233714
Yang, Z., & Nielsent, R. (2002). Codon-substitution models for detecting molecular adaptation at individual sites along specific lineages. Molecular Biology and Evolution, 19(6), 908–917. https://doi.org/10.1093/oxfordjournals.molbev.a004148
Zapata, D., Rivera-Gutierrez, H. F., Parra, J. L., & Gonzalez-Quevedo, C. (2020). Low adaptive and neutral genetic diversity in the endangered Antioquia wren (Thryophilus sernai). Conservation Genetics, 21(6), 1051–1065. https://doi.org/10.1007/s10592-020-01313-2
Zhivotovsky, L. A., & Feldman, M. W. (1995). Microsatellite variability and genetic distances. Proceedings of the National Academy of Sciences of the United States of America, 92(25), 11549–11552. https://doi.org/10.1073/pnas.92.25.11549
dc.rights.uri.none.fl_str_mv http://creativecommons.org/licenses/by-nc-sa/4.0/
dc.rights.accessrights.none.fl_str_mv info:eu-repo/semantics/openAccess
dc.rights.license.en.fl_str_mv Attribution-NonCommercial-ShareAlike 4.0 International
dc.rights.coar.none.fl_str_mv http://purl.org/coar/access_right/c_abf2
rights_invalid_str_mv http://creativecommons.org/licenses/by-nc-sa/4.0/
Attribution-NonCommercial-ShareAlike 4.0 International
http://purl.org/coar/access_right/c_abf2
eu_rights_str_mv openAccess
dc.format.extent.none.fl_str_mv 67 páginas
dc.format.mimetype.none.fl_str_mv application/pdf
dc.coverage.spatial.none.fl_str_mv Cañón del río Cauca (Antioquia, Colombia)
dc.publisher.none.fl_str_mv Universidad de Antioquia
dc.publisher.program.none.fl_str_mv Maestría en Biología
dc.publisher.department.none.fl_str_mv Instituto de Biología
dc.publisher.faculty.none.fl_str_mv Facultad de Ciencias Exactas y Naturales
dc.publisher.branch.none.fl_str_mv Campus Medellín - Ciudad Universitaria
publisher.none.fl_str_mv Universidad de Antioquia
institution Universidad de Antioquia
bitstream.url.fl_str_mv https://bibliotecadigital.udea.edu.co/bitstreams/78f41272-e6c6-4ffb-89d2-9fc47874cead/download
https://bibliotecadigital.udea.edu.co/bitstreams/3baac8cc-114d-4958-88ab-10b246552867/download
https://bibliotecadigital.udea.edu.co/bitstreams/dcb20586-ac26-45aa-8670-13ec14aa67f8/download
https://bibliotecadigital.udea.edu.co/bitstreams/905713c3-1ed1-49f6-8ef7-0293dec3ab96/download
https://bibliotecadigital.udea.edu.co/bitstreams/d4da769c-413e-426e-ba42-b366bb8afff5/download
bitstream.checksum.fl_str_mv 2bdb0d9092f066706a06e0b60546664a
b76e7a76e24cf2f94b3ce0ae5ed275d0
5643bfd9bcf29d560eeec56d584edaa9
03e0453d9d7d1de184ccc4643461a396
45e75d36608d42fdcb5d92f96d7824e4
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
MD5
MD5
repository.name.fl_str_mv Repositorio Institucional de la Universidad de Antioquia
repository.mail.fl_str_mv aplicacionbibliotecadigitalbiblioteca@udea.edu.co
_version_ 1851052557800046592
spelling González Quevedo, CatalinaPérez Collazos, ErnestoSoto Calderón, Iván DaríoRivera Gutiérrez, Héctor FabioRestrepo Arias, Julieth MarcelaEcología y Evolución de VertebradosCañón del río Cauca (Antioquia, Colombia)2025-04-11T19:25:44Z2023Restrepo Arias, J. (2023). Patrones de diversidad genética en cinco especies de aves Passeriformes codistribuidas en un gradiente ambiental [Tesis de maestría]. Universidad de Antioquia, Medellín, Colombia.https://hdl.handle.net/10495/45695El entendimiento de los procesos evolutivos que influyen sobre la distribución de la diversidad genética en poblaciones naturales es un tema clave de la biología evolutiva. El rango de distribución geográfica de las especies es uno de los mayores determinantes de la diversidad genética. Para investigar cómo las fuerzas evolutivas moldean los patrones de diversidad en las especies y proporcionar un panorama completo del potencial evolutivo, evaluamos la diversidad genética neutral y adaptativa en especies ampliamente distribuidas y especies de distribución restringida. Aquí, examinamos la diversidad genética en loci neutrales y adaptativos en especies de aves que difieren en su rango de distribución y están co-distribuidas en un gradiente ambiental en el cañón del río Cauca, en Antioquia, Colombia. Específicamente, tomamos muestras en ocho sitios de muestreo a lo largo del cañón del río Cauca de un total de cinco especies de aves, dos de distribución restringida y tres de amplia distribución. Evaluamos la diversidad genética en microsatélites y en receptores tipo Toll (TLR), una familia de genes involucrados en la respuesta inmune innata. Comparamos diferentes métricas de diversidad genética y patrones de estructuración genética entre poblaciones en ambos tipos de marcadores. Encontramos una mayor diversidad genética en especies de amplia de distribución que en especies de distribución restringida, tanto en loci microsatélites como en TLRs. La estructuración genética de todas las especies fue baja tanto en loci neutrales como en loci adaptativos, pero fue en general significativa para microsatélites. Nuestros resultados aportan a la evidencia de que el rango de distribución es importante en el mantenimiento de la diversidad genética y además sugieren que la diversidad en TLRs puede ser mantenida por selección balanceante, y que hay un alto flujo génico que mantiene las variantes alélicas en las poblaciones.Understanding the evolutionary processes that influence the distribution of genetic diversity in natural populations is a key issue in evolutionary biology. Species distribution range is one of the major determinants of genetic diversity. To investigate what evolutionary forces are shaping patterns of diversity in species and provide a comprehensive picture of evolutionary potential, we assessed neutral and adaptive genetic diversity in widespread and narrowly-distributed species. Here, we examined genetic diversity at neutral and adaptive loci in bird species whose ranges differ substantially in extension, yet co-occur across an environmental gradient in the Cauca River canyon, Antioquia, Colombia. We collected samples of three widely-distributed and two narrowlydistributed bird species from eight sites along the Cauca River canyon. We evaluated the genetic diversity and structure at microsatellites and toll-like receptors (TLRs), a family of genes involved in the innate immune response. We found higher genetic diversity at both neutral and adaptive loci in widely distributed than in narrowly distributed species. Overall, genetic structure was weak at both types of loci yet significant only for microsatellites. Our results add to the evidence that distribution range is important in maintaining genetic diversity and further suggest that multiple TLR allelic variants can be maintained in populations by balancing selection and gene flow.EcologíaCOL0147267MaestríaMagíster en Biología67 páginasapplication/pdfspaUniversidad de AntioquiaMaestría en BiologíaInstituto de BiologíaFacultad de Ciencias Exactas y NaturalesCampus Medellín - Ciudad Universitariahttp://creativecommons.org/licenses/by-nc-sa/4.0/info:eu-repo/semantics/openAccessAttribution-NonCommercial-ShareAlike 4.0 Internationalhttp://purl.org/coar/access_right/c_abf2Aves - Distribución geográficaBirds - Geographical distributionAves - AdaptaciónBirds - AdaptationAves - EcologíaBirds - EcologyPasseriformesVariación genéticaGenetic variationMicrosatéliteMicrosatelliteshttp://aims.fao.org/aos/agrovoc/c_5616http://aims.fao.org/aos/agrovoc/c_15975http://aims.fao.org/aos/agrovoc/c_36574http://id.loc.gov/authorities/subjects/sh85014319http://id.loc.gov/authorities/subjects/sh2008004304http://id.loc.gov/authorities/subjects/sh2005020407ODS 15: Vida de ecosistemas terrestres. Proteger, restablecer y promover el uso sostenible de los ecosistemas terrestres, gestionar sosteniblemente los bosques, luchar contra la desertificación, detener e invertir la degradación de las tierras y detener la pérdida de biodiversidadPatrones de diversidad genética en cinco especies de aves Passeriformes codistribuidas en un gradiente ambientalTrabajo de grado - Maestríahttp://purl.org/redcol/resource_type/TMTexthttp://purl.org/coar/version/c_b1a7d7d4d402bcceinfo:eu-repo/semantics/masterThesisinfo:eu-repo/semantics/draftAlcaide, M., & Edwards, S. V. (2011). Molecular evolution of the toll-like receptor multigene family in birds. Molecular Biology and Evolution, 28(5), 1703–1715. https://doi.org/10.1093/molbev/msq351Antonides, J., Mathur, S., & DeWoody, A. (2019). Episodic positive diversifying selection on key immune system genes in major avian lineages. Genetica, 147(5–6), 337–350. https://doi.org/10.1007/s10709-019-00081-3Antonides, J., Mathur, S., Sundaram, M., Ricklefs, R., & Dewoody, J. A. (2019). Immunogenetic response of the bananaquit in the face of malarial parasites. BMC Evolutionary Biology, 19(1), 1–12. https://doi.org/10.1186/s12862-019-1435-yArnelas, I., Ernesto, P., Josefa, L., Devesa, J. A., & Catal, P. (2022). Challenging the Taxonomic Value of Genetically Controlled Carpological Traits. 1–22.Bainová, H., Králová, T., Bryjová, A., Albrecht, T., Bryja, J., & Vinkler, M. (2014). First evidence of independent pseudogenization of Toll-like receptor 5 in passerine birds. Developmental and Comparative Immunology, 45(1), 151–155. https://doi.org/10.1016/j.dci.2014.02.010Bichet, C., Moodley, Y., Penn, D. J., Sorci, G., & Garnier, S. (2015). Genetic structure in insular and mainland populations of house sparrows (Passer domesticus) and their hemosporidian parasites. Ecology and Evolution, 5(8), 1639–1652. https://doi.org/10.1002/ece3.1452BirdLife International. (2022). Thryophilus sernai. The IUCN Red List of Threatened Species 2022: e.T103889265A209060851. 8235.BirdLife International. (2023). BirdLife International IUCN Red List for birds.Blackburn, T. M., Gaston, K. J., Quinn, R. M., Arnold, H., & Gregory, R. D. (1997). Of mice and wrens: The relation between abundance and geographic range size in British mammals and birds. Philosophical Transactions of the Royal Society B: Biological Sciences, 352(1352), 419–427. https://doi.org/10.1098/rstb.1997.0030Brawn, J. D., Collins, T. M., Medinat, M., & Bermingham, E. (1996). Associations between physical isolation and geographical variation within three species of Neotropical birds. Haffer 1969.Brown, J. H. (1984). On the relationship beween abundance and distribution of species. American Naturalist, 124(2), 255–279. https://doi.org/10.1086/284267Brumfield, R. T., Beerli, P., Nickerson, D. A., & Edwards, S. V. (2003). The utility of single nucleotide polymorphisms in inferences of population history. Trends in Ecology and Evolution, 18(5), 249–256. https://doi.org/10.1016/S0169-5347(03)00018-1Burney, C. W., & Brumfield, R. T. (2009). Ecology Predicts Levels of Genetic Differentiation in Neotropical Birds. 174(3). https://doi.org/10.1086/603613Corrêa, T. C., Del Lama, S. N., De Souza, J. R., & Miño, C. I. (2016). Genetic structuring among populations of the great egret, Ardea alba egretta, in major Brazilian wetlands. Aquatic Conservation: Marine and Freshwater Ecosystems, 26(2), 333–349. https://doi.org/10.1002/aqc.2588Dalton, D. L., Vermaak, E., Smit-Robinson, H. A., & Kotze, A. (2016). Lack of diversity at innate immunity Toll-like receptor genes in the Critically Endangered White-winged Flufftail (Sarothrura ayresi). Scientific Reports, 6(November), 1–8. https://doi.org/10.1038/srep36757Darfour-Oduro, K. A., Megens, H. J., Roca, A. L., Groenen, M. A. M., & Schook, L. B. (2015). Adaptive evolution of Toll-like receptors (TLRs) in the family Suidae. PLoS ONE, 10(4), 1– 16. https://doi.org/10.1371/journal.pone.0124069DeWoody, J. A., Harder, A. M., Mathur, S., & Willoughby, J. R. (2021). The long-standing significance of genetic diversity in conservation. Molecular Ecology, 30(17), 4147–4154. https://doi.org/10.1111/mec.16051Earl, D. A., & vonHoldt, B. M. (2012). STRUCTURE HARVESTER: A website and program for visualizing STRUCTURE output and implementing the Evanno method. Conservation Genetics Resources, 4(2), 359–361. https://doi.org/10.1007/s12686-011-9548-7Ellegren, H. (2004). Microsatellites: Simple sequences with complex evolution. Nature Reviews Genetics, 5(6), 435–445. https://doi.org/10.1038/nrg1348Evanno, G., Regnaut, S., & Goudet, J. (2005). Detecting the number of clusters of individuals using the software STRUCTURE: A simulation study. Molecular Ecology, 14(8), 2611–2620. https://doi.org/10.1111/j.1365-294X.2005.02553.xEvans, S. R., & Sheldon, B. C. (2008). Interspecific patterns of genetic diversity in birds: Correlations with extinction risk. Conservation Biology, 22(4), 1016–1025. https://doi.org/10.1111/j.1523-1739.2008.00972.xExcoffier, L., & Lischer, H. E. L. (2010). Arlequin suite ver 3.5: A new series of programs to perform population genetics analyses under Linux and Windows. Molecular Ecology Resources, 10(3), 564–567. https://doi.org/10.1111/j.1755-0998.2010.02847.xFisher, R. A. (1930). The Genetical Theory of Natural Selection. Oxford University Press, Oxford.Foster, J. T., Allan, G. J., Chan, A. P., Rabinowicz, P. D., Ravel, J., Jackson, P. J., & Keim, P. (2010). Single nucleotide polymorphisms for assessing genetic diversity in castor bean (Ricinus communis). BMC Plant Biology, 10. https://doi.org/10.1186/1471-2229-10-13Frankham, R. (1996). Relationship of Genetic Variation to Population Size in Wildlife. Conservation Biology, 10(6), 1500–1508. https://doi.org/10.1046/j.1523-1739.1996.10061500.xFrankham, R. (2005). Genetics and extinction. Biological Conservation, 126(2), 131–140. https://doi.org/10.1016/j.biocon.2005.05.002Frankham, R. (2015). Genetic rescue of small inbred populations: meta-analysis reveals large and consistent benefits of gene flow. Molecular Ecology, 24(11), 2610–2618. https://doi.org/10.1111/mec.13139Frankham, R., Briscoe, D., & Ballou, J. (2002). Introduction to conservation genetics (Cambridge).Garnatje, T., Pérez-Collazos, E., Pellicer, J., & Catalán, P. (2013). Balearic insular isolation and large continental spread framed the phylogeography of the western Mediterranean Cheirolophus intybaceus s.l. (Asteraceae). Plant Biology, 15(1), 166–175. https://doi.org/10.1111/j.1438-8677.2012.00632.xGaston, K. J. (1996). The multiple forms of the interspecific abundance-distribution relationship. Oikos, 76(2), 211–220.Gilroy, D. L., van Oosterhout, C., Komdeur, J., & Richardson, D. S. (2017). Toll-like receptor variation in the bottlenecked population of the endangered Seychelles warbler. Animal Conservation, 20(3), 235–250. https://doi.org/10.1111/acv.12307Glazier, D. S. (1986). Temporal Variability of Abundance and the Distribution of Species. Oikos, 47(3), 309. https://doi.org/10.2307/3565442Gonzalez-Quevedo, C., Spurgin, L. G., Illera, J. C., & Richardson, D. S. (2015). Drift, not selection, shapes toll-like receptor variation among oceanic island populations. Molecular Ecology, 24(23), 5852–5863. https://doi.org/10.1111/mec.13437Grueber, C. E., & Jamieson, I. G. (2013). Primers for amplification of innate immunity toll-like receptor loci in threatened birds of the Apterygiformes, Gruiformes, Psittaciformes and Passeriformes. Conservation Genetics Resources, 5(4), 1043–1047. https://doi.org/10.1007/s12686-013-9965-xGrueber, C. E., Knafler, G. J., King, T. M., Senior, A. M., Grosser, S., Robertson, B., Weston, K. A., Brekke, P., Harris, C. L. W., & Jamieson, I. G. (2015). Toll-like receptor diversity in 10 threatened bird species: relationship with microsatellite heterozygosity. Conservation Genetics, 16(3), 595–611. https://doi.org/10.1007/s10592-014-0685-xGrueber, C. E., Wallis, G. P., & Jamieson, I. G. (2014). Episodic positive selection in the evolution of avian toll-like receptor innate immunity genes. PLoS ONE, 9(3). https://doi.org/10.1371/journal.pone.0089632Grueber, C. E., Wallis, G. P., King, T. M., & Jamieson, I. G. (2012). Variation at Innate Immunity Toll-Like Receptor Genes in a Bottlenecked Population of a New Zealand Robin. PLoS ONE, 7(9). https://doi.org/10.1371/journal.pone.0045011Hartmann, S. A., Schaefer, H. M., & Segelbacher, G. (2014). Genetic depletion at adaptive but not neutral loci in an endangered bird species. Molecular Ecology, 23(23), 5712–5725. https://doi.org/10.1111/mec.12975Hoffmann, A. A., & Willi, Y. (2008). Detecting genetic responses to environmental change. Nature Reviews Genetics, 9(6), 421–432. https://doi.org/10.1038/nrg2339Holderegger, R., Kamm, U., & Gugerli, F. (2006). Adaptive vs. neutral genetic diversity: Implications for landscape genetics. Landscape Ecology, 21(6), 797–807. https://doi.org/10.1007/s10980-005-5245-9Idárraga-Piedrahíta, Á., González-Caro, S., Duque, Á. J., Jiménez-Montoya, J., González-M., R., Parra, J. L., & Rivera-Gutiérrez, H. F. (2022). Drivers of beta diversity along a precipitation gradient in tropical forests of the Cauca River Canyon in Colombia. Journal of Vegetation Science, 33(2), 1–11. https://doi.org/10.1111/jvs.13110Jarne, P., & Lagoda, P. J. L. (1996). Microsatellites, from molecules to populations and back. Trends in Ecology and Evolution, 11(10), 424–429. https://doi.org/10.1016/0169-5347(96)10049-5Jombart, T. (2008). Adegenet: A R package for the multivariate analysis of genetic markers. Bioinformatics, 24(11), 1403–1405. https://doi.org/10.1093/bioinformatics/btn129Kearse, M., Moir, R., Wilson, A., Stones-Havas, S., Cheung, M., Sturrock, S., Buxton, S., Cooper, A., Markowitz, S., Duran, C., Thierer, T., Ashton, B., Meintjes, P., & Drummond, A. (2012). Geneious Basic: An integrated and extendable desktop software platform for the organization and analysis of sequence data. Bioinformatics, 28(12), 1647–1649. https://doi.org/10.1093/bioinformatics/bts199Kimura, M. (1983). The Neutral Theory of Molecular Evolution. Cambridge University Press.Kirk, H., & Freeland, J. R. (2011). Applications and implications of neutral versus non-neutral markers in molecular ecology. International Journal of Molecular Sciences, 12(6), 3966–3988. https://doi.org/10.3390/ijms12063966Krabbe, M., & Rahbek, C. (2010). Causality of the Relationship between Geographic Distribution and Species Abundance. 85(1), 3–25.Kumar, S., Stecher, G., Li, M., Knyaz, C., & Tamura, K. (2018). MEGA X: Molecular evolutionary genetics analysis across computing platforms. Molecular Biology and Evolution, 35(6), 1547–1549. https://doi.org/10.1093/molbev/msy096Lande, R. (1988). Genetics and demography in biological conservation. Science, 241, 1455–1460.Latta, R. G. (2004). Gene flow, adaptive population divergence and comparative population structure across loci. New Phytologist, 161(1), 51–58. https://doi.org/10.1046/j.1469-8137.2003.00920.xLEE, J.-W., JANG, B.-S., DAWSON, D., BURKE, T., & HATCHWELL, B. (2009). Fine-scale genetic structure and its consequence in breeding aggregations of a passerine bird. 2728–2739. https://doi.org/10.1111/j.1365-294X.2009.04228.xLeigh, J. W., & Bryant, D. (2015). POPART: Full-feature software for haplotype network construction. Methods in Ecology and Evolution, 6(9), 1110–1116. https://doi.org/10.1111/2041-210X.12410Lenormand, T. (2002). Gene flow and the limits to natural selection. Trends in Ecology and Evolution, 17(4), 183–189. https://doi.org/10.1016/S0169-5347(02)02497-7Levy, E., Byrne, M., Coates, D. J., Macdonald, B. M., McArthur, S., & Van Leeuwen, S. (2016). Contrasting influences of geographic range and distribution of populations on patterns of genetic diversity in two sympatric Pilbara acacias. PLoS ONE, 11(10), 1–18. https://doi.org/10.1371/journal.pone.0163995Librado, P., & Rozas, J. (2009). DnaSP v5: A software for comprehensive analysis of DNA polymorphism data. Bioinformatics, 25(11), 1451–1452. https://doi.org/10.1093/bioinformatics/btp187Linhart, Y. B., & Grant, M. C. (1996). Evolutionary significance of local genetic differentiation in plants. Annual Review of Ecology and Systematics, 27, 237–277. https://doi.org/10.1146/annurev.ecolsys.27.1.237Maglianesi, M. A. (2009). Establecimiento y manejo de una estación del Programa de Monitoreo y Sobrevivencia Invernal ( MoSI ) en un bosque tropical seco. 32.Martínez-Alvarado, D., González-Quevedo, C., Illera, J. C., & Rivera-Gutiérrez, H. F. (2019). Prevalencia, diversidad y especificidad de haemosporidios aviares en un gradiente ambiental en el neotrópico. Universidad de Antioquia.Maruyama, T., & Fuerst, P. A. (1985). Population bottlenecks and nonequilibrium models in population genetics. II. Number of alleles in a small population that was formed by a recent bottleneck. Genetics, 111(3), 675–689. https://doi.org/10.1093/genetics/111.3.675Mayr, E. (1942). Systematics and the Origin of Species. (Columbia U).Mayr, E. (1969). Bird speciation in the tropics. Biological Journal of the Linnean Ociety, 1((1-2)), 1–17.Miller, S. A., Dykes, D. D., & Polesky, H. F. (1988). A simple salting out procedure for extracting DNA from human nucleated cells. Nucleic Acids Research, 16(3), 1215. https://doi.org/10.1093/nar/16.3.1215Minias, P., & Vinkler, M. (2022). Selection Balancing at Innate Immune Genes: Adaptive Polymorphism Maintenance in Toll-Like Receptors. Molecular Biology and Evolution, 39(5), 1–9. https://doi.org/10.1093/molbev/msac102Moore, R. P., Robinson, W. D., Lovette, I. J., & Robinson, T. R. (2008). Experimental evidence for extreme dispersal limitation in tropical forest birds. Ecology Letters, 11(9), 960–968. https://doi.org/10.1111/j.1461-0248.2008.01196.xMORINHA, F., DÁVILA, J., BASTOS, E., CABRAL, J., FRÍAS, Ó., GONZÁLEZ, J., TRAVASSOS, P., CARVALHO, D., MILÁ, B., & BLANCO, G. (2017). Extreme genetic structure in a social bird species despite high dispersal capacity. 0–2. https://doi.org/10.1111/ijlh.12426Murrell, B., Moola, S., Mabona, A., Weighill, T., Sheward, D., Pond, S. L. K., & Scheffler, K. (2013). FUBAR : A Fast , Unconstrained Bayesian AppRoximation for Inferring Selection. 30(5), 1196–1205. https://doi.org/10.1093/molbev/mst030Murrell, B., Wertheim, J. O., Moola, S., Weighill, T., Scheffler, K., & Pond, S. L. K. (2012). Detecting Individual Sites Subject to Episodic Diversifying Selection. 8(7). https://doi.org/10.1371/journal.pgen.1002764Musher, L. J., Giakoumis, M., Albert, J., Del-Rio, G., Rego, M., Thom, G., Aleixo, A., Ribas, C. C., Brumfield, R. T., Smith, B. T., & Cracraft, J. (2022). River network rearrangements promote speciation in lowland Amazonian birds. Science Advances, 8(14), 1–16. https://doi.org/10.1126/sciadv.abn1099Nadeem, M. A., Nawaz, M. A., Shahid, M. Q., Doğan, Y., Comertpay, G., Yıldız, M., Hatipoğlu, R., Ahmad, F., Alsaleh, A., Labhane, N., Özkan, H., Chung, G., & Baloch, F. S. (2018). DNA molecular markers in plant breeding: current status and recent advancements in genomic selection and genome editing. Biotechnology and Biotechnological Equipment, 32(2), 261–285. https://doi.org/10.1080/13102818.2017.1400401Nei, M., Maruyama, T., & Chakraborty, R. (1975). The Bottleneck Effect and Genetic Variability in Populations Author (s): Masatoshi Nei , Takeo Maruyama and Ranajit Chakraborty Reviewed work (s): Published by: Society for the Study of Evolution Stable. Evolution, 29(1), 1–10. https://www.jstor.org/stable/2407137?origin=crossrefPond, S. L. K., Frost, S. D. W., & Muse, S. V. (2005). HyPhy : hypothesis testing using phylogenies. 21(5), 676–679. https://doi.org/10.1093/bioinformatics/bti079Pritchard, J. K., Stephens, M., & Donnelly, P. (2000). Inference of population structure using multilocus genotype data. Genetics, 155(2), 945–959. https://doi.org/10.1093/genetics/155.2.945Puechmaille, S. J. (2016). The program structure does not reliably recover the correct population structure when sampling is uneven: Subsampling and new estimators alleviate the problem. Molecular Ecology Resources, 16(3), 608–627. https://doi.org/10.1111/1755-0998.12512Raymond, M., & Rousset, F. (1995). Genpop 1.2 Population genetics software for exact test and ecumenicism. Computer Notes, 248–249.Reed, D. H., & Frankham, R. (2003). Correlation between fitness and genetic diversity. Conservation Biology, 17(1), 230–237. https://doi.org/10.1046/j.1523-1739.2003.01236.xRenjifo, L. M., Amaya-Villarreal, Á. M., & Velásquez-Tibatá, J. B.-G. y J. (2016). Libro rojo de aves de Colombia, Volumen II: Ecosistemas abiertos, secos, insulares, acuáticos continentales, marinos, tierras altas del Darién y Sierra Nevada de Santa Marta y bosques húmedos del centro, norte y oriente del país. Editorial Pontificia Universidad Javeriana e Instituto Alexander von Humboldt.Rivera-Gutiérrez, H. ., Lentijo Jímenez, G. ., Chinome-Torres, G. ., Llano-Mejía, J., Martinez Alvarado, D., González-Quevedo, C., Gomez-Ahumada, M. ., & Parra, J. . (2018). Aves del Cañón del río Cauca: Guía ilustrada de la avifauna en el área de influencia del proyecto HidroItuango. EPM, Universidad de Antioquia.Roach, J. C., Glusman, G., Rowen, L., Kaur, A., Purcell, M. K., Smith, K. D., Hood, L. E., & Aderem, A. (2005). The evolution of vertebrate Toll-like receptors. 102(27).Rocha, E. P. C., Smith, J. M., Hurst, L. D., Holden, M. T. G., Cooper, J. E., Smith, N. H., & Feil, E. J. (2006). Comparisons of dN/dS are time dependent for closely related bacterial genomes. Journal of Theoretical Biology, 239(2), 226–235. https://doi.org/10.1016/j.jtbi.2005.08.037Schuelke, M. (2000). An economic method for the fluorescent labeling of PCR fragments. Nature Biotechnology, 18(2), 233–234. https://doi.org/10.1038/72708Seutin, G., White, B. N., & Boag, P. T. (1991). Preservation of avian blood and tissue samples for DNA analyses. Canadian Journal of Zoology, 69(1), 82–90. https://doi.org/10.1139/z91-013Slatkin, M. (1987). Gene flow and the geographic structure of natural populations. Science, 236(4803), 787–792. https://doi.org/10.1126/science.3576198Spielman, D., Brook, B. W., & Frankham, R. (2004). Most species are not driven to extinction before genetic factors impact them. Proceedings of the National Academy of Sciences of the United States of America, 101(42), 15261–15264. https://doi.org/10.1073/pnas.0403809101Spurgin, L. G., & Richardson, D. S. (2010). How pathogens drive genetic diversity: MHC, mechanisms and misunderstandings. Proceedings of the Royal Society B: Biological Sciences, 277(1684), 979–988. https://doi.org/10.1098/rspb.2009.2084Stephens, M., & Donnelly, P. (2003). A Comparison of Bayesian Methods for Haplotype Reconstruction from Population Genotype Data. American Journal of Human Genetics, 73(5), 1162–1169. https://doi.org/10.1086/379378Tajima, F. (1989). Statistical method for testing the neutral mutation hypothesis by DNA polymorphism. Genetics, 123(3), 585–595. https://doi.org/10.1093/genetics/123.3.585Teixeira, J. C., & Huber, C. D. (2021). The inflated significance of neutral genetic diversity in conservation genetics. Proceedings of the National Academy of Sciences of the United States of America, 118(10), 1–10. https://doi.org/10.1073/pnas.2015096118Van Oosterhout, C., Hutchinson, W. F., Wills, D. P. M., & Shipley, P. (2004). MICRO-CHECKER: Software for identifying and correcting genotyping errors in microsatellite data. Molecular Ecology Notes, 4(3), 535–538. https://doi.org/10.1111/j.1471-8286.2004.00684.xVellend, M., & Geber, M. A. (2005). Connections between species diversity and genetic diversity. Ecology Letters, 8(7), 767–781. https://doi.org/10.1111/j.1461-0248.2005.00775.xVelová, H., Gutowska-Ding, M. W., Burt, D. W., & Vinkler, M. (2018). Toll-like receptor evolution in birds: Gene duplication, pseudogenization, and diversifying selection. Molecular Biology and Evolution, 35(9), 2170–2184. https://doi.org/10.1093/molbev/msy119Verberk, W. (2012). Explaining General Patterns in Species Abundance and Distributions. Nature Education Knowledge, 3(10), 38.Voelker, G., Marks, B. D., Kahindo, C., A’genonga, U., Bapeamoni, F., Duffie, L. E., Huntley, J. W., Mulotwa, E., Rosenbaum, S. A., & Light, J. E. (2013). River barriers and cryptic biodiversity in an evolutionary museum. Ecology and Evolution, 3(3), 536–545. https://doi.org/10.1002/ece3.482Wang, I. J., & Bradburd, G. S. (2014). Isolation by environment. Molecular Ecology, 23(23), 5649–5662. https://doi.org/10.1111/mec.12938Wang, P., Liu, S., Hu, J., Zhang, J., Wang, Z., Xu, J., Yao, H., Wang, B., Chen, D., Zhang, Z., & Liu, Y. (2022). Disentangling the relative roles of geographical and ecological factors in driving genomic variations of a widely distributed bird across a longitudinal gradient. Journal of Avian Biology, 2022(7), 1–11. https://doi.org/10.1111/jav.02979Weaver, S., Shank, S. D., Spielman, S. J., Li, M., Muse, S. V, & Pond, S. L. K. (2018). Datamonkey 2 . 0 : A Modern Web Application for Characterizing Selective and Other Evolutionary Processes. 35(3), 773–777. https://doi.org/10.1093/molbev/msx335Whitlock, M. C. (2004). Selection and Drift in Metapopulations. Ecology, Genetics and Evolution of Metapopulations, 153–173. https://doi.org/10.1016/B978-012323448-3/50009-XWłodarczyk, R., Těšický, M., Vinkler, M., Novotný, M., Remisiewicz, M., Janiszewski, T., & Minias, P. (2023). Divergent evolution drives high diversity of toll-like receptors (TLRs) in passerine birds: Buntings and finches. Developmental and Comparative Immunology, 144(March). https://doi.org/10.1016/j.dci.2023.104704Xu, W., Zhou, X., Fang, W., & Chen, X. (2020). Genetic diversity of toll-like receptor genes in the vulnerable Chinese egret (Egretta eulophotes). PLoS ONE, 15(5), 1–21. https://doi.org/10.1371/journal.pone.0233714Yang, Z., & Nielsent, R. (2002). Codon-substitution models for detecting molecular adaptation at individual sites along specific lineages. Molecular Biology and Evolution, 19(6), 908–917. https://doi.org/10.1093/oxfordjournals.molbev.a004148Zapata, D., Rivera-Gutierrez, H. F., Parra, J. L., & Gonzalez-Quevedo, C. (2020). Low adaptive and neutral genetic diversity in the endangered Antioquia wren (Thryophilus sernai). Conservation Genetics, 21(6), 1051–1065. https://doi.org/10.1007/s10592-020-01313-2Zhivotovsky, L. A., & Feldman, M. W. (1995). Microsatellite variability and genetic distances. Proceedings of the National Academy of Sciences of the United States of America, 92(25), 11549–11552. https://doi.org/10.1073/pnas.92.25.11549PublicationORIGINALRestrepoJulieth_2023_PatronesDiversidadPasseriformesRestrepoJulieth_2023_PatronesDiversidadPasseriformesapplication/pdf2236316https://bibliotecadigital.udea.edu.co/bitstreams/78f41272-e6c6-4ffb-89d2-9fc47874cead/download2bdb0d9092f066706a06e0b60546664aMD51trueAnonymousREADLICENSElicense.txtlicense.txttext/plain; charset=utf-814837https://bibliotecadigital.udea.edu.co/bitstreams/3baac8cc-114d-4958-88ab-10b246552867/downloadb76e7a76e24cf2f94b3ce0ae5ed275d0MD52falseAnonymousREADCC-LICENSElicense_rdflicense_rdfapplication/rdf+xml; charset=utf-81160https://bibliotecadigital.udea.edu.co/bitstreams/dcb20586-ac26-45aa-8670-13ec14aa67f8/download5643bfd9bcf29d560eeec56d584edaa9MD53falseAnonymousREADTEXTRestrepoJulieth_2023_PatronesDiversidadPasseriformes.txtRestrepoJulieth_2023_PatronesDiversidadPasseriformes.txtExtracted texttext/plain101654https://bibliotecadigital.udea.edu.co/bitstreams/905713c3-1ed1-49f6-8ef7-0293dec3ab96/download03e0453d9d7d1de184ccc4643461a396MD54falseAnonymousREADTHUMBNAILRestrepoJulieth_2023_PatronesDiversidadPasseriformes.jpgRestrepoJulieth_2023_PatronesDiversidadPasseriformes.jpgGenerated Thumbnailimage/jpeg7754https://bibliotecadigital.udea.edu.co/bitstreams/d4da769c-413e-426e-ba42-b366bb8afff5/download45e75d36608d42fdcb5d92f96d7824e4MD55falseAnonymousREAD10495/45695oai:bibliotecadigital.udea.edu.co:10495/456952025-04-12 04:08:39.301http://creativecommons.org/licenses/by-nc-sa/4.0/Attribution-NonCommercial-ShareAlike 4.0 Internationalopen.accesshttps://bibliotecadigital.udea.edu.coRepositorio Institucional de la Universidad de Antioquiaaplicacionbibliotecadigitalbiblioteca@udea.edu.coTEEgT0JSQSAoVEFMIFkgQ09NTyBTRSBERUZJTkUgTcOBUyBBREVMQU5URSkgU0UgT1RPUkdBIEJBSk8gTE9TIFRFUk1JTk9TIERFIEVTVEEgTElDRU5DSUEgUMOaQkxJQ0EgREUgQ1JFQVRJVkUgQ09NTU9OUyAo4oCcTFBDQ+KAnSBPIOKAnExJQ0VOQ0lB4oCdKS4gTEEgT0JSQSBFU1TDgSBQUk9URUdJREEgUE9SIERFUkVDSE9TIERFIEFVVE9SIFkvVSBPVFJBUyBMRVlFUyBBUExJQ0FCTEVTLiBRVUVEQSBQUk9ISUJJRE8gQ1VBTFFVSUVSIFVTTyBRVUUgU0UgSEFHQSBERSBMQSBPQlJBIFFVRSBOTyBDVUVOVEUgQ09OIExBIEFVVE9SSVpBQ0nDk04gUEVSVElORU5URSBERSBDT05GT1JNSURBRCBDT04gTE9TIFTDiVJNSU5PUyBERSBFU1RBIExJQ0VOQ0lBIFkgREUgTEEgTEVZIERFIERFUkVDSE8gREUgQVVUT1IuCgpNRURJQU5URSBFTCBFSkVSQ0lDSU8gREUgQ1VBTFFVSUVSQSBERSBMT1MgREVSRUNIT1MgUVVFIFNFIE9UT1JHQU4gRU4gRVNUQSBMSUNFTkNJQSwgVVNURUQgQUNFUFRBIFkgQUNVRVJEQSBRVUVEQVIgT0JMSUdBRE8gRU4gTE9TIFRFUk1JTk9TIFFVRSBTRSBTRcORQUxBTiBFTiBFTExBLiBFTCBMSUNFTkNJQU5URSBDT05DRURFIEEgVVNURUQgTE9TIERFUkVDSE9TIENPTlRFTklET1MgRU4gRVNUQSBMSUNFTkNJQSBDT05ESUNJT05BRE9TIEEgTEEgQUNFUFRBQ0nDk04gREUgU1VTIFRFUk1JTk9TIFkgQ09ORElDSU9ORVMuIAoKMS4gRGVmaW5pY2lvbmVzCmEuIE9icmEgQ29sZWN0aXZhIGVzIHVuYSBvYnJhLCB0YWwgY29tbyB1bmEgcHVibGljYWNpw7NuIHBlcmnDs2RpY2EsIHVuYSBhbnRvbG9nw61hLCBvIHVuYSBlbmNpY2xvcGVkaWEsIGVuIGxhIHF1ZSBsYSBvYnJhIGVuIHN1IHRvdGFsaWRhZCwgc2luIG1vZGlmaWNhY2nDs24gYWxndW5hLCBqdW50byBjb24gdW4gZ3J1cG8gZGUgb3RyYXMgY29udHJpYnVjaW9uZXMgcXVlIGNvbnN0aXR1eWVuIG9icmFzIHNlcGFyYWRhcyBlIGluZGVwZW5kaWVudGVzIGVuIHPDrSBtaXNtYXMsIHNlIGludGVncmFuIGVuIHVuIHRvZG8gY29sZWN0aXZvLiBVbmEgT2JyYSBxdWUgY29uc3RpdHV5ZSB1bmEgb2JyYSBjb2xlY3RpdmEgbm8gc2UgY29uc2lkZXJhcsOhIHVuYSBPYnJhIERlcml2YWRhIChjb21vIHNlIGRlZmluZSBhYmFqbykgcGFyYSBsb3MgcHJvcMOzc2l0b3MgZGUgZXN0YSBsaWNlbmNpYS4gYXF1ZWxsYSBwcm9kdWNpZGEgcG9yIHVuIGdydXBvIGRlIGF1dG9yZXMsIGVuIHF1ZSBsYSBPYnJhIHNlIGVuY3VlbnRyYSBzaW4gbW9kaWZpY2FjaW9uZXMsIGp1bnRvIGNvbiB1bmEgY2llcnRhIGNhbnRpZGFkIGRlIG90cmFzIGNvbnRyaWJ1Y2lvbmVzLCBxdWUgY29uc3RpdHV5ZW4gZW4gc8OtIG1pc21vcyB0cmFiYWpvcyBzZXBhcmFkb3MgZSBpbmRlcGVuZGllbnRlcywgcXVlIHNvbiBpbnRlZ3JhZG9zIGFsIHRvZG8gY29sZWN0aXZvLCB0YWxlcyBjb21vIHB1YmxpY2FjaW9uZXMgcGVyacOzZGljYXMsIGFudG9sb2fDrWFzIG8gZW5jaWNsb3BlZGlhcy4KYi4gT2JyYSBEZXJpdmFkYSBzaWduaWZpY2EgdW5hIG9icmEgYmFzYWRhIGVuIGxhIG9icmEgb2JqZXRvIGRlIGVzdGEgbGljZW5jaWEgbyBlbiDDqXN0YSB5IG90cmFzIG9icmFzIHByZWV4aXN0ZW50ZXMsIHRhbGVzIGNvbW8gdHJhZHVjY2lvbmVzLCBhcnJlZ2xvcyBtdXNpY2FsZXMsIGRyYW1hdGl6YWNpb25lcywg4oCcZmljY2lvbmFsaXphY2lvbmVz4oCdLCB2ZXJzaW9uZXMgcGFyYSBjaW5lLCDigJxncmFiYWNpb25lcyBkZSBzb25pZG/igJ0sIHJlcHJvZHVjY2lvbmVzIGRlIGFydGUsIHJlc8O6bWVuZXMsIGNvbmRlbnNhY2lvbmVzLCBvIGN1YWxxdWllciBvdHJhIGVuIGxhIHF1ZSBsYSBvYnJhIHB1ZWRhIHNlciB0cmFuc2Zvcm1hZGEsIGNhbWJpYWRhIG8gYWRhcHRhZGEsIGV4Y2VwdG8gYXF1ZWxsYXMgcXVlIGNvbnN0aXR1eWFuIHVuYSBvYnJhIGNvbGVjdGl2YSwgbGFzIHF1ZSBubyBzZXLDoW4gY29uc2lkZXJhZGFzIHVuYSBvYnJhIGRlcml2YWRhIHBhcmEgZWZlY3RvcyBkZSBlc3RhIGxpY2VuY2lhLiAoUGFyYSBldml0YXIgZHVkYXMsIGVuIGVsIGNhc28gZGUgcXVlIGxhIE9icmEgc2VhIHVuYSBjb21wb3NpY2nDs24gbXVzaWNhbCBvIHVuYSBncmFiYWNpw7NuIHNvbm9yYSwgcGFyYSBsb3MgZWZlY3RvcyBkZSBlc3RhIExpY2VuY2lhIGxhIHNpbmNyb25pemFjacOzbiB0ZW1wb3JhbCBkZSBsYSBPYnJhIGNvbiB1bmEgaW1hZ2VuIGVuIG1vdmltaWVudG8gc2UgY29uc2lkZXJhcsOhIHVuYSBPYnJhIERlcml2YWRhIHBhcmEgbG9zIGZpbmVzIGRlIGVzdGEgbGljZW5jaWEpLgpjLiBMaWNlbmNpYW50ZSwgZXMgZWwgaW5kaXZpZHVvIG8gbGEgZW50aWRhZCB0aXR1bGFyIGRlIGxvcyBkZXJlY2hvcyBkZSBhdXRvciBxdWUgb2ZyZWNlIGxhIE9icmEgZW4gY29uZm9ybWlkYWQgY29uIGxhcyBjb25kaWNpb25lcyBkZSBlc3RhIExpY2VuY2lhLgpkLiBBdXRvciBvcmlnaW5hbCwgZXMgZWwgaW5kaXZpZHVvIHF1ZSBjcmXDsyBsYSBPYnJhLgplLiBPYnJhLCBlcyBhcXVlbGxhIG9icmEgc3VzY2VwdGlibGUgZGUgcHJvdGVjY2nDs24gcG9yIGVsIHLDqWdpbWVuIGRlIERlcmVjaG8gZGUgQXV0b3IgeSBxdWUgZXMgb2ZyZWNpZGEgZW4gbG9zIHTDqXJtaW5vcyBkZSBlc3RhIGxpY2VuY2lhCmYuIFVzdGVkLCBlcyBlbCBpbmRpdmlkdW8gbyBsYSBlbnRpZGFkIHF1ZSBlamVyY2l0YSBsb3MgZGVyZWNob3Mgb3RvcmdhZG9zIGFsIGFtcGFybyBkZSBlc3RhIExpY2VuY2lhIHkgcXVlIGNvbiBhbnRlcmlvcmlkYWQgbm8gaGEgdmlvbGFkbyBsYXMgY29uZGljaW9uZXMgZGUgbGEgbWlzbWEgcmVzcGVjdG8gYSBsYSBPYnJhLCBvIHF1ZSBoYXlhIG9idGVuaWRvIGF1dG9yaXphY2nDs24gZXhwcmVzYSBwb3IgcGFydGUgZGVsIExpY2VuY2lhbnRlIHBhcmEgZWplcmNlciBsb3MgZGVyZWNob3MgYWwgYW1wYXJvIGRlIGVzdGEgTGljZW5jaWEgcGVzZSBhIHVuYSB2aW9sYWNpw7NuIGFudGVyaW9yLgoJICAKMi4gRGVyZWNob3MgZGUgVXNvcyBIb25yYWRvcyB5IGV4Y2VwY2lvbmVzIExlZ2FsZXMuCk5hZGEgZW4gZXN0YSBMaWNlbmNpYSBwb2Ryw6Egc2VyIGludGVycHJldGFkbyBjb21vIHVuYSBkaXNtaW51Y2nDs24sIGxpbWl0YWNpw7NuIG8gcmVzdHJpY2Npw7NuIGRlIGxvcyBkZXJlY2hvcyBkZXJpdmFkb3MgZGVsIHVzbyBob25yYWRvIHkgb3RyYXMgbGltaXRhY2lvbmVzIG8gZXhjZXBjaW9uZXMgYSBsb3MgZGVyZWNob3MgZGVsIGF1dG9yIGJham8gZWwgcsOpZ2ltZW4gbGVnYWwgdmlnZW50ZSBvIGRlcml2YWRvIGRlIGN1YWxxdWllciBvdHJhIG5vcm1hIHF1ZSBzZSBsZSBhcGxpcXVlLgogIAozLiBDb25jZXNpw7NuIGRlIGxhIExpY2VuY2lhLgpCYWpvIGxvcyB0w6lybWlub3MgeSBjb25kaWNpb25lcyBkZSBlc3RhIExpY2VuY2lhLCBlbCBMaWNlbmNpYW50ZSBvdG9yZ2EgYSBVc3RlZCB1bmEgbGljZW5jaWEgbXVuZGlhbCwgbGlicmUgZGUgcmVnYWzDrWFzLCBubyBleGNsdXNpdmEgeSBwZXJwZXR1YSAoZHVyYW50ZSB0b2RvIGVsIHBlcsOtb2RvIGRlIHZpZ2VuY2lhIGRlIGxvcyBkZXJlY2hvcyBkZSBhdXRvcikgcGFyYSBlamVyY2VyIGVzdG9zIGRlcmVjaG9zIHNvYnJlIGxhIE9icmEgdGFsIHkgY29tbyBzZSBpbmRpY2EgYSBjb250aW51YWNpw7NuOgphLiBSZXByb2R1Y2lyIGxhIE9icmEsIGluY29ycG9yYXIgbGEgT2JyYSBlbiB1bmEgbyBtw6FzIE9icmFzIENvbGVjdGl2YXMsIHkgcmVwcm9kdWNpciBsYSBPYnJhIGluY29ycG9yYWRhIGVuIGxhcyBPYnJhcyBDb2xlY3RpdmFzLgpiLiBEaXN0cmlidWlyIGNvcGlhcyBvIGZvbm9ncmFtYXMgZGUgbGFzIE9icmFzLCBleGhpYmlybGFzIHDDumJsaWNhbWVudGUsIGVqZWN1dGFybGFzIHDDumJsaWNhbWVudGUgeS9vIHBvbmVybGFzIGEgZGlzcG9zaWNpw7NuIHDDumJsaWNhLCBpbmNsdXnDqW5kb2xhcyBjb21vIGluY29ycG9yYWRhcyBlbiBPYnJhcyBDb2xlY3RpdmFzLCBzZWfDum4gY29ycmVzcG9uZGEuCmMuIERpc3RyaWJ1aXIgY29waWFzIGRlIGxhcyBPYnJhcyBEZXJpdmFkYXMgcXVlIHNlIGdlbmVyZW4sIGV4aGliaXJsYXMgcMO6YmxpY2FtZW50ZSwgZWplY3V0YXJsYXMgcMO6YmxpY2FtZW50ZSB5L28gcG9uZXJsYXMgYSBkaXNwb3NpY2nDs24gcMO6YmxpY2EuCgpMb3MgZGVyZWNob3MgbWVuY2lvbmFkb3MgYW50ZXJpb3JtZW50ZSBwdWVkZW4gc2VyIGVqZXJjaWRvcyBlbiB0b2RvcyBsb3MgbWVkaW9zIHkgZm9ybWF0b3MsIGFjdHVhbG1lbnRlIGNvbm9jaWRvcyBvIHF1ZSBzZSBpbnZlbnRlbiBlbiBlbCBmdXR1cm8uIExvcyBkZXJlY2hvcyBhbnRlcyBtZW5jaW9uYWRvcyBpbmNsdXllbiBlbCBkZXJlY2hvIGEgcmVhbGl6YXIgZGljaGFzIG1vZGlmaWNhY2lvbmVzIGVuIGxhIG1lZGlkYSBxdWUgc2VhbiB0w6ljbmljYW1lbnRlIG5lY2VzYXJpYXMgcGFyYSBlamVyY2VyIGxvcyBkZXJlY2hvcyBlbiBvdHJvIG1lZGlvIG8gZm9ybWF0b3MsIHBlcm8gZGUgb3RyYSBtYW5lcmEgdXN0ZWQgbm8gZXN0w6EgYXV0b3JpemFkbyBwYXJhIHJlYWxpemFyIG9icmFzIGRlcml2YWRhcy4gVG9kb3MgbG9zIGRlcmVjaG9zIG5vIG90b3JnYWRvcyBleHByZXNhbWVudGUgcG9yIGVsIExpY2VuY2lhbnRlIHF1ZWRhbiBwb3IgZXN0ZSBtZWRpbyByZXNlcnZhZG9zLCBpbmNsdXllbmRvIHBlcm8gc2luIGxpbWl0YXJzZSBhIGFxdWVsbG9zIHF1ZSBzZSBtZW5jaW9uYW4gZW4gbGFzIHNlY2Npb25lcyA0KGQpIHkgNChlKS4KICAgIAo0LiBSZXN0cmljY2lvbmVzLgpMYSBsaWNlbmNpYSBvdG9yZ2FkYSBlbiBsYSBhbnRlcmlvciBTZWNjacOzbiAzIGVzdMOhIGV4cHJlc2FtZW50ZSBzdWpldGEgeSBsaW1pdGFkYSBwb3IgbGFzIHNpZ3VpZW50ZXMgcmVzdHJpY2Npb25lczoKYS4gVXN0ZWQgcHVlZGUgZGlzdHJpYnVpciwgZXhoaWJpciBww7pibGljYW1lbnRlLCBlamVjdXRhciBww7pibGljYW1lbnRlLCBvIHBvbmVyIGEgZGlzcG9zaWNpw7NuIHDDumJsaWNhIGxhIE9icmEgc8OzbG8gYmFqbyBsYXMgY29uZGljaW9uZXMgZGUgZXN0YSBMaWNlbmNpYSwgeSBVc3RlZCBkZWJlIGluY2x1aXIgdW5hIGNvcGlhIGRlIGVzdGEgbGljZW5jaWEgbyBkZWwgSWRlbnRpZmljYWRvciBVbml2ZXJzYWwgZGUgUmVjdXJzb3MgZGUgbGEgbWlzbWEgY29uIGNhZGEgY29waWEgZGUgbGEgT2JyYSBxdWUgZGlzdHJpYnV5YSwgZXhoaWJhIHDDumJsaWNhbWVudGUsIGVqZWN1dGUgcMO6YmxpY2FtZW50ZSBvIHBvbmdhIGEgZGlzcG9zaWNpw7NuIHDDumJsaWNhLiBObyBlcyBwb3NpYmxlIG9mcmVjZXIgbyBpbXBvbmVyIG5pbmd1bmEgY29uZGljacOzbiBzb2JyZSBsYSBPYnJhIHF1ZSBhbHRlcmUgbyBsaW1pdGUgbGFzIGNvbmRpY2lvbmVzIGRlIGVzdGEgTGljZW5jaWEgbyBlbCBlamVyY2ljaW8gZGUgbG9zIGRlcmVjaG9zIGRlIGxvcyBkZXN0aW5hdGFyaW9zIG90b3JnYWRvcyBlbiBlc3RlIGRvY3VtZW50by4gTm8gZXMgcG9zaWJsZSBzdWJsaWNlbmNpYXIgbGEgT2JyYS4gVXN0ZWQgZGViZSBtYW50ZW5lciBpbnRhY3RvcyB0b2RvcyBsb3MgYXZpc29zIHF1ZSBoYWdhbiByZWZlcmVuY2lhIGEgZXN0YSBMaWNlbmNpYSB5IGEgbGEgY2zDoXVzdWxhIGRlIGxpbWl0YWNpw7NuIGRlIGdhcmFudMOtYXMuIFVzdGVkIG5vIHB1ZWRlIGRpc3RyaWJ1aXIsIGV4aGliaXIgcMO6YmxpY2FtZW50ZSwgZWplY3V0YXIgcMO6YmxpY2FtZW50ZSwgbyBwb25lciBhIGRpc3Bvc2ljacOzbiBww7pibGljYSBsYSBPYnJhIGNvbiBhbGd1bmEgbWVkaWRhIHRlY25vbMOzZ2ljYSBxdWUgY29udHJvbGUgZWwgYWNjZXNvIG8gbGEgdXRpbGl6YWNpw7NuIGRlIGVsbGEgZGUgdW5hIGZvcm1hIHF1ZSBzZWEgaW5jb25zaXN0ZW50ZSBjb24gbGFzIGNvbmRpY2lvbmVzIGRlIGVzdGEgTGljZW5jaWEuIExvIGFudGVyaW9yIHNlIGFwbGljYSBhIGxhIE9icmEgaW5jb3Jwb3JhZGEgYSB1bmEgT2JyYSBDb2xlY3RpdmEsIHBlcm8gZXN0byBubyBleGlnZSBxdWUgbGEgT2JyYSBDb2xlY3RpdmEgYXBhcnRlIGRlIGxhIG9icmEgbWlzbWEgcXVlZGUgc3VqZXRhIGEgbGFzIGNvbmRpY2lvbmVzIGRlIGVzdGEgTGljZW5jaWEuIFNpIFVzdGVkIGNyZWEgdW5hIE9icmEgQ29sZWN0aXZhLCBwcmV2aW8gYXZpc28gZGUgY3VhbHF1aWVyIExpY2VuY2lhbnRlIGRlYmUsIGVuIGxhIG1lZGlkYSBkZSBsbyBwb3NpYmxlLCBlbGltaW5hciBkZSBsYSBPYnJhIENvbGVjdGl2YSBjdWFscXVpZXIgcmVmZXJlbmNpYSBhIGRpY2hvIExpY2VuY2lhbnRlIG8gYWwgQXV0b3IgT3JpZ2luYWwsIHNlZ8O6biBsbyBzb2xpY2l0YWRvIHBvciBlbCBMaWNlbmNpYW50ZSB5IGNvbmZvcm1lIGxvIGV4aWdlIGxhIGNsw6F1c3VsYSA0KGMpLgpiLiBVc3RlZCBubyBwdWVkZSBlamVyY2VyIG5pbmd1bm8gZGUgbG9zIGRlcmVjaG9zIHF1ZSBsZSBoYW4gc2lkbyBvdG9yZ2Fkb3MgZW4gbGEgU2VjY2nDs24gMyBwcmVjZWRlbnRlIGRlIG1vZG8gcXVlIGVzdMOpbiBwcmluY2lwYWxtZW50ZSBkZXN0aW5hZG9zIG8gZGlyZWN0YW1lbnRlIGRpcmlnaWRvcyBhIGNvbnNlZ3VpciB1biBwcm92ZWNobyBjb21lcmNpYWwgbyB1bmEgY29tcGVuc2FjacOzbiBtb25ldGFyaWEgcHJpdmFkYS4gRWwgaW50ZXJjYW1iaW8gZGUgbGEgT2JyYSBwb3Igb3RyYXMgb2JyYXMgcHJvdGVnaWRhcyBwb3IgZGVyZWNob3MgZGUgYXV0b3IsIHlhIHNlYSBhIHRyYXbDqXMgZGUgdW4gc2lzdGVtYSBwYXJhIGNvbXBhcnRpciBhcmNoaXZvcyBkaWdpdGFsZXMgKGRpZ2l0YWwgZmlsZS1zaGFyaW5nKSBvIGRlIGN1YWxxdWllciBvdHJhIG1hbmVyYSBubyBzZXLDoSBjb25zaWRlcmFkbyBjb21vIGVzdGFyIGRlc3RpbmFkbyBwcmluY2lwYWxtZW50ZSBvIGRpcmlnaWRvIGRpcmVjdGFtZW50ZSBhIGNvbnNlZ3VpciB1biBwcm92ZWNobyBjb21lcmNpYWwgbyB1bmEgY29tcGVuc2FjacOzbiBtb25ldGFyaWEgcHJpdmFkYSwgc2llbXByZSBxdWUgbm8gc2UgcmVhbGljZSB1biBwYWdvIG1lZGlhbnRlIHVuYSBjb21wZW5zYWNpw7NuIG1vbmV0YXJpYSBlbiByZWxhY2nDs24gY29uIGVsIGludGVyY2FtYmlvIGRlIG9icmFzIHByb3RlZ2lkYXMgcG9yIGVsIGRlcmVjaG8gZGUgYXV0b3IuCmMuIFNpIHVzdGVkIGRpc3RyaWJ1eWUsIGV4aGliZSBww7pibGljYW1lbnRlLCBlamVjdXRhIHDDumJsaWNhbWVudGUgbyBlamVjdXRhIHDDumJsaWNhbWVudGUgZW4gZm9ybWEgZGlnaXRhbCBsYSBPYnJhIG8gY3VhbHF1aWVyIE9icmEgRGVyaXZhZGEgdSBPYnJhIENvbGVjdGl2YSwgVXN0ZWQgZGViZSBtYW50ZW5lciBpbnRhY3RhIHRvZGEgbGEgaW5mb3JtYWNpw7NuIGRlIGRlcmVjaG8gZGUgYXV0b3IgZGUgbGEgT2JyYSB5IHByb3BvcmNpb25hciwgZGUgZm9ybWEgcmF6b25hYmxlIHNlZ8O6biBlbCBtZWRpbyBvIG1hbmVyYSBxdWUgVXN0ZWQgZXN0w6kgdXRpbGl6YW5kbzogKGkpIGVsIG5vbWJyZSBkZWwgQXV0b3IgT3JpZ2luYWwgc2kgZXN0w6EgcHJvdmlzdG8gKG8gc2V1ZMOzbmltbywgc2kgZnVlcmUgYXBsaWNhYmxlKSwgeS9vIChpaSkgZWwgbm9tYnJlIGRlIGxhIHBhcnRlIG8gbGFzIHBhcnRlcyBxdWUgZWwgQXV0b3IgT3JpZ2luYWwgeS9vIGVsIExpY2VuY2lhbnRlIGh1YmllcmVuIGRlc2lnbmFkbyBwYXJhIGxhIGF0cmlidWNpw7NuICh2LmcuLCB1biBpbnN0aXR1dG8gcGF0cm9jaW5hZG9yLCBlZGl0b3JpYWwsIHB1YmxpY2FjacOzbikgZW4gbGEgaW5mb3JtYWNpw7NuIGRlIGxvcyBkZXJlY2hvcyBkZSBhdXRvciBkZWwgTGljZW5jaWFudGUsIHTDqXJtaW5vcyBkZSBzZXJ2aWNpb3MgbyBkZSBvdHJhcyBmb3JtYXMgcmF6b25hYmxlczsgZWwgdMOtdHVsbyBkZSBsYSBPYnJhIHNpIGVzdMOhIHByb3Zpc3RvOyBlbiBsYSBtZWRpZGEgZGUgbG8gcmF6b25hYmxlbWVudGUgZmFjdGlibGUgeSwgc2kgZXN0w6EgcHJvdmlzdG8sIGVsIElkZW50aWZpY2Fkb3IgVW5pZm9ybWUgZGUgUmVjdXJzb3MgKFVuaWZvcm0gUmVzb3VyY2UgSWRlbnRpZmllcikgcXVlIGVsIExpY2VuY2lhbnRlIGVzcGVjaWZpY2EgcGFyYSBzZXIgYXNvY2lhZG8gY29uIGxhIE9icmEsIHNhbHZvIHF1ZSB0YWwgVVJJIG5vIHNlIHJlZmllcmEgYSBsYSBub3RhIHNvYnJlIGxvcyBkZXJlY2hvcyBkZSBhdXRvciBvIGEgbGEgaW5mb3JtYWNpw7NuIHNvYnJlIGVsIGxpY2VuY2lhbWllbnRvIGRlIGxhIE9icmE7IHkgZW4gZWwgY2FzbyBkZSB1bmEgT2JyYSBEZXJpdmFkYSwgYXRyaWJ1aXIgZWwgY3LDqWRpdG8gaWRlbnRpZmljYW5kbyBlbCB1c28gZGUgbGEgT2JyYSBlbiBsYSBPYnJhIERlcml2YWRhICh2LmcuLCAiVHJhZHVjY2nDs24gRnJhbmNlc2EgZGUgbGEgT2JyYSBkZWwgQXV0b3IgT3JpZ2luYWwsIiBvICJHdWnDs24gQ2luZW1hdG9ncsOhZmljbyBiYXNhZG8gZW4gbGEgT2JyYSBvcmlnaW5hbCBkZWwgQXV0b3IgT3JpZ2luYWwiKS4gVGFsIGNyw6lkaXRvIHB1ZWRlIHNlciBpbXBsZW1lbnRhZG8gZGUgY3VhbHF1aWVyIGZvcm1hIHJhem9uYWJsZTsgZW4gZWwgY2Fzbywgc2luIGVtYmFyZ28sIGRlIE9icmFzIERlcml2YWRhcyB1IE9icmFzIENvbGVjdGl2YXMsIHRhbCBjcsOpZGl0byBhcGFyZWNlcsOhLCBjb21vIG3DrW5pbW8sIGRvbmRlIGFwYXJlY2UgZWwgY3LDqWRpdG8gZGUgY3VhbHF1aWVyIG90cm8gYXV0b3IgY29tcGFyYWJsZSB5IGRlIHVuYSBtYW5lcmEsIGFsIG1lbm9zLCB0YW4gZGVzdGFjYWRhIGNvbW8gZWwgY3LDqWRpdG8gZGUgb3RybyBhdXRvciBjb21wYXJhYmxlLiAgCmQuIFBhcmEgZXZpdGFyIHRvZGEgY29uZnVzacOzbiwgZWwgTGljZW5jaWFudGUgYWNsYXJhIHF1ZSwgY3VhbmRvIGxhIG9icmEgZXMgdW5hIGNvbXBvc2ljacOzbiBtdXNpY2FsOgoKaS4gUmVnYWzDrWFzIHBvciBpbnRlcnByZXRhY2nDs24geSBlamVjdWNpw7NuIGJham8gbGljZW5jaWFzIGdlbmVyYWxlcy4gRWwgTGljZW5jaWFudGUgc2UgcmVzZXJ2YSBlbCBkZXJlY2hvIGV4Y2x1c2l2byBkZSBhdXRvcml6YXIgbGEgZWplY3VjacOzbiBww7pibGljYSBvIGxhIGVqZWN1Y2nDs24gcMO6YmxpY2EgZGlnaXRhbCBkZSBsYSBvYnJhIHkgZGUgcmVjb2xlY3Rhciwgc2VhIGluZGl2aWR1YWxtZW50ZSBvIGEgdHJhdsOpcyBkZSB1bmEgc29jaWVkYWQgZGUgZ2VzdGnDs24gY29sZWN0aXZhIGRlIGRlcmVjaG9zIGRlIGF1dG9yIHkgZGVyZWNob3MgY29uZXhvcyAocG9yIGVqZW1wbG8sIFNBWUNPKSwgbGFzIHJlZ2Fsw61hcyBwb3IgbGEgZWplY3VjacOzbiBww7pibGljYSBvIHBvciBsYSBlamVjdWNpw7NuIHDDumJsaWNhIGRpZ2l0YWwgZGUgbGEgb2JyYSAocG9yIGVqZW1wbG8gV2ViY2FzdCkgbGljZW5jaWFkYSBiYWpvIGxpY2VuY2lhcyBnZW5lcmFsZXMsIHNpIGxhIGludGVycHJldGFjacOzbiBvIGVqZWN1Y2nDs24gZGUgbGEgb2JyYSBlc3TDoSBwcmltb3JkaWFsbWVudGUgb3JpZW50YWRhIHBvciBvIGRpcmlnaWRhIGEgbGEgb2J0ZW5jacOzbiBkZSB1bmEgdmVudGFqYSBjb21lcmNpYWwgbyB1bmEgY29tcGVuc2FjacOzbiBtb25ldGFyaWEgcHJpdmFkYS4KaWkuIFJlZ2Fsw61hcyBwb3IgRm9ub2dyYW1hcy4gRWwgTGljZW5jaWFudGUgc2UgcmVzZXJ2YSBlbCBkZXJlY2hvIGV4Y2x1c2l2byBkZSByZWNvbGVjdGFyLCBpbmRpdmlkdWFsbWVudGUgbyBhIHRyYXbDqXMgZGUgdW5hIHNvY2llZGFkIGRlIGdlc3Rpw7NuIGNvbGVjdGl2YSBkZSBkZXJlY2hvcyBkZSBhdXRvciB5IGRlcmVjaG9zIGNvbmV4b3MgKHBvciBlamVtcGxvLCBsb3MgY29uc2FncmFkb3MgcG9yIGxhIFNBWUNPKSwgdW5hIGFnZW5jaWEgZGUgZGVyZWNob3MgbXVzaWNhbGVzIG8gYWxnw7puIGFnZW50ZSBkZXNpZ25hZG8sIGxhcyByZWdhbMOtYXMgcG9yIGN1YWxxdWllciBmb25vZ3JhbWEgcXVlIFVzdGVkIGNyZWUgYSBwYXJ0aXIgZGUgbGEgb2JyYSAo4oCcdmVyc2nDs24gY292ZXLigJ0pIHkgZGlzdHJpYnV5YSwgZW4gbG9zIHTDqXJtaW5vcyBkZWwgcsOpZ2ltZW4gZGUgZGVyZWNob3MgZGUgYXV0b3IsIHNpIGxhIGNyZWFjacOzbiBvIGRpc3RyaWJ1Y2nDs24gZGUgZXNhIHZlcnNpw7NuIGNvdmVyIGVzdMOhIHByaW1vcmRpYWxtZW50ZSBkZXN0aW5hZGEgbyBkaXJpZ2lkYSBhIG9idGVuZXIgdW5hIHZlbnRhamEgY29tZXJjaWFsIG8gdW5hIGNvbXBlbnNhY2nDs24gbW9uZXRhcmlhIHByaXZhZGEuCiAgICAgIAplLiBHZXN0acOzbiBkZSBEZXJlY2hvcyBkZSBBdXRvciBzb2JyZSBJbnRlcnByZXRhY2lvbmVzIHkgRWplY3VjaW9uZXMgRGlnaXRhbGVzIChXZWJDYXN0aW5nKS4gUGFyYSBldml0YXIgdG9kYSBjb25mdXNpw7NuLCBlbCBMaWNlbmNpYW50ZSBhY2xhcmEgcXVlLCBjdWFuZG8gbGEgb2JyYSBzZWEgdW4gZm9ub2dyYW1hLCBlbCBMaWNlbmNpYW50ZSBzZSByZXNlcnZhIGVsIGRlcmVjaG8gZXhjbHVzaXZvIGRlIGF1dG9yaXphciBsYSBlamVjdWNpw7NuIHDDumJsaWNhIGRpZ2l0YWwgZGUgbGEgb2JyYSAocG9yIGVqZW1wbG8sIHdlYmNhc3QpIHkgZGUgcmVjb2xlY3RhciwgaW5kaXZpZHVhbG1lbnRlIG8gYSB0cmF2w6lzIGRlIHVuYSBzb2NpZWRhZCBkZSBnZXN0acOzbiBjb2xlY3RpdmEgZGUgZGVyZWNob3MgZGUgYXV0b3IgeSBkZXJlY2hvcyBjb25leG9zIChwb3IgZWplbXBsbywgQUNJTlBSTyksIGxhcyByZWdhbMOtYXMgcG9yIGxhIGVqZWN1Y2nDs24gcMO6YmxpY2EgZGlnaXRhbCBkZSBsYSBvYnJhIChwb3IgZWplbXBsbywgd2ViY2FzdCksIHN1amV0YSBhIGxhcyBkaXNwb3NpY2lvbmVzIGFwbGljYWJsZXMgZGVsIHLDqWdpbWVuIGRlIERlcmVjaG8gZGUgQXV0b3IsIHNpIGVzdGEgZWplY3VjacOzbiBww7pibGljYSBkaWdpdGFsIGVzdMOhIHByaW1vcmRpYWxtZW50ZSBkaXJpZ2lkYSBhIG9idGVuZXIgdW5hIHZlbnRhamEgY29tZXJjaWFsIG8gdW5hIGNvbXBlbnNhY2nDs24gbW9uZXRhcmlhIHByaXZhZGEuCiAgCjUuIFJlcHJlc2VudGFjaW9uZXMsIEdhcmFudMOtYXMgeSBMaW1pdGFjaW9uZXMgZGUgUmVzcG9uc2FiaWxpZGFkLgpBIE1FTk9TIFFVRSBMQVMgUEFSVEVTIExPIEFDT1JEQVJBTiBERSBPVFJBIEZPUk1BIFBPUiBFU0NSSVRPLCBFTCBMSUNFTkNJQU5URSBPRlJFQ0UgTEEgT0JSQSAoRU4gRUwgRVNUQURPIEVOIEVMIFFVRSBTRSBFTkNVRU5UUkEpIOKAnFRBTCBDVUFM4oCdLCBTSU4gQlJJTkRBUiBHQVJBTlTDjUFTIERFIENMQVNFIEFMR1VOQSBSRVNQRUNUTyBERSBMQSBPQlJBLCBZQSBTRUEgRVhQUkVTQSwgSU1QTMONQ0lUQSwgTEVHQUwgTyBDVUFMUVVJRVJBIE9UUkEsIElOQ0xVWUVORE8sIFNJTiBMSU1JVEFSU0UgQSBFTExBUywgR0FSQU5Uw41BUyBERSBUSVRVTEFSSURBRCwgQ09NRVJDSUFCSUxJREFELCBBREFQVEFCSUxJREFEIE8gQURFQ1VBQ0nDk04gQSBQUk9Qw5NTSVRPIERFVEVSTUlOQURPLCBBVVNFTkNJQSBERSBJTkZSQUNDScOTTiwgREUgQVVTRU5DSUEgREUgREVGRUNUT1MgTEFURU5URVMgTyBERSBPVFJPIFRJUE8sIE8gTEEgUFJFU0VOQ0lBIE8gQVVTRU5DSUEgREUgRVJST1JFUywgU0VBTiBPIE5PIERFU0NVQlJJQkxFUyAoUFVFREFOIE8gTk8gU0VSIEVTVE9TIERFU0NVQklFUlRPUykuIEFMR1VOQVMgSlVSSVNESUNDSU9ORVMgTk8gUEVSTUlURU4gTEEgRVhDTFVTScOTTiBERSBHQVJBTlTDjUFTIElNUEzDjUNJVEFTLCBFTiBDVVlPIENBU08gRVNUQSBFWENMVVNJw5NOIFBVRURFIE5PIEFQTElDQVJTRSBBIFVTVEVELgogIAo2LiBMaW1pdGFjacOzbiBkZSByZXNwb25zYWJpbGlkYWQuCkEgTUVOT1MgUVVFIExPIEVYSUpBIEVYUFJFU0FNRU5URSBMQSBMRVkgQVBMSUNBQkxFLCBFTCBMSUNFTkNJQU5URSBOTyBTRVLDgSBSRVNQT05TQUJMRSBBTlRFIFVTVEVEIFBPUiBEQcORTyBBTEdVTk8sIFNFQSBQT1IgUkVTUE9OU0FCSUxJREFEIEVYVFJBQ09OVFJBQ1RVQUwsIFBSRUNPTlRSQUNUVUFMIE8gQ09OVFJBQ1RVQUwsIE9CSkVUSVZBIE8gU1VCSkVUSVZBLCBTRSBUUkFURSBERSBEQcORT1MgTU9SQUxFUyBPIFBBVFJJTU9OSUFMRVMsIERJUkVDVE9TIE8gSU5ESVJFQ1RPUywgUFJFVklTVE9TIE8gSU1QUkVWSVNUT1MgUFJPRFVDSURPUyBQT1IgRUwgVVNPIERFIEVTVEEgTElDRU5DSUEgTyBERSBMQSBPQlJBLCBBVU4gQ1VBTkRPIEVMIExJQ0VOQ0lBTlRFIEhBWUEgU0lETyBBRFZFUlRJRE8gREUgTEEgUE9TSUJJTElEQUQgREUgRElDSE9TIERBw5FPUy4gQUxHVU5BUyBMRVlFUyBOTyBQRVJNSVRFTiBMQSBFWENMVVNJw5NOIERFIENJRVJUQSBSRVNQT05TQUJJTElEQUQsIEVOIENVWU8gQ0FTTyBFU1RBIEVYQ0xVU0nDk04gUFVFREUgTk8gQVBMSUNBUlNFIEEgVVNURUQuCiAgCjcuIFTDqXJtaW5vLgkKYS4gRXN0YSBMaWNlbmNpYSB5IGxvcyBkZXJlY2hvcyBvdG9yZ2Fkb3MgZW4gdmlydHVkIGRlIGVsbGEgdGVybWluYXLDoW4gYXV0b23DoXRpY2FtZW50ZSBzaSBVc3RlZCBpbmZyaW5nZSBhbGd1bmEgY29uZGljacOzbiBlc3RhYmxlY2lkYSBlbiBlbGxhLiBTaW4gZW1iYXJnbywgbG9zIGluZGl2aWR1b3MgbyBlbnRpZGFkZXMgcXVlIGhhbiByZWNpYmlkbyBPYnJhcyBEZXJpdmFkYXMgbyBDb2xlY3RpdmFzIGRlIFVzdGVkIGRlIGNvbmZvcm1pZGFkIGNvbiBlc3RhIExpY2VuY2lhLCBubyB2ZXLDoW4gdGVybWluYWRhcyBzdXMgbGljZW5jaWFzLCBzaWVtcHJlIHF1ZSBlc3RvcyBpbmRpdmlkdW9zIG8gZW50aWRhZGVzIHNpZ2FuIGN1bXBsaWVuZG8gw61udGVncmFtZW50ZSBsYXMgY29uZGljaW9uZXMgZGUgZXN0YXMgbGljZW5jaWFzLiBMYXMgU2VjY2lvbmVzIDEsIDIsIDUsIDYsIDcsIHkgOCBzdWJzaXN0aXLDoW4gYSBjdWFscXVpZXIgdGVybWluYWNpw7NuIGRlIGVzdGEgTGljZW5jaWEuCmIuIFN1amV0YSBhIGxhcyBjb25kaWNpb25lcyB5IHTDqXJtaW5vcyBhbnRlcmlvcmVzLCBsYSBsaWNlbmNpYSBvdG9yZ2FkYSBhcXXDrSBlcyBwZXJwZXR1YSAoZHVyYW50ZSBlbCBwZXLDrW9kbyBkZSB2aWdlbmNpYSBkZSBsb3MgZGVyZWNob3MgZGUgYXV0b3IgZGUgbGEgb2JyYSkuIE5vIG9ic3RhbnRlIGxvIGFudGVyaW9yLCBlbCBMaWNlbmNpYW50ZSBzZSByZXNlcnZhIGVsIGRlcmVjaG8gYSBwdWJsaWNhciB5L28gZXN0cmVuYXIgbGEgT2JyYSBiYWpvIGNvbmRpY2lvbmVzIGRlIGxpY2VuY2lhIGRpZmVyZW50ZXMgbyBhIGRlamFyIGRlIGRpc3RyaWJ1aXJsYSBlbiBsb3MgdMOpcm1pbm9zIGRlIGVzdGEgTGljZW5jaWEgZW4gY3VhbHF1aWVyIG1vbWVudG87IGVuIGVsIGVudGVuZGlkbywgc2luIGVtYmFyZ28sIHF1ZSBlc2EgZWxlY2Npw7NuIG5vIHNlcnZpcsOhIHBhcmEgcmV2b2NhciBlc3RhIGxpY2VuY2lhIG8gcXVlIGRlYmEgc2VyIG90b3JnYWRhICwgYmFqbyBsb3MgdMOpcm1pbm9zIGRlIGVzdGEgbGljZW5jaWEpLCB5IGVzdGEgbGljZW5jaWEgY29udGludWFyw6EgZW4gcGxlbm8gdmlnb3IgeSBlZmVjdG8gYSBtZW5vcyBxdWUgc2VhIHRlcm1pbmFkYSBjb21vIHNlIGV4cHJlc2EgYXRyw6FzLiBMYSBMaWNlbmNpYSByZXZvY2FkYSBjb250aW51YXLDoSBzaWVuZG8gcGxlbmFtZW50ZSB2aWdlbnRlIHkgZWZlY3RpdmEgc2kgbm8gc2UgbGUgZGEgdMOpcm1pbm8gZW4gbGFzIGNvbmRpY2lvbmVzIGluZGljYWRhcyBhbnRlcmlvcm1lbnRlLgogIAo4LiBWYXJpb3MuCmEuIENhZGEgdmV6IHF1ZSBVc3RlZCBkaXN0cmlidXlhIG8gcG9uZ2EgYSBkaXNwb3NpY2nDs24gcMO6YmxpY2EgbGEgT2JyYSBvIHVuYSBPYnJhIENvbGVjdGl2YSwgZWwgTGljZW5jaWFudGUgb2ZyZWNlcsOhIGFsIGRlc3RpbmF0YXJpbyB1bmEgbGljZW5jaWEgZW4gbG9zIG1pc21vcyB0w6lybWlub3MgeSBjb25kaWNpb25lcyBxdWUgbGEgbGljZW5jaWEgb3RvcmdhZGEgYSBVc3RlZCBiYWpvIGVzdGEgTGljZW5jaWEuCmIuIFNpIGFsZ3VuYSBkaXNwb3NpY2nDs24gZGUgZXN0YSBMaWNlbmNpYSByZXN1bHRhIGludmFsaWRhZGEgbyBubyBleGlnaWJsZSwgc2Vnw7puIGxhIGxlZ2lzbGFjacOzbiB2aWdlbnRlLCBlc3RvIG5vIGFmZWN0YXLDoSBuaSBsYSB2YWxpZGV6IG5pIGxhIGFwbGljYWJpbGlkYWQgZGVsIHJlc3RvIGRlIGNvbmRpY2lvbmVzIGRlIGVzdGEgTGljZW5jaWEgeSwgc2luIGFjY2nDs24gYWRpY2lvbmFsIHBvciBwYXJ0ZSBkZSBsb3Mgc3VqZXRvcyBkZSBlc3RlIGFjdWVyZG8sIGFxdcOpbGxhIHNlIGVudGVuZGVyw6EgcmVmb3JtYWRhIGxvIG3DrW5pbW8gbmVjZXNhcmlvIHBhcmEgaGFjZXIgcXVlIGRpY2hhIGRpc3Bvc2ljacOzbiBzZWEgdsOhbGlkYSB5IGV4aWdpYmxlLgpjLiBOaW5nw7puIHTDqXJtaW5vIG8gZGlzcG9zaWNpw7NuIGRlIGVzdGEgTGljZW5jaWEgc2UgZXN0aW1hcsOhIHJlbnVuY2lhZGEgeSBuaW5ndW5hIHZpb2xhY2nDs24gZGUgZWxsYSBzZXLDoSBjb25zZW50aWRhIGEgbWVub3MgcXVlIGVzYSByZW51bmNpYSBvIGNvbnNlbnRpbWllbnRvIHNlYSBvdG9yZ2FkbyBwb3IgZXNjcml0byB5IGZpcm1hZG8gcG9yIGxhIHBhcnRlIHF1ZSByZW51bmNpZSBvIGNvbnNpZW50YS4KZC4gRXN0YSBMaWNlbmNpYSByZWZsZWphIGVsIGFjdWVyZG8gcGxlbm8gZW50cmUgbGFzIHBhcnRlcyByZXNwZWN0byBhIGxhIE9icmEgYXF1w60gbGljZW5jaWFkYS4gTm8gaGF5IGFycmVnbG9zLCBhY3VlcmRvcyBvIGRlY2xhcmFjaW9uZXMgcmVzcGVjdG8gYSBsYSBPYnJhIHF1ZSBubyBlc3TDqW4gZXNwZWNpZmljYWRvcyBlbiBlc3RlIGRvY3VtZW50by4gRWwgTGljZW5jaWFudGUgbm8gc2UgdmVyw6EgbGltaXRhZG8gcG9yIG5pbmd1bmEgZGlzcG9zaWNpw7NuIGFkaWNpb25hbCBxdWUgcHVlZGEgc3VyZ2lyIGVuIGFsZ3VuYSBjb211bmljYWNpw7NuIGVtYW5hZGEgZGUgVXN0ZWQuIEVzdGEgTGljZW5jaWEgbm8gcHVlZGUgc2VyIG1vZGlmaWNhZGEgc2luIGVsIGNvbnNlbnRpbWllbnRvIG11dHVvIHBvciBlc2NyaXRvIGRlbCBMaWNlbmNpYW50ZSB5IFVzdGVkLgo=