Control de la aberración cromática longitudinal del ojo humano

El ojo humano, como cualquier otro sistema óptico, presenta limitaciones inherentes debido a las aberraciones ópticas que comprometen su rendimiento. En relación a la aberración cromática longitudinal (ACL), la literatura existente reporta hallazgos contradictorios respecto a cómo su corrección infl...

Full description

Autores:
Osorio Muñoz, Salomé
Tipo de recurso:
Trabajo de grado de pregrado
Fecha de publicación:
2025
Institución:
Universidad de Antioquia
Repositorio:
Repositorio UdeA
Idioma:
spa
OAI Identifier:
oai:bibliotecadigital.udea.edu.co:10495/47896
Acceso en línea:
https://hdl.handle.net/10495/47896
Palabra clave:
Acromatismo
Achromatism
Acomodación ocular
Accommodation, ocular
Óptica - Mediciones
Optical measurements
Vista
Vision
Aberración cromática longitudinal
Simuladores visuales
Modulador espacial de luz
Calidad óptica
Ojo humano
ODS 3: Salud y bienestar. Garantizar una vida sana y promover el bienestar de todos a todas las edades
Rights
openAccess
License
http://creativecommons.org/licenses/by-nc-sa/4.0/
id UDEA2_282a2b9d0597af0968ab36b6ca7a0ec5
oai_identifier_str oai:bibliotecadigital.udea.edu.co:10495/47896
network_acronym_str UDEA2
network_name_str Repositorio UdeA
repository_id_str
dc.title.spa.fl_str_mv Control de la aberración cromática longitudinal del ojo humano
dc.title.translated.none.fl_str_mv Control of Longitudinal Chromatic Aberration of the Human Eye
title Control de la aberración cromática longitudinal del ojo humano
spellingShingle Control de la aberración cromática longitudinal del ojo humano
Acromatismo
Achromatism
Acomodación ocular
Accommodation, ocular
Óptica - Mediciones
Optical measurements
Vista
Vision
Aberración cromática longitudinal
Simuladores visuales
Modulador espacial de luz
Calidad óptica
Ojo humano
ODS 3: Salud y bienestar. Garantizar una vida sana y promover el bienestar de todos a todas las edades
title_short Control de la aberración cromática longitudinal del ojo humano
title_full Control de la aberración cromática longitudinal del ojo humano
title_fullStr Control de la aberración cromática longitudinal del ojo humano
title_full_unstemmed Control de la aberración cromática longitudinal del ojo humano
title_sort Control de la aberración cromática longitudinal del ojo humano
dc.creator.fl_str_mv Osorio Muñoz, Salomé
dc.contributor.advisor.none.fl_str_mv Torres Sepúlveda, Walter Arley
Mira Agudelo, Alejandro
dc.contributor.author.none.fl_str_mv Osorio Muñoz, Salomé
dc.contributor.researchgroup.none.fl_str_mv Grupo de Óptica y Fotónica
dc.contributor.jury.none.fl_str_mv Vélez Zea, Alejandro
Henao Henao, Rodrigo de Jesús
dc.subject.lemb.none.fl_str_mv Acromatismo
Achromatism
Acomodación ocular
Accommodation, ocular
Óptica - Mediciones
Optical measurements
Vista
Vision
topic Acromatismo
Achromatism
Acomodación ocular
Accommodation, ocular
Óptica - Mediciones
Optical measurements
Vista
Vision
Aberración cromática longitudinal
Simuladores visuales
Modulador espacial de luz
Calidad óptica
Ojo humano
ODS 3: Salud y bienestar. Garantizar una vida sana y promover el bienestar de todos a todas las edades
dc.subject.proposal.spa.fl_str_mv Aberración cromática longitudinal
Simuladores visuales
Modulador espacial de luz
Calidad óptica
Ojo humano
dc.subject.ods.none.fl_str_mv ODS 3: Salud y bienestar. Garantizar una vida sana y promover el bienestar de todos a todas las edades
description El ojo humano, como cualquier otro sistema óptico, presenta limitaciones inherentes debido a las aberraciones ópticas que comprometen su rendimiento. En relación a la aberración cromática longitudinal (ACL), la literatura existente reporta hallazgos contradictorios respecto a cómo su corrección influye en el desempeño visual. En este contexto, el presente estudio desarrolló un protocolo experimental que permite medir y controlar la ACL del ojo humano, evaluando sus efectos sobre parámetros visuales clave. Para ello, se utilizó un simulador visual monocular dotado de óptica activa, que incluía un modulador espacial de luz (SLM) para modificar la ACL. Diez sujetos participaron en pruebas bajo tres condiciones experimentales: ACL natural, corregida y duplicada. Las métricas para el análisis del impacto de las diferentes condiciones de ACL incluyeron agudeza visual (AV), tiempo de acomodación y porcentaje de acomodación de estímulos policromáticos. Los resultados revelaron que la medición subjetiva de la ACL coincidió con el modelo teórico, validando el método experimental. Sin embargo, las mediciones objetivas subestimaron sistemáticamente la magnitud de la ACL, posiblemente debido a limitaciones técnicas o a la influencia de otras aberraciones oculares no controladas durante las medidas. El SLM demostró ser una herramienta efectiva para manipular la ACL, lo que permitió establecer condiciones experimentales bien diferenciadas. En cuanto a la calidad visual, se observó que la condición natural de la ACL presentó la mejor AV máxima, sin presentar una diferencia sustancial con los valores para ACL modificada. La corrección de la ACL aumentó la profundidad de foco, mientras que la duplicación de la ACL no afectó significativamente el rendimiento visual, indicando una tolerancia del sistema visual a aumentos moderados de esta aberración. Por otro lado, el tiempo de acomodación se vio claramente perjudicado cuando se corrigió la ACL, dificultando el enfoque dinámico, mientras que su duplicación mejoró la eficiencia del proceso, confirmando que la ACL actúa como una señal clave para guiar la acomodación. Estos hallazgos destacan el equilibrio que existe entre los efectos ópticos y funcionales proporcionados por la ACL: su corrección puede mejorar la profundidad de foco pero también afecta negativamente los mecanismos visuales críticos de la acomodación. Asimismo, duplicar la ACL implica mejoras en el proceso acomodativo mientras que mantiene estable la calidad visual ante estímulos policromáticos.
publishDate 2025
dc.date.accessioned.none.fl_str_mv 2025-10-22T19:15:53Z
dc.date.issued.none.fl_str_mv 2025
dc.type.none.fl_str_mv Trabajo de grado - Pregrado
dc.type.coar.none.fl_str_mv http://purl.org/coar/resource_type/c_7a1f
dc.type.redcol.none.fl_str_mv http://purl.org/redcol/resource_type/TP
dc.type.content.none.fl_str_mv Text
dc.type.coarversion.none.fl_str_mv http://purl.org/coar/version/c_b1a7d7d4d402bcce
dc.type.driver.none.fl_str_mv info:eu-repo/semantics/bachelorThesis
dc.type.version.none.fl_str_mv info:eu-repo/semantics/draft
format http://purl.org/coar/resource_type/c_7a1f
status_str draft
dc.identifier.uri.none.fl_str_mv https://hdl.handle.net/10495/47896
url https://hdl.handle.net/10495/47896
dc.language.iso.none.fl_str_mv spa
language spa
dc.relation.references.none.fl_str_mv Aggarwala, K. R., Kruger, E. S., Mathews, S., & Kruger, P. B. (1995). Spectral bandwidth and ocular accommodation. Journal of the Optical Society of America A, 12(3), 450–455.
Artal, P. (2017). Handbook of Visual Optics: Fundamentals and eye optics. Taylor & Francis Group.
Association, W. M. (2025). World Medical Association Declaration of Helsinki: Ethical principles for medical research involving human participants. Jama, 333(1), 71–74.
Atchison, D. (2023). Optics of the Human Eye. CRC Press.
Atchison, D. A., & Smith, G. (2005). Chromatic dispersions of the ocular media of human eyes. Journal of the Optical Society of America A, 22(1), 29–37.
Bach, M. (1996). The Freiburg visual acuity test—automatic measurement of visual acuity. Optometry and Vision Science, 73(1), 49–53.
Bach, M. (2006). The Freiburg visual acuity test—variability unchanged by post-hoc reanalysis. Graefe’s Archive for Clinical and Experimental Ophthalmology, 245(7), 965–971.
Bedford, R. E., & Wyszecki, G. (1957). Axial chromatic aberration of the human eye. Journal of the Optical Society of America, 47(6), 5641–565.
Bernal-Molina, P., Marín-Franch, I., Del Águila-Carrasco, A. J., Esteve-Taboada, J. J., López-Gil, N., Kruger, P. B., & Montes-Micó, R. (2017). Human eyes do not need monochromatic aberrations for dynamic accommodation. Ophthalmic and Physiological Optics, 37(5), 602–609.
Blum, M., Büler, M., Grätzel, C., & Aschwanden, M. (2011). Compact optical design solutions using focus tunable lenses. In Optical Design and Engineering IV, vol. 8167, (pp. 274–282). SPIE.
Charman, W. N., & Heron, G. (2015). Microfluctuations in accommodation: an update on their characteristics and possible role. Ophthalmic and Physiological Optics, 35(5), 476–499.
Charman, W. N., & Jennings, J. A. M. (1976). Objective measurements of the longitudinal chromatic aberration of the human eye. Vision Research, 16(9), 999–1005.
Chin, S. S., Hampson, K. M., & Mallen, E. A. (2009). Effect of correction of ocular aberration dynamics on the accommodation response to a sinusoidally moving stimulus. Optics Letters, 34(21), 3274–3276.
Cholewiak, S. A., Love, G. D., & Banks, M. S. (2018). Creating correct blur and its effect on accommodation. Journal of Vision, 18(9), 1–1.
Crass, J. (2014). The Adaptive Optics Lucky Imager: Combining adaptive optics and lucky imaging. Ph.D. thesis, University of Cambridge.
Del Águila Carrasco, A. J. (2017). Light vergence detection in monocular and monochromatic accommodation.
Fernández, E. J. (2012). Adaptive optics for visual simulation. International Scholarly Research Notices, 2012(1), 104870.
Fincham, E. F. (1951). The accommodation reflex and its stimulus. The British Journal of Ophthalmology, 35(7), 381.
Goldberg, D. B. (2011). Computer-animated model of accommodation and theory of reciprocal zonular action. Clinical Ophthalmology, (pp. 1559–1566).
Graef, K., & Schaeffel, F. (2012). Control of accommodation by longitudinal chromatic aberration and blue cones. Journal of Vision, 12(1), 14–14.
Gupta, N., Wolffsohn, J. S. W., & Naroo, S. A. (2008). Optimizing measurement of subjective amplitude of accommodation with defocus curves. Journal of Cataract & Refractive Surgery, 34(8), 1329–1338.
Holladay, J. T. (2004). Visual acuity measurements. Journal of Cataract & Refractive Surgery, 30(2), 287–290.
Howarth, P. A., & Bradley, A. (1986). The longitudinal chromatic aberration of the human eye, and its correction. Vision Research, 26(2), 361–366.
Huang, S. S. (2020). Future vision 2020 and beyond—5 critical trends in eye research. The Asia-Pacific Journal of Ophthalmology, 9(3), 180–185.
Jaeken, B., Lundström, L., & Artal, P. (2011). Peripheral aberrations in the human eye for different wavelengths: off-axis chromatic aberration. Journal of the Optical Society of America A, 28(9), 1871–1879.
Jiang, X., Kuchenbecker, J. A., Touch, P., & Sabesan, R. (2019). Measuring and compensating for ocular longitudinal chromatic aberration. Optica, 6(8), 981–990.
Kalloniatis, M., & Luu, C. (2007). Visual acuity. Webvision: The Organization of the Retina and Visual System [Internet].
Khan, A., Pope, J. M., Verkicharla, P. K., Suheimat, M., & Atchison, D. A. (2018). Change in human lens dimensions, lens refractive index distribution, and ciliary body ring diameter with accommodation. Biomedical Optics Express, 9(3), 1272–1282.
Kiefer, M., Ansorge, U., Haynes, J., Hamker, F., Mattler, U., Verleger, R., & Niedeggen, M. (2011). Neuro-cognitive mechanisms of conscious and unconscious visual perception: From a plethora of phenomena to general principles. Advances in Cognitive Psychology, 7, 55.
Kruger, P. B., Nowbotsing, S., Aggarwala, K. R., & Mathews, S. (1995). Small amounts of chromatic aberration influence dynamic accommodation. Optometry and Vision Science, 72(9), 656–666.
Lai, T., & Tang, S. (2014). Cornea characterization using a combined multiphoton microscopy and optical coherence tomography system. Biomedical Optics Express, 5(5), 1494–1511.
Lakshminarayanan, V., & Fleck, A. (2011). Zernike polynomials: a guide. Journal of Modern Optics, 58(7), 545–561.
Lazarev, G., Hermerschmidt, A., Krüger, S., & Osten, S. (2012). LCOS spatial light modulators: trends and applications. Optical Imaging and Metrology: Advanced Technologies, (pp. 1–29).
Lee, J. H., Stark, L. R., Cohen, S., & Kruger, P. B. (1999). Accommodation to static chromatic simulations of blurred retinal images. Ophthalmic and Physiological Optics, 19(3), 223–235.
Levine, W. S. (2018). The Control Handbook (three-volume set). CRC press.
Lewis, A. L., Katz, M., & Oehrlein, C. (1982). A modified achromatizing lens. Optometry and Vision Science, 59(11), 909–911.
Liang, J., & Williams, D. R. (1997). Aberrations and retinal image quality of the normal human eye. Journal of the Optical Society of America A, 14(11), 2873–2883.
Loskutova, E., Nolan, J., Howard, A., & Beatty, S. (2013). Macular pigment and its contribution to vision. Nutrients, 5(6), 1962–1969.
Lundström, L. (2007). Wavefront Aberrations and Peripheral Vision. Ph.D. thesis, Royal Institute of Technology.
Martinez, J. L., Fernandez, E. J., Prieto, P. M., & Artal, P. (2017). Chromatic aberration control with liquid crystal spatial phase modulators. Optics Express, 25(9), 9793–9801.
Masland, R. H. (2012). The neuronal organization of the retina. Neuron, 76(2), 266–280.
Patel, S., & Alió, J. L. (2012). Corneal refractive index–hydration relationship by objective refractometry. Optometry and Vision Science, 89(11), 1641–1646.
Plainis, S., & Pallikaris, I. G. (2008). Ocular monochromatic aberration statistics in a large emmetropic population. Journal of Modern Optics, 55(4-5), 759–772.
Pusti, D., Debnath, D., Bang, S., & Yoon, G. (2025). Controlling ocular longitudinal chromatic aberration using a spatial light modulator. Biomedical Optics Express, 16(3), 1240–1253.
Rizzi, A., & Bonanomi, C. (2017). The human visual system described through visual illusions. In Colour Design, (pp. 23–41). Elsevier.
Roorda, A., Cholewiak, S. A., Bhargava, S., Ivzan, N. H., LaRocca, F., Nankivil, D., & Banks, M. S. (2023). The visual benefits of correcting longitudinal and transverse chromatic aberration. Journal of Vision, 23(2), 3–3.
Rucker, F. J., & Kruger, P. B. (2004). Accommodation responses to stimuli in cone contrast space. Vision Research, 44(25), 2931–2944.
Rynders, M., Lidkea, B., Chisholm, W., & Thibos, L. N. (1995). Statistical distribution of foveal transverse chromatic aberration, pupil centration, and angle ψ in a population of young adult eyes. Journal of the Optical Society of America A, 12(10), 2348–2357.
Rynders, M. C., Navarro, R., & Losada, M. A. (1998). Objective measurement of the off-axis longitudinal chromatic aberration in the human eye. Vision Research, 38(4), 513–522.
Siegel, A. F., & Wagner, M. R. (2016). Chapter 15—ANOVA: Testing for differences among many samples and much more. In Practical Business Statistics, 8th ed., (pp. 485–510).
Solano, E. C., Alvarado, M. B. C., López, M. T. E., & Monroy, A. D. G. (2010). Regulación ética en investigación con seres humanos en Colombia. Cooperative University of Colombia. URL: https://tinyurl.com/nhzsjhza [accessed 2022-01-10].
Suchkov, N., Fernández, E. J., & Artal, P. (2019). Impact of longitudinal chromatic aberration on through-focus visual acuity. Optics Express, 27(24), 35935–35947.
Takeda, T., Iida, T., & Fukui, Y. (1990). Dynamic eye accommodation evoked by apparent distances. Optometry and Vision Science, 67(6), 450–455.
Thibos, L. N., Bradley, A., Still, D. L., Zhang, X., & Howarth, P. A. (1990). Theory and measurement of ocular chromatic aberration. Vision Research, 30(1), 33–49.
Thibos, L. N., Bradley, A., & Zhang, X. (1991). Effect of ocular chromatic aberration on monocular visual performance. Optometry and Vision Science, 68(8), 599–607.
Thibos, L. N., Ye, M., Zhang, X., & Bradley, A. (1992). The chromatic eye: a new reduced-eye model of ocular chromatic aberration in humans. Applied Optics, 31(19), 3594–3600.
Torres-Sepúlveda, W. (2019). Medidas dinámicas de desempeño visual usando óptica adaptativa y activa. Tesis de doctorado, Universidad de Antioquia. ASESOR Alejandro Mira Agudelo.
Van Heel, A. C. S. (1946). Correcting the spherical and chromatic aberrations of the eye. Journal of the Optical Society of America, 36(4), 237–239.
Viñas, M., Dorronsoro, C., Cortes, D., Pascual, D., & Marcos, S. (2015). Longitudinal chromatic aberration of the human eye in the visible and near infrared from wavefront sensing, double-pass and psychophysics. Biomedical Optics Express, 6(3), 948–962.
Viñas Peña, M. (2015). Polychromatic adaptive optics to evaluate the impact of manipulated optics on vision.
Wald, G. (1967). Blue-blindness in the normal fovea. Journal of the Optical Society of America, 57(11), 1289–1301.
Whitehead, A. J., Mares, J. A., & Danis, R. P. (2006). Macular pigment: A review of current knowledge. Archives of Ophthalmology, 124(7), 1038–1045.
Yoon, G., & Williams, D. R. (2002). Visual performance after correcting the monochromatic and chromatic aberrations of the eye. Journal of the Optical Society of America A, 19(2), 266–275.
Zhang, X., Bradley, A., & Thibos, L. N. (1991). Achromatizing the human eye: the problem of chromatic parallax. Journal of the Optical Society of America A, 8(4), 686–691.
Zhang, X., Thibos, L. N., & Bradley, A. (1997). Wavelength-dependent magnification and polychromatic image quality in eyes corrected for longitudinal chromatic aberration. Optometry and Vision Science, 74(7), 563–569.
dc.rights.uri.none.fl_str_mv http://creativecommons.org/licenses/by-nc-sa/4.0/
dc.rights.accessrights.none.fl_str_mv info:eu-repo/semantics/openAccess
dc.rights.license.en.fl_str_mv Attribution-NonCommercial-ShareAlike 4.0 International
dc.rights.coar.none.fl_str_mv http://purl.org/coar/access_right/c_abf2
rights_invalid_str_mv http://creativecommons.org/licenses/by-nc-sa/4.0/
Attribution-NonCommercial-ShareAlike 4.0 International
http://purl.org/coar/access_right/c_abf2
eu_rights_str_mv openAccess
dc.format.extent.none.fl_str_mv 83 páginas
dc.format.mimetype.none.fl_str_mv application/pdf
dc.publisher.none.fl_str_mv Universidad de Antioquia
dc.publisher.program.none.fl_str_mv Física
dc.publisher.department.none.fl_str_mv Departamento de Ciencias Básicas
dc.publisher.place.none.fl_str_mv Medellín, Colombia
dc.publisher.faculty.none.fl_str_mv Facultad de Ciencias Exactas y Naturales
dc.publisher.branch.none.fl_str_mv Campus Medellín - Ciudad Universitaria
publisher.none.fl_str_mv Universidad de Antioquia
institution Universidad de Antioquia
bitstream.url.fl_str_mv https://bibliotecadigital.udea.edu.co/bitstreams/d67e0281-8847-465e-af51-4dba7951edec/download
https://bibliotecadigital.udea.edu.co/bitstreams/ffec2235-c824-45a9-bb93-1a356683908d/download
https://bibliotecadigital.udea.edu.co/bitstreams/dba0c17d-92f8-433b-8ea8-1fd8a32e8173/download
https://bibliotecadigital.udea.edu.co/bitstreams/6d8cdd8a-5af7-4114-a9aa-74a7b728d372/download
https://bibliotecadigital.udea.edu.co/bitstreams/06b41a29-b013-40ff-a5f6-a359e4ac58a2/download
bitstream.checksum.fl_str_mv eea2bfd8c339d71002ff452d023d7683
b76e7a76e24cf2f94b3ce0ae5ed275d0
5643bfd9bcf29d560eeec56d584edaa9
d2646d20e8ff2e81d193dcb291ad4787
a5649ea82312b46922b8b09bd7a24597
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
MD5
MD5
repository.name.fl_str_mv Repositorio Institucional de la Universidad de Antioquia
repository.mail.fl_str_mv aplicacionbibliotecadigitalbiblioteca@udea.edu.co
_version_ 1851052620155715584
spelling Torres Sepúlveda, Walter ArleyMira Agudelo, AlejandroOsorio Muñoz, SaloméGrupo de Óptica y FotónicaVélez Zea, AlejandroHenao Henao, Rodrigo de Jesús2025-10-22T19:15:53Z2025https://hdl.handle.net/10495/47896El ojo humano, como cualquier otro sistema óptico, presenta limitaciones inherentes debido a las aberraciones ópticas que comprometen su rendimiento. En relación a la aberración cromática longitudinal (ACL), la literatura existente reporta hallazgos contradictorios respecto a cómo su corrección influye en el desempeño visual. En este contexto, el presente estudio desarrolló un protocolo experimental que permite medir y controlar la ACL del ojo humano, evaluando sus efectos sobre parámetros visuales clave. Para ello, se utilizó un simulador visual monocular dotado de óptica activa, que incluía un modulador espacial de luz (SLM) para modificar la ACL. Diez sujetos participaron en pruebas bajo tres condiciones experimentales: ACL natural, corregida y duplicada. Las métricas para el análisis del impacto de las diferentes condiciones de ACL incluyeron agudeza visual (AV), tiempo de acomodación y porcentaje de acomodación de estímulos policromáticos. Los resultados revelaron que la medición subjetiva de la ACL coincidió con el modelo teórico, validando el método experimental. Sin embargo, las mediciones objetivas subestimaron sistemáticamente la magnitud de la ACL, posiblemente debido a limitaciones técnicas o a la influencia de otras aberraciones oculares no controladas durante las medidas. El SLM demostró ser una herramienta efectiva para manipular la ACL, lo que permitió establecer condiciones experimentales bien diferenciadas. En cuanto a la calidad visual, se observó que la condición natural de la ACL presentó la mejor AV máxima, sin presentar una diferencia sustancial con los valores para ACL modificada. La corrección de la ACL aumentó la profundidad de foco, mientras que la duplicación de la ACL no afectó significativamente el rendimiento visual, indicando una tolerancia del sistema visual a aumentos moderados de esta aberración. Por otro lado, el tiempo de acomodación se vio claramente perjudicado cuando se corrigió la ACL, dificultando el enfoque dinámico, mientras que su duplicación mejoró la eficiencia del proceso, confirmando que la ACL actúa como una señal clave para guiar la acomodación. Estos hallazgos destacan el equilibrio que existe entre los efectos ópticos y funcionales proporcionados por la ACL: su corrección puede mejorar la profundidad de foco pero también afecta negativamente los mecanismos visuales críticos de la acomodación. Asimismo, duplicar la ACL implica mejoras en el proceso acomodativo mientras que mantiene estable la calidad visual ante estímulos policromáticos.The human eye, like any other optical system, presents inherent limitations due to optical aberrations that compromise its performance. Regarding longitudinal chromatic aberration (LCA), existing literature reports contradictory findings concerning how its correction influences visual performance. In this context, the present study developed an experimental protocol that enables the measurement and control of human eye LCA, evaluating its effects on key visual parameters. For this purpose, a monocular visual simulator equipped with active optics was employed, which included a spatial light modulator (SLM) to modify the LCA. Ten subjects participated in tests under three LCA experimental conditions: natural, corrected, and doubled LCA. The metrics used to analyze the impact of different LCA conditions included visual acuity (VA), accommodation time, and accommodation percentage for polychromatic stimuli. The results revealed that subjective LCA measurement aligned with the theoretical model, validating the experimental method. However, objective measurements systematically underestimated the LCA magnitude, possibly due to technical limitations or the influence of other uncontrolled ocular aberrations during measurements. The SLM proved to be an effective tool for manipulating LCA, allowing for well-differentiated experimental conditions. In terms of visual quality, it was observed that the natural LCA condition presented the best maximum VA, although it did not differ substantially from the values obtained under modified LCA conditions. LCA correction increased depth of focus, while doubling it did not significantly affect visual performance, indicating remarkable system tolerance to moderate increases of this aberration. Conversely, accommodation time was clearly impaired when LCA was corrected, hindering dynamic focusing, whereas its duplication improved process efficiency, confirming that LCA acts as a key signal to guide accommodation. These findings highlight the balance between the optical and functional effects provided by LCA: while its correction may improve depth of focus, it also negatively impacts critical visual mechanisms involved in accommodation. Likewise, doubling LCA enhances the accommodative process while maintaining stable visual quality in response to polychromatic stimuli.Óptica VisualCOL0010789PregradoFísico83 páginasapplication/pdfspaUniversidad de AntioquiaFísicaDepartamento de Ciencias BásicasMedellín, ColombiaFacultad de Ciencias Exactas y NaturalesCampus Medellín - Ciudad Universitariahttp://creativecommons.org/licenses/by-nc-sa/4.0/info:eu-repo/semantics/openAccessAttribution-NonCommercial-ShareAlike 4.0 Internationalhttp://purl.org/coar/access_right/c_abf2Control de la aberración cromática longitudinal del ojo humanoControl of Longitudinal Chromatic Aberration of the Human EyeTrabajo de grado - Pregradohttp://purl.org/coar/resource_type/c_7a1fhttp://purl.org/redcol/resource_type/TPTexthttp://purl.org/coar/version/c_b1a7d7d4d402bcceinfo:eu-repo/semantics/bachelorThesisinfo:eu-repo/semantics/draftAggarwala, K. R., Kruger, E. S., Mathews, S., & Kruger, P. B. (1995). Spectral bandwidth and ocular accommodation. Journal of the Optical Society of America A, 12(3), 450–455.Artal, P. (2017). Handbook of Visual Optics: Fundamentals and eye optics. Taylor & Francis Group.Association, W. M. (2025). World Medical Association Declaration of Helsinki: Ethical principles for medical research involving human participants. Jama, 333(1), 71–74.Atchison, D. (2023). Optics of the Human Eye. CRC Press.Atchison, D. A., & Smith, G. (2005). Chromatic dispersions of the ocular media of human eyes. Journal of the Optical Society of America A, 22(1), 29–37.Bach, M. (1996). The Freiburg visual acuity test—automatic measurement of visual acuity. Optometry and Vision Science, 73(1), 49–53.Bach, M. (2006). The Freiburg visual acuity test—variability unchanged by post-hoc reanalysis. Graefe’s Archive for Clinical and Experimental Ophthalmology, 245(7), 965–971.Bedford, R. E., & Wyszecki, G. (1957). Axial chromatic aberration of the human eye. Journal of the Optical Society of America, 47(6), 5641–565.Bernal-Molina, P., Marín-Franch, I., Del Águila-Carrasco, A. J., Esteve-Taboada, J. J., López-Gil, N., Kruger, P. B., & Montes-Micó, R. (2017). Human eyes do not need monochromatic aberrations for dynamic accommodation. Ophthalmic and Physiological Optics, 37(5), 602–609.Blum, M., Büler, M., Grätzel, C., & Aschwanden, M. (2011). Compact optical design solutions using focus tunable lenses. In Optical Design and Engineering IV, vol. 8167, (pp. 274–282). SPIE.Charman, W. N., & Heron, G. (2015). Microfluctuations in accommodation: an update on their characteristics and possible role. Ophthalmic and Physiological Optics, 35(5), 476–499.Charman, W. N., & Jennings, J. A. M. (1976). Objective measurements of the longitudinal chromatic aberration of the human eye. Vision Research, 16(9), 999–1005.Chin, S. S., Hampson, K. M., & Mallen, E. A. (2009). Effect of correction of ocular aberration dynamics on the accommodation response to a sinusoidally moving stimulus. Optics Letters, 34(21), 3274–3276.Cholewiak, S. A., Love, G. D., & Banks, M. S. (2018). Creating correct blur and its effect on accommodation. Journal of Vision, 18(9), 1–1.Crass, J. (2014). The Adaptive Optics Lucky Imager: Combining adaptive optics and lucky imaging. Ph.D. thesis, University of Cambridge.Del Águila Carrasco, A. J. (2017). Light vergence detection in monocular and monochromatic accommodation.Fernández, E. J. (2012). Adaptive optics for visual simulation. International Scholarly Research Notices, 2012(1), 104870.Fincham, E. F. (1951). The accommodation reflex and its stimulus. The British Journal of Ophthalmology, 35(7), 381.Goldberg, D. B. (2011). Computer-animated model of accommodation and theory of reciprocal zonular action. Clinical Ophthalmology, (pp. 1559–1566).Graef, K., & Schaeffel, F. (2012). Control of accommodation by longitudinal chromatic aberration and blue cones. Journal of Vision, 12(1), 14–14.Gupta, N., Wolffsohn, J. S. W., & Naroo, S. A. (2008). Optimizing measurement of subjective amplitude of accommodation with defocus curves. Journal of Cataract & Refractive Surgery, 34(8), 1329–1338.Holladay, J. T. (2004). Visual acuity measurements. Journal of Cataract & Refractive Surgery, 30(2), 287–290.Howarth, P. A., & Bradley, A. (1986). The longitudinal chromatic aberration of the human eye, and its correction. Vision Research, 26(2), 361–366.Huang, S. S. (2020). Future vision 2020 and beyond—5 critical trends in eye research. The Asia-Pacific Journal of Ophthalmology, 9(3), 180–185.Jaeken, B., Lundström, L., & Artal, P. (2011). Peripheral aberrations in the human eye for different wavelengths: off-axis chromatic aberration. Journal of the Optical Society of America A, 28(9), 1871–1879.Jiang, X., Kuchenbecker, J. A., Touch, P., & Sabesan, R. (2019). Measuring and compensating for ocular longitudinal chromatic aberration. Optica, 6(8), 981–990.Kalloniatis, M., & Luu, C. (2007). Visual acuity. Webvision: The Organization of the Retina and Visual System [Internet].Khan, A., Pope, J. M., Verkicharla, P. K., Suheimat, M., & Atchison, D. A. (2018). Change in human lens dimensions, lens refractive index distribution, and ciliary body ring diameter with accommodation. Biomedical Optics Express, 9(3), 1272–1282.Kiefer, M., Ansorge, U., Haynes, J., Hamker, F., Mattler, U., Verleger, R., & Niedeggen, M. (2011). Neuro-cognitive mechanisms of conscious and unconscious visual perception: From a plethora of phenomena to general principles. Advances in Cognitive Psychology, 7, 55.Kruger, P. B., Nowbotsing, S., Aggarwala, K. R., & Mathews, S. (1995). Small amounts of chromatic aberration influence dynamic accommodation. Optometry and Vision Science, 72(9), 656–666.Lai, T., & Tang, S. (2014). Cornea characterization using a combined multiphoton microscopy and optical coherence tomography system. Biomedical Optics Express, 5(5), 1494–1511.Lakshminarayanan, V., & Fleck, A. (2011). Zernike polynomials: a guide. Journal of Modern Optics, 58(7), 545–561.Lazarev, G., Hermerschmidt, A., Krüger, S., & Osten, S. (2012). LCOS spatial light modulators: trends and applications. Optical Imaging and Metrology: Advanced Technologies, (pp. 1–29).Lee, J. H., Stark, L. R., Cohen, S., & Kruger, P. B. (1999). Accommodation to static chromatic simulations of blurred retinal images. Ophthalmic and Physiological Optics, 19(3), 223–235.Levine, W. S. (2018). The Control Handbook (three-volume set). CRC press.Lewis, A. L., Katz, M., & Oehrlein, C. (1982). A modified achromatizing lens. Optometry and Vision Science, 59(11), 909–911.Liang, J., & Williams, D. R. (1997). Aberrations and retinal image quality of the normal human eye. Journal of the Optical Society of America A, 14(11), 2873–2883.Loskutova, E., Nolan, J., Howard, A., & Beatty, S. (2013). Macular pigment and its contribution to vision. Nutrients, 5(6), 1962–1969.Lundström, L. (2007). Wavefront Aberrations and Peripheral Vision. Ph.D. thesis, Royal Institute of Technology.Martinez, J. L., Fernandez, E. J., Prieto, P. M., & Artal, P. (2017). Chromatic aberration control with liquid crystal spatial phase modulators. Optics Express, 25(9), 9793–9801.Masland, R. H. (2012). The neuronal organization of the retina. Neuron, 76(2), 266–280.Patel, S., & Alió, J. L. (2012). Corneal refractive index–hydration relationship by objective refractometry. Optometry and Vision Science, 89(11), 1641–1646.Plainis, S., & Pallikaris, I. G. (2008). Ocular monochromatic aberration statistics in a large emmetropic population. Journal of Modern Optics, 55(4-5), 759–772.Pusti, D., Debnath, D., Bang, S., & Yoon, G. (2025). Controlling ocular longitudinal chromatic aberration using a spatial light modulator. Biomedical Optics Express, 16(3), 1240–1253.Rizzi, A., & Bonanomi, C. (2017). The human visual system described through visual illusions. In Colour Design, (pp. 23–41). Elsevier.Roorda, A., Cholewiak, S. A., Bhargava, S., Ivzan, N. H., LaRocca, F., Nankivil, D., & Banks, M. S. (2023). The visual benefits of correcting longitudinal and transverse chromatic aberration. Journal of Vision, 23(2), 3–3.Rucker, F. J., & Kruger, P. B. (2004). Accommodation responses to stimuli in cone contrast space. Vision Research, 44(25), 2931–2944.Rynders, M., Lidkea, B., Chisholm, W., & Thibos, L. N. (1995). Statistical distribution of foveal transverse chromatic aberration, pupil centration, and angle ψ in a population of young adult eyes. Journal of the Optical Society of America A, 12(10), 2348–2357.Rynders, M. C., Navarro, R., & Losada, M. A. (1998). Objective measurement of the off-axis longitudinal chromatic aberration in the human eye. Vision Research, 38(4), 513–522.Siegel, A. F., & Wagner, M. R. (2016). Chapter 15—ANOVA: Testing for differences among many samples and much more. In Practical Business Statistics, 8th ed., (pp. 485–510).Solano, E. C., Alvarado, M. B. C., López, M. T. E., & Monroy, A. D. G. (2010). Regulación ética en investigación con seres humanos en Colombia. Cooperative University of Colombia. URL: https://tinyurl.com/nhzsjhza [accessed 2022-01-10].Suchkov, N., Fernández, E. J., & Artal, P. (2019). Impact of longitudinal chromatic aberration on through-focus visual acuity. Optics Express, 27(24), 35935–35947.Takeda, T., Iida, T., & Fukui, Y. (1990). Dynamic eye accommodation evoked by apparent distances. Optometry and Vision Science, 67(6), 450–455.Thibos, L. N., Bradley, A., Still, D. L., Zhang, X., & Howarth, P. A. (1990). Theory and measurement of ocular chromatic aberration. Vision Research, 30(1), 33–49.Thibos, L. N., Bradley, A., & Zhang, X. (1991). Effect of ocular chromatic aberration on monocular visual performance. Optometry and Vision Science, 68(8), 599–607.Thibos, L. N., Ye, M., Zhang, X., & Bradley, A. (1992). The chromatic eye: a new reduced-eye model of ocular chromatic aberration in humans. Applied Optics, 31(19), 3594–3600.Torres-Sepúlveda, W. (2019). Medidas dinámicas de desempeño visual usando óptica adaptativa y activa. Tesis de doctorado, Universidad de Antioquia. ASESOR Alejandro Mira Agudelo.Van Heel, A. C. S. (1946). Correcting the spherical and chromatic aberrations of the eye. Journal of the Optical Society of America, 36(4), 237–239.Viñas, M., Dorronsoro, C., Cortes, D., Pascual, D., & Marcos, S. (2015). Longitudinal chromatic aberration of the human eye in the visible and near infrared from wavefront sensing, double-pass and psychophysics. Biomedical Optics Express, 6(3), 948–962.Viñas Peña, M. (2015). Polychromatic adaptive optics to evaluate the impact of manipulated optics on vision.Wald, G. (1967). Blue-blindness in the normal fovea. Journal of the Optical Society of America, 57(11), 1289–1301.Whitehead, A. J., Mares, J. A., & Danis, R. P. (2006). Macular pigment: A review of current knowledge. Archives of Ophthalmology, 124(7), 1038–1045.Yoon, G., & Williams, D. R. (2002). Visual performance after correcting the monochromatic and chromatic aberrations of the eye. Journal of the Optical Society of America A, 19(2), 266–275.Zhang, X., Bradley, A., & Thibos, L. N. (1991). Achromatizing the human eye: the problem of chromatic parallax. Journal of the Optical Society of America A, 8(4), 686–691.Zhang, X., Thibos, L. N., & Bradley, A. (1997). Wavelength-dependent magnification and polychromatic image quality in eyes corrected for longitudinal chromatic aberration. Optometry and Vision Science, 74(7), 563–569.AcromatismoAchromatismAcomodación ocularAccommodation, ocularÓptica - MedicionesOptical measurementsVistaVisionAberración cromática longitudinalSimuladores visualesModulador espacial de luzCalidad ópticaOjo humanoODS 3: Salud y bienestar. Garantizar una vida sana y promover el bienestar de todos a todas las edadesPublication7800000ORIGINALOsorioSalome_2025_Aberracion_Cromatica_LongitudinalOsorioSalome_2025_Aberracion_Cromatica_LongitudinalTrabajo de grado de pregradoapplication/pdf9391352https://bibliotecadigital.udea.edu.co/bitstreams/d67e0281-8847-465e-af51-4dba7951edec/downloadeea2bfd8c339d71002ff452d023d7683MD51trueAnonymousREADLICENSElicense.txtlicense.txttext/plain; charset=utf-814837https://bibliotecadigital.udea.edu.co/bitstreams/ffec2235-c824-45a9-bb93-1a356683908d/downloadb76e7a76e24cf2f94b3ce0ae5ed275d0MD52falseAnonymousREADCC-LICENSElicense_rdflicense_rdfapplication/rdf+xml; charset=utf-81160https://bibliotecadigital.udea.edu.co/bitstreams/dba0c17d-92f8-433b-8ea8-1fd8a32e8173/download5643bfd9bcf29d560eeec56d584edaa9MD53falseAnonymousREADTEXTOsorioSalome_2025_Aberracion_Cromatica_Longitudinal.txtOsorioSalome_2025_Aberracion_Cromatica_Longitudinal.txtExtracted texttext/plain102285https://bibliotecadigital.udea.edu.co/bitstreams/6d8cdd8a-5af7-4114-a9aa-74a7b728d372/downloadd2646d20e8ff2e81d193dcb291ad4787MD54falseAnonymousREADTHUMBNAILOsorioSalome_2025_Aberracion_Cromatica_Longitudinal.jpgOsorioSalome_2025_Aberracion_Cromatica_Longitudinal.jpgGenerated Thumbnailimage/jpeg6015https://bibliotecadigital.udea.edu.co/bitstreams/06b41a29-b013-40ff-a5f6-a359e4ac58a2/downloada5649ea82312b46922b8b09bd7a24597MD55falseAnonymousREAD10495/47896oai:bibliotecadigital.udea.edu.co:10495/478962025-10-23 04:09:43.416http://creativecommons.org/licenses/by-nc-sa/4.0/Attribution-NonCommercial-ShareAlike 4.0 Internationalopen.accesshttps://bibliotecadigital.udea.edu.coRepositorio Institucional de la Universidad de Antioquiaaplicacionbibliotecadigitalbiblioteca@udea.edu.coTEEgT0JSQSAoVEFMIFkgQ09NTyBTRSBERUZJTkUgTcOBUyBBREVMQU5URSkgU0UgT1RPUkdBIEJBSk8gTE9TIFRFUk1JTk9TIERFIEVTVEEgTElDRU5DSUEgUMOaQkxJQ0EgREUgQ1JFQVRJVkUgQ09NTU9OUyAo4oCcTFBDQ+KAnSBPIOKAnExJQ0VOQ0lB4oCdKS4gTEEgT0JSQSBFU1TDgSBQUk9URUdJREEgUE9SIERFUkVDSE9TIERFIEFVVE9SIFkvVSBPVFJBUyBMRVlFUyBBUExJQ0FCTEVTLiBRVUVEQSBQUk9ISUJJRE8gQ1VBTFFVSUVSIFVTTyBRVUUgU0UgSEFHQSBERSBMQSBPQlJBIFFVRSBOTyBDVUVOVEUgQ09OIExBIEFVVE9SSVpBQ0nDk04gUEVSVElORU5URSBERSBDT05GT1JNSURBRCBDT04gTE9TIFTDiVJNSU5PUyBERSBFU1RBIExJQ0VOQ0lBIFkgREUgTEEgTEVZIERFIERFUkVDSE8gREUgQVVUT1IuCgpNRURJQU5URSBFTCBFSkVSQ0lDSU8gREUgQ1VBTFFVSUVSQSBERSBMT1MgREVSRUNIT1MgUVVFIFNFIE9UT1JHQU4gRU4gRVNUQSBMSUNFTkNJQSwgVVNURUQgQUNFUFRBIFkgQUNVRVJEQSBRVUVEQVIgT0JMSUdBRE8gRU4gTE9TIFRFUk1JTk9TIFFVRSBTRSBTRcORQUxBTiBFTiBFTExBLiBFTCBMSUNFTkNJQU5URSBDT05DRURFIEEgVVNURUQgTE9TIERFUkVDSE9TIENPTlRFTklET1MgRU4gRVNUQSBMSUNFTkNJQSBDT05ESUNJT05BRE9TIEEgTEEgQUNFUFRBQ0nDk04gREUgU1VTIFRFUk1JTk9TIFkgQ09ORElDSU9ORVMuIAoKMS4gRGVmaW5pY2lvbmVzCmEuIE9icmEgQ29sZWN0aXZhIGVzIHVuYSBvYnJhLCB0YWwgY29tbyB1bmEgcHVibGljYWNpw7NuIHBlcmnDs2RpY2EsIHVuYSBhbnRvbG9nw61hLCBvIHVuYSBlbmNpY2xvcGVkaWEsIGVuIGxhIHF1ZSBsYSBvYnJhIGVuIHN1IHRvdGFsaWRhZCwgc2luIG1vZGlmaWNhY2nDs24gYWxndW5hLCBqdW50byBjb24gdW4gZ3J1cG8gZGUgb3RyYXMgY29udHJpYnVjaW9uZXMgcXVlIGNvbnN0aXR1eWVuIG9icmFzIHNlcGFyYWRhcyBlIGluZGVwZW5kaWVudGVzIGVuIHPDrSBtaXNtYXMsIHNlIGludGVncmFuIGVuIHVuIHRvZG8gY29sZWN0aXZvLiBVbmEgT2JyYSBxdWUgY29uc3RpdHV5ZSB1bmEgb2JyYSBjb2xlY3RpdmEgbm8gc2UgY29uc2lkZXJhcsOhIHVuYSBPYnJhIERlcml2YWRhIChjb21vIHNlIGRlZmluZSBhYmFqbykgcGFyYSBsb3MgcHJvcMOzc2l0b3MgZGUgZXN0YSBsaWNlbmNpYS4gYXF1ZWxsYSBwcm9kdWNpZGEgcG9yIHVuIGdydXBvIGRlIGF1dG9yZXMsIGVuIHF1ZSBsYSBPYnJhIHNlIGVuY3VlbnRyYSBzaW4gbW9kaWZpY2FjaW9uZXMsIGp1bnRvIGNvbiB1bmEgY2llcnRhIGNhbnRpZGFkIGRlIG90cmFzIGNvbnRyaWJ1Y2lvbmVzLCBxdWUgY29uc3RpdHV5ZW4gZW4gc8OtIG1pc21vcyB0cmFiYWpvcyBzZXBhcmFkb3MgZSBpbmRlcGVuZGllbnRlcywgcXVlIHNvbiBpbnRlZ3JhZG9zIGFsIHRvZG8gY29sZWN0aXZvLCB0YWxlcyBjb21vIHB1YmxpY2FjaW9uZXMgcGVyacOzZGljYXMsIGFudG9sb2fDrWFzIG8gZW5jaWNsb3BlZGlhcy4KYi4gT2JyYSBEZXJpdmFkYSBzaWduaWZpY2EgdW5hIG9icmEgYmFzYWRhIGVuIGxhIG9icmEgb2JqZXRvIGRlIGVzdGEgbGljZW5jaWEgbyBlbiDDqXN0YSB5IG90cmFzIG9icmFzIHByZWV4aXN0ZW50ZXMsIHRhbGVzIGNvbW8gdHJhZHVjY2lvbmVzLCBhcnJlZ2xvcyBtdXNpY2FsZXMsIGRyYW1hdGl6YWNpb25lcywg4oCcZmljY2lvbmFsaXphY2lvbmVz4oCdLCB2ZXJzaW9uZXMgcGFyYSBjaW5lLCDigJxncmFiYWNpb25lcyBkZSBzb25pZG/igJ0sIHJlcHJvZHVjY2lvbmVzIGRlIGFydGUsIHJlc8O6bWVuZXMsIGNvbmRlbnNhY2lvbmVzLCBvIGN1YWxxdWllciBvdHJhIGVuIGxhIHF1ZSBsYSBvYnJhIHB1ZWRhIHNlciB0cmFuc2Zvcm1hZGEsIGNhbWJpYWRhIG8gYWRhcHRhZGEsIGV4Y2VwdG8gYXF1ZWxsYXMgcXVlIGNvbnN0aXR1eWFuIHVuYSBvYnJhIGNvbGVjdGl2YSwgbGFzIHF1ZSBubyBzZXLDoW4gY29uc2lkZXJhZGFzIHVuYSBvYnJhIGRlcml2YWRhIHBhcmEgZWZlY3RvcyBkZSBlc3RhIGxpY2VuY2lhLiAoUGFyYSBldml0YXIgZHVkYXMsIGVuIGVsIGNhc28gZGUgcXVlIGxhIE9icmEgc2VhIHVuYSBjb21wb3NpY2nDs24gbXVzaWNhbCBvIHVuYSBncmFiYWNpw7NuIHNvbm9yYSwgcGFyYSBsb3MgZWZlY3RvcyBkZSBlc3RhIExpY2VuY2lhIGxhIHNpbmNyb25pemFjacOzbiB0ZW1wb3JhbCBkZSBsYSBPYnJhIGNvbiB1bmEgaW1hZ2VuIGVuIG1vdmltaWVudG8gc2UgY29uc2lkZXJhcsOhIHVuYSBPYnJhIERlcml2YWRhIHBhcmEgbG9zIGZpbmVzIGRlIGVzdGEgbGljZW5jaWEpLgpjLiBMaWNlbmNpYW50ZSwgZXMgZWwgaW5kaXZpZHVvIG8gbGEgZW50aWRhZCB0aXR1bGFyIGRlIGxvcyBkZXJlY2hvcyBkZSBhdXRvciBxdWUgb2ZyZWNlIGxhIE9icmEgZW4gY29uZm9ybWlkYWQgY29uIGxhcyBjb25kaWNpb25lcyBkZSBlc3RhIExpY2VuY2lhLgpkLiBBdXRvciBvcmlnaW5hbCwgZXMgZWwgaW5kaXZpZHVvIHF1ZSBjcmXDsyBsYSBPYnJhLgplLiBPYnJhLCBlcyBhcXVlbGxhIG9icmEgc3VzY2VwdGlibGUgZGUgcHJvdGVjY2nDs24gcG9yIGVsIHLDqWdpbWVuIGRlIERlcmVjaG8gZGUgQXV0b3IgeSBxdWUgZXMgb2ZyZWNpZGEgZW4gbG9zIHTDqXJtaW5vcyBkZSBlc3RhIGxpY2VuY2lhCmYuIFVzdGVkLCBlcyBlbCBpbmRpdmlkdW8gbyBsYSBlbnRpZGFkIHF1ZSBlamVyY2l0YSBsb3MgZGVyZWNob3Mgb3RvcmdhZG9zIGFsIGFtcGFybyBkZSBlc3RhIExpY2VuY2lhIHkgcXVlIGNvbiBhbnRlcmlvcmlkYWQgbm8gaGEgdmlvbGFkbyBsYXMgY29uZGljaW9uZXMgZGUgbGEgbWlzbWEgcmVzcGVjdG8gYSBsYSBPYnJhLCBvIHF1ZSBoYXlhIG9idGVuaWRvIGF1dG9yaXphY2nDs24gZXhwcmVzYSBwb3IgcGFydGUgZGVsIExpY2VuY2lhbnRlIHBhcmEgZWplcmNlciBsb3MgZGVyZWNob3MgYWwgYW1wYXJvIGRlIGVzdGEgTGljZW5jaWEgcGVzZSBhIHVuYSB2aW9sYWNpw7NuIGFudGVyaW9yLgoJICAKMi4gRGVyZWNob3MgZGUgVXNvcyBIb25yYWRvcyB5IGV4Y2VwY2lvbmVzIExlZ2FsZXMuCk5hZGEgZW4gZXN0YSBMaWNlbmNpYSBwb2Ryw6Egc2VyIGludGVycHJldGFkbyBjb21vIHVuYSBkaXNtaW51Y2nDs24sIGxpbWl0YWNpw7NuIG8gcmVzdHJpY2Npw7NuIGRlIGxvcyBkZXJlY2hvcyBkZXJpdmFkb3MgZGVsIHVzbyBob25yYWRvIHkgb3RyYXMgbGltaXRhY2lvbmVzIG8gZXhjZXBjaW9uZXMgYSBsb3MgZGVyZWNob3MgZGVsIGF1dG9yIGJham8gZWwgcsOpZ2ltZW4gbGVnYWwgdmlnZW50ZSBvIGRlcml2YWRvIGRlIGN1YWxxdWllciBvdHJhIG5vcm1hIHF1ZSBzZSBsZSBhcGxpcXVlLgogIAozLiBDb25jZXNpw7NuIGRlIGxhIExpY2VuY2lhLgpCYWpvIGxvcyB0w6lybWlub3MgeSBjb25kaWNpb25lcyBkZSBlc3RhIExpY2VuY2lhLCBlbCBMaWNlbmNpYW50ZSBvdG9yZ2EgYSBVc3RlZCB1bmEgbGljZW5jaWEgbXVuZGlhbCwgbGlicmUgZGUgcmVnYWzDrWFzLCBubyBleGNsdXNpdmEgeSBwZXJwZXR1YSAoZHVyYW50ZSB0b2RvIGVsIHBlcsOtb2RvIGRlIHZpZ2VuY2lhIGRlIGxvcyBkZXJlY2hvcyBkZSBhdXRvcikgcGFyYSBlamVyY2VyIGVzdG9zIGRlcmVjaG9zIHNvYnJlIGxhIE9icmEgdGFsIHkgY29tbyBzZSBpbmRpY2EgYSBjb250aW51YWNpw7NuOgphLiBSZXByb2R1Y2lyIGxhIE9icmEsIGluY29ycG9yYXIgbGEgT2JyYSBlbiB1bmEgbyBtw6FzIE9icmFzIENvbGVjdGl2YXMsIHkgcmVwcm9kdWNpciBsYSBPYnJhIGluY29ycG9yYWRhIGVuIGxhcyBPYnJhcyBDb2xlY3RpdmFzLgpiLiBEaXN0cmlidWlyIGNvcGlhcyBvIGZvbm9ncmFtYXMgZGUgbGFzIE9icmFzLCBleGhpYmlybGFzIHDDumJsaWNhbWVudGUsIGVqZWN1dGFybGFzIHDDumJsaWNhbWVudGUgeS9vIHBvbmVybGFzIGEgZGlzcG9zaWNpw7NuIHDDumJsaWNhLCBpbmNsdXnDqW5kb2xhcyBjb21vIGluY29ycG9yYWRhcyBlbiBPYnJhcyBDb2xlY3RpdmFzLCBzZWfDum4gY29ycmVzcG9uZGEuCmMuIERpc3RyaWJ1aXIgY29waWFzIGRlIGxhcyBPYnJhcyBEZXJpdmFkYXMgcXVlIHNlIGdlbmVyZW4sIGV4aGliaXJsYXMgcMO6YmxpY2FtZW50ZSwgZWplY3V0YXJsYXMgcMO6YmxpY2FtZW50ZSB5L28gcG9uZXJsYXMgYSBkaXNwb3NpY2nDs24gcMO6YmxpY2EuCgpMb3MgZGVyZWNob3MgbWVuY2lvbmFkb3MgYW50ZXJpb3JtZW50ZSBwdWVkZW4gc2VyIGVqZXJjaWRvcyBlbiB0b2RvcyBsb3MgbWVkaW9zIHkgZm9ybWF0b3MsIGFjdHVhbG1lbnRlIGNvbm9jaWRvcyBvIHF1ZSBzZSBpbnZlbnRlbiBlbiBlbCBmdXR1cm8uIExvcyBkZXJlY2hvcyBhbnRlcyBtZW5jaW9uYWRvcyBpbmNsdXllbiBlbCBkZXJlY2hvIGEgcmVhbGl6YXIgZGljaGFzIG1vZGlmaWNhY2lvbmVzIGVuIGxhIG1lZGlkYSBxdWUgc2VhbiB0w6ljbmljYW1lbnRlIG5lY2VzYXJpYXMgcGFyYSBlamVyY2VyIGxvcyBkZXJlY2hvcyBlbiBvdHJvIG1lZGlvIG8gZm9ybWF0b3MsIHBlcm8gZGUgb3RyYSBtYW5lcmEgdXN0ZWQgbm8gZXN0w6EgYXV0b3JpemFkbyBwYXJhIHJlYWxpemFyIG9icmFzIGRlcml2YWRhcy4gVG9kb3MgbG9zIGRlcmVjaG9zIG5vIG90b3JnYWRvcyBleHByZXNhbWVudGUgcG9yIGVsIExpY2VuY2lhbnRlIHF1ZWRhbiBwb3IgZXN0ZSBtZWRpbyByZXNlcnZhZG9zLCBpbmNsdXllbmRvIHBlcm8gc2luIGxpbWl0YXJzZSBhIGFxdWVsbG9zIHF1ZSBzZSBtZW5jaW9uYW4gZW4gbGFzIHNlY2Npb25lcyA0KGQpIHkgNChlKS4KICAgIAo0LiBSZXN0cmljY2lvbmVzLgpMYSBsaWNlbmNpYSBvdG9yZ2FkYSBlbiBsYSBhbnRlcmlvciBTZWNjacOzbiAzIGVzdMOhIGV4cHJlc2FtZW50ZSBzdWpldGEgeSBsaW1pdGFkYSBwb3IgbGFzIHNpZ3VpZW50ZXMgcmVzdHJpY2Npb25lczoKYS4gVXN0ZWQgcHVlZGUgZGlzdHJpYnVpciwgZXhoaWJpciBww7pibGljYW1lbnRlLCBlamVjdXRhciBww7pibGljYW1lbnRlLCBvIHBvbmVyIGEgZGlzcG9zaWNpw7NuIHDDumJsaWNhIGxhIE9icmEgc8OzbG8gYmFqbyBsYXMgY29uZGljaW9uZXMgZGUgZXN0YSBMaWNlbmNpYSwgeSBVc3RlZCBkZWJlIGluY2x1aXIgdW5hIGNvcGlhIGRlIGVzdGEgbGljZW5jaWEgbyBkZWwgSWRlbnRpZmljYWRvciBVbml2ZXJzYWwgZGUgUmVjdXJzb3MgZGUgbGEgbWlzbWEgY29uIGNhZGEgY29waWEgZGUgbGEgT2JyYSBxdWUgZGlzdHJpYnV5YSwgZXhoaWJhIHDDumJsaWNhbWVudGUsIGVqZWN1dGUgcMO6YmxpY2FtZW50ZSBvIHBvbmdhIGEgZGlzcG9zaWNpw7NuIHDDumJsaWNhLiBObyBlcyBwb3NpYmxlIG9mcmVjZXIgbyBpbXBvbmVyIG5pbmd1bmEgY29uZGljacOzbiBzb2JyZSBsYSBPYnJhIHF1ZSBhbHRlcmUgbyBsaW1pdGUgbGFzIGNvbmRpY2lvbmVzIGRlIGVzdGEgTGljZW5jaWEgbyBlbCBlamVyY2ljaW8gZGUgbG9zIGRlcmVjaG9zIGRlIGxvcyBkZXN0aW5hdGFyaW9zIG90b3JnYWRvcyBlbiBlc3RlIGRvY3VtZW50by4gTm8gZXMgcG9zaWJsZSBzdWJsaWNlbmNpYXIgbGEgT2JyYS4gVXN0ZWQgZGViZSBtYW50ZW5lciBpbnRhY3RvcyB0b2RvcyBsb3MgYXZpc29zIHF1ZSBoYWdhbiByZWZlcmVuY2lhIGEgZXN0YSBMaWNlbmNpYSB5IGEgbGEgY2zDoXVzdWxhIGRlIGxpbWl0YWNpw7NuIGRlIGdhcmFudMOtYXMuIFVzdGVkIG5vIHB1ZWRlIGRpc3RyaWJ1aXIsIGV4aGliaXIgcMO6YmxpY2FtZW50ZSwgZWplY3V0YXIgcMO6YmxpY2FtZW50ZSwgbyBwb25lciBhIGRpc3Bvc2ljacOzbiBww7pibGljYSBsYSBPYnJhIGNvbiBhbGd1bmEgbWVkaWRhIHRlY25vbMOzZ2ljYSBxdWUgY29udHJvbGUgZWwgYWNjZXNvIG8gbGEgdXRpbGl6YWNpw7NuIGRlIGVsbGEgZGUgdW5hIGZvcm1hIHF1ZSBzZWEgaW5jb25zaXN0ZW50ZSBjb24gbGFzIGNvbmRpY2lvbmVzIGRlIGVzdGEgTGljZW5jaWEuIExvIGFudGVyaW9yIHNlIGFwbGljYSBhIGxhIE9icmEgaW5jb3Jwb3JhZGEgYSB1bmEgT2JyYSBDb2xlY3RpdmEsIHBlcm8gZXN0byBubyBleGlnZSBxdWUgbGEgT2JyYSBDb2xlY3RpdmEgYXBhcnRlIGRlIGxhIG9icmEgbWlzbWEgcXVlZGUgc3VqZXRhIGEgbGFzIGNvbmRpY2lvbmVzIGRlIGVzdGEgTGljZW5jaWEuIFNpIFVzdGVkIGNyZWEgdW5hIE9icmEgQ29sZWN0aXZhLCBwcmV2aW8gYXZpc28gZGUgY3VhbHF1aWVyIExpY2VuY2lhbnRlIGRlYmUsIGVuIGxhIG1lZGlkYSBkZSBsbyBwb3NpYmxlLCBlbGltaW5hciBkZSBsYSBPYnJhIENvbGVjdGl2YSBjdWFscXVpZXIgcmVmZXJlbmNpYSBhIGRpY2hvIExpY2VuY2lhbnRlIG8gYWwgQXV0b3IgT3JpZ2luYWwsIHNlZ8O6biBsbyBzb2xpY2l0YWRvIHBvciBlbCBMaWNlbmNpYW50ZSB5IGNvbmZvcm1lIGxvIGV4aWdlIGxhIGNsw6F1c3VsYSA0KGMpLgpiLiBVc3RlZCBubyBwdWVkZSBlamVyY2VyIG5pbmd1bm8gZGUgbG9zIGRlcmVjaG9zIHF1ZSBsZSBoYW4gc2lkbyBvdG9yZ2Fkb3MgZW4gbGEgU2VjY2nDs24gMyBwcmVjZWRlbnRlIGRlIG1vZG8gcXVlIGVzdMOpbiBwcmluY2lwYWxtZW50ZSBkZXN0aW5hZG9zIG8gZGlyZWN0YW1lbnRlIGRpcmlnaWRvcyBhIGNvbnNlZ3VpciB1biBwcm92ZWNobyBjb21lcmNpYWwgbyB1bmEgY29tcGVuc2FjacOzbiBtb25ldGFyaWEgcHJpdmFkYS4gRWwgaW50ZXJjYW1iaW8gZGUgbGEgT2JyYSBwb3Igb3RyYXMgb2JyYXMgcHJvdGVnaWRhcyBwb3IgZGVyZWNob3MgZGUgYXV0b3IsIHlhIHNlYSBhIHRyYXbDqXMgZGUgdW4gc2lzdGVtYSBwYXJhIGNvbXBhcnRpciBhcmNoaXZvcyBkaWdpdGFsZXMgKGRpZ2l0YWwgZmlsZS1zaGFyaW5nKSBvIGRlIGN1YWxxdWllciBvdHJhIG1hbmVyYSBubyBzZXLDoSBjb25zaWRlcmFkbyBjb21vIGVzdGFyIGRlc3RpbmFkbyBwcmluY2lwYWxtZW50ZSBvIGRpcmlnaWRvIGRpcmVjdGFtZW50ZSBhIGNvbnNlZ3VpciB1biBwcm92ZWNobyBjb21lcmNpYWwgbyB1bmEgY29tcGVuc2FjacOzbiBtb25ldGFyaWEgcHJpdmFkYSwgc2llbXByZSBxdWUgbm8gc2UgcmVhbGljZSB1biBwYWdvIG1lZGlhbnRlIHVuYSBjb21wZW5zYWNpw7NuIG1vbmV0YXJpYSBlbiByZWxhY2nDs24gY29uIGVsIGludGVyY2FtYmlvIGRlIG9icmFzIHByb3RlZ2lkYXMgcG9yIGVsIGRlcmVjaG8gZGUgYXV0b3IuCmMuIFNpIHVzdGVkIGRpc3RyaWJ1eWUsIGV4aGliZSBww7pibGljYW1lbnRlLCBlamVjdXRhIHDDumJsaWNhbWVudGUgbyBlamVjdXRhIHDDumJsaWNhbWVudGUgZW4gZm9ybWEgZGlnaXRhbCBsYSBPYnJhIG8gY3VhbHF1aWVyIE9icmEgRGVyaXZhZGEgdSBPYnJhIENvbGVjdGl2YSwgVXN0ZWQgZGViZSBtYW50ZW5lciBpbnRhY3RhIHRvZGEgbGEgaW5mb3JtYWNpw7NuIGRlIGRlcmVjaG8gZGUgYXV0b3IgZGUgbGEgT2JyYSB5IHByb3BvcmNpb25hciwgZGUgZm9ybWEgcmF6b25hYmxlIHNlZ8O6biBlbCBtZWRpbyBvIG1hbmVyYSBxdWUgVXN0ZWQgZXN0w6kgdXRpbGl6YW5kbzogKGkpIGVsIG5vbWJyZSBkZWwgQXV0b3IgT3JpZ2luYWwgc2kgZXN0w6EgcHJvdmlzdG8gKG8gc2V1ZMOzbmltbywgc2kgZnVlcmUgYXBsaWNhYmxlKSwgeS9vIChpaSkgZWwgbm9tYnJlIGRlIGxhIHBhcnRlIG8gbGFzIHBhcnRlcyBxdWUgZWwgQXV0b3IgT3JpZ2luYWwgeS9vIGVsIExpY2VuY2lhbnRlIGh1YmllcmVuIGRlc2lnbmFkbyBwYXJhIGxhIGF0cmlidWNpw7NuICh2LmcuLCB1biBpbnN0aXR1dG8gcGF0cm9jaW5hZG9yLCBlZGl0b3JpYWwsIHB1YmxpY2FjacOzbikgZW4gbGEgaW5mb3JtYWNpw7NuIGRlIGxvcyBkZXJlY2hvcyBkZSBhdXRvciBkZWwgTGljZW5jaWFudGUsIHTDqXJtaW5vcyBkZSBzZXJ2aWNpb3MgbyBkZSBvdHJhcyBmb3JtYXMgcmF6b25hYmxlczsgZWwgdMOtdHVsbyBkZSBsYSBPYnJhIHNpIGVzdMOhIHByb3Zpc3RvOyBlbiBsYSBtZWRpZGEgZGUgbG8gcmF6b25hYmxlbWVudGUgZmFjdGlibGUgeSwgc2kgZXN0w6EgcHJvdmlzdG8sIGVsIElkZW50aWZpY2Fkb3IgVW5pZm9ybWUgZGUgUmVjdXJzb3MgKFVuaWZvcm0gUmVzb3VyY2UgSWRlbnRpZmllcikgcXVlIGVsIExpY2VuY2lhbnRlIGVzcGVjaWZpY2EgcGFyYSBzZXIgYXNvY2lhZG8gY29uIGxhIE9icmEsIHNhbHZvIHF1ZSB0YWwgVVJJIG5vIHNlIHJlZmllcmEgYSBsYSBub3RhIHNvYnJlIGxvcyBkZXJlY2hvcyBkZSBhdXRvciBvIGEgbGEgaW5mb3JtYWNpw7NuIHNvYnJlIGVsIGxpY2VuY2lhbWllbnRvIGRlIGxhIE9icmE7IHkgZW4gZWwgY2FzbyBkZSB1bmEgT2JyYSBEZXJpdmFkYSwgYXRyaWJ1aXIgZWwgY3LDqWRpdG8gaWRlbnRpZmljYW5kbyBlbCB1c28gZGUgbGEgT2JyYSBlbiBsYSBPYnJhIERlcml2YWRhICh2LmcuLCAiVHJhZHVjY2nDs24gRnJhbmNlc2EgZGUgbGEgT2JyYSBkZWwgQXV0b3IgT3JpZ2luYWwsIiBvICJHdWnDs24gQ2luZW1hdG9ncsOhZmljbyBiYXNhZG8gZW4gbGEgT2JyYSBvcmlnaW5hbCBkZWwgQXV0b3IgT3JpZ2luYWwiKS4gVGFsIGNyw6lkaXRvIHB1ZWRlIHNlciBpbXBsZW1lbnRhZG8gZGUgY3VhbHF1aWVyIGZvcm1hIHJhem9uYWJsZTsgZW4gZWwgY2Fzbywgc2luIGVtYmFyZ28sIGRlIE9icmFzIERlcml2YWRhcyB1IE9icmFzIENvbGVjdGl2YXMsIHRhbCBjcsOpZGl0byBhcGFyZWNlcsOhLCBjb21vIG3DrW5pbW8sIGRvbmRlIGFwYXJlY2UgZWwgY3LDqWRpdG8gZGUgY3VhbHF1aWVyIG90cm8gYXV0b3IgY29tcGFyYWJsZSB5IGRlIHVuYSBtYW5lcmEsIGFsIG1lbm9zLCB0YW4gZGVzdGFjYWRhIGNvbW8gZWwgY3LDqWRpdG8gZGUgb3RybyBhdXRvciBjb21wYXJhYmxlLiAgCmQuIFBhcmEgZXZpdGFyIHRvZGEgY29uZnVzacOzbiwgZWwgTGljZW5jaWFudGUgYWNsYXJhIHF1ZSwgY3VhbmRvIGxhIG9icmEgZXMgdW5hIGNvbXBvc2ljacOzbiBtdXNpY2FsOgoKaS4gUmVnYWzDrWFzIHBvciBpbnRlcnByZXRhY2nDs24geSBlamVjdWNpw7NuIGJham8gbGljZW5jaWFzIGdlbmVyYWxlcy4gRWwgTGljZW5jaWFudGUgc2UgcmVzZXJ2YSBlbCBkZXJlY2hvIGV4Y2x1c2l2byBkZSBhdXRvcml6YXIgbGEgZWplY3VjacOzbiBww7pibGljYSBvIGxhIGVqZWN1Y2nDs24gcMO6YmxpY2EgZGlnaXRhbCBkZSBsYSBvYnJhIHkgZGUgcmVjb2xlY3Rhciwgc2VhIGluZGl2aWR1YWxtZW50ZSBvIGEgdHJhdsOpcyBkZSB1bmEgc29jaWVkYWQgZGUgZ2VzdGnDs24gY29sZWN0aXZhIGRlIGRlcmVjaG9zIGRlIGF1dG9yIHkgZGVyZWNob3MgY29uZXhvcyAocG9yIGVqZW1wbG8sIFNBWUNPKSwgbGFzIHJlZ2Fsw61hcyBwb3IgbGEgZWplY3VjacOzbiBww7pibGljYSBvIHBvciBsYSBlamVjdWNpw7NuIHDDumJsaWNhIGRpZ2l0YWwgZGUgbGEgb2JyYSAocG9yIGVqZW1wbG8gV2ViY2FzdCkgbGljZW5jaWFkYSBiYWpvIGxpY2VuY2lhcyBnZW5lcmFsZXMsIHNpIGxhIGludGVycHJldGFjacOzbiBvIGVqZWN1Y2nDs24gZGUgbGEgb2JyYSBlc3TDoSBwcmltb3JkaWFsbWVudGUgb3JpZW50YWRhIHBvciBvIGRpcmlnaWRhIGEgbGEgb2J0ZW5jacOzbiBkZSB1bmEgdmVudGFqYSBjb21lcmNpYWwgbyB1bmEgY29tcGVuc2FjacOzbiBtb25ldGFyaWEgcHJpdmFkYS4KaWkuIFJlZ2Fsw61hcyBwb3IgRm9ub2dyYW1hcy4gRWwgTGljZW5jaWFudGUgc2UgcmVzZXJ2YSBlbCBkZXJlY2hvIGV4Y2x1c2l2byBkZSByZWNvbGVjdGFyLCBpbmRpdmlkdWFsbWVudGUgbyBhIHRyYXbDqXMgZGUgdW5hIHNvY2llZGFkIGRlIGdlc3Rpw7NuIGNvbGVjdGl2YSBkZSBkZXJlY2hvcyBkZSBhdXRvciB5IGRlcmVjaG9zIGNvbmV4b3MgKHBvciBlamVtcGxvLCBsb3MgY29uc2FncmFkb3MgcG9yIGxhIFNBWUNPKSwgdW5hIGFnZW5jaWEgZGUgZGVyZWNob3MgbXVzaWNhbGVzIG8gYWxnw7puIGFnZW50ZSBkZXNpZ25hZG8sIGxhcyByZWdhbMOtYXMgcG9yIGN1YWxxdWllciBmb25vZ3JhbWEgcXVlIFVzdGVkIGNyZWUgYSBwYXJ0aXIgZGUgbGEgb2JyYSAo4oCcdmVyc2nDs24gY292ZXLigJ0pIHkgZGlzdHJpYnV5YSwgZW4gbG9zIHTDqXJtaW5vcyBkZWwgcsOpZ2ltZW4gZGUgZGVyZWNob3MgZGUgYXV0b3IsIHNpIGxhIGNyZWFjacOzbiBvIGRpc3RyaWJ1Y2nDs24gZGUgZXNhIHZlcnNpw7NuIGNvdmVyIGVzdMOhIHByaW1vcmRpYWxtZW50ZSBkZXN0aW5hZGEgbyBkaXJpZ2lkYSBhIG9idGVuZXIgdW5hIHZlbnRhamEgY29tZXJjaWFsIG8gdW5hIGNvbXBlbnNhY2nDs24gbW9uZXRhcmlhIHByaXZhZGEuCiAgICAgIAplLiBHZXN0acOzbiBkZSBEZXJlY2hvcyBkZSBBdXRvciBzb2JyZSBJbnRlcnByZXRhY2lvbmVzIHkgRWplY3VjaW9uZXMgRGlnaXRhbGVzIChXZWJDYXN0aW5nKS4gUGFyYSBldml0YXIgdG9kYSBjb25mdXNpw7NuLCBlbCBMaWNlbmNpYW50ZSBhY2xhcmEgcXVlLCBjdWFuZG8gbGEgb2JyYSBzZWEgdW4gZm9ub2dyYW1hLCBlbCBMaWNlbmNpYW50ZSBzZSByZXNlcnZhIGVsIGRlcmVjaG8gZXhjbHVzaXZvIGRlIGF1dG9yaXphciBsYSBlamVjdWNpw7NuIHDDumJsaWNhIGRpZ2l0YWwgZGUgbGEgb2JyYSAocG9yIGVqZW1wbG8sIHdlYmNhc3QpIHkgZGUgcmVjb2xlY3RhciwgaW5kaXZpZHVhbG1lbnRlIG8gYSB0cmF2w6lzIGRlIHVuYSBzb2NpZWRhZCBkZSBnZXN0acOzbiBjb2xlY3RpdmEgZGUgZGVyZWNob3MgZGUgYXV0b3IgeSBkZXJlY2hvcyBjb25leG9zIChwb3IgZWplbXBsbywgQUNJTlBSTyksIGxhcyByZWdhbMOtYXMgcG9yIGxhIGVqZWN1Y2nDs24gcMO6YmxpY2EgZGlnaXRhbCBkZSBsYSBvYnJhIChwb3IgZWplbXBsbywgd2ViY2FzdCksIHN1amV0YSBhIGxhcyBkaXNwb3NpY2lvbmVzIGFwbGljYWJsZXMgZGVsIHLDqWdpbWVuIGRlIERlcmVjaG8gZGUgQXV0b3IsIHNpIGVzdGEgZWplY3VjacOzbiBww7pibGljYSBkaWdpdGFsIGVzdMOhIHByaW1vcmRpYWxtZW50ZSBkaXJpZ2lkYSBhIG9idGVuZXIgdW5hIHZlbnRhamEgY29tZXJjaWFsIG8gdW5hIGNvbXBlbnNhY2nDs24gbW9uZXRhcmlhIHByaXZhZGEuCiAgCjUuIFJlcHJlc2VudGFjaW9uZXMsIEdhcmFudMOtYXMgeSBMaW1pdGFjaW9uZXMgZGUgUmVzcG9uc2FiaWxpZGFkLgpBIE1FTk9TIFFVRSBMQVMgUEFSVEVTIExPIEFDT1JEQVJBTiBERSBPVFJBIEZPUk1BIFBPUiBFU0NSSVRPLCBFTCBMSUNFTkNJQU5URSBPRlJFQ0UgTEEgT0JSQSAoRU4gRUwgRVNUQURPIEVOIEVMIFFVRSBTRSBFTkNVRU5UUkEpIOKAnFRBTCBDVUFM4oCdLCBTSU4gQlJJTkRBUiBHQVJBTlTDjUFTIERFIENMQVNFIEFMR1VOQSBSRVNQRUNUTyBERSBMQSBPQlJBLCBZQSBTRUEgRVhQUkVTQSwgSU1QTMONQ0lUQSwgTEVHQUwgTyBDVUFMUVVJRVJBIE9UUkEsIElOQ0xVWUVORE8sIFNJTiBMSU1JVEFSU0UgQSBFTExBUywgR0FSQU5Uw41BUyBERSBUSVRVTEFSSURBRCwgQ09NRVJDSUFCSUxJREFELCBBREFQVEFCSUxJREFEIE8gQURFQ1VBQ0nDk04gQSBQUk9Qw5NTSVRPIERFVEVSTUlOQURPLCBBVVNFTkNJQSBERSBJTkZSQUNDScOTTiwgREUgQVVTRU5DSUEgREUgREVGRUNUT1MgTEFURU5URVMgTyBERSBPVFJPIFRJUE8sIE8gTEEgUFJFU0VOQ0lBIE8gQVVTRU5DSUEgREUgRVJST1JFUywgU0VBTiBPIE5PIERFU0NVQlJJQkxFUyAoUFVFREFOIE8gTk8gU0VSIEVTVE9TIERFU0NVQklFUlRPUykuIEFMR1VOQVMgSlVSSVNESUNDSU9ORVMgTk8gUEVSTUlURU4gTEEgRVhDTFVTScOTTiBERSBHQVJBTlTDjUFTIElNUEzDjUNJVEFTLCBFTiBDVVlPIENBU08gRVNUQSBFWENMVVNJw5NOIFBVRURFIE5PIEFQTElDQVJTRSBBIFVTVEVELgogIAo2LiBMaW1pdGFjacOzbiBkZSByZXNwb25zYWJpbGlkYWQuCkEgTUVOT1MgUVVFIExPIEVYSUpBIEVYUFJFU0FNRU5URSBMQSBMRVkgQVBMSUNBQkxFLCBFTCBMSUNFTkNJQU5URSBOTyBTRVLDgSBSRVNQT05TQUJMRSBBTlRFIFVTVEVEIFBPUiBEQcORTyBBTEdVTk8sIFNFQSBQT1IgUkVTUE9OU0FCSUxJREFEIEVYVFJBQ09OVFJBQ1RVQUwsIFBSRUNPTlRSQUNUVUFMIE8gQ09OVFJBQ1RVQUwsIE9CSkVUSVZBIE8gU1VCSkVUSVZBLCBTRSBUUkFURSBERSBEQcORT1MgTU9SQUxFUyBPIFBBVFJJTU9OSUFMRVMsIERJUkVDVE9TIE8gSU5ESVJFQ1RPUywgUFJFVklTVE9TIE8gSU1QUkVWSVNUT1MgUFJPRFVDSURPUyBQT1IgRUwgVVNPIERFIEVTVEEgTElDRU5DSUEgTyBERSBMQSBPQlJBLCBBVU4gQ1VBTkRPIEVMIExJQ0VOQ0lBTlRFIEhBWUEgU0lETyBBRFZFUlRJRE8gREUgTEEgUE9TSUJJTElEQUQgREUgRElDSE9TIERBw5FPUy4gQUxHVU5BUyBMRVlFUyBOTyBQRVJNSVRFTiBMQSBFWENMVVNJw5NOIERFIENJRVJUQSBSRVNQT05TQUJJTElEQUQsIEVOIENVWU8gQ0FTTyBFU1RBIEVYQ0xVU0nDk04gUFVFREUgTk8gQVBMSUNBUlNFIEEgVVNURUQuCiAgCjcuIFTDqXJtaW5vLgkKYS4gRXN0YSBMaWNlbmNpYSB5IGxvcyBkZXJlY2hvcyBvdG9yZ2Fkb3MgZW4gdmlydHVkIGRlIGVsbGEgdGVybWluYXLDoW4gYXV0b23DoXRpY2FtZW50ZSBzaSBVc3RlZCBpbmZyaW5nZSBhbGd1bmEgY29uZGljacOzbiBlc3RhYmxlY2lkYSBlbiBlbGxhLiBTaW4gZW1iYXJnbywgbG9zIGluZGl2aWR1b3MgbyBlbnRpZGFkZXMgcXVlIGhhbiByZWNpYmlkbyBPYnJhcyBEZXJpdmFkYXMgbyBDb2xlY3RpdmFzIGRlIFVzdGVkIGRlIGNvbmZvcm1pZGFkIGNvbiBlc3RhIExpY2VuY2lhLCBubyB2ZXLDoW4gdGVybWluYWRhcyBzdXMgbGljZW5jaWFzLCBzaWVtcHJlIHF1ZSBlc3RvcyBpbmRpdmlkdW9zIG8gZW50aWRhZGVzIHNpZ2FuIGN1bXBsaWVuZG8gw61udGVncmFtZW50ZSBsYXMgY29uZGljaW9uZXMgZGUgZXN0YXMgbGljZW5jaWFzLiBMYXMgU2VjY2lvbmVzIDEsIDIsIDUsIDYsIDcsIHkgOCBzdWJzaXN0aXLDoW4gYSBjdWFscXVpZXIgdGVybWluYWNpw7NuIGRlIGVzdGEgTGljZW5jaWEuCmIuIFN1amV0YSBhIGxhcyBjb25kaWNpb25lcyB5IHTDqXJtaW5vcyBhbnRlcmlvcmVzLCBsYSBsaWNlbmNpYSBvdG9yZ2FkYSBhcXXDrSBlcyBwZXJwZXR1YSAoZHVyYW50ZSBlbCBwZXLDrW9kbyBkZSB2aWdlbmNpYSBkZSBsb3MgZGVyZWNob3MgZGUgYXV0b3IgZGUgbGEgb2JyYSkuIE5vIG9ic3RhbnRlIGxvIGFudGVyaW9yLCBlbCBMaWNlbmNpYW50ZSBzZSByZXNlcnZhIGVsIGRlcmVjaG8gYSBwdWJsaWNhciB5L28gZXN0cmVuYXIgbGEgT2JyYSBiYWpvIGNvbmRpY2lvbmVzIGRlIGxpY2VuY2lhIGRpZmVyZW50ZXMgbyBhIGRlamFyIGRlIGRpc3RyaWJ1aXJsYSBlbiBsb3MgdMOpcm1pbm9zIGRlIGVzdGEgTGljZW5jaWEgZW4gY3VhbHF1aWVyIG1vbWVudG87IGVuIGVsIGVudGVuZGlkbywgc2luIGVtYmFyZ28sIHF1ZSBlc2EgZWxlY2Npw7NuIG5vIHNlcnZpcsOhIHBhcmEgcmV2b2NhciBlc3RhIGxpY2VuY2lhIG8gcXVlIGRlYmEgc2VyIG90b3JnYWRhICwgYmFqbyBsb3MgdMOpcm1pbm9zIGRlIGVzdGEgbGljZW5jaWEpLCB5IGVzdGEgbGljZW5jaWEgY29udGludWFyw6EgZW4gcGxlbm8gdmlnb3IgeSBlZmVjdG8gYSBtZW5vcyBxdWUgc2VhIHRlcm1pbmFkYSBjb21vIHNlIGV4cHJlc2EgYXRyw6FzLiBMYSBMaWNlbmNpYSByZXZvY2FkYSBjb250aW51YXLDoSBzaWVuZG8gcGxlbmFtZW50ZSB2aWdlbnRlIHkgZWZlY3RpdmEgc2kgbm8gc2UgbGUgZGEgdMOpcm1pbm8gZW4gbGFzIGNvbmRpY2lvbmVzIGluZGljYWRhcyBhbnRlcmlvcm1lbnRlLgogIAo4LiBWYXJpb3MuCmEuIENhZGEgdmV6IHF1ZSBVc3RlZCBkaXN0cmlidXlhIG8gcG9uZ2EgYSBkaXNwb3NpY2nDs24gcMO6YmxpY2EgbGEgT2JyYSBvIHVuYSBPYnJhIENvbGVjdGl2YSwgZWwgTGljZW5jaWFudGUgb2ZyZWNlcsOhIGFsIGRlc3RpbmF0YXJpbyB1bmEgbGljZW5jaWEgZW4gbG9zIG1pc21vcyB0w6lybWlub3MgeSBjb25kaWNpb25lcyBxdWUgbGEgbGljZW5jaWEgb3RvcmdhZGEgYSBVc3RlZCBiYWpvIGVzdGEgTGljZW5jaWEuCmIuIFNpIGFsZ3VuYSBkaXNwb3NpY2nDs24gZGUgZXN0YSBMaWNlbmNpYSByZXN1bHRhIGludmFsaWRhZGEgbyBubyBleGlnaWJsZSwgc2Vnw7puIGxhIGxlZ2lzbGFjacOzbiB2aWdlbnRlLCBlc3RvIG5vIGFmZWN0YXLDoSBuaSBsYSB2YWxpZGV6IG5pIGxhIGFwbGljYWJpbGlkYWQgZGVsIHJlc3RvIGRlIGNvbmRpY2lvbmVzIGRlIGVzdGEgTGljZW5jaWEgeSwgc2luIGFjY2nDs24gYWRpY2lvbmFsIHBvciBwYXJ0ZSBkZSBsb3Mgc3VqZXRvcyBkZSBlc3RlIGFjdWVyZG8sIGFxdcOpbGxhIHNlIGVudGVuZGVyw6EgcmVmb3JtYWRhIGxvIG3DrW5pbW8gbmVjZXNhcmlvIHBhcmEgaGFjZXIgcXVlIGRpY2hhIGRpc3Bvc2ljacOzbiBzZWEgdsOhbGlkYSB5IGV4aWdpYmxlLgpjLiBOaW5nw7puIHTDqXJtaW5vIG8gZGlzcG9zaWNpw7NuIGRlIGVzdGEgTGljZW5jaWEgc2UgZXN0aW1hcsOhIHJlbnVuY2lhZGEgeSBuaW5ndW5hIHZpb2xhY2nDs24gZGUgZWxsYSBzZXLDoSBjb25zZW50aWRhIGEgbWVub3MgcXVlIGVzYSByZW51bmNpYSBvIGNvbnNlbnRpbWllbnRvIHNlYSBvdG9yZ2FkbyBwb3IgZXNjcml0byB5IGZpcm1hZG8gcG9yIGxhIHBhcnRlIHF1ZSByZW51bmNpZSBvIGNvbnNpZW50YS4KZC4gRXN0YSBMaWNlbmNpYSByZWZsZWphIGVsIGFjdWVyZG8gcGxlbm8gZW50cmUgbGFzIHBhcnRlcyByZXNwZWN0byBhIGxhIE9icmEgYXF1w60gbGljZW5jaWFkYS4gTm8gaGF5IGFycmVnbG9zLCBhY3VlcmRvcyBvIGRlY2xhcmFjaW9uZXMgcmVzcGVjdG8gYSBsYSBPYnJhIHF1ZSBubyBlc3TDqW4gZXNwZWNpZmljYWRvcyBlbiBlc3RlIGRvY3VtZW50by4gRWwgTGljZW5jaWFudGUgbm8gc2UgdmVyw6EgbGltaXRhZG8gcG9yIG5pbmd1bmEgZGlzcG9zaWNpw7NuIGFkaWNpb25hbCBxdWUgcHVlZGEgc3VyZ2lyIGVuIGFsZ3VuYSBjb211bmljYWNpw7NuIGVtYW5hZGEgZGUgVXN0ZWQuIEVzdGEgTGljZW5jaWEgbm8gcHVlZGUgc2VyIG1vZGlmaWNhZGEgc2luIGVsIGNvbnNlbnRpbWllbnRvIG11dHVvIHBvciBlc2NyaXRvIGRlbCBMaWNlbmNpYW50ZSB5IFVzdGVkLgo=