Development of a new generation vaccine for the canine distemper virus (CDV). An in silico, in vitro and in vivo approach

ABSTRACT: this thesis is structured into four chapters, each one addressing a research question focused on the development of a next-generation vaccine against canine distemper virus (CDV). Each chapter covers topics that address diverse aspects to answer this question, providing the reader with not...

Full description

Autores:
Rendón Marín, Santiago
Tipo de recurso:
Doctoral thesis
Fecha de publicación:
2024
Institución:
Universidad de Antioquia
Repositorio:
Repositorio UdeA
Idioma:
eng
OAI Identifier:
oai:bibliotecadigital.udea.edu.co:10495/43039
Acceso en línea:
https://hdl.handle.net/10495/43039
Palabra clave:
Morbillivirus - canino
Morbillivirus - canis
Desarrollo de Vacunas
Vaccine Development
Técnicas In Vitro
In Vitro Techniques
Simulación por Computador
Computer Simulation
Inmunogenicidad Vacunal
Immunogenicity, Vaccine
Péptidos
Peptides
https://id.nlm.nih.gov/mesh/D018103
https://id.nlm.nih.gov/mesh/D000087506
https://id.nlm.nih.gov/mesh/D066298
https://id.nlm.nih.gov/mesh/D003198
https://id.nlm.nih.gov/mesh/D000071497
https://id.nlm.nih.gov/mesh/D010455
Rights
openAccess
License
http://creativecommons.org/licenses/by-nc-sa/2.5/co/
id UDEA2_27097139761a49a0176af4e78970fc31
oai_identifier_str oai:bibliotecadigital.udea.edu.co:10495/43039
network_acronym_str UDEA2
network_name_str Repositorio UdeA
repository_id_str
dc.title.spa.fl_str_mv Development of a new generation vaccine for the canine distemper virus (CDV). An in silico, in vitro and in vivo approach
dc.title.translated.spa.fl_str_mv Desarrollo de una vacuna de nueva generación para el virus del distemper canino (CDV). Una aproximación in silico, in vitro e in vivo
title Development of a new generation vaccine for the canine distemper virus (CDV). An in silico, in vitro and in vivo approach
spellingShingle Development of a new generation vaccine for the canine distemper virus (CDV). An in silico, in vitro and in vivo approach
Morbillivirus - canino
Morbillivirus - canis
Desarrollo de Vacunas
Vaccine Development
Técnicas In Vitro
In Vitro Techniques
Simulación por Computador
Computer Simulation
Inmunogenicidad Vacunal
Immunogenicity, Vaccine
Péptidos
Peptides
https://id.nlm.nih.gov/mesh/D018103
https://id.nlm.nih.gov/mesh/D000087506
https://id.nlm.nih.gov/mesh/D066298
https://id.nlm.nih.gov/mesh/D003198
https://id.nlm.nih.gov/mesh/D000071497
https://id.nlm.nih.gov/mesh/D010455
title_short Development of a new generation vaccine for the canine distemper virus (CDV). An in silico, in vitro and in vivo approach
title_full Development of a new generation vaccine for the canine distemper virus (CDV). An in silico, in vitro and in vivo approach
title_fullStr Development of a new generation vaccine for the canine distemper virus (CDV). An in silico, in vitro and in vivo approach
title_full_unstemmed Development of a new generation vaccine for the canine distemper virus (CDV). An in silico, in vitro and in vivo approach
title_sort Development of a new generation vaccine for the canine distemper virus (CDV). An in silico, in vitro and in vivo approach
dc.creator.fl_str_mv Rendón Marín, Santiago
dc.contributor.advisor.none.fl_str_mv Ruíz Sáenz, Julian
dc.contributor.author.none.fl_str_mv Rendón Marín, Santiago
dc.contributor.researchgroup.spa.fl_str_mv Grupo de Investigación en Ciencias Agrarias -GRICA-
dc.subject.decs.none.fl_str_mv Morbillivirus - canino
Morbillivirus - canis
Desarrollo de Vacunas
Vaccine Development
Técnicas In Vitro
In Vitro Techniques
Simulación por Computador
Computer Simulation
Inmunogenicidad Vacunal
Immunogenicity, Vaccine
Péptidos
Peptides
topic Morbillivirus - canino
Morbillivirus - canis
Desarrollo de Vacunas
Vaccine Development
Técnicas In Vitro
In Vitro Techniques
Simulación por Computador
Computer Simulation
Inmunogenicidad Vacunal
Immunogenicity, Vaccine
Péptidos
Peptides
https://id.nlm.nih.gov/mesh/D018103
https://id.nlm.nih.gov/mesh/D000087506
https://id.nlm.nih.gov/mesh/D066298
https://id.nlm.nih.gov/mesh/D003198
https://id.nlm.nih.gov/mesh/D000071497
https://id.nlm.nih.gov/mesh/D010455
dc.subject.meshuri.none.fl_str_mv https://id.nlm.nih.gov/mesh/D018103
https://id.nlm.nih.gov/mesh/D000087506
https://id.nlm.nih.gov/mesh/D066298
https://id.nlm.nih.gov/mesh/D003198
https://id.nlm.nih.gov/mesh/D000071497
https://id.nlm.nih.gov/mesh/D010455
description ABSTRACT: this thesis is structured into four chapters, each one addressing a research question focused on the development of a next-generation vaccine against canine distemper virus (CDV). Each chapter covers topics that address diverse aspects to answer this question, providing the reader with not only theoretical context but also in silico, in vitro, and in vivo experimental results for the development of a new immunization strategy for domestic and wild species affected by CDV. The first chapter delves into the theoretical framework of virus biology, discussing themes such as the replication cycle, pathogenesis, clinical presentation, and virus-host interaction. This chapter provides the reader with the biological and molecular context of CDV. The second chapter presents a systematic literature review with a scoping approach to determine the current status of CDV vaccination in domestic and wild species. This chapter is developed in this thesis because there has been no comprehensive study summarizing the current state of vaccine development for controlling CDV spread and infection. A total of 2,321 articles identified and 68 studies were eligible based on predefined inclusion criteria focusing on CDV vaccines across various animal species including canines, ferrets, minks, mice, and others. Research efforts originated from scientific communities from the United States, Canada, France, and Denmark. Diverse vaccine formulations, a wide range of immunization routes and schedules were observed. Safety and efficacy underscored the significance of these immunogens within the evaluated animal populations. Among these findings is the inclusion of 37 studies which conducted post-immunization CDV challenge assessments, predominantly in canine subjects, pointing the survival outcomes among vaccinated populations. Nonetheless, substantial gaps in vaccine research were identified, particularly in wildlife reservoirs. Thus, collaborative endeavors are imperative for the formulation of effective vaccination strategies aimed at preserving animal welfare and attenuating the worldwide repercussions of CDV, particularly among endangered species. The third chapter presents the development of immunogenic peptides derived from the genetic and antigenic information of all CDV variants circulating worldwide using computational tools for the development of a universal CDV vaccine, followed by safety assessment in silico and in vitro. An immunogenic CDV peptide-based candidate was developed, utilizing a peptide library derived from consensus sequences of CDV H and F proteins from circulating strains worldwide. Computational tools were employed to assess the immunogenic potential of these peptides. Molecular docking and dynamic simulations were utilized to evaluate the molecular interaction of selected peptides with canine MHC-I, -II, TLR-2, and -4. In silico safety was assessed through antigenicity, allergenicity, toxicity potential, and comparison with homologous canine peptides, while in vitro safety was evaluated through cytotoxicity assays using cell lines, canine peripheral blood mononuclear cells (cPBMCs), and hemolysis potential assays with canine red blood cells. Subsequently, a multiepitope CDV polypeptide was synthesized based on the most promising peptides, and the in silico and in vitro evaluations were conducted to compare it with single immunogens. At this stage, five peptide candidates were identified, both individually and as a multiepitope CDV polypeptide, for evaluation as a next-generation peptide-based vaccine in an animal model. The final chapter involves the evaluation of immunogenic peptides either individually or as a polypeptide in an in vivo mouse model to determine their safety and immunogenicity in a vaccine formulation with a commercial adjuvant. Twenty-four BALB/c mice were distributed into four groups and subjected to three different vaccine dosing regimens over a 28-day period. Seroconversion was determined using ELISA, while cellular immune responses were measured via flow cytometry, specifically focusing on activation-induced markers (AIMs). Both the peptide mixture, multiepitope CDV polypeptide and commercial vaccine (CV) were safe in mice, with statistically significant seroconversion observed in the groups vaccinated with the multiepitope CDV polypeptide and the CV compared to the control group. Furthermore, mice immunized with the multiepitope CDV polypeptide exhibited increased levels of antigen-specific CD4+ CD134+ and IFN-γ+ T cells, CD8+ T cells, as well as TNF-α and IL-6-producing cells compared to the placebo group. These experimental results collectively indicated seroconversion for the multiepitope CDV polypeptide lower than the CV vaccine and the establishment of cellular immune memory. The development of multiepitope polypeptide vaccines presents a promising preventive strategy against CDV, and our integrated approach represents a significant advancement in the development of new immunization candidates or alternative to enhance current vaccination efficacy for controlling CDV disease and its spread among domestic dogs and wildlife animals. Therefore, this doctoral thesis addresses the need to update vaccination strategies against CDV through an in silico, in vitro, and in vivo approach for the development of a vaccine platform based on immunogenic peptides derived from the genetic information of relevant viral agents, with a universal character necessary for controlling the infection, spread, and transmission of highly prolific viruses such as CDV.
publishDate 2024
dc.date.accessioned.none.fl_str_mv 2024-11-01T14:41:00Z
dc.date.available.none.fl_str_mv 2024-11-01T14:41:00Z
dc.date.issued.none.fl_str_mv 2024
dc.type.spa.fl_str_mv Tesis/Trabajo de grado - Monografía - Doctorado
dc.type.coar.spa.fl_str_mv http://purl.org/coar/resource_type/c_db06
dc.type.redcol.spa.fl_str_mv https://purl.org/redcol/resource_type/TD
dc.type.coarversion.spa.fl_str_mv http://purl.org/coar/version/c_b1a7d7d4d402bcce
dc.type.driver.spa.fl_str_mv info:eu-repo/semantics/doctoralThesis
dc.type.version.spa.fl_str_mv info:eu-repo/semantics/draft
format http://purl.org/coar/resource_type/c_db06
status_str draft
dc.identifier.uri.none.fl_str_mv https://hdl.handle.net/10495/43039
url https://hdl.handle.net/10495/43039
dc.language.iso.spa.fl_str_mv eng
language eng
dc.rights.uri.*.fl_str_mv http://creativecommons.org/licenses/by-nc-sa/2.5/co/
dc.rights.uri.spa.fl_str_mv https://creativecommons.org/licenses/by-nc-sa/4.0/
dc.rights.accessrights.spa.fl_str_mv info:eu-repo/semantics/openAccess
dc.rights.coar.spa.fl_str_mv http://purl.org/coar/access_right/c_abf2
rights_invalid_str_mv http://creativecommons.org/licenses/by-nc-sa/2.5/co/
https://creativecommons.org/licenses/by-nc-sa/4.0/
http://purl.org/coar/access_right/c_abf2
eu_rights_str_mv openAccess
dc.format.extent.spa.fl_str_mv 213 páginas
dc.format.mimetype.spa.fl_str_mv application/pdf
dc.publisher.spa.fl_str_mv Universidad de Antioquia
dc.publisher.place.spa.fl_str_mv Medellín, Colombia
dc.publisher.faculty.spa.fl_str_mv Corporación Académica Ciencias Básicas Biomédicas. Doctorado en Ciencias Básicas Biomédicas
institution Universidad de Antioquia
bitstream.url.fl_str_mv https://bibliotecadigital.udea.edu.co/bitstreams/81f3ed2f-f5b8-4818-843a-88b3c5b86c74/download
https://bibliotecadigital.udea.edu.co/bitstreams/5d3e69e8-bbe0-4ffb-a482-05a5cac1ae13/download
https://bibliotecadigital.udea.edu.co/bitstreams/3ed4912f-7517-4fa0-bed6-1d36ba543267/download
https://bibliotecadigital.udea.edu.co/bitstreams/087a9a61-a83e-4330-91d2-e78ad7d92840/download
https://bibliotecadigital.udea.edu.co/bitstreams/d3eeecc8-a132-42fa-96b4-44ae01f8c9a1/download
https://bibliotecadigital.udea.edu.co/bitstreams/c45e8606-8783-4dcf-a666-98634b847440/download
https://bibliotecadigital.udea.edu.co/bitstreams/764498e8-2452-4a70-ac11-2372261b18d0/download
bitstream.checksum.fl_str_mv 573396a181bc95a411cd39b0fbd57c11
cf13af8e0ceac074401a546d967cd4b9
e2060682c9c70d4d30c83c51448f4eed
8a4605be74aa9ea9d79846c1fba20a33
ac97afeab14bbc385191edf4b4934458
5670c809ff2024e5dca04a2f9da3d389
5d214604f58581b8e2e06aac80bd967b
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
MD5
MD5
MD5
MD5
repository.name.fl_str_mv Repositorio Institucional de la Universidad de Antioquia
repository.mail.fl_str_mv aplicacionbibliotecadigitalbiblioteca@udea.edu.co
_version_ 1851052643359653888
spelling Ruíz Sáenz, JulianRendón Marín, SantiagoGrupo de Investigación en Ciencias Agrarias -GRICA-2024-11-01T14:41:00Z2024-11-01T14:41:00Z2024https://hdl.handle.net/10495/43039ABSTRACT: this thesis is structured into four chapters, each one addressing a research question focused on the development of a next-generation vaccine against canine distemper virus (CDV). Each chapter covers topics that address diverse aspects to answer this question, providing the reader with not only theoretical context but also in silico, in vitro, and in vivo experimental results for the development of a new immunization strategy for domestic and wild species affected by CDV. The first chapter delves into the theoretical framework of virus biology, discussing themes such as the replication cycle, pathogenesis, clinical presentation, and virus-host interaction. This chapter provides the reader with the biological and molecular context of CDV. The second chapter presents a systematic literature review with a scoping approach to determine the current status of CDV vaccination in domestic and wild species. This chapter is developed in this thesis because there has been no comprehensive study summarizing the current state of vaccine development for controlling CDV spread and infection. A total of 2,321 articles identified and 68 studies were eligible based on predefined inclusion criteria focusing on CDV vaccines across various animal species including canines, ferrets, minks, mice, and others. Research efforts originated from scientific communities from the United States, Canada, France, and Denmark. Diverse vaccine formulations, a wide range of immunization routes and schedules were observed. Safety and efficacy underscored the significance of these immunogens within the evaluated animal populations. Among these findings is the inclusion of 37 studies which conducted post-immunization CDV challenge assessments, predominantly in canine subjects, pointing the survival outcomes among vaccinated populations. Nonetheless, substantial gaps in vaccine research were identified, particularly in wildlife reservoirs. Thus, collaborative endeavors are imperative for the formulation of effective vaccination strategies aimed at preserving animal welfare and attenuating the worldwide repercussions of CDV, particularly among endangered species. The third chapter presents the development of immunogenic peptides derived from the genetic and antigenic information of all CDV variants circulating worldwide using computational tools for the development of a universal CDV vaccine, followed by safety assessment in silico and in vitro. An immunogenic CDV peptide-based candidate was developed, utilizing a peptide library derived from consensus sequences of CDV H and F proteins from circulating strains worldwide. Computational tools were employed to assess the immunogenic potential of these peptides. Molecular docking and dynamic simulations were utilized to evaluate the molecular interaction of selected peptides with canine MHC-I, -II, TLR-2, and -4. In silico safety was assessed through antigenicity, allergenicity, toxicity potential, and comparison with homologous canine peptides, while in vitro safety was evaluated through cytotoxicity assays using cell lines, canine peripheral blood mononuclear cells (cPBMCs), and hemolysis potential assays with canine red blood cells. Subsequently, a multiepitope CDV polypeptide was synthesized based on the most promising peptides, and the in silico and in vitro evaluations were conducted to compare it with single immunogens. At this stage, five peptide candidates were identified, both individually and as a multiepitope CDV polypeptide, for evaluation as a next-generation peptide-based vaccine in an animal model. The final chapter involves the evaluation of immunogenic peptides either individually or as a polypeptide in an in vivo mouse model to determine their safety and immunogenicity in a vaccine formulation with a commercial adjuvant. Twenty-four BALB/c mice were distributed into four groups and subjected to three different vaccine dosing regimens over a 28-day period. Seroconversion was determined using ELISA, while cellular immune responses were measured via flow cytometry, specifically focusing on activation-induced markers (AIMs). Both the peptide mixture, multiepitope CDV polypeptide and commercial vaccine (CV) were safe in mice, with statistically significant seroconversion observed in the groups vaccinated with the multiepitope CDV polypeptide and the CV compared to the control group. Furthermore, mice immunized with the multiepitope CDV polypeptide exhibited increased levels of antigen-specific CD4+ CD134+ and IFN-γ+ T cells, CD8+ T cells, as well as TNF-α and IL-6-producing cells compared to the placebo group. These experimental results collectively indicated seroconversion for the multiepitope CDV polypeptide lower than the CV vaccine and the establishment of cellular immune memory. The development of multiepitope polypeptide vaccines presents a promising preventive strategy against CDV, and our integrated approach represents a significant advancement in the development of new immunization candidates or alternative to enhance current vaccination efficacy for controlling CDV disease and its spread among domestic dogs and wildlife animals. Therefore, this doctoral thesis addresses the need to update vaccination strategies against CDV through an in silico, in vitro, and in vivo approach for the development of a vaccine platform based on immunogenic peptides derived from the genetic information of relevant viral agents, with a universal character necessary for controlling the infection, spread, and transmission of highly prolific viruses such as CDV.RESUMEN: Esta tesis está estructurada en cuatro capítulos donde se desarrolla una pregunta de investigación orientada al desarrollo de una vacuna de nueva generación contra el virus del distemper canino (CDV). En cada capítulo se muestran temáticas que permiten abordar diferentes aspectos para responder a esta pregunta, de modo que el lector encuentre todos los elementos no solo de contexto teórico, sino de resultados experimentales in silico, in vitro e in vivo, para el desarrollo de una estrategia nueva de inmunización para especies domésticas y silvestres, afectadas por el CDV. El primer capítulo abordó todo el sustento teórico sobre la biología del virus, donde se tratan temáticas como el ciclo replicativo, patogénesis, presentación clínica e interacción virushospedero. Este capítulo permite al lector, tener un contexto biológico y molecular del CDV. En el segundo capítulo se realizó una revisión sistemática de la literatura de enfoque amplio, con el fin de determinar el estado actual de la vacunación contra el CDV en especies domésticas y silvestres. Este capítulo fue desarrollado en esta tesis, puesto que no existía un estudio sumario donde se estableciera el estado actual de desarrollo de vacunas para el control de la diseminación e infección por el CDV. Un total de 2,321 artículos fueron identificados y 68 estudios fueron elegibles según criterios de inclusión predefinidos con un enfoque en vacunas contra el CDV en diversas especies animales, incluidos caninos, hurones, visones, ratones y otros. Los esfuerzos de investigación provinieron de comunidades científicas de los Estados Unidos, Canadá, Francia y Dinamarca. Se observaron formulaciones de vacunas diversas, así como una amplia gama de rutas y esquemas de inmunización. La seguridad y la eficacia resaltaron la importancia de estos inmunógenos dentro de las poblaciones animales evaluadas. Entre estos hallazgos se incluyen 37 estudios que realizaron evaluaciones de desafío post-inmunización contra el CDV, predominantemente en sujetos caninos, destacando los resultados de supervivencia entre las poblaciones vacunadas. Sin embargo, se identificaron brechas sustanciales en la investigación de vacunas, especialmente en los reservorios de vida silvestre. Por lo tanto, los esfuerzos colaborativos son imperativos para la formulación de estrategias de vacunación efectivas destinadas a preservar el bienestar animal y atenuar las repercusiones mundiales del CDV, especialmente entre las especies en peligro de extinción. En el tercer capítulo, se evidenció el desarrollo de péptidos inmunogénicos derivados de la información genética y antigénica de todas las variantes del CDV circulantes alrededor del mundo a través de herramientas computacionales para el desarrollo de una vacuna universal para el CDV y su posterior evaluación de seguridad in silico e in vitro. Se desarrolló un candidato a vacuna de CDV basado en péptidos inmunogénicos, utilizando una biblioteca de péptidos derivados de secuencias de consenso de las proteínas H y F de CDV de cepas circulantes en todo el mundo. Se emplearon herramientas computacionales para evaluar el potencial inmunogénico de estos péptidos. Se utilizaron el acoplamiento molecular y simulaciones dinámicas para evaluar la interacción molecular de los péptidos seleccionados con MHC-I, -II, TLR-2 y -4 caninos. La seguridad in silico se evaluó mediante antigenicidad, alergenicidad, potencial de toxicidad y comparación con péptidos caninos homólogos, mientras que la seguridad in vitro se evaluó mediante ensayos de citotoxicidad utilizando líneas celulares, células mononucleares de sangre periférica canina (cCMSPs) y ensayos de potencial de hemólisis con glóbulos rojos caninos. Posteriormente, se sintetizó un polipéptido multiepítopos de CDV basado en los péptidos más prometedores, y se realizaron evaluaciones in silico e in vitro para compararlo con inmunógenos individuales. En esta etapa, se identificaron cinco candidatos de péptidos, tanto individualmente como en forma de polipéptido multiepítopos del CDV, para su evaluación como vacuna basada en péptidos de próxima generación en un modelo animal. El último capítulo contempló la evaluación de los péptidos inmunogénicos ya fuera individualmente en una única formulación o como polipéptido en un modelo in vivo de ratón para determinar su seguridad e inmunogenicidad en una formulación vacunal acompañada de un adyuvante comercial. Veinticuatro ratones BALB/c fueron distribuidos en cuatro grupos y sometidos a tres regímenes de dosificación de vacunas diferentes durante un período de 28 días. La seroconversión se determinó utilizando ELISA, mientras que las respuestas inmunes celulares se midieron mediante citometría de flujo, enfocándose específicamente en los marcadores inducidos por activación. Tanto la mezcla de péptidos, el polipéptido multiepítopos de CDV y la vacuna comercial (CV) fueron seguros en los ratones, con una seroconversión estadísticamente significativa observada en los grupos vacunados con el polipéptido multiepítopos de CDV y la CV en comparación con el grupo de control. Además, los ratones inmunizados con el polipéptido multiepítopos de CDV exhibieron niveles aumentados de células T específicas de antígenos CD4+ CD134+ e IFNγ+, células T CD8+, así como células productoras de TNF-α e IL-6 en comparación con el grupo placebo. Estos resultados experimentales indicaron colectivamente la seroconversión y el establecimiento de la memoria inmunológica tanto para el polipéptido multiepítopos de CDV como para las vacunas CV. El desarrollo de vacunas de polipéptido multiepítopos presenta una estrategia preventiva prometedora contra el CDV, y nuestro enfoque integrado representa un avance significativo en el desarrollo de nuevos candidatos a vacunas o alternativas para mejorar la eficacia de la vacunación actual para controlar la enfermedad del CDV y su propagación entre perros domésticos y animales silvestres. Por tanto, esta tesis de doctorado aborda la problemática de actualización de las estrategias de vacunación contra el CDV a través de un enfoque in silico, in vitro e in vivo, para el desarrollo de una plataforma vacunal basada en péptidos inmunogénicos derivados de la información genética de agentes virales de interés, con un carácter de universalidad, necesario para el control de la infección, diseminación y transmisión de virus altamente prolíficos como el CDV.COL0009556DoctoradoDoctor en Ciencias Básicas Biomédicas: Énfasis Virología213 páginasapplication/pdfengUniversidad de AntioquiaMedellín, ColombiaCorporación Académica Ciencias Básicas Biomédicas. Doctorado en Ciencias Básicas Biomédicashttp://creativecommons.org/licenses/by-nc-sa/2.5/co/https://creativecommons.org/licenses/by-nc-sa/4.0/info:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2Development of a new generation vaccine for the canine distemper virus (CDV). An in silico, in vitro and in vivo approachDesarrollo de una vacuna de nueva generación para el virus del distemper canino (CDV). Una aproximación in silico, in vitro e in vivoTesis/Trabajo de grado - Monografía - Doctoradohttp://purl.org/coar/resource_type/c_db06https://purl.org/redcol/resource_type/TDhttp://purl.org/coar/version/c_b1a7d7d4d402bcceinfo:eu-repo/semantics/doctoralThesisinfo:eu-repo/semantics/draftMorbillivirus - caninoMorbillivirus - canisDesarrollo de VacunasVaccine DevelopmentTécnicas In VitroIn Vitro TechniquesSimulación por ComputadorComputer SimulationInmunogenicidad VacunalImmunogenicity, VaccinePéptidosPeptideshttps://id.nlm.nih.gov/mesh/D018103https://id.nlm.nih.gov/mesh/D000087506https://id.nlm.nih.gov/mesh/D066298https://id.nlm.nih.gov/mesh/D003198https://id.nlm.nih.gov/mesh/D000071497https://id.nlm.nih.gov/mesh/D010455PublicationORIGINALAnexoA_Cap1.xlsxAnexoA_Cap1.xlsxAnexoAapplication/vnd.openxmlformats-officedocument.spreadsheetml.sheet12184https://bibliotecadigital.udea.edu.co/bitstreams/81f3ed2f-f5b8-4818-843a-88b3c5b86c74/download573396a181bc95a411cd39b0fbd57c11MD51falseAnonymousREADRendonSantiago_2024_Vacuna_Virus_Distemper.pdfRendonSantiago_2024_Vacuna_Virus_Distemper.pdfTesis doctoralapplication/pdf13306356https://bibliotecadigital.udea.edu.co/bitstreams/5d3e69e8-bbe0-4ffb-a482-05a5cac1ae13/downloadcf13af8e0ceac074401a546d967cd4b9MD52trueAnonymousREADCC-LICENSElicense_rdflicense_rdfapplication/rdf+xml; charset=utf-81051https://bibliotecadigital.udea.edu.co/bitstreams/3ed4912f-7517-4fa0-bed6-1d36ba543267/downloade2060682c9c70d4d30c83c51448f4eedMD54falseAnonymousREADLICENSElicense.txtlicense.txttext/plain; charset=utf-81748https://bibliotecadigital.udea.edu.co/bitstreams/087a9a61-a83e-4330-91d2-e78ad7d92840/download8a4605be74aa9ea9d79846c1fba20a33MD55falseAnonymousREADTEXTAnexoA_Cap1.xlsx.txtAnexoA_Cap1.xlsx.txtExtracted texttext/plain2329https://bibliotecadigital.udea.edu.co/bitstreams/d3eeecc8-a132-42fa-96b4-44ae01f8c9a1/downloadac97afeab14bbc385191edf4b4934458MD56falseAnonymousREADRendonSantiago_2024_Vacuna_Virus_Distemper.pdf.txtRendonSantiago_2024_Vacuna_Virus_Distemper.pdf.txtExtracted texttext/plain100325https://bibliotecadigital.udea.edu.co/bitstreams/c45e8606-8783-4dcf-a666-98634b847440/download5670c809ff2024e5dca04a2f9da3d389MD57falseAnonymousREADTHUMBNAILRendonSantiago_2024_Vacuna_Virus_Distemper.pdf.jpgRendonSantiago_2024_Vacuna_Virus_Distemper.pdf.jpgGenerated Thumbnailimage/jpeg8018https://bibliotecadigital.udea.edu.co/bitstreams/764498e8-2452-4a70-ac11-2372261b18d0/download5d214604f58581b8e2e06aac80bd967bMD58falseAnonymousREAD10495/43039oai:bibliotecadigital.udea.edu.co:10495/430392025-03-27 01:33:07.175http://creativecommons.org/licenses/by-nc-sa/2.5/co/open.accesshttps://bibliotecadigital.udea.edu.coRepositorio Institucional de la Universidad de Antioquiaaplicacionbibliotecadigitalbiblioteca@udea.edu.coTk9URTogUExBQ0UgWU9VUiBPV04gTElDRU5TRSBIRVJFClRoaXMgc2FtcGxlIGxpY2Vuc2UgaXMgcHJvdmlkZWQgZm9yIGluZm9ybWF0aW9uYWwgcHVycG9zZXMgb25seS4KCk5PTi1FWENMVVNJVkUgRElTVFJJQlVUSU9OIExJQ0VOU0UKCkJ5IHNpZ25pbmcgYW5kIHN1Ym1pdHRpbmcgdGhpcyBsaWNlbnNlLCB5b3UgKHRoZSBhdXRob3Iocykgb3IgY29weXJpZ2h0Cm93bmVyKSBncmFudHMgdG8gRFNwYWNlIFVuaXZlcnNpdHkgKERTVSkgdGhlIG5vbi1leGNsdXNpdmUgcmlnaHQgdG8gcmVwcm9kdWNlLAp0cmFuc2xhdGUgKGFzIGRlZmluZWQgYmVsb3cpLCBhbmQvb3IgZGlzdHJpYnV0ZSB5b3VyIHN1Ym1pc3Npb24gKGluY2x1ZGluZwp0aGUgYWJzdHJhY3QpIHdvcmxkd2lkZSBpbiBwcmludCBhbmQgZWxlY3Ryb25pYyBmb3JtYXQgYW5kIGluIGFueSBtZWRpdW0sCmluY2x1ZGluZyBidXQgbm90IGxpbWl0ZWQgdG8gYXVkaW8gb3IgdmlkZW8uCgpZb3UgYWdyZWUgdGhhdCBEU1UgbWF5LCB3aXRob3V0IGNoYW5naW5nIHRoZSBjb250ZW50LCB0cmFuc2xhdGUgdGhlCnN1Ym1pc3Npb24gdG8gYW55IG1lZGl1bSBvciBmb3JtYXQgZm9yIHRoZSBwdXJwb3NlIG9mIHByZXNlcnZhdGlvbi4KCllvdSBhbHNvIGFncmVlIHRoYXQgRFNVIG1heSBrZWVwIG1vcmUgdGhhbiBvbmUgY29weSBvZiB0aGlzIHN1Ym1pc3Npb24gZm9yCnB1cnBvc2VzIG9mIHNlY3VyaXR5LCBiYWNrLXVwIGFuZCBwcmVzZXJ2YXRpb24uCgpZb3UgcmVwcmVzZW50IHRoYXQgdGhlIHN1Ym1pc3Npb24gaXMgeW91ciBvcmlnaW5hbCB3b3JrLCBhbmQgdGhhdCB5b3UgaGF2ZQp0aGUgcmlnaHQgdG8gZ3JhbnQgdGhlIHJpZ2h0cyBjb250YWluZWQgaW4gdGhpcyBsaWNlbnNlLiBZb3UgYWxzbyByZXByZXNlbnQKdGhhdCB5b3VyIHN1Ym1pc3Npb24gZG9lcyBub3QsIHRvIHRoZSBiZXN0IG9mIHlvdXIga25vd2xlZGdlLCBpbmZyaW5nZSB1cG9uCmFueW9uZSdzIGNvcHlyaWdodC4KCklmIHRoZSBzdWJtaXNzaW9uIGNvbnRhaW5zIG1hdGVyaWFsIGZvciB3aGljaCB5b3UgZG8gbm90IGhvbGQgY29weXJpZ2h0LAp5b3UgcmVwcmVzZW50IHRoYXQgeW91IGhhdmUgb2J0YWluZWQgdGhlIHVucmVzdHJpY3RlZCBwZXJtaXNzaW9uIG9mIHRoZQpjb3B5cmlnaHQgb3duZXIgdG8gZ3JhbnQgRFNVIHRoZSByaWdodHMgcmVxdWlyZWQgYnkgdGhpcyBsaWNlbnNlLCBhbmQgdGhhdApzdWNoIHRoaXJkLXBhcnR5IG93bmVkIG1hdGVyaWFsIGlzIGNsZWFybHkgaWRlbnRpZmllZCBhbmQgYWNrbm93bGVkZ2VkCndpdGhpbiB0aGUgdGV4dCBvciBjb250ZW50IG9mIHRoZSBzdWJtaXNzaW9uLgoKSUYgVEhFIFNVQk1JU1NJT04gSVMgQkFTRUQgVVBPTiBXT1JLIFRIQVQgSEFTIEJFRU4gU1BPTlNPUkVEIE9SIFNVUFBPUlRFRApCWSBBTiBBR0VOQ1kgT1IgT1JHQU5JWkFUSU9OIE9USEVSIFRIQU4gRFNVLCBZT1UgUkVQUkVTRU5UIFRIQVQgWU9VIEhBVkUKRlVMRklMTEVEIEFOWSBSSUdIVCBPRiBSRVZJRVcgT1IgT1RIRVIgT0JMSUdBVElPTlMgUkVRVUlSRUQgQlkgU1VDSApDT05UUkFDVCBPUiBBR1JFRU1FTlQuCgpEU1Ugd2lsbCBjbGVhcmx5IGlkZW50aWZ5IHlvdXIgbmFtZShzKSBhcyB0aGUgYXV0aG9yKHMpIG9yIG93bmVyKHMpIG9mIHRoZQpzdWJtaXNzaW9uLCBhbmQgd2lsbCBub3QgbWFrZSBhbnkgYWx0ZXJhdGlvbiwgb3RoZXIgdGhhbiBhcyBhbGxvd2VkIGJ5IHRoaXMKbGljZW5zZSwgdG8geW91ciBzdWJtaXNzaW9uLgo=