Optimization of silver nanoparticle synthesis by chemical reduction and evaluation of its antimicrobial and toxic activity
ABSTRACT: Background: Chemical reduction has become an accessible and useful alternative to obtain silver nanoparticles (AgNPs). However, its toxicity capacity depends on multiple variables that generate differences in the ability to inhibit the growth of microorganisms. Thus, optimazing parameters...
- Autores:
-
Quintero Quiroz, Julián
Quintero Quiroz, Catalina
Acevedo, Natalia
Zapata Giraldo, Jenniffer
Botero, Luz E.
Zárate Triviño, Diana
Saldarriaga, Jorge
Pérez, Vera Z.
- Tipo de recurso:
- Article of investigation
- Fecha de publicación:
- 2019
- Institución:
- Universidad de Antioquia
- Repositorio:
- Repositorio UdeA
- Idioma:
- eng
- OAI Identifier:
- oai:bibliotecadigital.udea.edu.co:10495/38211
- Acceso en línea:
- https://hdl.handle.net/10495/38211
- Palabra clave:
- Antibacterianos
Anti-Bacterial Agents
Citotoxicidad
Cytotoxicity
Silver nanoparticles
Response surface methodology
http://aims.fao.org/aos/agrovoc/c_34251
https://id.nlm.nih.gov/mesh/D000900
- Rights
- openAccess
- License
- http://creativecommons.org/licenses/by/2.5/co/
| id |
UDEA2_265955da7e2bfae0ec2e10264a4016c7 |
|---|---|
| oai_identifier_str |
oai:bibliotecadigital.udea.edu.co:10495/38211 |
| network_acronym_str |
UDEA2 |
| network_name_str |
Repositorio UdeA |
| repository_id_str |
|
| dc.title.spa.fl_str_mv |
Optimization of silver nanoparticle synthesis by chemical reduction and evaluation of its antimicrobial and toxic activity |
| title |
Optimization of silver nanoparticle synthesis by chemical reduction and evaluation of its antimicrobial and toxic activity |
| spellingShingle |
Optimization of silver nanoparticle synthesis by chemical reduction and evaluation of its antimicrobial and toxic activity Antibacterianos Anti-Bacterial Agents Citotoxicidad Cytotoxicity Silver nanoparticles Response surface methodology http://aims.fao.org/aos/agrovoc/c_34251 https://id.nlm.nih.gov/mesh/D000900 |
| title_short |
Optimization of silver nanoparticle synthesis by chemical reduction and evaluation of its antimicrobial and toxic activity |
| title_full |
Optimization of silver nanoparticle synthesis by chemical reduction and evaluation of its antimicrobial and toxic activity |
| title_fullStr |
Optimization of silver nanoparticle synthesis by chemical reduction and evaluation of its antimicrobial and toxic activity |
| title_full_unstemmed |
Optimization of silver nanoparticle synthesis by chemical reduction and evaluation of its antimicrobial and toxic activity |
| title_sort |
Optimization of silver nanoparticle synthesis by chemical reduction and evaluation of its antimicrobial and toxic activity |
| dc.creator.fl_str_mv |
Quintero Quiroz, Julián Quintero Quiroz, Catalina Acevedo, Natalia Zapata Giraldo, Jenniffer Botero, Luz E. Zárate Triviño, Diana Saldarriaga, Jorge Pérez, Vera Z. |
| dc.contributor.author.none.fl_str_mv |
Quintero Quiroz, Julián Quintero Quiroz, Catalina Acevedo, Natalia Zapata Giraldo, Jenniffer Botero, Luz E. Zárate Triviño, Diana Saldarriaga, Jorge Pérez, Vera Z. |
| dc.contributor.researchgroup.spa.fl_str_mv |
Diseño y Formulación de Medicamentos Cosméticos y Afines |
| dc.subject.decs.none.fl_str_mv |
Antibacterianos Anti-Bacterial Agents |
| topic |
Antibacterianos Anti-Bacterial Agents Citotoxicidad Cytotoxicity Silver nanoparticles Response surface methodology http://aims.fao.org/aos/agrovoc/c_34251 https://id.nlm.nih.gov/mesh/D000900 |
| dc.subject.agrovoc.none.fl_str_mv |
Citotoxicidad Cytotoxicity |
| dc.subject.proposal.spa.fl_str_mv |
Silver nanoparticles Response surface methodology |
| dc.subject.agrovocuri.none.fl_str_mv |
http://aims.fao.org/aos/agrovoc/c_34251 |
| dc.subject.meshuri.none.fl_str_mv |
https://id.nlm.nih.gov/mesh/D000900 |
| description |
ABSTRACT: Background: Chemical reduction has become an accessible and useful alternative to obtain silver nanoparticles (AgNPs). However, its toxicity capacity depends on multiple variables that generate differences in the ability to inhibit the growth of microorganisms. Thus, optimazing parameters for the synthesis of AgNPs can increase its antimicrobial capacity by improving its physical-chemical properties. Methods: In this study a Face Centered Central Composite Design (FCCCD) was carried out with four parameters: AgNO3 concentration, sodium citrate (TSC) concentration, NaBH4 concentration and the pH of the reaction with the objective of inhibit the growth of microorganisms. The response variables were the average size of AgNPs, the peak with the greatest intensity in the size distribution, the polydispersity of the nanoparticle size and the yield of the process. AgNPs obtained from the optimization were characterized physically and chemically. The antimicrobial activity of optimized AgNPs was evaluated against Staphylococcus aureus, Escherichia coli, Escherichia coli AmpC resistant, and Candida albicans and compared with AgNPs before optimization. In addition, the cytotoxicity of the optimized AgNPs was evaluated by the colorimetric assay MTT (3- (4,5- Dimethylthiazol- 2- yl)- 2, 5 - Diphenyltetrazolium Bromide). Results: It was found that the four factors studied were significant for the response variables, and a significant model (p < 0.05) was obtained for each variable. The optimal conditions were 8 for pH and 0.01 M, 0.0 6M, 0.01 M for the concentration of TSC, AgNO3, and NaBH4, respectively. Optimized AgNPs spherical and hemispherical were obtained, and 67.66% of it had a diameter less than 10.30 nm. A minimum bactericidal concentration (MBC) and minimum fungicidal Concentration (MFC) of optimized AgNPs was found against Staphylococcus aureus, Escherichia coli, Escherichia coli AmpC resistant, and Candida albicans at 19.89, 9.94, 9.94, 2.08 μg/mL, respectively. Furthermore, the lethal concentration 50 (LC50) of optimized AgNPs was found on 19.11 μg/mL and 19.60 μg/mL to Vero and NiH3T3 cells, respectively. Conclusions: It was found that the factors studied were significant for the variable responses and the optimization process used was effective to improve the antimicrobial activity of the AgNPs. |
| publishDate |
2019 |
| dc.date.issued.none.fl_str_mv |
2019 |
| dc.date.accessioned.none.fl_str_mv |
2024-02-19T11:59:47Z |
| dc.date.available.none.fl_str_mv |
2024-02-19T11:59:47Z |
| dc.type.spa.fl_str_mv |
Artículo de investigación |
| dc.type.coar.spa.fl_str_mv |
http://purl.org/coar/resource_type/c_2df8fbb1 |
| dc.type.redcol.spa.fl_str_mv |
https://purl.org/redcol/resource_type/ART |
| dc.type.coarversion.spa.fl_str_mv |
http://purl.org/coar/version/c_970fb48d4fbd8a85 |
| dc.type.driver.spa.fl_str_mv |
info:eu-repo/semantics/article |
| dc.type.version.spa.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
| format |
http://purl.org/coar/resource_type/c_2df8fbb1 |
| status_str |
publishedVersion |
| dc.identifier.issn.none.fl_str_mv |
1226-4601 |
| dc.identifier.uri.none.fl_str_mv |
https://hdl.handle.net/10495/38211 |
| dc.identifier.doi.none.fl_str_mv |
10.1186/s40824-019-0173-y |
| dc.identifier.eissn.none.fl_str_mv |
2055-7124 |
| identifier_str_mv |
1226-4601 10.1186/s40824-019-0173-y 2055-7124 |
| url |
https://hdl.handle.net/10495/38211 |
| dc.language.iso.spa.fl_str_mv |
eng |
| language |
eng |
| dc.relation.ispartofjournalabbrev.spa.fl_str_mv |
Biomater. Res. |
| dc.relation.citationendpage.spa.fl_str_mv |
27 |
| dc.relation.citationissue.spa.fl_str_mv |
1 |
| dc.relation.citationstartpage.spa.fl_str_mv |
1 |
| dc.relation.citationvolume.spa.fl_str_mv |
23 |
| dc.relation.ispartofjournal.spa.fl_str_mv |
Biomaterials Research |
| dc.rights.uri.*.fl_str_mv |
http://creativecommons.org/licenses/by/2.5/co/ |
| dc.rights.uri.spa.fl_str_mv |
https://creativecommons.org/licenses/by/4.0/ |
| dc.rights.accessrights.spa.fl_str_mv |
info:eu-repo/semantics/openAccess |
| dc.rights.coar.spa.fl_str_mv |
http://purl.org/coar/access_right/c_abf2 |
| rights_invalid_str_mv |
http://creativecommons.org/licenses/by/2.5/co/ https://creativecommons.org/licenses/by/4.0/ http://purl.org/coar/access_right/c_abf2 |
| eu_rights_str_mv |
openAccess |
| dc.format.extent.spa.fl_str_mv |
15 páginas |
| dc.format.mimetype.spa.fl_str_mv |
application/pdf |
| dc.publisher.spa.fl_str_mv |
BMC (BioMed Central) |
| dc.publisher.place.spa.fl_str_mv |
Washington, Estados Unidos |
| institution |
Universidad de Antioquia |
| bitstream.url.fl_str_mv |
https://bibliotecadigital.udea.edu.co/bitstreams/53b9486a-c765-47a7-8411-3ccecf9c51b2/download https://bibliotecadigital.udea.edu.co/bitstreams/c54a17a4-976e-4c9e-b1d3-36df857dffa1/download https://bibliotecadigital.udea.edu.co/bitstreams/3de28cae-ecee-4343-a56c-c9029f579cc3/download https://bibliotecadigital.udea.edu.co/bitstreams/b99ca3ce-0662-4d1e-9c86-fe891ec8bf7b/download https://bibliotecadigital.udea.edu.co/bitstreams/4d5c71c2-5422-4210-9bce-92d2718f074a/download |
| bitstream.checksum.fl_str_mv |
1646d1f6b96dbbbc38035efc9239ac9c 8a4605be74aa9ea9d79846c1fba20a33 3dbfaa0a162789d0bf19ae88dbea93e2 73c23e23ae55a54383499484b14508fe 1e33d72b2afe504d1078922e344053a2 |
| bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 MD5 MD5 MD5 |
| repository.name.fl_str_mv |
Repositorio Institucional de la Universidad de Antioquia |
| repository.mail.fl_str_mv |
aplicacionbibliotecadigitalbiblioteca@udea.edu.co |
| _version_ |
1851052587201069056 |
| spelling |
Quintero Quiroz, JuliánQuintero Quiroz, CatalinaAcevedo, NataliaZapata Giraldo, JennifferBotero, Luz E.Zárate Triviño, DianaSaldarriaga, JorgePérez, Vera Z.Diseño y Formulación de Medicamentos Cosméticos y Afines2024-02-19T11:59:47Z2024-02-19T11:59:47Z20191226-4601https://hdl.handle.net/10495/3821110.1186/s40824-019-0173-y2055-7124ABSTRACT: Background: Chemical reduction has become an accessible and useful alternative to obtain silver nanoparticles (AgNPs). However, its toxicity capacity depends on multiple variables that generate differences in the ability to inhibit the growth of microorganisms. Thus, optimazing parameters for the synthesis of AgNPs can increase its antimicrobial capacity by improving its physical-chemical properties. Methods: In this study a Face Centered Central Composite Design (FCCCD) was carried out with four parameters: AgNO3 concentration, sodium citrate (TSC) concentration, NaBH4 concentration and the pH of the reaction with the objective of inhibit the growth of microorganisms. The response variables were the average size of AgNPs, the peak with the greatest intensity in the size distribution, the polydispersity of the nanoparticle size and the yield of the process. AgNPs obtained from the optimization were characterized physically and chemically. The antimicrobial activity of optimized AgNPs was evaluated against Staphylococcus aureus, Escherichia coli, Escherichia coli AmpC resistant, and Candida albicans and compared with AgNPs before optimization. In addition, the cytotoxicity of the optimized AgNPs was evaluated by the colorimetric assay MTT (3- (4,5- Dimethylthiazol- 2- yl)- 2, 5 - Diphenyltetrazolium Bromide). Results: It was found that the four factors studied were significant for the response variables, and a significant model (p < 0.05) was obtained for each variable. The optimal conditions were 8 for pH and 0.01 M, 0.0 6M, 0.01 M for the concentration of TSC, AgNO3, and NaBH4, respectively. Optimized AgNPs spherical and hemispherical were obtained, and 67.66% of it had a diameter less than 10.30 nm. A minimum bactericidal concentration (MBC) and minimum fungicidal Concentration (MFC) of optimized AgNPs was found against Staphylococcus aureus, Escherichia coli, Escherichia coli AmpC resistant, and Candida albicans at 19.89, 9.94, 9.94, 2.08 μg/mL, respectively. Furthermore, the lethal concentration 50 (LC50) of optimized AgNPs was found on 19.11 μg/mL and 19.60 μg/mL to Vero and NiH3T3 cells, respectively. Conclusions: It was found that the factors studied were significant for the variable responses and the optimization process used was effective to improve the antimicrobial activity of the AgNPs.Colombia. Ministerio de Ciencia, Tecnología e InnovaciónUniversidad Pontificia BolivarianaCOL000362315 páginasapplication/pdfengBMC (BioMed Central)Washington, Estados Unidoshttp://creativecommons.org/licenses/by/2.5/co/https://creativecommons.org/licenses/by/4.0/info:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2Optimization of silver nanoparticle synthesis by chemical reduction and evaluation of its antimicrobial and toxic activityArtículo de investigaciónhttp://purl.org/coar/resource_type/c_2df8fbb1https://purl.org/redcol/resource_type/ARThttp://purl.org/coar/version/c_970fb48d4fbd8a85info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionAntibacterianosAnti-Bacterial AgentsCitotoxicidadCytotoxicitySilver nanoparticlesResponse surface methodologyhttp://aims.fao.org/aos/agrovoc/c_34251https://id.nlm.nih.gov/mesh/D000900Biomater. Res.271123Biomaterials ResearchFP44842-016-2017RoR:03fd5ne08RoR:02dxm8k93PublicationCC-LICENSElicense_rdflicense_rdfapplication/rdf+xml; charset=utf-8927https://bibliotecadigital.udea.edu.co/bitstreams/53b9486a-c765-47a7-8411-3ccecf9c51b2/download1646d1f6b96dbbbc38035efc9239ac9cMD52falseAnonymousREADLICENSElicense.txtlicense.txttext/plain; charset=utf-81748https://bibliotecadigital.udea.edu.co/bitstreams/c54a17a4-976e-4c9e-b1d3-36df857dffa1/download8a4605be74aa9ea9d79846c1fba20a33MD53falseAnonymousREADORIGINALQuinteroJulian_2019_OptimizationSilverNanoparticle.pdfQuinteroJulian_2019_OptimizationSilverNanoparticle.pdfArtículo de investigaciónapplication/pdf2634192https://bibliotecadigital.udea.edu.co/bitstreams/3de28cae-ecee-4343-a56c-c9029f579cc3/download3dbfaa0a162789d0bf19ae88dbea93e2MD51trueAnonymousREADTEXTQuinteroJulian_2019_OptimizationSilverNanoparticle.pdf.txtQuinteroJulian_2019_OptimizationSilverNanoparticle.pdf.txtExtracted texttext/plain64839https://bibliotecadigital.udea.edu.co/bitstreams/b99ca3ce-0662-4d1e-9c86-fe891ec8bf7b/download73c23e23ae55a54383499484b14508feMD54falseAnonymousREADTHUMBNAILQuinteroJulian_2019_OptimizationSilverNanoparticle.pdf.jpgQuinteroJulian_2019_OptimizationSilverNanoparticle.pdf.jpgGenerated Thumbnailimage/jpeg14402https://bibliotecadigital.udea.edu.co/bitstreams/4d5c71c2-5422-4210-9bce-92d2718f074a/download1e33d72b2afe504d1078922e344053a2MD55falseAnonymousREAD10495/38211oai:bibliotecadigital.udea.edu.co:10495/382112025-03-27 00:41:18.857http://creativecommons.org/licenses/by/2.5/co/open.accesshttps://bibliotecadigital.udea.edu.coRepositorio Institucional de la Universidad de Antioquiaaplicacionbibliotecadigitalbiblioteca@udea.edu.coTk9URTogUExBQ0UgWU9VUiBPV04gTElDRU5TRSBIRVJFClRoaXMgc2FtcGxlIGxpY2Vuc2UgaXMgcHJvdmlkZWQgZm9yIGluZm9ybWF0aW9uYWwgcHVycG9zZXMgb25seS4KCk5PTi1FWENMVVNJVkUgRElTVFJJQlVUSU9OIExJQ0VOU0UKCkJ5IHNpZ25pbmcgYW5kIHN1Ym1pdHRpbmcgdGhpcyBsaWNlbnNlLCB5b3UgKHRoZSBhdXRob3Iocykgb3IgY29weXJpZ2h0Cm93bmVyKSBncmFudHMgdG8gRFNwYWNlIFVuaXZlcnNpdHkgKERTVSkgdGhlIG5vbi1leGNsdXNpdmUgcmlnaHQgdG8gcmVwcm9kdWNlLAp0cmFuc2xhdGUgKGFzIGRlZmluZWQgYmVsb3cpLCBhbmQvb3IgZGlzdHJpYnV0ZSB5b3VyIHN1Ym1pc3Npb24gKGluY2x1ZGluZwp0aGUgYWJzdHJhY3QpIHdvcmxkd2lkZSBpbiBwcmludCBhbmQgZWxlY3Ryb25pYyBmb3JtYXQgYW5kIGluIGFueSBtZWRpdW0sCmluY2x1ZGluZyBidXQgbm90IGxpbWl0ZWQgdG8gYXVkaW8gb3IgdmlkZW8uCgpZb3UgYWdyZWUgdGhhdCBEU1UgbWF5LCB3aXRob3V0IGNoYW5naW5nIHRoZSBjb250ZW50LCB0cmFuc2xhdGUgdGhlCnN1Ym1pc3Npb24gdG8gYW55IG1lZGl1bSBvciBmb3JtYXQgZm9yIHRoZSBwdXJwb3NlIG9mIHByZXNlcnZhdGlvbi4KCllvdSBhbHNvIGFncmVlIHRoYXQgRFNVIG1heSBrZWVwIG1vcmUgdGhhbiBvbmUgY29weSBvZiB0aGlzIHN1Ym1pc3Npb24gZm9yCnB1cnBvc2VzIG9mIHNlY3VyaXR5LCBiYWNrLXVwIGFuZCBwcmVzZXJ2YXRpb24uCgpZb3UgcmVwcmVzZW50IHRoYXQgdGhlIHN1Ym1pc3Npb24gaXMgeW91ciBvcmlnaW5hbCB3b3JrLCBhbmQgdGhhdCB5b3UgaGF2ZQp0aGUgcmlnaHQgdG8gZ3JhbnQgdGhlIHJpZ2h0cyBjb250YWluZWQgaW4gdGhpcyBsaWNlbnNlLiBZb3UgYWxzbyByZXByZXNlbnQKdGhhdCB5b3VyIHN1Ym1pc3Npb24gZG9lcyBub3QsIHRvIHRoZSBiZXN0IG9mIHlvdXIga25vd2xlZGdlLCBpbmZyaW5nZSB1cG9uCmFueW9uZSdzIGNvcHlyaWdodC4KCklmIHRoZSBzdWJtaXNzaW9uIGNvbnRhaW5zIG1hdGVyaWFsIGZvciB3aGljaCB5b3UgZG8gbm90IGhvbGQgY29weXJpZ2h0LAp5b3UgcmVwcmVzZW50IHRoYXQgeW91IGhhdmUgb2J0YWluZWQgdGhlIHVucmVzdHJpY3RlZCBwZXJtaXNzaW9uIG9mIHRoZQpjb3B5cmlnaHQgb3duZXIgdG8gZ3JhbnQgRFNVIHRoZSByaWdodHMgcmVxdWlyZWQgYnkgdGhpcyBsaWNlbnNlLCBhbmQgdGhhdApzdWNoIHRoaXJkLXBhcnR5IG93bmVkIG1hdGVyaWFsIGlzIGNsZWFybHkgaWRlbnRpZmllZCBhbmQgYWNrbm93bGVkZ2VkCndpdGhpbiB0aGUgdGV4dCBvciBjb250ZW50IG9mIHRoZSBzdWJtaXNzaW9uLgoKSUYgVEhFIFNVQk1JU1NJT04gSVMgQkFTRUQgVVBPTiBXT1JLIFRIQVQgSEFTIEJFRU4gU1BPTlNPUkVEIE9SIFNVUFBPUlRFRApCWSBBTiBBR0VOQ1kgT1IgT1JHQU5JWkFUSU9OIE9USEVSIFRIQU4gRFNVLCBZT1UgUkVQUkVTRU5UIFRIQVQgWU9VIEhBVkUKRlVMRklMTEVEIEFOWSBSSUdIVCBPRiBSRVZJRVcgT1IgT1RIRVIgT0JMSUdBVElPTlMgUkVRVUlSRUQgQlkgU1VDSApDT05UUkFDVCBPUiBBR1JFRU1FTlQuCgpEU1Ugd2lsbCBjbGVhcmx5IGlkZW50aWZ5IHlvdXIgbmFtZShzKSBhcyB0aGUgYXV0aG9yKHMpIG9yIG93bmVyKHMpIG9mIHRoZQpzdWJtaXNzaW9uLCBhbmQgd2lsbCBub3QgbWFrZSBhbnkgYWx0ZXJhdGlvbiwgb3RoZXIgdGhhbiBhcyBhbGxvd2VkIGJ5IHRoaXMKbGljZW5zZSwgdG8geW91ciBzdWJtaXNzaW9uLgo= |
