Optimization of silver nanoparticle synthesis by chemical reduction and evaluation of its antimicrobial and toxic activity

ABSTRACT: Background: Chemical reduction has become an accessible and useful alternative to obtain silver nanoparticles (AgNPs). However, its toxicity capacity depends on multiple variables that generate differences in the ability to inhibit the growth of microorganisms. Thus, optimazing parameters...

Full description

Autores:
Quintero Quiroz, Julián
Quintero Quiroz, Catalina
Acevedo, Natalia
Zapata Giraldo, Jenniffer
Botero, Luz E.
Zárate Triviño, Diana
Saldarriaga, Jorge
Pérez, Vera Z.
Tipo de recurso:
Article of investigation
Fecha de publicación:
2019
Institución:
Universidad de Antioquia
Repositorio:
Repositorio UdeA
Idioma:
eng
OAI Identifier:
oai:bibliotecadigital.udea.edu.co:10495/38211
Acceso en línea:
https://hdl.handle.net/10495/38211
Palabra clave:
Antibacterianos
Anti-Bacterial Agents
Citotoxicidad
Cytotoxicity
Silver nanoparticles
Response surface methodology
http://aims.fao.org/aos/agrovoc/c_34251
https://id.nlm.nih.gov/mesh/D000900
Rights
openAccess
License
http://creativecommons.org/licenses/by/2.5/co/
id UDEA2_265955da7e2bfae0ec2e10264a4016c7
oai_identifier_str oai:bibliotecadigital.udea.edu.co:10495/38211
network_acronym_str UDEA2
network_name_str Repositorio UdeA
repository_id_str
dc.title.spa.fl_str_mv Optimization of silver nanoparticle synthesis by chemical reduction and evaluation of its antimicrobial and toxic activity
title Optimization of silver nanoparticle synthesis by chemical reduction and evaluation of its antimicrobial and toxic activity
spellingShingle Optimization of silver nanoparticle synthesis by chemical reduction and evaluation of its antimicrobial and toxic activity
Antibacterianos
Anti-Bacterial Agents
Citotoxicidad
Cytotoxicity
Silver nanoparticles
Response surface methodology
http://aims.fao.org/aos/agrovoc/c_34251
https://id.nlm.nih.gov/mesh/D000900
title_short Optimization of silver nanoparticle synthesis by chemical reduction and evaluation of its antimicrobial and toxic activity
title_full Optimization of silver nanoparticle synthesis by chemical reduction and evaluation of its antimicrobial and toxic activity
title_fullStr Optimization of silver nanoparticle synthesis by chemical reduction and evaluation of its antimicrobial and toxic activity
title_full_unstemmed Optimization of silver nanoparticle synthesis by chemical reduction and evaluation of its antimicrobial and toxic activity
title_sort Optimization of silver nanoparticle synthesis by chemical reduction and evaluation of its antimicrobial and toxic activity
dc.creator.fl_str_mv Quintero Quiroz, Julián
Quintero Quiroz, Catalina
Acevedo, Natalia
Zapata Giraldo, Jenniffer
Botero, Luz E.
Zárate Triviño, Diana
Saldarriaga, Jorge
Pérez, Vera Z.
dc.contributor.author.none.fl_str_mv Quintero Quiroz, Julián
Quintero Quiroz, Catalina
Acevedo, Natalia
Zapata Giraldo, Jenniffer
Botero, Luz E.
Zárate Triviño, Diana
Saldarriaga, Jorge
Pérez, Vera Z.
dc.contributor.researchgroup.spa.fl_str_mv Diseño y Formulación de Medicamentos Cosméticos y Afines
dc.subject.decs.none.fl_str_mv Antibacterianos
Anti-Bacterial Agents
topic Antibacterianos
Anti-Bacterial Agents
Citotoxicidad
Cytotoxicity
Silver nanoparticles
Response surface methodology
http://aims.fao.org/aos/agrovoc/c_34251
https://id.nlm.nih.gov/mesh/D000900
dc.subject.agrovoc.none.fl_str_mv Citotoxicidad
Cytotoxicity
dc.subject.proposal.spa.fl_str_mv Silver nanoparticles
Response surface methodology
dc.subject.agrovocuri.none.fl_str_mv http://aims.fao.org/aos/agrovoc/c_34251
dc.subject.meshuri.none.fl_str_mv https://id.nlm.nih.gov/mesh/D000900
description ABSTRACT: Background: Chemical reduction has become an accessible and useful alternative to obtain silver nanoparticles (AgNPs). However, its toxicity capacity depends on multiple variables that generate differences in the ability to inhibit the growth of microorganisms. Thus, optimazing parameters for the synthesis of AgNPs can increase its antimicrobial capacity by improving its physical-chemical properties. Methods: In this study a Face Centered Central Composite Design (FCCCD) was carried out with four parameters: AgNO3 concentration, sodium citrate (TSC) concentration, NaBH4 concentration and the pH of the reaction with the objective of inhibit the growth of microorganisms. The response variables were the average size of AgNPs, the peak with the greatest intensity in the size distribution, the polydispersity of the nanoparticle size and the yield of the process. AgNPs obtained from the optimization were characterized physically and chemically. The antimicrobial activity of optimized AgNPs was evaluated against Staphylococcus aureus, Escherichia coli, Escherichia coli AmpC resistant, and Candida albicans and compared with AgNPs before optimization. In addition, the cytotoxicity of the optimized AgNPs was evaluated by the colorimetric assay MTT (3- (4,5- Dimethylthiazol- 2- yl)- 2, 5 - Diphenyltetrazolium Bromide). Results: It was found that the four factors studied were significant for the response variables, and a significant model (p < 0.05) was obtained for each variable. The optimal conditions were 8 for pH and 0.01 M, 0.0 6M, 0.01 M for the concentration of TSC, AgNO3, and NaBH4, respectively. Optimized AgNPs spherical and hemispherical were obtained, and 67.66% of it had a diameter less than 10.30 nm. A minimum bactericidal concentration (MBC) and minimum fungicidal Concentration (MFC) of optimized AgNPs was found against Staphylococcus aureus, Escherichia coli, Escherichia coli AmpC resistant, and Candida albicans at 19.89, 9.94, 9.94, 2.08 μg/mL, respectively. Furthermore, the lethal concentration 50 (LC50) of optimized AgNPs was found on 19.11 μg/mL and 19.60 μg/mL to Vero and NiH3T3 cells, respectively. Conclusions: It was found that the factors studied were significant for the variable responses and the optimization process used was effective to improve the antimicrobial activity of the AgNPs.
publishDate 2019
dc.date.issued.none.fl_str_mv 2019
dc.date.accessioned.none.fl_str_mv 2024-02-19T11:59:47Z
dc.date.available.none.fl_str_mv 2024-02-19T11:59:47Z
dc.type.spa.fl_str_mv Artículo de investigación
dc.type.coar.spa.fl_str_mv http://purl.org/coar/resource_type/c_2df8fbb1
dc.type.redcol.spa.fl_str_mv https://purl.org/redcol/resource_type/ART
dc.type.coarversion.spa.fl_str_mv http://purl.org/coar/version/c_970fb48d4fbd8a85
dc.type.driver.spa.fl_str_mv info:eu-repo/semantics/article
dc.type.version.spa.fl_str_mv info:eu-repo/semantics/publishedVersion
format http://purl.org/coar/resource_type/c_2df8fbb1
status_str publishedVersion
dc.identifier.issn.none.fl_str_mv 1226-4601
dc.identifier.uri.none.fl_str_mv https://hdl.handle.net/10495/38211
dc.identifier.doi.none.fl_str_mv 10.1186/s40824-019-0173-y
dc.identifier.eissn.none.fl_str_mv 2055-7124
identifier_str_mv 1226-4601
10.1186/s40824-019-0173-y
2055-7124
url https://hdl.handle.net/10495/38211
dc.language.iso.spa.fl_str_mv eng
language eng
dc.relation.ispartofjournalabbrev.spa.fl_str_mv Biomater. Res.
dc.relation.citationendpage.spa.fl_str_mv 27
dc.relation.citationissue.spa.fl_str_mv 1
dc.relation.citationstartpage.spa.fl_str_mv 1
dc.relation.citationvolume.spa.fl_str_mv 23
dc.relation.ispartofjournal.spa.fl_str_mv Biomaterials Research
dc.rights.uri.*.fl_str_mv http://creativecommons.org/licenses/by/2.5/co/
dc.rights.uri.spa.fl_str_mv https://creativecommons.org/licenses/by/4.0/
dc.rights.accessrights.spa.fl_str_mv info:eu-repo/semantics/openAccess
dc.rights.coar.spa.fl_str_mv http://purl.org/coar/access_right/c_abf2
rights_invalid_str_mv http://creativecommons.org/licenses/by/2.5/co/
https://creativecommons.org/licenses/by/4.0/
http://purl.org/coar/access_right/c_abf2
eu_rights_str_mv openAccess
dc.format.extent.spa.fl_str_mv 15 páginas
dc.format.mimetype.spa.fl_str_mv application/pdf
dc.publisher.spa.fl_str_mv BMC (BioMed Central)
dc.publisher.place.spa.fl_str_mv Washington, Estados Unidos
institution Universidad de Antioquia
bitstream.url.fl_str_mv https://bibliotecadigital.udea.edu.co/bitstreams/53b9486a-c765-47a7-8411-3ccecf9c51b2/download
https://bibliotecadigital.udea.edu.co/bitstreams/c54a17a4-976e-4c9e-b1d3-36df857dffa1/download
https://bibliotecadigital.udea.edu.co/bitstreams/3de28cae-ecee-4343-a56c-c9029f579cc3/download
https://bibliotecadigital.udea.edu.co/bitstreams/b99ca3ce-0662-4d1e-9c86-fe891ec8bf7b/download
https://bibliotecadigital.udea.edu.co/bitstreams/4d5c71c2-5422-4210-9bce-92d2718f074a/download
bitstream.checksum.fl_str_mv 1646d1f6b96dbbbc38035efc9239ac9c
8a4605be74aa9ea9d79846c1fba20a33
3dbfaa0a162789d0bf19ae88dbea93e2
73c23e23ae55a54383499484b14508fe
1e33d72b2afe504d1078922e344053a2
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
MD5
MD5
repository.name.fl_str_mv Repositorio Institucional de la Universidad de Antioquia
repository.mail.fl_str_mv aplicacionbibliotecadigitalbiblioteca@udea.edu.co
_version_ 1851052587201069056
spelling Quintero Quiroz, JuliánQuintero Quiroz, CatalinaAcevedo, NataliaZapata Giraldo, JennifferBotero, Luz E.Zárate Triviño, DianaSaldarriaga, JorgePérez, Vera Z.Diseño y Formulación de Medicamentos Cosméticos y Afines2024-02-19T11:59:47Z2024-02-19T11:59:47Z20191226-4601https://hdl.handle.net/10495/3821110.1186/s40824-019-0173-y2055-7124ABSTRACT: Background: Chemical reduction has become an accessible and useful alternative to obtain silver nanoparticles (AgNPs). However, its toxicity capacity depends on multiple variables that generate differences in the ability to inhibit the growth of microorganisms. Thus, optimazing parameters for the synthesis of AgNPs can increase its antimicrobial capacity by improving its physical-chemical properties. Methods: In this study a Face Centered Central Composite Design (FCCCD) was carried out with four parameters: AgNO3 concentration, sodium citrate (TSC) concentration, NaBH4 concentration and the pH of the reaction with the objective of inhibit the growth of microorganisms. The response variables were the average size of AgNPs, the peak with the greatest intensity in the size distribution, the polydispersity of the nanoparticle size and the yield of the process. AgNPs obtained from the optimization were characterized physically and chemically. The antimicrobial activity of optimized AgNPs was evaluated against Staphylococcus aureus, Escherichia coli, Escherichia coli AmpC resistant, and Candida albicans and compared with AgNPs before optimization. In addition, the cytotoxicity of the optimized AgNPs was evaluated by the colorimetric assay MTT (3- (4,5- Dimethylthiazol- 2- yl)- 2, 5 - Diphenyltetrazolium Bromide). Results: It was found that the four factors studied were significant for the response variables, and a significant model (p < 0.05) was obtained for each variable. The optimal conditions were 8 for pH and 0.01 M, 0.0 6M, 0.01 M for the concentration of TSC, AgNO3, and NaBH4, respectively. Optimized AgNPs spherical and hemispherical were obtained, and 67.66% of it had a diameter less than 10.30 nm. A minimum bactericidal concentration (MBC) and minimum fungicidal Concentration (MFC) of optimized AgNPs was found against Staphylococcus aureus, Escherichia coli, Escherichia coli AmpC resistant, and Candida albicans at 19.89, 9.94, 9.94, 2.08 μg/mL, respectively. Furthermore, the lethal concentration 50 (LC50) of optimized AgNPs was found on 19.11 μg/mL and 19.60 μg/mL to Vero and NiH3T3 cells, respectively. Conclusions: It was found that the factors studied were significant for the variable responses and the optimization process used was effective to improve the antimicrobial activity of the AgNPs.Colombia. Ministerio de Ciencia, Tecnología e InnovaciónUniversidad Pontificia BolivarianaCOL000362315 páginasapplication/pdfengBMC (BioMed Central)Washington, Estados Unidoshttp://creativecommons.org/licenses/by/2.5/co/https://creativecommons.org/licenses/by/4.0/info:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2Optimization of silver nanoparticle synthesis by chemical reduction and evaluation of its antimicrobial and toxic activityArtículo de investigaciónhttp://purl.org/coar/resource_type/c_2df8fbb1https://purl.org/redcol/resource_type/ARThttp://purl.org/coar/version/c_970fb48d4fbd8a85info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionAntibacterianosAnti-Bacterial AgentsCitotoxicidadCytotoxicitySilver nanoparticlesResponse surface methodologyhttp://aims.fao.org/aos/agrovoc/c_34251https://id.nlm.nih.gov/mesh/D000900Biomater. Res.271123Biomaterials ResearchFP44842-016-2017RoR:03fd5ne08RoR:02dxm8k93PublicationCC-LICENSElicense_rdflicense_rdfapplication/rdf+xml; charset=utf-8927https://bibliotecadigital.udea.edu.co/bitstreams/53b9486a-c765-47a7-8411-3ccecf9c51b2/download1646d1f6b96dbbbc38035efc9239ac9cMD52falseAnonymousREADLICENSElicense.txtlicense.txttext/plain; charset=utf-81748https://bibliotecadigital.udea.edu.co/bitstreams/c54a17a4-976e-4c9e-b1d3-36df857dffa1/download8a4605be74aa9ea9d79846c1fba20a33MD53falseAnonymousREADORIGINALQuinteroJulian_2019_OptimizationSilverNanoparticle.pdfQuinteroJulian_2019_OptimizationSilverNanoparticle.pdfArtículo de investigaciónapplication/pdf2634192https://bibliotecadigital.udea.edu.co/bitstreams/3de28cae-ecee-4343-a56c-c9029f579cc3/download3dbfaa0a162789d0bf19ae88dbea93e2MD51trueAnonymousREADTEXTQuinteroJulian_2019_OptimizationSilverNanoparticle.pdf.txtQuinteroJulian_2019_OptimizationSilverNanoparticle.pdf.txtExtracted texttext/plain64839https://bibliotecadigital.udea.edu.co/bitstreams/b99ca3ce-0662-4d1e-9c86-fe891ec8bf7b/download73c23e23ae55a54383499484b14508feMD54falseAnonymousREADTHUMBNAILQuinteroJulian_2019_OptimizationSilverNanoparticle.pdf.jpgQuinteroJulian_2019_OptimizationSilverNanoparticle.pdf.jpgGenerated Thumbnailimage/jpeg14402https://bibliotecadigital.udea.edu.co/bitstreams/4d5c71c2-5422-4210-9bce-92d2718f074a/download1e33d72b2afe504d1078922e344053a2MD55falseAnonymousREAD10495/38211oai:bibliotecadigital.udea.edu.co:10495/382112025-03-27 00:41:18.857http://creativecommons.org/licenses/by/2.5/co/open.accesshttps://bibliotecadigital.udea.edu.coRepositorio Institucional de la Universidad de Antioquiaaplicacionbibliotecadigitalbiblioteca@udea.edu.coTk9URTogUExBQ0UgWU9VUiBPV04gTElDRU5TRSBIRVJFClRoaXMgc2FtcGxlIGxpY2Vuc2UgaXMgcHJvdmlkZWQgZm9yIGluZm9ybWF0aW9uYWwgcHVycG9zZXMgb25seS4KCk5PTi1FWENMVVNJVkUgRElTVFJJQlVUSU9OIExJQ0VOU0UKCkJ5IHNpZ25pbmcgYW5kIHN1Ym1pdHRpbmcgdGhpcyBsaWNlbnNlLCB5b3UgKHRoZSBhdXRob3Iocykgb3IgY29weXJpZ2h0Cm93bmVyKSBncmFudHMgdG8gRFNwYWNlIFVuaXZlcnNpdHkgKERTVSkgdGhlIG5vbi1leGNsdXNpdmUgcmlnaHQgdG8gcmVwcm9kdWNlLAp0cmFuc2xhdGUgKGFzIGRlZmluZWQgYmVsb3cpLCBhbmQvb3IgZGlzdHJpYnV0ZSB5b3VyIHN1Ym1pc3Npb24gKGluY2x1ZGluZwp0aGUgYWJzdHJhY3QpIHdvcmxkd2lkZSBpbiBwcmludCBhbmQgZWxlY3Ryb25pYyBmb3JtYXQgYW5kIGluIGFueSBtZWRpdW0sCmluY2x1ZGluZyBidXQgbm90IGxpbWl0ZWQgdG8gYXVkaW8gb3IgdmlkZW8uCgpZb3UgYWdyZWUgdGhhdCBEU1UgbWF5LCB3aXRob3V0IGNoYW5naW5nIHRoZSBjb250ZW50LCB0cmFuc2xhdGUgdGhlCnN1Ym1pc3Npb24gdG8gYW55IG1lZGl1bSBvciBmb3JtYXQgZm9yIHRoZSBwdXJwb3NlIG9mIHByZXNlcnZhdGlvbi4KCllvdSBhbHNvIGFncmVlIHRoYXQgRFNVIG1heSBrZWVwIG1vcmUgdGhhbiBvbmUgY29weSBvZiB0aGlzIHN1Ym1pc3Npb24gZm9yCnB1cnBvc2VzIG9mIHNlY3VyaXR5LCBiYWNrLXVwIGFuZCBwcmVzZXJ2YXRpb24uCgpZb3UgcmVwcmVzZW50IHRoYXQgdGhlIHN1Ym1pc3Npb24gaXMgeW91ciBvcmlnaW5hbCB3b3JrLCBhbmQgdGhhdCB5b3UgaGF2ZQp0aGUgcmlnaHQgdG8gZ3JhbnQgdGhlIHJpZ2h0cyBjb250YWluZWQgaW4gdGhpcyBsaWNlbnNlLiBZb3UgYWxzbyByZXByZXNlbnQKdGhhdCB5b3VyIHN1Ym1pc3Npb24gZG9lcyBub3QsIHRvIHRoZSBiZXN0IG9mIHlvdXIga25vd2xlZGdlLCBpbmZyaW5nZSB1cG9uCmFueW9uZSdzIGNvcHlyaWdodC4KCklmIHRoZSBzdWJtaXNzaW9uIGNvbnRhaW5zIG1hdGVyaWFsIGZvciB3aGljaCB5b3UgZG8gbm90IGhvbGQgY29weXJpZ2h0LAp5b3UgcmVwcmVzZW50IHRoYXQgeW91IGhhdmUgb2J0YWluZWQgdGhlIHVucmVzdHJpY3RlZCBwZXJtaXNzaW9uIG9mIHRoZQpjb3B5cmlnaHQgb3duZXIgdG8gZ3JhbnQgRFNVIHRoZSByaWdodHMgcmVxdWlyZWQgYnkgdGhpcyBsaWNlbnNlLCBhbmQgdGhhdApzdWNoIHRoaXJkLXBhcnR5IG93bmVkIG1hdGVyaWFsIGlzIGNsZWFybHkgaWRlbnRpZmllZCBhbmQgYWNrbm93bGVkZ2VkCndpdGhpbiB0aGUgdGV4dCBvciBjb250ZW50IG9mIHRoZSBzdWJtaXNzaW9uLgoKSUYgVEhFIFNVQk1JU1NJT04gSVMgQkFTRUQgVVBPTiBXT1JLIFRIQVQgSEFTIEJFRU4gU1BPTlNPUkVEIE9SIFNVUFBPUlRFRApCWSBBTiBBR0VOQ1kgT1IgT1JHQU5JWkFUSU9OIE9USEVSIFRIQU4gRFNVLCBZT1UgUkVQUkVTRU5UIFRIQVQgWU9VIEhBVkUKRlVMRklMTEVEIEFOWSBSSUdIVCBPRiBSRVZJRVcgT1IgT1RIRVIgT0JMSUdBVElPTlMgUkVRVUlSRUQgQlkgU1VDSApDT05UUkFDVCBPUiBBR1JFRU1FTlQuCgpEU1Ugd2lsbCBjbGVhcmx5IGlkZW50aWZ5IHlvdXIgbmFtZShzKSBhcyB0aGUgYXV0aG9yKHMpIG9yIG93bmVyKHMpIG9mIHRoZQpzdWJtaXNzaW9uLCBhbmQgd2lsbCBub3QgbWFrZSBhbnkgYWx0ZXJhdGlvbiwgb3RoZXIgdGhhbiBhcyBhbGxvd2VkIGJ5IHRoaXMKbGljZW5zZSwgdG8geW91ciBzdWJtaXNzaW9uLgo=