Comparison between logistic regression and neural networks to predict death in patients with suspected sepsis in the emergency room

ABSTRACT: Introduction Neural networks are new methodological tools based on nonlinear models. They appear to be better at prediction and classification in biological systems than do traditional strategies such as logistic regression. This paper provides a practical example that contrasts both appro...

Full description

Autores:
Jaimes Barragán, Fabián Alberto
Farbiarz, Jorge
Álvarez Castro, Diego Fernando
Martínez, Carlos Eli
Tipo de recurso:
Article of investigation
Fecha de publicación:
2005
Institución:
Universidad de Antioquia
Repositorio:
Repositorio UdeA
Idioma:
eng
OAI Identifier:
oai:bibliotecadigital.udea.edu.co:10495/31668
Acceso en línea:
https://hdl.handle.net/10495/31668
Palabra clave:
Escala de Coma de Glasgow
Glasgow Coma Scale
Unidades de Cuidados Intensivos
Intensive Care Units
Tiempo de Internación
Length of Stay
Modelos Logísticos
Logistic Models
Estudios Longitudinales
Longitudinal Studies
Redes Neurales de la Computación
Neural Networks, Computer
Curva ROC
ROC Curve
Sepsis - mortalidad
Sepsis - mortality
Rights
openAccess
License
https://creativecommons.org/licenses/by/4.0/
id UDEA2_255419ea0f1d57f52e8ba7ec9f6a5431
oai_identifier_str oai:bibliotecadigital.udea.edu.co:10495/31668
network_acronym_str UDEA2
network_name_str Repositorio UdeA
repository_id_str
dc.title.spa.fl_str_mv Comparison between logistic regression and neural networks to predict death in patients with suspected sepsis in the emergency room
title Comparison between logistic regression and neural networks to predict death in patients with suspected sepsis in the emergency room
spellingShingle Comparison between logistic regression and neural networks to predict death in patients with suspected sepsis in the emergency room
Escala de Coma de Glasgow
Glasgow Coma Scale
Unidades de Cuidados Intensivos
Intensive Care Units
Tiempo de Internación
Length of Stay
Modelos Logísticos
Logistic Models
Estudios Longitudinales
Longitudinal Studies
Redes Neurales de la Computación
Neural Networks, Computer
Curva ROC
ROC Curve
Sepsis - mortalidad
Sepsis - mortality
title_short Comparison between logistic regression and neural networks to predict death in patients with suspected sepsis in the emergency room
title_full Comparison between logistic regression and neural networks to predict death in patients with suspected sepsis in the emergency room
title_fullStr Comparison between logistic regression and neural networks to predict death in patients with suspected sepsis in the emergency room
title_full_unstemmed Comparison between logistic regression and neural networks to predict death in patients with suspected sepsis in the emergency room
title_sort Comparison between logistic regression and neural networks to predict death in patients with suspected sepsis in the emergency room
dc.creator.fl_str_mv Jaimes Barragán, Fabián Alberto
Farbiarz, Jorge
Álvarez Castro, Diego Fernando
Martínez, Carlos Eli
dc.contributor.author.none.fl_str_mv Jaimes Barragán, Fabián Alberto
Farbiarz, Jorge
Álvarez Castro, Diego Fernando
Martínez, Carlos Eli
dc.contributor.researchgroup.spa.fl_str_mv Grupo Académico de Epidemiología Clínica
dc.subject.decs.none.fl_str_mv Escala de Coma de Glasgow
Glasgow Coma Scale
Unidades de Cuidados Intensivos
Intensive Care Units
Tiempo de Internación
Length of Stay
Modelos Logísticos
Logistic Models
Estudios Longitudinales
Longitudinal Studies
Redes Neurales de la Computación
Neural Networks, Computer
Curva ROC
ROC Curve
Sepsis - mortalidad
Sepsis - mortality
topic Escala de Coma de Glasgow
Glasgow Coma Scale
Unidades de Cuidados Intensivos
Intensive Care Units
Tiempo de Internación
Length of Stay
Modelos Logísticos
Logistic Models
Estudios Longitudinales
Longitudinal Studies
Redes Neurales de la Computación
Neural Networks, Computer
Curva ROC
ROC Curve
Sepsis - mortalidad
Sepsis - mortality
description ABSTRACT: Introduction Neural networks are new methodological tools based on nonlinear models. They appear to be better at prediction and classification in biological systems than do traditional strategies such as logistic regression. This paper provides a practical example that contrasts both approaches within the setting of suspected sepsis in the emergency room. Methods The study population comprised patients with suspected bacterial infection as their main diagnosis for admission to the emergency room at two University-based hospitals. Mortality within the first 28 days from admission was predicted using logistic regression with the following variables: age, immunosuppressive systemic disease, general systemic disease, Shock Index, temperature, respiratory rate, Glasgow Coma Scale score, leucocyte counts, platelet counts and creatinine. Also, with the same input and output variables, a probabilistic neural network was trained with an adaptive genetic algorithm. The network had three neurone layers: 10 neurones in the input layer, 368 in the hidden layer and two in the output layer. Calibration was measured using the Hosmer-Lemeshow goodness-of-fit test and discrimination was determined using receiver operating characteristic curves. Results A total of 533 patients were recruited and overall 28-day mortality was 19%. The factors chosen by logistic regression (with their score in parentheses) were as follows: immunosuppressive systemic disease or general systemic disease (2), respiratory rate 24–33 breaths/min (1), respiratory rate ≥ 34 breaths/min (3), Glasgow Come Scale score ≤12 (3), Shock Index ≥ 1.5 (2) and temperature
publishDate 2005
dc.date.issued.none.fl_str_mv 2005
dc.date.accessioned.none.fl_str_mv 2022-11-01T19:25:46Z
dc.date.available.none.fl_str_mv 2022-11-01T19:25:46Z
dc.type.spa.fl_str_mv Artículo de investigación
dc.type.coar.spa.fl_str_mv http://purl.org/coar/resource_type/c_2df8fbb1
dc.type.redcol.spa.fl_str_mv https://purl.org/redcol/resource_type/ART
dc.type.coarversion.spa.fl_str_mv http://purl.org/coar/version/c_970fb48d4fbd8a85
dc.type.driver.spa.fl_str_mv info:eu-repo/semantics/article
dc.type.version.spa.fl_str_mv info:eu-repo/semantics/publishedVersion
format http://purl.org/coar/resource_type/c_2df8fbb1
status_str publishedVersion
dc.identifier.citation.spa.fl_str_mv Jaimes F, Farbiarz J, Alvarez D, Martínez C. Comparison between logistic regression and neural networks to predict death in patients with suspected sepsis in the emergency room. Crit Care. 2005 Apr;9(2):R150-6. doi: 10.1186/cc3054.
dc.identifier.issn.none.fl_str_mv 1364-8535
dc.identifier.uri.none.fl_str_mv https://hdl.handle.net/10495/31668
dc.identifier.doi.none.fl_str_mv 10.1186/cc3054.
dc.identifier.eissn.none.fl_str_mv 1466-609X
identifier_str_mv Jaimes F, Farbiarz J, Alvarez D, Martínez C. Comparison between logistic regression and neural networks to predict death in patients with suspected sepsis in the emergency room. Crit Care. 2005 Apr;9(2):R150-6. doi: 10.1186/cc3054.
1364-8535
10.1186/cc3054.
1466-609X
url https://hdl.handle.net/10495/31668
dc.language.iso.spa.fl_str_mv eng
language eng
dc.relation.ispartofjournalabbrev.spa.fl_str_mv Crit Care.
dc.relation.citationendpage.spa.fl_str_mv 156
dc.relation.citationissue.spa.fl_str_mv 2
dc.relation.citationstartpage.spa.fl_str_mv 150
dc.relation.citationvolume.spa.fl_str_mv 9
dc.relation.ispartofjournal.spa.fl_str_mv Critical Care
dc.rights.uri.spa.fl_str_mv https://creativecommons.org/licenses/by/4.0/
dc.rights.uri.*.fl_str_mv http://creativecommons.org/licenses/by/2.5/co/
dc.rights.accessrights.spa.fl_str_mv info:eu-repo/semantics/openAccess
dc.rights.coar.spa.fl_str_mv http://purl.org/coar/access_right/c_abf2
rights_invalid_str_mv https://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/2.5/co/
http://purl.org/coar/access_right/c_abf2
eu_rights_str_mv openAccess
dc.format.extent.spa.fl_str_mv 7
dc.format.mimetype.spa.fl_str_mv application/pdf
dc.publisher.spa.fl_str_mv BMC (BioMed Central)
dc.publisher.place.spa.fl_str_mv Londres, Inglaterra
institution Universidad de Antioquia
bitstream.url.fl_str_mv https://bibliotecadigital.udea.edu.co/bitstreams/cbbfa041-6b2f-47c5-9dce-78bf16327ef9/download
https://bibliotecadigital.udea.edu.co/bitstreams/dce10afc-84ba-4d17-ac6b-b8e1e2956abe/download
https://bibliotecadigital.udea.edu.co/bitstreams/611c396c-8985-4019-be07-916ecefa6b09/download
https://bibliotecadigital.udea.edu.co/bitstreams/a7592661-3e9c-49ed-9910-073764252379/download
https://bibliotecadigital.udea.edu.co/bitstreams/10b6b99d-77f9-4973-b761-01befeb3ad6d/download
bitstream.checksum.fl_str_mv 7e9aebfce0d09aa8d404ec858742821e
1646d1f6b96dbbbc38035efc9239ac9c
8a4605be74aa9ea9d79846c1fba20a33
090f808d3ddcfc151b5b3aacbf16f2de
9a123ee371dcda72cd7a58afabb01d26
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
MD5
MD5
repository.name.fl_str_mv Repositorio Institucional de la Universidad de Antioquia
repository.mail.fl_str_mv aplicacionbibliotecadigitalbiblioteca@udea.edu.co
_version_ 1851052605323608064
spelling Jaimes Barragán, Fabián AlbertoFarbiarz, JorgeÁlvarez Castro, Diego FernandoMartínez, Carlos EliGrupo Académico de Epidemiología Clínica2022-11-01T19:25:46Z2022-11-01T19:25:46Z2005Jaimes F, Farbiarz J, Alvarez D, Martínez C. Comparison between logistic regression and neural networks to predict death in patients with suspected sepsis in the emergency room. Crit Care. 2005 Apr;9(2):R150-6. doi: 10.1186/cc3054.1364-8535https://hdl.handle.net/10495/3166810.1186/cc3054.1466-609XABSTRACT: Introduction Neural networks are new methodological tools based on nonlinear models. They appear to be better at prediction and classification in biological systems than do traditional strategies such as logistic regression. This paper provides a practical example that contrasts both approaches within the setting of suspected sepsis in the emergency room. Methods The study population comprised patients with suspected bacterial infection as their main diagnosis for admission to the emergency room at two University-based hospitals. Mortality within the first 28 days from admission was predicted using logistic regression with the following variables: age, immunosuppressive systemic disease, general systemic disease, Shock Index, temperature, respiratory rate, Glasgow Coma Scale score, leucocyte counts, platelet counts and creatinine. Also, with the same input and output variables, a probabilistic neural network was trained with an adaptive genetic algorithm. The network had three neurone layers: 10 neurones in the input layer, 368 in the hidden layer and two in the output layer. Calibration was measured using the Hosmer-Lemeshow goodness-of-fit test and discrimination was determined using receiver operating characteristic curves. Results A total of 533 patients were recruited and overall 28-day mortality was 19%. The factors chosen by logistic regression (with their score in parentheses) were as follows: immunosuppressive systemic disease or general systemic disease (2), respiratory rate 24–33 breaths/min (1), respiratory rate ≥ 34 breaths/min (3), Glasgow Come Scale score ≤12 (3), Shock Index ≥ 1.5 (2) and temperatureCOL00071217application/pdfengBMC (BioMed Central)Londres, Inglaterrahttps://creativecommons.org/licenses/by/4.0/http://creativecommons.org/licenses/by/2.5/co/info:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2Comparison between logistic regression and neural networks to predict death in patients with suspected sepsis in the emergency roomArtículo de investigaciónhttp://purl.org/coar/resource_type/c_2df8fbb1https://purl.org/redcol/resource_type/ARThttp://purl.org/coar/version/c_970fb48d4fbd8a85info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionEscala de Coma de GlasgowGlasgow Coma ScaleUnidades de Cuidados IntensivosIntensive Care UnitsTiempo de InternaciónLength of StayModelos LogísticosLogistic ModelsEstudios LongitudinalesLongitudinal StudiesRedes Neurales de la ComputaciónNeural Networks, ComputerCurva ROCROC CurveSepsis - mortalidadSepsis - mortalityCrit Care.15621509Critical CarePublicationORIGINALAlvarezDiego_2005_ComparisonBetweenLogistic.pdfAlvarezDiego_2005_ComparisonBetweenLogistic.pdfArtículo de investigaciónapplication/pdf159615https://bibliotecadigital.udea.edu.co/bitstreams/cbbfa041-6b2f-47c5-9dce-78bf16327ef9/download7e9aebfce0d09aa8d404ec858742821eMD51trueAnonymousREADCC-LICENSElicense_rdflicense_rdfapplication/rdf+xml; charset=utf-8927https://bibliotecadigital.udea.edu.co/bitstreams/dce10afc-84ba-4d17-ac6b-b8e1e2956abe/download1646d1f6b96dbbbc38035efc9239ac9cMD52falseAnonymousREADLICENSElicense.txtlicense.txttext/plain; charset=utf-81748https://bibliotecadigital.udea.edu.co/bitstreams/611c396c-8985-4019-be07-916ecefa6b09/download8a4605be74aa9ea9d79846c1fba20a33MD53falseAnonymousREADTEXTAlvarezDiego_2005_ComparisonBetweenLogistic.pdf.txtAlvarezDiego_2005_ComparisonBetweenLogistic.pdf.txtExtracted texttext/plain35316https://bibliotecadigital.udea.edu.co/bitstreams/a7592661-3e9c-49ed-9910-073764252379/download090f808d3ddcfc151b5b3aacbf16f2deMD54falseAnonymousREADTHUMBNAILAlvarezDiego_2005_ComparisonBetweenLogistic.pdf.jpgAlvarezDiego_2005_ComparisonBetweenLogistic.pdf.jpgGenerated Thumbnailimage/jpeg14437https://bibliotecadigital.udea.edu.co/bitstreams/10b6b99d-77f9-4973-b761-01befeb3ad6d/download9a123ee371dcda72cd7a58afabb01d26MD55falseAnonymousREAD10495/31668oai:bibliotecadigital.udea.edu.co:10495/316682025-03-27 00:56:49.764https://creativecommons.org/licenses/by/4.0/open.accesshttps://bibliotecadigital.udea.edu.coRepositorio Institucional de la Universidad de Antioquiaaplicacionbibliotecadigitalbiblioteca@udea.edu.coTk9URTogUExBQ0UgWU9VUiBPV04gTElDRU5TRSBIRVJFClRoaXMgc2FtcGxlIGxpY2Vuc2UgaXMgcHJvdmlkZWQgZm9yIGluZm9ybWF0aW9uYWwgcHVycG9zZXMgb25seS4KCk5PTi1FWENMVVNJVkUgRElTVFJJQlVUSU9OIExJQ0VOU0UKCkJ5IHNpZ25pbmcgYW5kIHN1Ym1pdHRpbmcgdGhpcyBsaWNlbnNlLCB5b3UgKHRoZSBhdXRob3Iocykgb3IgY29weXJpZ2h0Cm93bmVyKSBncmFudHMgdG8gRFNwYWNlIFVuaXZlcnNpdHkgKERTVSkgdGhlIG5vbi1leGNsdXNpdmUgcmlnaHQgdG8gcmVwcm9kdWNlLAp0cmFuc2xhdGUgKGFzIGRlZmluZWQgYmVsb3cpLCBhbmQvb3IgZGlzdHJpYnV0ZSB5b3VyIHN1Ym1pc3Npb24gKGluY2x1ZGluZwp0aGUgYWJzdHJhY3QpIHdvcmxkd2lkZSBpbiBwcmludCBhbmQgZWxlY3Ryb25pYyBmb3JtYXQgYW5kIGluIGFueSBtZWRpdW0sCmluY2x1ZGluZyBidXQgbm90IGxpbWl0ZWQgdG8gYXVkaW8gb3IgdmlkZW8uCgpZb3UgYWdyZWUgdGhhdCBEU1UgbWF5LCB3aXRob3V0IGNoYW5naW5nIHRoZSBjb250ZW50LCB0cmFuc2xhdGUgdGhlCnN1Ym1pc3Npb24gdG8gYW55IG1lZGl1bSBvciBmb3JtYXQgZm9yIHRoZSBwdXJwb3NlIG9mIHByZXNlcnZhdGlvbi4KCllvdSBhbHNvIGFncmVlIHRoYXQgRFNVIG1heSBrZWVwIG1vcmUgdGhhbiBvbmUgY29weSBvZiB0aGlzIHN1Ym1pc3Npb24gZm9yCnB1cnBvc2VzIG9mIHNlY3VyaXR5LCBiYWNrLXVwIGFuZCBwcmVzZXJ2YXRpb24uCgpZb3UgcmVwcmVzZW50IHRoYXQgdGhlIHN1Ym1pc3Npb24gaXMgeW91ciBvcmlnaW5hbCB3b3JrLCBhbmQgdGhhdCB5b3UgaGF2ZQp0aGUgcmlnaHQgdG8gZ3JhbnQgdGhlIHJpZ2h0cyBjb250YWluZWQgaW4gdGhpcyBsaWNlbnNlLiBZb3UgYWxzbyByZXByZXNlbnQKdGhhdCB5b3VyIHN1Ym1pc3Npb24gZG9lcyBub3QsIHRvIHRoZSBiZXN0IG9mIHlvdXIga25vd2xlZGdlLCBpbmZyaW5nZSB1cG9uCmFueW9uZSdzIGNvcHlyaWdodC4KCklmIHRoZSBzdWJtaXNzaW9uIGNvbnRhaW5zIG1hdGVyaWFsIGZvciB3aGljaCB5b3UgZG8gbm90IGhvbGQgY29weXJpZ2h0LAp5b3UgcmVwcmVzZW50IHRoYXQgeW91IGhhdmUgb2J0YWluZWQgdGhlIHVucmVzdHJpY3RlZCBwZXJtaXNzaW9uIG9mIHRoZQpjb3B5cmlnaHQgb3duZXIgdG8gZ3JhbnQgRFNVIHRoZSByaWdodHMgcmVxdWlyZWQgYnkgdGhpcyBsaWNlbnNlLCBhbmQgdGhhdApzdWNoIHRoaXJkLXBhcnR5IG93bmVkIG1hdGVyaWFsIGlzIGNsZWFybHkgaWRlbnRpZmllZCBhbmQgYWNrbm93bGVkZ2VkCndpdGhpbiB0aGUgdGV4dCBvciBjb250ZW50IG9mIHRoZSBzdWJtaXNzaW9uLgoKSUYgVEhFIFNVQk1JU1NJT04gSVMgQkFTRUQgVVBPTiBXT1JLIFRIQVQgSEFTIEJFRU4gU1BPTlNPUkVEIE9SIFNVUFBPUlRFRApCWSBBTiBBR0VOQ1kgT1IgT1JHQU5JWkFUSU9OIE9USEVSIFRIQU4gRFNVLCBZT1UgUkVQUkVTRU5UIFRIQVQgWU9VIEhBVkUKRlVMRklMTEVEIEFOWSBSSUdIVCBPRiBSRVZJRVcgT1IgT1RIRVIgT0JMSUdBVElPTlMgUkVRVUlSRUQgQlkgU1VDSApDT05UUkFDVCBPUiBBR1JFRU1FTlQuCgpEU1Ugd2lsbCBjbGVhcmx5IGlkZW50aWZ5IHlvdXIgbmFtZShzKSBhcyB0aGUgYXV0aG9yKHMpIG9yIG93bmVyKHMpIG9mIHRoZQpzdWJtaXNzaW9uLCBhbmQgd2lsbCBub3QgbWFrZSBhbnkgYWx0ZXJhdGlvbiwgb3RoZXIgdGhhbiBhcyBhbGxvd2VkIGJ5IHRoaXMKbGljZW5zZSwgdG8geW91ciBzdWJtaXNzaW9uLgo=