Comparison between logistic regression and neural networks to predict death in patients with suspected sepsis in the emergency room
ABSTRACT: Introduction Neural networks are new methodological tools based on nonlinear models. They appear to be better at prediction and classification in biological systems than do traditional strategies such as logistic regression. This paper provides a practical example that contrasts both appro...
- Autores:
-
Jaimes Barragán, Fabián Alberto
Farbiarz, Jorge
Álvarez Castro, Diego Fernando
Martínez, Carlos Eli
- Tipo de recurso:
- Article of investigation
- Fecha de publicación:
- 2005
- Institución:
- Universidad de Antioquia
- Repositorio:
- Repositorio UdeA
- Idioma:
- eng
- OAI Identifier:
- oai:bibliotecadigital.udea.edu.co:10495/31668
- Acceso en línea:
- https://hdl.handle.net/10495/31668
- Palabra clave:
- Escala de Coma de Glasgow
Glasgow Coma Scale
Unidades de Cuidados Intensivos
Intensive Care Units
Tiempo de Internación
Length of Stay
Modelos Logísticos
Logistic Models
Estudios Longitudinales
Longitudinal Studies
Redes Neurales de la Computación
Neural Networks, Computer
Curva ROC
ROC Curve
Sepsis - mortalidad
Sepsis - mortality
- Rights
- openAccess
- License
- https://creativecommons.org/licenses/by/4.0/
| id |
UDEA2_255419ea0f1d57f52e8ba7ec9f6a5431 |
|---|---|
| oai_identifier_str |
oai:bibliotecadigital.udea.edu.co:10495/31668 |
| network_acronym_str |
UDEA2 |
| network_name_str |
Repositorio UdeA |
| repository_id_str |
|
| dc.title.spa.fl_str_mv |
Comparison between logistic regression and neural networks to predict death in patients with suspected sepsis in the emergency room |
| title |
Comparison between logistic regression and neural networks to predict death in patients with suspected sepsis in the emergency room |
| spellingShingle |
Comparison between logistic regression and neural networks to predict death in patients with suspected sepsis in the emergency room Escala de Coma de Glasgow Glasgow Coma Scale Unidades de Cuidados Intensivos Intensive Care Units Tiempo de Internación Length of Stay Modelos Logísticos Logistic Models Estudios Longitudinales Longitudinal Studies Redes Neurales de la Computación Neural Networks, Computer Curva ROC ROC Curve Sepsis - mortalidad Sepsis - mortality |
| title_short |
Comparison between logistic regression and neural networks to predict death in patients with suspected sepsis in the emergency room |
| title_full |
Comparison between logistic regression and neural networks to predict death in patients with suspected sepsis in the emergency room |
| title_fullStr |
Comparison between logistic regression and neural networks to predict death in patients with suspected sepsis in the emergency room |
| title_full_unstemmed |
Comparison between logistic regression and neural networks to predict death in patients with suspected sepsis in the emergency room |
| title_sort |
Comparison between logistic regression and neural networks to predict death in patients with suspected sepsis in the emergency room |
| dc.creator.fl_str_mv |
Jaimes Barragán, Fabián Alberto Farbiarz, Jorge Álvarez Castro, Diego Fernando Martínez, Carlos Eli |
| dc.contributor.author.none.fl_str_mv |
Jaimes Barragán, Fabián Alberto Farbiarz, Jorge Álvarez Castro, Diego Fernando Martínez, Carlos Eli |
| dc.contributor.researchgroup.spa.fl_str_mv |
Grupo Académico de Epidemiología Clínica |
| dc.subject.decs.none.fl_str_mv |
Escala de Coma de Glasgow Glasgow Coma Scale Unidades de Cuidados Intensivos Intensive Care Units Tiempo de Internación Length of Stay Modelos Logísticos Logistic Models Estudios Longitudinales Longitudinal Studies Redes Neurales de la Computación Neural Networks, Computer Curva ROC ROC Curve Sepsis - mortalidad Sepsis - mortality |
| topic |
Escala de Coma de Glasgow Glasgow Coma Scale Unidades de Cuidados Intensivos Intensive Care Units Tiempo de Internación Length of Stay Modelos Logísticos Logistic Models Estudios Longitudinales Longitudinal Studies Redes Neurales de la Computación Neural Networks, Computer Curva ROC ROC Curve Sepsis - mortalidad Sepsis - mortality |
| description |
ABSTRACT: Introduction Neural networks are new methodological tools based on nonlinear models. They appear to be better at prediction and classification in biological systems than do traditional strategies such as logistic regression. This paper provides a practical example that contrasts both approaches within the setting of suspected sepsis in the emergency room. Methods The study population comprised patients with suspected bacterial infection as their main diagnosis for admission to the emergency room at two University-based hospitals. Mortality within the first 28 days from admission was predicted using logistic regression with the following variables: age, immunosuppressive systemic disease, general systemic disease, Shock Index, temperature, respiratory rate, Glasgow Coma Scale score, leucocyte counts, platelet counts and creatinine. Also, with the same input and output variables, a probabilistic neural network was trained with an adaptive genetic algorithm. The network had three neurone layers: 10 neurones in the input layer, 368 in the hidden layer and two in the output layer. Calibration was measured using the Hosmer-Lemeshow goodness-of-fit test and discrimination was determined using receiver operating characteristic curves. Results A total of 533 patients were recruited and overall 28-day mortality was 19%. The factors chosen by logistic regression (with their score in parentheses) were as follows: immunosuppressive systemic disease or general systemic disease (2), respiratory rate 24–33 breaths/min (1), respiratory rate ≥ 34 breaths/min (3), Glasgow Come Scale score ≤12 (3), Shock Index ≥ 1.5 (2) and temperature |
| publishDate |
2005 |
| dc.date.issued.none.fl_str_mv |
2005 |
| dc.date.accessioned.none.fl_str_mv |
2022-11-01T19:25:46Z |
| dc.date.available.none.fl_str_mv |
2022-11-01T19:25:46Z |
| dc.type.spa.fl_str_mv |
Artículo de investigación |
| dc.type.coar.spa.fl_str_mv |
http://purl.org/coar/resource_type/c_2df8fbb1 |
| dc.type.redcol.spa.fl_str_mv |
https://purl.org/redcol/resource_type/ART |
| dc.type.coarversion.spa.fl_str_mv |
http://purl.org/coar/version/c_970fb48d4fbd8a85 |
| dc.type.driver.spa.fl_str_mv |
info:eu-repo/semantics/article |
| dc.type.version.spa.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
| format |
http://purl.org/coar/resource_type/c_2df8fbb1 |
| status_str |
publishedVersion |
| dc.identifier.citation.spa.fl_str_mv |
Jaimes F, Farbiarz J, Alvarez D, Martínez C. Comparison between logistic regression and neural networks to predict death in patients with suspected sepsis in the emergency room. Crit Care. 2005 Apr;9(2):R150-6. doi: 10.1186/cc3054. |
| dc.identifier.issn.none.fl_str_mv |
1364-8535 |
| dc.identifier.uri.none.fl_str_mv |
https://hdl.handle.net/10495/31668 |
| dc.identifier.doi.none.fl_str_mv |
10.1186/cc3054. |
| dc.identifier.eissn.none.fl_str_mv |
1466-609X |
| identifier_str_mv |
Jaimes F, Farbiarz J, Alvarez D, Martínez C. Comparison between logistic regression and neural networks to predict death in patients with suspected sepsis in the emergency room. Crit Care. 2005 Apr;9(2):R150-6. doi: 10.1186/cc3054. 1364-8535 10.1186/cc3054. 1466-609X |
| url |
https://hdl.handle.net/10495/31668 |
| dc.language.iso.spa.fl_str_mv |
eng |
| language |
eng |
| dc.relation.ispartofjournalabbrev.spa.fl_str_mv |
Crit Care. |
| dc.relation.citationendpage.spa.fl_str_mv |
156 |
| dc.relation.citationissue.spa.fl_str_mv |
2 |
| dc.relation.citationstartpage.spa.fl_str_mv |
150 |
| dc.relation.citationvolume.spa.fl_str_mv |
9 |
| dc.relation.ispartofjournal.spa.fl_str_mv |
Critical Care |
| dc.rights.uri.spa.fl_str_mv |
https://creativecommons.org/licenses/by/4.0/ |
| dc.rights.uri.*.fl_str_mv |
http://creativecommons.org/licenses/by/2.5/co/ |
| dc.rights.accessrights.spa.fl_str_mv |
info:eu-repo/semantics/openAccess |
| dc.rights.coar.spa.fl_str_mv |
http://purl.org/coar/access_right/c_abf2 |
| rights_invalid_str_mv |
https://creativecommons.org/licenses/by/4.0/ http://creativecommons.org/licenses/by/2.5/co/ http://purl.org/coar/access_right/c_abf2 |
| eu_rights_str_mv |
openAccess |
| dc.format.extent.spa.fl_str_mv |
7 |
| dc.format.mimetype.spa.fl_str_mv |
application/pdf |
| dc.publisher.spa.fl_str_mv |
BMC (BioMed Central) |
| dc.publisher.place.spa.fl_str_mv |
Londres, Inglaterra |
| institution |
Universidad de Antioquia |
| bitstream.url.fl_str_mv |
https://bibliotecadigital.udea.edu.co/bitstreams/cbbfa041-6b2f-47c5-9dce-78bf16327ef9/download https://bibliotecadigital.udea.edu.co/bitstreams/dce10afc-84ba-4d17-ac6b-b8e1e2956abe/download https://bibliotecadigital.udea.edu.co/bitstreams/611c396c-8985-4019-be07-916ecefa6b09/download https://bibliotecadigital.udea.edu.co/bitstreams/a7592661-3e9c-49ed-9910-073764252379/download https://bibliotecadigital.udea.edu.co/bitstreams/10b6b99d-77f9-4973-b761-01befeb3ad6d/download |
| bitstream.checksum.fl_str_mv |
7e9aebfce0d09aa8d404ec858742821e 1646d1f6b96dbbbc38035efc9239ac9c 8a4605be74aa9ea9d79846c1fba20a33 090f808d3ddcfc151b5b3aacbf16f2de 9a123ee371dcda72cd7a58afabb01d26 |
| bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 MD5 MD5 MD5 |
| repository.name.fl_str_mv |
Repositorio Institucional de la Universidad de Antioquia |
| repository.mail.fl_str_mv |
aplicacionbibliotecadigitalbiblioteca@udea.edu.co |
| _version_ |
1851052605323608064 |
| spelling |
Jaimes Barragán, Fabián AlbertoFarbiarz, JorgeÁlvarez Castro, Diego FernandoMartínez, Carlos EliGrupo Académico de Epidemiología Clínica2022-11-01T19:25:46Z2022-11-01T19:25:46Z2005Jaimes F, Farbiarz J, Alvarez D, Martínez C. Comparison between logistic regression and neural networks to predict death in patients with suspected sepsis in the emergency room. Crit Care. 2005 Apr;9(2):R150-6. doi: 10.1186/cc3054.1364-8535https://hdl.handle.net/10495/3166810.1186/cc3054.1466-609XABSTRACT: Introduction Neural networks are new methodological tools based on nonlinear models. They appear to be better at prediction and classification in biological systems than do traditional strategies such as logistic regression. This paper provides a practical example that contrasts both approaches within the setting of suspected sepsis in the emergency room. Methods The study population comprised patients with suspected bacterial infection as their main diagnosis for admission to the emergency room at two University-based hospitals. Mortality within the first 28 days from admission was predicted using logistic regression with the following variables: age, immunosuppressive systemic disease, general systemic disease, Shock Index, temperature, respiratory rate, Glasgow Coma Scale score, leucocyte counts, platelet counts and creatinine. Also, with the same input and output variables, a probabilistic neural network was trained with an adaptive genetic algorithm. The network had three neurone layers: 10 neurones in the input layer, 368 in the hidden layer and two in the output layer. Calibration was measured using the Hosmer-Lemeshow goodness-of-fit test and discrimination was determined using receiver operating characteristic curves. Results A total of 533 patients were recruited and overall 28-day mortality was 19%. The factors chosen by logistic regression (with their score in parentheses) were as follows: immunosuppressive systemic disease or general systemic disease (2), respiratory rate 24–33 breaths/min (1), respiratory rate ≥ 34 breaths/min (3), Glasgow Come Scale score ≤12 (3), Shock Index ≥ 1.5 (2) and temperatureCOL00071217application/pdfengBMC (BioMed Central)Londres, Inglaterrahttps://creativecommons.org/licenses/by/4.0/http://creativecommons.org/licenses/by/2.5/co/info:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2Comparison between logistic regression and neural networks to predict death in patients with suspected sepsis in the emergency roomArtículo de investigaciónhttp://purl.org/coar/resource_type/c_2df8fbb1https://purl.org/redcol/resource_type/ARThttp://purl.org/coar/version/c_970fb48d4fbd8a85info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionEscala de Coma de GlasgowGlasgow Coma ScaleUnidades de Cuidados IntensivosIntensive Care UnitsTiempo de InternaciónLength of StayModelos LogísticosLogistic ModelsEstudios LongitudinalesLongitudinal StudiesRedes Neurales de la ComputaciónNeural Networks, ComputerCurva ROCROC CurveSepsis - mortalidadSepsis - mortalityCrit Care.15621509Critical CarePublicationORIGINALAlvarezDiego_2005_ComparisonBetweenLogistic.pdfAlvarezDiego_2005_ComparisonBetweenLogistic.pdfArtículo de investigaciónapplication/pdf159615https://bibliotecadigital.udea.edu.co/bitstreams/cbbfa041-6b2f-47c5-9dce-78bf16327ef9/download7e9aebfce0d09aa8d404ec858742821eMD51trueAnonymousREADCC-LICENSElicense_rdflicense_rdfapplication/rdf+xml; charset=utf-8927https://bibliotecadigital.udea.edu.co/bitstreams/dce10afc-84ba-4d17-ac6b-b8e1e2956abe/download1646d1f6b96dbbbc38035efc9239ac9cMD52falseAnonymousREADLICENSElicense.txtlicense.txttext/plain; charset=utf-81748https://bibliotecadigital.udea.edu.co/bitstreams/611c396c-8985-4019-be07-916ecefa6b09/download8a4605be74aa9ea9d79846c1fba20a33MD53falseAnonymousREADTEXTAlvarezDiego_2005_ComparisonBetweenLogistic.pdf.txtAlvarezDiego_2005_ComparisonBetweenLogistic.pdf.txtExtracted texttext/plain35316https://bibliotecadigital.udea.edu.co/bitstreams/a7592661-3e9c-49ed-9910-073764252379/download090f808d3ddcfc151b5b3aacbf16f2deMD54falseAnonymousREADTHUMBNAILAlvarezDiego_2005_ComparisonBetweenLogistic.pdf.jpgAlvarezDiego_2005_ComparisonBetweenLogistic.pdf.jpgGenerated Thumbnailimage/jpeg14437https://bibliotecadigital.udea.edu.co/bitstreams/10b6b99d-77f9-4973-b761-01befeb3ad6d/download9a123ee371dcda72cd7a58afabb01d26MD55falseAnonymousREAD10495/31668oai:bibliotecadigital.udea.edu.co:10495/316682025-03-27 00:56:49.764https://creativecommons.org/licenses/by/4.0/open.accesshttps://bibliotecadigital.udea.edu.coRepositorio Institucional de la Universidad de Antioquiaaplicacionbibliotecadigitalbiblioteca@udea.edu.coTk9URTogUExBQ0UgWU9VUiBPV04gTElDRU5TRSBIRVJFClRoaXMgc2FtcGxlIGxpY2Vuc2UgaXMgcHJvdmlkZWQgZm9yIGluZm9ybWF0aW9uYWwgcHVycG9zZXMgb25seS4KCk5PTi1FWENMVVNJVkUgRElTVFJJQlVUSU9OIExJQ0VOU0UKCkJ5IHNpZ25pbmcgYW5kIHN1Ym1pdHRpbmcgdGhpcyBsaWNlbnNlLCB5b3UgKHRoZSBhdXRob3Iocykgb3IgY29weXJpZ2h0Cm93bmVyKSBncmFudHMgdG8gRFNwYWNlIFVuaXZlcnNpdHkgKERTVSkgdGhlIG5vbi1leGNsdXNpdmUgcmlnaHQgdG8gcmVwcm9kdWNlLAp0cmFuc2xhdGUgKGFzIGRlZmluZWQgYmVsb3cpLCBhbmQvb3IgZGlzdHJpYnV0ZSB5b3VyIHN1Ym1pc3Npb24gKGluY2x1ZGluZwp0aGUgYWJzdHJhY3QpIHdvcmxkd2lkZSBpbiBwcmludCBhbmQgZWxlY3Ryb25pYyBmb3JtYXQgYW5kIGluIGFueSBtZWRpdW0sCmluY2x1ZGluZyBidXQgbm90IGxpbWl0ZWQgdG8gYXVkaW8gb3IgdmlkZW8uCgpZb3UgYWdyZWUgdGhhdCBEU1UgbWF5LCB3aXRob3V0IGNoYW5naW5nIHRoZSBjb250ZW50LCB0cmFuc2xhdGUgdGhlCnN1Ym1pc3Npb24gdG8gYW55IG1lZGl1bSBvciBmb3JtYXQgZm9yIHRoZSBwdXJwb3NlIG9mIHByZXNlcnZhdGlvbi4KCllvdSBhbHNvIGFncmVlIHRoYXQgRFNVIG1heSBrZWVwIG1vcmUgdGhhbiBvbmUgY29weSBvZiB0aGlzIHN1Ym1pc3Npb24gZm9yCnB1cnBvc2VzIG9mIHNlY3VyaXR5LCBiYWNrLXVwIGFuZCBwcmVzZXJ2YXRpb24uCgpZb3UgcmVwcmVzZW50IHRoYXQgdGhlIHN1Ym1pc3Npb24gaXMgeW91ciBvcmlnaW5hbCB3b3JrLCBhbmQgdGhhdCB5b3UgaGF2ZQp0aGUgcmlnaHQgdG8gZ3JhbnQgdGhlIHJpZ2h0cyBjb250YWluZWQgaW4gdGhpcyBsaWNlbnNlLiBZb3UgYWxzbyByZXByZXNlbnQKdGhhdCB5b3VyIHN1Ym1pc3Npb24gZG9lcyBub3QsIHRvIHRoZSBiZXN0IG9mIHlvdXIga25vd2xlZGdlLCBpbmZyaW5nZSB1cG9uCmFueW9uZSdzIGNvcHlyaWdodC4KCklmIHRoZSBzdWJtaXNzaW9uIGNvbnRhaW5zIG1hdGVyaWFsIGZvciB3aGljaCB5b3UgZG8gbm90IGhvbGQgY29weXJpZ2h0LAp5b3UgcmVwcmVzZW50IHRoYXQgeW91IGhhdmUgb2J0YWluZWQgdGhlIHVucmVzdHJpY3RlZCBwZXJtaXNzaW9uIG9mIHRoZQpjb3B5cmlnaHQgb3duZXIgdG8gZ3JhbnQgRFNVIHRoZSByaWdodHMgcmVxdWlyZWQgYnkgdGhpcyBsaWNlbnNlLCBhbmQgdGhhdApzdWNoIHRoaXJkLXBhcnR5IG93bmVkIG1hdGVyaWFsIGlzIGNsZWFybHkgaWRlbnRpZmllZCBhbmQgYWNrbm93bGVkZ2VkCndpdGhpbiB0aGUgdGV4dCBvciBjb250ZW50IG9mIHRoZSBzdWJtaXNzaW9uLgoKSUYgVEhFIFNVQk1JU1NJT04gSVMgQkFTRUQgVVBPTiBXT1JLIFRIQVQgSEFTIEJFRU4gU1BPTlNPUkVEIE9SIFNVUFBPUlRFRApCWSBBTiBBR0VOQ1kgT1IgT1JHQU5JWkFUSU9OIE9USEVSIFRIQU4gRFNVLCBZT1UgUkVQUkVTRU5UIFRIQVQgWU9VIEhBVkUKRlVMRklMTEVEIEFOWSBSSUdIVCBPRiBSRVZJRVcgT1IgT1RIRVIgT0JMSUdBVElPTlMgUkVRVUlSRUQgQlkgU1VDSApDT05UUkFDVCBPUiBBR1JFRU1FTlQuCgpEU1Ugd2lsbCBjbGVhcmx5IGlkZW50aWZ5IHlvdXIgbmFtZShzKSBhcyB0aGUgYXV0aG9yKHMpIG9yIG93bmVyKHMpIG9mIHRoZQpzdWJtaXNzaW9uLCBhbmQgd2lsbCBub3QgbWFrZSBhbnkgYWx0ZXJhdGlvbiwgb3RoZXIgdGhhbiBhcyBhbGxvd2VkIGJ5IHRoaXMKbGljZW5zZSwgdG8geW91ciBzdWJtaXNzaW9uLgo= |
