On a multivariate generalization of the covariance
ABSTRACT: Hoeffding’s lemma provides a representation of the covariance of two random variables in terms of the difference between the joint and marginal distributions. This article proposes a multivariate generalization of the covariance between functions of bounded variation in the semialgebra of...
- Autores:
-
Díaz, Walter
Cuadras, Carles M.
- Tipo de recurso:
- Article of investigation
- Fecha de publicación:
- 2017
- Institución:
- Universidad de Antioquia
- Repositorio:
- Repositorio UdeA
- Idioma:
- eng
- OAI Identifier:
- oai:bibliotecadigital.udea.edu.co:10495/31550
- Acceso en línea:
- https://hdl.handle.net/10495/31550
- Palabra clave:
- Functions of bounded variation
Covariance of functions
Hoeffding’s lemma
https://lccn.loc.gov/sh85052355
- Rights
- openAccess
- License
- https://creativecommons.org/licenses/by-nc-nd/2.5/co/
| id |
UDEA2_24cba4daaf4ee6abbccc225b4e0cc22f |
|---|---|
| oai_identifier_str |
oai:bibliotecadigital.udea.edu.co:10495/31550 |
| network_acronym_str |
UDEA2 |
| network_name_str |
Repositorio UdeA |
| repository_id_str |
|
| dc.title.spa.fl_str_mv |
On a multivariate generalization of the covariance |
| title |
On a multivariate generalization of the covariance |
| spellingShingle |
On a multivariate generalization of the covariance Functions of bounded variation Covariance of functions Hoeffding’s lemma https://lccn.loc.gov/sh85052355 |
| title_short |
On a multivariate generalization of the covariance |
| title_full |
On a multivariate generalization of the covariance |
| title_fullStr |
On a multivariate generalization of the covariance |
| title_full_unstemmed |
On a multivariate generalization of the covariance |
| title_sort |
On a multivariate generalization of the covariance |
| dc.creator.fl_str_mv |
Díaz, Walter Cuadras, Carles M. |
| dc.contributor.author.none.fl_str_mv |
Díaz, Walter Cuadras, Carles M. |
| dc.contributor.researchgroup.spa.fl_str_mv |
GIFI - Grupo de Investigación en Finanzas de la UdeA |
| dc.subject.lcsh.none.fl_str_mv |
Functions of bounded variation |
| topic |
Functions of bounded variation Covariance of functions Hoeffding’s lemma https://lccn.loc.gov/sh85052355 |
| dc.subject.proposal.spa.fl_str_mv |
Covariance of functions Hoeffding’s lemma |
| dc.subject.lcshuri.none.fl_str_mv |
https://lccn.loc.gov/sh85052355 |
| description |
ABSTRACT: Hoeffding’s lemma provides a representation of the covariance of two random variables in terms of the difference between the joint and marginal distributions. This article proposes a multivariate generalization of the covariance between functions of bounded variation in the semialgebra of rectangles on R2k. Some applications include the covariance inequality among functions where the variables are positive orthant dependent. |
| publishDate |
2017 |
| dc.date.issued.none.fl_str_mv |
2017 |
| dc.date.accessioned.none.fl_str_mv |
2022-10-28T16:38:41Z |
| dc.date.available.none.fl_str_mv |
2022-10-28T16:38:41Z |
| dc.type.spa.fl_str_mv |
Artículo de investigación |
| dc.type.coar.spa.fl_str_mv |
http://purl.org/coar/resource_type/c_2df8fbb1 |
| dc.type.redcol.spa.fl_str_mv |
https://purl.org/redcol/resource_type/ART |
| dc.type.coarversion.spa.fl_str_mv |
http://purl.org/coar/version/c_970fb48d4fbd8a85 |
| dc.type.driver.spa.fl_str_mv |
info:eu-repo/semantics/article |
| dc.type.version.spa.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
| format |
http://purl.org/coar/resource_type/c_2df8fbb1 |
| status_str |
publishedVersion |
| dc.identifier.issn.none.fl_str_mv |
0361-0926 |
| dc.identifier.uri.none.fl_str_mv |
https://hdl.handle.net/10495/31550 |
| dc.identifier.doi.none.fl_str_mv |
10.1080/03610926.2015.1056368 |
| dc.identifier.eissn.none.fl_str_mv |
1532-415X |
| identifier_str_mv |
0361-0926 10.1080/03610926.2015.1056368 1532-415X |
| url |
https://hdl.handle.net/10495/31550 |
| dc.language.iso.spa.fl_str_mv |
eng |
| language |
eng |
| dc.relation.ispartofjournalabbrev.spa.fl_str_mv |
Commun. Stat. Theory. Methods. |
| dc.relation.citationendpage.spa.fl_str_mv |
4669 |
| dc.relation.citationissue.spa.fl_str_mv |
9 |
| dc.relation.citationstartpage.spa.fl_str_mv |
4660 |
| dc.relation.citationvolume.spa.fl_str_mv |
46 |
| dc.relation.ispartofjournal.spa.fl_str_mv |
Communications in Statistics - Theory and Methods |
| dc.rights.uri.*.fl_str_mv |
https://creativecommons.org/licenses/by-nc-nd/2.5/co/ |
| dc.rights.uri.spa.fl_str_mv |
https://creativecommons.org/licenses/by-nc-nd/4.0/ |
| dc.rights.accessrights.spa.fl_str_mv |
info:eu-repo/semantics/openAccess |
| dc.rights.coar.spa.fl_str_mv |
http://purl.org/coar/access_right/c_abf2 |
| rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-nd/2.5/co/ https://creativecommons.org/licenses/by-nc-nd/4.0/ http://purl.org/coar/access_right/c_abf2 |
| eu_rights_str_mv |
openAccess |
| dc.format.mimetype.spa.fl_str_mv |
application/pdf |
| dc.publisher.spa.fl_str_mv |
Taylor & Francis |
| dc.publisher.place.spa.fl_str_mv |
Nueva York, Estados Unidos |
| institution |
Universidad de Antioquia |
| bitstream.url.fl_str_mv |
https://bibliotecadigital.udea.edu.co/bitstreams/d1ac6801-0932-4256-8c1f-7781621e2b43/download https://bibliotecadigital.udea.edu.co/bitstreams/a23f745b-1c30-44b6-9189-ece7901d4aec/download https://bibliotecadigital.udea.edu.co/bitstreams/47af7da1-cf07-4afd-8ba2-c7bae329f9fa/download https://bibliotecadigital.udea.edu.co/bitstreams/276196e6-4391-4b2c-bc60-fd1e52a1f4d4/download |
| bitstream.checksum.fl_str_mv |
2be9724f6a6f375c5f718b8746fbf1a9 8a4605be74aa9ea9d79846c1fba20a33 e03b3a18a42f75277cb235cf12cd0746 4631d8d41cf5400782540efdd56d72e7 |
| bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 MD5 MD5 |
| repository.name.fl_str_mv |
Repositorio Institucional de la Universidad de Antioquia |
| repository.mail.fl_str_mv |
aplicacionbibliotecadigitalbiblioteca@udea.edu.co |
| _version_ |
1851052191936151552 |
| spelling |
Díaz, WalterCuadras, Carles M.GIFI - Grupo de Investigación en Finanzas de la UdeA2022-10-28T16:38:41Z2022-10-28T16:38:41Z20170361-0926https://hdl.handle.net/10495/3155010.1080/03610926.2015.10563681532-415XABSTRACT: Hoeffding’s lemma provides a representation of the covariance of two random variables in terms of the difference between the joint and marginal distributions. This article proposes a multivariate generalization of the covariance between functions of bounded variation in the semialgebra of rectangles on R2k. Some applications include the covariance inequality among functions where the variables are positive orthant dependent.COL0154341application/pdfengTaylor & FrancisNueva York, Estados Unidoshttps://creativecommons.org/licenses/by-nc-nd/2.5/co/https://creativecommons.org/licenses/by-nc-nd/4.0/info:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2Functions of bounded variationCovariance of functionsHoeffding’s lemmahttps://lccn.loc.gov/sh85052355On a multivariate generalization of the covarianceArtículo de investigaciónhttp://purl.org/coar/resource_type/c_2df8fbb1https://purl.org/redcol/resource_type/ARThttp://purl.org/coar/version/c_970fb48d4fbd8a85info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionCommun. Stat. Theory. Methods.46699466046Communications in Statistics - Theory and MethodsPublicationORIGINALDíazWalter_2017_MultivariateGeneralizationCovariance.pdfDíazWalter_2017_MultivariateGeneralizationCovariance.pdfArtículo de investigaciónapplication/pdf678579https://bibliotecadigital.udea.edu.co/bitstreams/d1ac6801-0932-4256-8c1f-7781621e2b43/download2be9724f6a6f375c5f718b8746fbf1a9MD51trueAnonymousREADLICENSElicense.txtlicense.txttext/plain; charset=utf-81748https://bibliotecadigital.udea.edu.co/bitstreams/a23f745b-1c30-44b6-9189-ece7901d4aec/download8a4605be74aa9ea9d79846c1fba20a33MD52falseAnonymousREADTEXTDíazWalter_2017_MultivariateGeneralizationCovariance.pdf.txtDíazWalter_2017_MultivariateGeneralizationCovariance.pdf.txtExtracted texttext/plain24701https://bibliotecadigital.udea.edu.co/bitstreams/47af7da1-cf07-4afd-8ba2-c7bae329f9fa/downloade03b3a18a42f75277cb235cf12cd0746MD55falseAnonymousREADTHUMBNAILDíazWalter_2017_MultivariateGeneralizationCovariance.pdf.jpgDíazWalter_2017_MultivariateGeneralizationCovariance.pdf.jpgGenerated Thumbnailimage/jpeg8838https://bibliotecadigital.udea.edu.co/bitstreams/276196e6-4391-4b2c-bc60-fd1e52a1f4d4/download4631d8d41cf5400782540efdd56d72e7MD56falseAnonymousREAD10495/31550oai:bibliotecadigital.udea.edu.co:10495/315502025-03-26 18:20:47.355https://creativecommons.org/licenses/by-nc-nd/2.5/co/open.accesshttps://bibliotecadigital.udea.edu.coRepositorio Institucional de la Universidad de Antioquiaaplicacionbibliotecadigitalbiblioteca@udea.edu.coTk9URTogUExBQ0UgWU9VUiBPV04gTElDRU5TRSBIRVJFClRoaXMgc2FtcGxlIGxpY2Vuc2UgaXMgcHJvdmlkZWQgZm9yIGluZm9ybWF0aW9uYWwgcHVycG9zZXMgb25seS4KCk5PTi1FWENMVVNJVkUgRElTVFJJQlVUSU9OIExJQ0VOU0UKCkJ5IHNpZ25pbmcgYW5kIHN1Ym1pdHRpbmcgdGhpcyBsaWNlbnNlLCB5b3UgKHRoZSBhdXRob3Iocykgb3IgY29weXJpZ2h0Cm93bmVyKSBncmFudHMgdG8gRFNwYWNlIFVuaXZlcnNpdHkgKERTVSkgdGhlIG5vbi1leGNsdXNpdmUgcmlnaHQgdG8gcmVwcm9kdWNlLAp0cmFuc2xhdGUgKGFzIGRlZmluZWQgYmVsb3cpLCBhbmQvb3IgZGlzdHJpYnV0ZSB5b3VyIHN1Ym1pc3Npb24gKGluY2x1ZGluZwp0aGUgYWJzdHJhY3QpIHdvcmxkd2lkZSBpbiBwcmludCBhbmQgZWxlY3Ryb25pYyBmb3JtYXQgYW5kIGluIGFueSBtZWRpdW0sCmluY2x1ZGluZyBidXQgbm90IGxpbWl0ZWQgdG8gYXVkaW8gb3IgdmlkZW8uCgpZb3UgYWdyZWUgdGhhdCBEU1UgbWF5LCB3aXRob3V0IGNoYW5naW5nIHRoZSBjb250ZW50LCB0cmFuc2xhdGUgdGhlCnN1Ym1pc3Npb24gdG8gYW55IG1lZGl1bSBvciBmb3JtYXQgZm9yIHRoZSBwdXJwb3NlIG9mIHByZXNlcnZhdGlvbi4KCllvdSBhbHNvIGFncmVlIHRoYXQgRFNVIG1heSBrZWVwIG1vcmUgdGhhbiBvbmUgY29weSBvZiB0aGlzIHN1Ym1pc3Npb24gZm9yCnB1cnBvc2VzIG9mIHNlY3VyaXR5LCBiYWNrLXVwIGFuZCBwcmVzZXJ2YXRpb24uCgpZb3UgcmVwcmVzZW50IHRoYXQgdGhlIHN1Ym1pc3Npb24gaXMgeW91ciBvcmlnaW5hbCB3b3JrLCBhbmQgdGhhdCB5b3UgaGF2ZQp0aGUgcmlnaHQgdG8gZ3JhbnQgdGhlIHJpZ2h0cyBjb250YWluZWQgaW4gdGhpcyBsaWNlbnNlLiBZb3UgYWxzbyByZXByZXNlbnQKdGhhdCB5b3VyIHN1Ym1pc3Npb24gZG9lcyBub3QsIHRvIHRoZSBiZXN0IG9mIHlvdXIga25vd2xlZGdlLCBpbmZyaW5nZSB1cG9uCmFueW9uZSdzIGNvcHlyaWdodC4KCklmIHRoZSBzdWJtaXNzaW9uIGNvbnRhaW5zIG1hdGVyaWFsIGZvciB3aGljaCB5b3UgZG8gbm90IGhvbGQgY29weXJpZ2h0LAp5b3UgcmVwcmVzZW50IHRoYXQgeW91IGhhdmUgb2J0YWluZWQgdGhlIHVucmVzdHJpY3RlZCBwZXJtaXNzaW9uIG9mIHRoZQpjb3B5cmlnaHQgb3duZXIgdG8gZ3JhbnQgRFNVIHRoZSByaWdodHMgcmVxdWlyZWQgYnkgdGhpcyBsaWNlbnNlLCBhbmQgdGhhdApzdWNoIHRoaXJkLXBhcnR5IG93bmVkIG1hdGVyaWFsIGlzIGNsZWFybHkgaWRlbnRpZmllZCBhbmQgYWNrbm93bGVkZ2VkCndpdGhpbiB0aGUgdGV4dCBvciBjb250ZW50IG9mIHRoZSBzdWJtaXNzaW9uLgoKSUYgVEhFIFNVQk1JU1NJT04gSVMgQkFTRUQgVVBPTiBXT1JLIFRIQVQgSEFTIEJFRU4gU1BPTlNPUkVEIE9SIFNVUFBPUlRFRApCWSBBTiBBR0VOQ1kgT1IgT1JHQU5JWkFUSU9OIE9USEVSIFRIQU4gRFNVLCBZT1UgUkVQUkVTRU5UIFRIQVQgWU9VIEhBVkUKRlVMRklMTEVEIEFOWSBSSUdIVCBPRiBSRVZJRVcgT1IgT1RIRVIgT0JMSUdBVElPTlMgUkVRVUlSRUQgQlkgU1VDSApDT05UUkFDVCBPUiBBR1JFRU1FTlQuCgpEU1Ugd2lsbCBjbGVhcmx5IGlkZW50aWZ5IHlvdXIgbmFtZShzKSBhcyB0aGUgYXV0aG9yKHMpIG9yIG93bmVyKHMpIG9mIHRoZQpzdWJtaXNzaW9uLCBhbmQgd2lsbCBub3QgbWFrZSBhbnkgYWx0ZXJhdGlvbiwgb3RoZXIgdGhhbiBhcyBhbGxvd2VkIGJ5IHRoaXMKbGljZW5zZSwgdG8geW91ciBzdWJtaXNzaW9uLgo= |
