Surface–particle interactions control the escape time of a particle from a nanopore-gated nanocavity system: a coarse grained simulation

ABSTRACT: Nanopores and nanocavities are promising single molecule tools for investigating the behavior of individual molecules within confined spaces. For single molecule analysis, the total duration of time the analyte remains within the pore/cavity is highly important. However, this dwell time is...

Full description

Autores:
Giordani Giordani, Cristiano
Zando, Robert
Chinappi, Mauro
Cecconi, Fabio
Zhang, Zhen
Tipo de recurso:
Article of investigation
Fecha de publicación:
2023
Institución:
Universidad de Antioquia
Repositorio:
Repositorio UdeA
Idioma:
eng
OAI Identifier:
oai:bibliotecadigital.udea.edu.co:10495/39826
Acceso en línea:
https://hdl.handle.net/10495/39826
Palabra clave:
Nanopores
Brownian motion processes
http://id.loc.gov/authorities/subjects/sh2012002342
http://id.loc.gov/authorities/subjects/sh85017265
Rights
openAccess
License
http://creativecommons.org/licenses/by/2.5/co/
id UDEA2_2365d7e5f30425e5d8b78ec5ec51f338
oai_identifier_str oai:bibliotecadigital.udea.edu.co:10495/39826
network_acronym_str UDEA2
network_name_str Repositorio UdeA
repository_id_str
dc.title.spa.fl_str_mv Surface–particle interactions control the escape time of a particle from a nanopore-gated nanocavity system: a coarse grained simulation
title Surface–particle interactions control the escape time of a particle from a nanopore-gated nanocavity system: a coarse grained simulation
spellingShingle Surface–particle interactions control the escape time of a particle from a nanopore-gated nanocavity system: a coarse grained simulation
Nanopores
Brownian motion processes
http://id.loc.gov/authorities/subjects/sh2012002342
http://id.loc.gov/authorities/subjects/sh85017265
title_short Surface–particle interactions control the escape time of a particle from a nanopore-gated nanocavity system: a coarse grained simulation
title_full Surface–particle interactions control the escape time of a particle from a nanopore-gated nanocavity system: a coarse grained simulation
title_fullStr Surface–particle interactions control the escape time of a particle from a nanopore-gated nanocavity system: a coarse grained simulation
title_full_unstemmed Surface–particle interactions control the escape time of a particle from a nanopore-gated nanocavity system: a coarse grained simulation
title_sort Surface–particle interactions control the escape time of a particle from a nanopore-gated nanocavity system: a coarse grained simulation
dc.creator.fl_str_mv Giordani Giordani, Cristiano
Zando, Robert
Chinappi, Mauro
Cecconi, Fabio
Zhang, Zhen
dc.contributor.author.none.fl_str_mv Giordani Giordani, Cristiano
Zando, Robert
Chinappi, Mauro
Cecconi, Fabio
Zhang, Zhen
dc.contributor.researchgroup.spa.fl_str_mv Productos Naturales Marinos
dc.subject.lcsh.none.fl_str_mv Nanopores
Brownian motion processes
topic Nanopores
Brownian motion processes
http://id.loc.gov/authorities/subjects/sh2012002342
http://id.loc.gov/authorities/subjects/sh85017265
dc.subject.lcshuri.none.fl_str_mv http://id.loc.gov/authorities/subjects/sh2012002342
http://id.loc.gov/authorities/subjects/sh85017265
description ABSTRACT: Nanopores and nanocavities are promising single molecule tools for investigating the behavior of individual molecules within confined spaces. For single molecule analysis, the total duration of time the analyte remains within the pore/cavity is highly important. However, this dwell time is ruled by a complex interplay among particle–surface interactions, external forces on the particle and Brownian diffusion, making the prediction of the dwell time challenging. Here, we show how the dwell time of an analyte in a nanocavity that is connected to the external environment by two nanopore gates depends on the sizes of the nanocavity/nanopore, as well as particle–wall interactions. For this purpose, we used a coarse-grained model that allowed us to simulate hundreds of individual analyte trajectories within a nanocavity volume. We found that by increasing the attraction between the particle and the wall, the diffusion process transforms from a usual 3D scenario (repulsive wall) to a 2D motion along the cavity surface (highly attractive wall). This results in a significant reduction of the average dwell time. Additionally, the comparison of our results with existing theories on narrow escape problem allowed us to quantify the reliability of theory derived for ideal conditions to geometries more similar to actual devices.
publishDate 2023
dc.date.issued.none.fl_str_mv 2023
dc.date.accessioned.none.fl_str_mv 2024-06-09T20:20:41Z
dc.date.available.none.fl_str_mv 2024-06-09T20:20:41Z
dc.type.spa.fl_str_mv Artículo de investigación
dc.type.coar.spa.fl_str_mv http://purl.org/coar/resource_type/c_2df8fbb1
dc.type.redcol.spa.fl_str_mv https://purl.org/redcol/resource_type/ART
dc.type.coarversion.spa.fl_str_mv http://purl.org/coar/version/c_970fb48d4fbd8a85
dc.type.driver.spa.fl_str_mv info:eu-repo/semantics/article
dc.type.version.spa.fl_str_mv info:eu-repo/semantics/publishedVersion
format http://purl.org/coar/resource_type/c_2df8fbb1
status_str publishedVersion
dc.identifier.citation.spa.fl_str_mv Zando R, Chinappi M, Giordani C, Cecconi F, Zhang Z. Surface-particle interactions control the escape time of a particle from a nanopore-gated nanocavity system: a coarse grained simulation. Nanoscale. 2023 Jul 6;15(26):11107-11114. doi: 10.1039/d3nr01329d
dc.identifier.issn.none.fl_str_mv 2040-3364
dc.identifier.uri.none.fl_str_mv https://hdl.handle.net/10495/39826
dc.identifier.doi.none.fl_str_mv 10.1039/D3NR01329D
dc.identifier.eissn.none.fl_str_mv 2040-3372
identifier_str_mv Zando R, Chinappi M, Giordani C, Cecconi F, Zhang Z. Surface-particle interactions control the escape time of a particle from a nanopore-gated nanocavity system: a coarse grained simulation. Nanoscale. 2023 Jul 6;15(26):11107-11114. doi: 10.1039/d3nr01329d
2040-3364
10.1039/D3NR01329D
2040-3372
url https://hdl.handle.net/10495/39826
dc.language.iso.spa.fl_str_mv eng
language eng
dc.relation.ispartofjournalabbrev.spa.fl_str_mv Nanoscale
dc.relation.citationendpage.spa.fl_str_mv 11114
dc.relation.citationstartpage.spa.fl_str_mv 11107
dc.relation.citationvolume.spa.fl_str_mv 15
dc.relation.ispartofjournal.spa.fl_str_mv Nanoscale
dc.rights.uri.*.fl_str_mv http://creativecommons.org/licenses/by/2.5/co/
dc.rights.uri.spa.fl_str_mv https://creativecommons.org/licenses/by/4.0/
dc.rights.accessrights.spa.fl_str_mv info:eu-repo/semantics/openAccess
dc.rights.coar.spa.fl_str_mv http://purl.org/coar/access_right/c_abf2
rights_invalid_str_mv http://creativecommons.org/licenses/by/2.5/co/
https://creativecommons.org/licenses/by/4.0/
http://purl.org/coar/access_right/c_abf2
eu_rights_str_mv openAccess
dc.format.extent.spa.fl_str_mv 8 páginas
dc.format.mimetype.spa.fl_str_mv application/pdf
dc.publisher.spa.fl_str_mv Royal Society of Chemistry
dc.publisher.place.spa.fl_str_mv Cambridge, Inglaterra
institution Universidad de Antioquia
bitstream.url.fl_str_mv https://bibliotecadigital.udea.edu.co/bitstreams/aec669c7-e325-4420-9d83-d174af9483a6/download
https://bibliotecadigital.udea.edu.co/bitstreams/45059f09-db99-4a5a-b744-006ed3e0c46d/download
https://bibliotecadigital.udea.edu.co/bitstreams/454f9aa7-cf54-4b5a-bc7d-1d606d68146a/download
https://bibliotecadigital.udea.edu.co/bitstreams/3edf7046-615f-47fb-8f91-3034c5b525ca/download
https://bibliotecadigital.udea.edu.co/bitstreams/67e384a3-70fe-4aed-ab11-f795edaad742/download
bitstream.checksum.fl_str_mv 7ed908e51dc1d585a7f9d676824191a7
1646d1f6b96dbbbc38035efc9239ac9c
8a4605be74aa9ea9d79846c1fba20a33
5d80499e94bcfffcba1843f9079c5f1f
7a8664da75411f5a85e5c9bd1e01b39d
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
MD5
MD5
repository.name.fl_str_mv Repositorio Institucional de la Universidad de Antioquia
repository.mail.fl_str_mv aplicacionbibliotecadigitalbiblioteca@udea.edu.co
_version_ 1851052264856223744
spelling Giordani Giordani, CristianoZando, RobertChinappi, MauroCecconi, FabioZhang, ZhenProductos Naturales Marinos2024-06-09T20:20:41Z2024-06-09T20:20:41Z2023Zando R, Chinappi M, Giordani C, Cecconi F, Zhang Z. Surface-particle interactions control the escape time of a particle from a nanopore-gated nanocavity system: a coarse grained simulation. Nanoscale. 2023 Jul 6;15(26):11107-11114. doi: 10.1039/d3nr01329d2040-3364https://hdl.handle.net/10495/3982610.1039/D3NR01329D2040-3372ABSTRACT: Nanopores and nanocavities are promising single molecule tools for investigating the behavior of individual molecules within confined spaces. For single molecule analysis, the total duration of time the analyte remains within the pore/cavity is highly important. However, this dwell time is ruled by a complex interplay among particle–surface interactions, external forces on the particle and Brownian diffusion, making the prediction of the dwell time challenging. Here, we show how the dwell time of an analyte in a nanocavity that is connected to the external environment by two nanopore gates depends on the sizes of the nanocavity/nanopore, as well as particle–wall interactions. For this purpose, we used a coarse-grained model that allowed us to simulate hundreds of individual analyte trajectories within a nanocavity volume. We found that by increasing the attraction between the particle and the wall, the diffusion process transforms from a usual 3D scenario (repulsive wall) to a 2D motion along the cavity surface (highly attractive wall). This results in a significant reduction of the average dwell time. Additionally, the comparison of our results with existing theories on narrow escape problem allowed us to quantify the reliability of theory derived for ideal conditions to geometries more similar to actual devices.COL00150438 páginasapplication/pdfengRoyal Society of ChemistryCambridge, Inglaterrahttp://creativecommons.org/licenses/by/2.5/co/https://creativecommons.org/licenses/by/4.0/info:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2NanoporesBrownian motion processeshttp://id.loc.gov/authorities/subjects/sh2012002342http://id.loc.gov/authorities/subjects/sh85017265Surface–particle interactions control the escape time of a particle from a nanopore-gated nanocavity system: a coarse grained simulationArtículo de investigaciónhttp://purl.org/coar/resource_type/c_2df8fbb1https://purl.org/redcol/resource_type/ARThttp://purl.org/coar/version/c_970fb48d4fbd8a85info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionNanoscale111141110715NanoscalePublicationORIGINALGiordaniCristiano_2023_Surface-Particle_Interactions.pdfGiordaniCristiano_2023_Surface-Particle_Interactions.pdfArtículo de investigaciónapplication/pdf1049625https://bibliotecadigital.udea.edu.co/bitstreams/aec669c7-e325-4420-9d83-d174af9483a6/download7ed908e51dc1d585a7f9d676824191a7MD51trueAnonymousREADCC-LICENSElicense_rdflicense_rdfapplication/rdf+xml; charset=utf-8927https://bibliotecadigital.udea.edu.co/bitstreams/45059f09-db99-4a5a-b744-006ed3e0c46d/download1646d1f6b96dbbbc38035efc9239ac9cMD52falseAnonymousREADLICENSElicense.txtlicense.txttext/plain; charset=utf-81748https://bibliotecadigital.udea.edu.co/bitstreams/454f9aa7-cf54-4b5a-bc7d-1d606d68146a/download8a4605be74aa9ea9d79846c1fba20a33MD53falseAnonymousREADTEXTGiordaniCristiano_2023_Surface-Particle_Interactions.pdf.txtGiordaniCristiano_2023_Surface-Particle_Interactions.pdf.txtExtracted texttext/plain39696https://bibliotecadigital.udea.edu.co/bitstreams/3edf7046-615f-47fb-8f91-3034c5b525ca/download5d80499e94bcfffcba1843f9079c5f1fMD54falseAnonymousREADTHUMBNAILGiordaniCristiano_2023_Surface-Particle_Interactions.pdf.jpgGiordaniCristiano_2023_Surface-Particle_Interactions.pdf.jpgGenerated Thumbnailimage/jpeg16977https://bibliotecadigital.udea.edu.co/bitstreams/67e384a3-70fe-4aed-ab11-f795edaad742/download7a8664da75411f5a85e5c9bd1e01b39dMD55falseAnonymousREAD10495/39826oai:bibliotecadigital.udea.edu.co:10495/398262025-03-26 19:34:26.736http://creativecommons.org/licenses/by/2.5/co/open.accesshttps://bibliotecadigital.udea.edu.coRepositorio Institucional de la Universidad de Antioquiaaplicacionbibliotecadigitalbiblioteca@udea.edu.coTk9URTogUExBQ0UgWU9VUiBPV04gTElDRU5TRSBIRVJFClRoaXMgc2FtcGxlIGxpY2Vuc2UgaXMgcHJvdmlkZWQgZm9yIGluZm9ybWF0aW9uYWwgcHVycG9zZXMgb25seS4KCk5PTi1FWENMVVNJVkUgRElTVFJJQlVUSU9OIExJQ0VOU0UKCkJ5IHNpZ25pbmcgYW5kIHN1Ym1pdHRpbmcgdGhpcyBsaWNlbnNlLCB5b3UgKHRoZSBhdXRob3Iocykgb3IgY29weXJpZ2h0Cm93bmVyKSBncmFudHMgdG8gRFNwYWNlIFVuaXZlcnNpdHkgKERTVSkgdGhlIG5vbi1leGNsdXNpdmUgcmlnaHQgdG8gcmVwcm9kdWNlLAp0cmFuc2xhdGUgKGFzIGRlZmluZWQgYmVsb3cpLCBhbmQvb3IgZGlzdHJpYnV0ZSB5b3VyIHN1Ym1pc3Npb24gKGluY2x1ZGluZwp0aGUgYWJzdHJhY3QpIHdvcmxkd2lkZSBpbiBwcmludCBhbmQgZWxlY3Ryb25pYyBmb3JtYXQgYW5kIGluIGFueSBtZWRpdW0sCmluY2x1ZGluZyBidXQgbm90IGxpbWl0ZWQgdG8gYXVkaW8gb3IgdmlkZW8uCgpZb3UgYWdyZWUgdGhhdCBEU1UgbWF5LCB3aXRob3V0IGNoYW5naW5nIHRoZSBjb250ZW50LCB0cmFuc2xhdGUgdGhlCnN1Ym1pc3Npb24gdG8gYW55IG1lZGl1bSBvciBmb3JtYXQgZm9yIHRoZSBwdXJwb3NlIG9mIHByZXNlcnZhdGlvbi4KCllvdSBhbHNvIGFncmVlIHRoYXQgRFNVIG1heSBrZWVwIG1vcmUgdGhhbiBvbmUgY29weSBvZiB0aGlzIHN1Ym1pc3Npb24gZm9yCnB1cnBvc2VzIG9mIHNlY3VyaXR5LCBiYWNrLXVwIGFuZCBwcmVzZXJ2YXRpb24uCgpZb3UgcmVwcmVzZW50IHRoYXQgdGhlIHN1Ym1pc3Npb24gaXMgeW91ciBvcmlnaW5hbCB3b3JrLCBhbmQgdGhhdCB5b3UgaGF2ZQp0aGUgcmlnaHQgdG8gZ3JhbnQgdGhlIHJpZ2h0cyBjb250YWluZWQgaW4gdGhpcyBsaWNlbnNlLiBZb3UgYWxzbyByZXByZXNlbnQKdGhhdCB5b3VyIHN1Ym1pc3Npb24gZG9lcyBub3QsIHRvIHRoZSBiZXN0IG9mIHlvdXIga25vd2xlZGdlLCBpbmZyaW5nZSB1cG9uCmFueW9uZSdzIGNvcHlyaWdodC4KCklmIHRoZSBzdWJtaXNzaW9uIGNvbnRhaW5zIG1hdGVyaWFsIGZvciB3aGljaCB5b3UgZG8gbm90IGhvbGQgY29weXJpZ2h0LAp5b3UgcmVwcmVzZW50IHRoYXQgeW91IGhhdmUgb2J0YWluZWQgdGhlIHVucmVzdHJpY3RlZCBwZXJtaXNzaW9uIG9mIHRoZQpjb3B5cmlnaHQgb3duZXIgdG8gZ3JhbnQgRFNVIHRoZSByaWdodHMgcmVxdWlyZWQgYnkgdGhpcyBsaWNlbnNlLCBhbmQgdGhhdApzdWNoIHRoaXJkLXBhcnR5IG93bmVkIG1hdGVyaWFsIGlzIGNsZWFybHkgaWRlbnRpZmllZCBhbmQgYWNrbm93bGVkZ2VkCndpdGhpbiB0aGUgdGV4dCBvciBjb250ZW50IG9mIHRoZSBzdWJtaXNzaW9uLgoKSUYgVEhFIFNVQk1JU1NJT04gSVMgQkFTRUQgVVBPTiBXT1JLIFRIQVQgSEFTIEJFRU4gU1BPTlNPUkVEIE9SIFNVUFBPUlRFRApCWSBBTiBBR0VOQ1kgT1IgT1JHQU5JWkFUSU9OIE9USEVSIFRIQU4gRFNVLCBZT1UgUkVQUkVTRU5UIFRIQVQgWU9VIEhBVkUKRlVMRklMTEVEIEFOWSBSSUdIVCBPRiBSRVZJRVcgT1IgT1RIRVIgT0JMSUdBVElPTlMgUkVRVUlSRUQgQlkgU1VDSApDT05UUkFDVCBPUiBBR1JFRU1FTlQuCgpEU1Ugd2lsbCBjbGVhcmx5IGlkZW50aWZ5IHlvdXIgbmFtZShzKSBhcyB0aGUgYXV0aG9yKHMpIG9yIG93bmVyKHMpIG9mIHRoZQpzdWJtaXNzaW9uLCBhbmQgd2lsbCBub3QgbWFrZSBhbnkgYWx0ZXJhdGlvbiwgb3RoZXIgdGhhbiBhcyBhbGxvd2VkIGJ5IHRoaXMKbGljZW5zZSwgdG8geW91ciBzdWJtaXNzaW9uLgo=