Processing of Hybrid Perovskite Films Using Scalable Solution Methods for Application as Active Layers in Flexible Solar Cells

This thesis explores scalable solution-based processing techniques for fabricating hybrid perovskite films in flexible solar cells, with a focus on slot-die and doctor blade coating. With the global shift toward renewable energy sources, flexible perovskite solar cells (FPSCs) present a promising al...

Full description

Autores:
Flórez Velásquez, Yaneth Alejandra
Tipo de recurso:
Doctoral thesis
Fecha de publicación:
2025
Institución:
Universidad de Antioquia
Repositorio:
Repositorio UdeA
Idioma:
eng
OAI Identifier:
oai:bibliotecadigital.udea.edu.co:10495/47174
Acceso en línea:
https://hdl.handle.net/10495/47174
Palabra clave:
Perovskite solar cells
Organic solvents
http://id.loc.gov/authorities/subjects/sh87001687
Coating processes
Factor ambiental
Environmental factors
Slot-die coating
Green solvents
Coating window
http://aims.fao.org/aos/agrovoc/c_2594
http://id.loc.gov/authorities/subjects/sh2019000655
http://id.loc.gov/authorities/subjects/sh85027503
ODS 7: Energía asequible y no contaminante. Garantizar el acceso a una energía asequible, fiable, sostenible y moderna para todos
Rights
embargoedAccess
License
http://creativecommons.org/licenses/by-nd/4.0/
id UDEA2_22da96794b0899fcc6f4fa54c94f177c
oai_identifier_str oai:bibliotecadigital.udea.edu.co:10495/47174
network_acronym_str UDEA2
network_name_str Repositorio UdeA
repository_id_str
dc.title.eng.fl_str_mv Processing of Hybrid Perovskite Films Using Scalable Solution Methods for Application as Active Layers in Flexible Solar Cells
dc.title.translated.none.fl_str_mv Procesamiento de Películas de Perovskitas Híbridas Usando Métodos en Solución Escalables para Aplicación como Capas Activas en Celdas Solares Flexibles
title Processing of Hybrid Perovskite Films Using Scalable Solution Methods for Application as Active Layers in Flexible Solar Cells
spellingShingle Processing of Hybrid Perovskite Films Using Scalable Solution Methods for Application as Active Layers in Flexible Solar Cells
Perovskite solar cells
Organic solvents
http://id.loc.gov/authorities/subjects/sh87001687
Coating processes
Factor ambiental
Environmental factors
Slot-die coating
Green solvents
Coating window
http://aims.fao.org/aos/agrovoc/c_2594
http://id.loc.gov/authorities/subjects/sh2019000655
http://id.loc.gov/authorities/subjects/sh85027503
ODS 7: Energía asequible y no contaminante. Garantizar el acceso a una energía asequible, fiable, sostenible y moderna para todos
title_short Processing of Hybrid Perovskite Films Using Scalable Solution Methods for Application as Active Layers in Flexible Solar Cells
title_full Processing of Hybrid Perovskite Films Using Scalable Solution Methods for Application as Active Layers in Flexible Solar Cells
title_fullStr Processing of Hybrid Perovskite Films Using Scalable Solution Methods for Application as Active Layers in Flexible Solar Cells
title_full_unstemmed Processing of Hybrid Perovskite Films Using Scalable Solution Methods for Application as Active Layers in Flexible Solar Cells
title_sort Processing of Hybrid Perovskite Films Using Scalable Solution Methods for Application as Active Layers in Flexible Solar Cells
dc.creator.fl_str_mv Flórez Velásquez, Yaneth Alejandra
dc.contributor.advisor.none.fl_str_mv Jaramillo Isaza, Franklin
Ramírez Zora, Daniel Estiben
dc.contributor.author.none.fl_str_mv Flórez Velásquez, Yaneth Alejandra
dc.contributor.researchgroup.none.fl_str_mv Centro de Investigación Innovación y Desarrollo de Materiales (CIDEMAT)
dc.contributor.jury.none.fl_str_mv Maticiuc, Natalia
Giuri, Antonella
Palomares, Emilio
dc.subject.lcsh.none.fl_str_mv Perovskite solar cells
Organic solvents
http://id.loc.gov/authorities/subjects/sh87001687
Coating processes
topic Perovskite solar cells
Organic solvents
http://id.loc.gov/authorities/subjects/sh87001687
Coating processes
Factor ambiental
Environmental factors
Slot-die coating
Green solvents
Coating window
http://aims.fao.org/aos/agrovoc/c_2594
http://id.loc.gov/authorities/subjects/sh2019000655
http://id.loc.gov/authorities/subjects/sh85027503
ODS 7: Energía asequible y no contaminante. Garantizar el acceso a una energía asequible, fiable, sostenible y moderna para todos
dc.subject.agrovoc.none.fl_str_mv Factor ambiental
Environmental factors
dc.subject.proposal.eng.fl_str_mv Slot-die coating
Green solvents
Coating window
dc.subject.agrovocuri.none.fl_str_mv http://aims.fao.org/aos/agrovoc/c_2594
dc.subject.lcshuri.none.fl_str_mv http://id.loc.gov/authorities/subjects/sh2019000655
http://id.loc.gov/authorities/subjects/sh85027503
dc.subject.ods.none.fl_str_mv ODS 7: Energía asequible y no contaminante. Garantizar el acceso a una energía asequible, fiable, sostenible y moderna para todos
description This thesis explores scalable solution-based processing techniques for fabricating hybrid perovskite films in flexible solar cells, with a focus on slot-die and doctor blade coating. With the global shift toward renewable energy sources, flexible perovskite solar cells (FPSCs) present a promising alternative to traditional photovoltaic devices. FPSCs are lightweight, compatible with various surfaces, and ideal for scalable production methods, such as roll-to-roll (R2R) processing, which aligns with the industry's demand for cost-efficient, large-area solar cells. However, large-scale fabrication of these solar cells introduces challenges, particularly in achieving high efficiency, uniformity, and stability under ambient processing conditions. This research explores the fundamental mechanics of meniscus formation in slot-die and doctor blade coating, highlighting the importance of a controlled coating window (CCW) for defect-free, high-quality film deposition. Ambient processing requires green solvent systems, with non-toxic alternatives such as γ-valerolactone and protic ionic liquids (PILs), which contribute to the formation of uniform films with superior structural integrity. These environmentally friendly solvents facilitate the perovskite's resilience to humidity, supporting stable fabrication outside controlled environments. The study assesses various compositions and solvent systems for their influence on film morphology, crystallinity, and perovskite performance in flexible solar cells. Additionally, it highlights the role of hole-transport and electron-transport materials in device architecture, explicitly evaluating the performance of nickel oxide (NiOx) as a hole-transport layer in flexible perovskite devices. Findings indicate that optimized NiOx layers significantly enhance the charge transport properties and stability of PSCs, particularly under thermal and mechanical stress. This work establishes optimized parameters for scalable solution processing and provides a comprehensive foundation for the industrial-scale production of flexible perovskite solar cells. The research advances local capabilities in solar technology, positioning this method as a viable addition to Colombia's renewable energy landscape while contributing valuable insights into the broader field of photovoltaic device engineering.
publishDate 2025
dc.date.accessioned.none.fl_str_mv 2025-08-25T20:03:23Z
dc.date.available.none.fl_str_mv 2025-12-01
dc.date.issued.none.fl_str_mv 2025
dc.type.none.fl_str_mv Trabajo de grado - Doctorado
dc.type.coar.none.fl_str_mv http://purl.org/coar/resource_type/c_db06
dc.type.redcol.none.fl_str_mv http://purl.org/redcol/resource_type/TD
dc.type.content.none.fl_str_mv Text
dc.type.coarversion.none.fl_str_mv http://purl.org/coar/version/c_b1a7d7d4d402bcce
dc.type.driver.none.fl_str_mv info:eu-repo/semantics/doctoralThesis
dc.type.version.none.fl_str_mv info:eu-repo/semantics/draft
format http://purl.org/coar/resource_type/c_db06
status_str draft
dc.identifier.citation.none.fl_str_mv Flórez Velásquez, Y. A. (2025). Processing of Hybrid Perovskite Films Using Scalable Solution Methods for Application as Active Layers in Flexible Solar Cells [Tesis doctoral]. Universidad de Antioquia, Medellín, Colombia
dc.identifier.uri.none.fl_str_mv https://hdl.handle.net/10495/47174
identifier_str_mv Flórez Velásquez, Y. A. (2025). Processing of Hybrid Perovskite Films Using Scalable Solution Methods for Application as Active Layers in Flexible Solar Cells [Tesis doctoral]. Universidad de Antioquia, Medellín, Colombia
url https://hdl.handle.net/10495/47174
dc.language.iso.none.fl_str_mv eng
language eng
dc.relation.references.none.fl_str_mv REFERENCES 1. Abdelsamie, M., Li, T., Babbe, F., Xu, J., Han, Q., Blum, V., Sutter-Fella, C. M., Mitzi, D. B., & Toney, M. F. (2021). Mechanism of Additive-Assisted Room-Temperature Processing of Metal Halide Perovskite Thin Films. ACS Applied Materials and Interfaces, 13(11), 13212–13225. https://doi.org/10.1021/ACSAMI.0C22630/ASSET/IMAGES/LARGE/AM0C22630_0010.JPEG 2. Absolute annual change in primary energy consumption, 2022. (n.d.). Retrieved September 25, 2023, from https://ourworldindata.org/grapher/abs-change-energy-consumption 3. Aegerter, Michel A.; Mennig, M. (2004). Sol-Gel Technologies for Glass Producers and Users. In Sol-Gel Technologies for Glass Producers and Users. Springer US. https://doi.org/10.1007/978-0-387-88953-5 4. Alharbi, E. A., Dar, M. I., Arora, N., Alotaibi, M. H., Alzhrani, Y. A., Yadav, P., Tress, W., Alyamani, A., Albadri, A., Zakeeruddin, S. M., & Grätzel, M. (2019). Perovskite Solar Cells Yielding Reproducible Photovoltage of 1.20 V. Research, 2019, 1–9. https://doi.org/10.34133/2019/8474698 5. Ali, N., Liang, C., Ji, C., Zhang, H., Sun, M., Li, D., You, F., & He, Z. (2020). Enlarging crystal grains with ionic liquid enhances perovskite solar cells' performance. Organic Electronics, 84, 105805. https://doi.org/https://doi.org/10.1016/j.orgel.2020.105805 6. Angmo, D., DeLuca, G., Scully, A. D., Chesman, A. S. R., Seeber, A., Zuo, C., Vak, D., Bach, U., & Gao, M. (2021). A Lab-to-Fab Study toward Roll-to-Roll Fabrication of Reproducible Perovskite Solar Cells under Ambient Room Conditions. Cell Reports Physical Science, 2(1), 100293. https://doi.org/10.1016/j.xcrp.2020.100293 7. Angmo, D., Gao, M., & Vak, D. (2017). 0 Organic-Inorganic Hybrid Perovskite Solar Cells with Scalable and Roll-to-Roll Compatible Printing/Coating Processes. Printable Solar Cells, 313–362. https://doi.org/10.1002/9781119283720.ch10 8. Ansari, M. I. H., Qurashi, A., & Nazeeruddin, M. K. (2018). Frontiers, opportunities, and challenges in perovskite solar cells: A critical review. Journal of Photochemistry and Photobiology C: Photochemistry Reviews, 35, 1–24. https://doi.org/10.1016/j.jphotochemrev.2017.11.002 9. Belous, A., Kobylianska, S., V’yunov, O., Torchyniuk, P., Yukhymchuk, V., & Hreshchuk, O. (2019). Effect of non-stoichiometry of initial reagents on morphological and structural properties of perovskites CH 3 NH 3 PbI 3. Nanoscale Research Letters, 14. https://doi.org/10.1186/s11671-018-2841-6 10. Benitez-Rodriguez, J. F., Chen, D., Scully, A. D., Easton, C. D., Vak, D., Li, H., Shaw, P. E., Burn, P. L., Caruso, R. A., & Gao, M. (2022). Slot-die coating of a formamidinium-cesium mixed-cation perovskite for roll-to-roll fabrication of perovskite solar cells under ambient laboratory conditions. https://doi.org/10.1016/j.solmat.2022.111884 11. Berre, L., Chen, Y., & Baigl, D. (2009). From Convective Assembly to Landau-Levich Deposition of Multilayered Phospholipid Films of Controlled Thickness. Langmuir, 25, 2554–2557. https://doi.org/10.1021/la803646e 12. Bogachuk, D., Wagner, L., Mastroianni, S., Daub, M., Hillebrecht, H., & Hinsch, A. (2020a). The nature of the methylamine-MAPbI 3 complex: fundamentals of gas-induced perovskite liquefaction and crystallization †. https://doi.org/10.1039/d0ta02494e 13. Bogachuk, D., Wagner, L., Mastroianni, S., Daub, M., Hillebrecht, H., & Hinsch, A. (2020b). The nature of the methylamine-MAPbI3complex: fundamentals of gas-induced perovskite liquefaction and crystallization. Journal of Materials Chemistry A, 8(19), 9788–9796. https://doi.org/10.1039/d0ta02494e 14. Boyd, C. C., Shallcross, R. C., Moot, T., Kerner, R., Bertoluzzi, L., Onno, A., Kavadiya, S., Chosy, C., Wolf, E. J., Werner, J., Raiford, J. A., de Paula, C., Palmstrom, A. F., Yu, Z. J., Berry, J. J., Bent, S. F., Holman, Z. C., Luther, J. M., Ratcliff, E. L., … McGehee, M. D. (2020). Overcoming Redox Reactions at Perovskite-Nickel Oxide Interfaces to Boost Voltages in Perovskite Solar Cells. Joule, 4(8), 1759–1775. https://doi.org/10.1016/j.joule.2020.06.004 15. Burkitt, D., Patidar, R., Greenwood, P., Hooper, K., McGettrick, J., Dimitrov, S., Colombo, M., Stoichkov, V., Richards, D., Beynon, D., Davies, M., & Watson, T. (2020). Roll-to-roll slot-die coated P-I-N perovskite solar cells using acetonitrile based single step perovskite solvent system. Sustainable Energy and Fuels, 4(7), 3340–3351. https://doi.org/10.1039/d0se00460j 16. Burkitt, D., Searle, J., & Watson, T. (2018). Perovskite solar cells in N-I-P structure with four slot-die-coated layers. Royal Society Open Science, 5(5). https://doi.org/10.1098/rsos.172158 17. Bush, J. W. M. (2004). Lecture 4: Marangoni Flows. MIT Lecture Notes on Surface Tension, 1–5. http://web.mit.edu/2.21/www/Lec-notes/Surfacetension/Lecture4.pdf 18. Cai, W., Zang, Z., & Ding, L. (2021). Ionic liquids in perovskite solar cells. Journal of Semiconductors, 42(8), 40–43. https://doi.org/10.1088/1674-4926/42/8/080201 19. Cai, X., Hu, T., Hou, H., Zhu, P., Liu, R., Peng, J., Luo, W., & Yu, H. (2023a). A review for nickel oxide hole transport layer and its application in halide perovskite solar cells. https://doi.org/10.1016/j.mtsust.2023.100438 20. Cai, X., Hu, T., Hou, H., Zhu, P., Liu, R., Peng, J., Luo, W., & Yu, H. (2023b). A review for nickel oxide hole transport layer and its application in halide perovskite solar cells. https://doi.org/10.1016/j.mtsust.2023.100438 21. Cai, Y., Liang, L., & Gao, P. (2018). Promise of commercialization: Carbon materials for low-cost perovskite solar cells. Chinese Physics B, 27(1). https://doi.org/10.1088/1674-1056/27/1/018805 22. Cao, X., Zhang, G., Cai, Y., Jiang, L., He, X., Zeng, Q., Wei, J., Jia, Y., Xing, G., & Huang, W. (2020a). All Green Solvents for Fabrication of CsPbBr3 Films for Efficient Solar Cells Guided by the Hansen Solubility Theory. Solar RRL, 4(4), 2000008. https://doi.org/https://doi.org/10.1002/solr.202000008 23. Cao, X., Zhang, G., Cai, Y., Jiang, L., He, X., Zeng, Q., Wei, J., Jia, Y., Xing, G., & Huang, W. (2020b). All Green Solvents for Fabrication of CsPbBr3 Films for Efficient Solar Cells Guided by the Hansen Solubility Theory. Solar RRL, 4(4), 2000008. https://doi.org/10.1002/SOLR.202000008 24. Cao, X., Zhang, G., Jiang, L., Cai, Y., Gao, Y., Yang, W., He, X., Zeng, Q., Xing, G., Jia, Y., & Wei, J. (2020a). Water, a Green Solvent for Fabrication of High-Quality CsPbBr3 Films for Efficient Solar Cells. ACS Applied Materials & Interfaces, 12(5), 5925–5931. https://doi.org/10.1021/acsami.9b20376 25. Cao, X., Zhang, G., Jiang, L., Cai, Y., Gao, Y., Yang, W., He, X., Zeng, Q., Xing, G., Jia, Y., & Wei, J. (2020b). Water, a Green Solvent for Fabrication of High-Quality CsPbBr3 Films for Efficient Solar Cells. ACS Applied Materials and Interfaces, 12(5), 5925–5931. https://doi.org/10.1021/ACSAMI.9B20376/SUPPL_FILE/AM9B20376_SI_001.PDF 26. Carvalho, M. S., & Kheshgi, H. S. (2000). Low-flow limit in slot coating: Theory and experiments. AIChE Journal, 46(10), 1907–1917. https://doi.org/10.1002/aic.690461003 27. Chandrasekhar, P. S., Chapagain, S., Blake, M., Armstrong, P. J., Grapperhaus, C., & Druffel, T. L. (2022). Rapid scalable fabrication of roll-to-roll slot-die coated flexible perovskite solar cells using intense pulse light annealing. Sustainable Energy & Fuels, 6(23), 5316–5323. https://doi.org/10.1039/D2SE00911K 28. Chandratre, K., Sharma, P., Thomas, S., Parvazian, E., Patidar, R., Garcia-Rodriguez, R., Pean, E., Suthar, R., Dunlop, T. O., Pathak, S. K., Watson, T. M., & Karak, S. (2024). Empirical Study of a Polymer-in-Perovskite Precursor: Correlation of the Morphological Changes to the Optoelectronics. ACS Applied Energy Materials, 7(14), 5595–5607. https://doi.org/10.1021/ACSAEM.4C00982/SUPPL_FILE/AE4C00982_SI_001.PDF 29. Chang, X., Fang, J., Fan, Y., Luo, T., Su, H., Zhang, Y., Lu, J., Tsetseris, L., Anthopoulos, T. D., Liu, S., Zhao, K., Chang, X., Fang, J., Fan, Y., Luo, T., Su, H., Zhang, Y., Lu, J., Liu, S., … Anthopoulos, T. D. (2020). Printable CsPbI3 Perovskite Solar Cells with PCE of 19% via an Additive Strategy. Advanced Materials, 32(40), 2001243. https://doi.org/10.1002/ADMA.202001243 30. Chen, S., Xiao, X., Chen, B., Kelly, L. L., Zhao, J., Lin, Y., Toney, M. F., & Huang, J. (2021). Crystallization in one-step solution deposition of perovskite films: Upward or downward? In Science Advances (Vol. 7, Issue 4). American Association for the Advancement of Science. https://doi.org/10.1126/SCIADV.ABB2412/SUPPL_FILE/ABB2412_SM.PDF 31. Ciro, J., Mejía-Escobar, M. A., & Jaramillo, F. (2017). Slot-die processing of flexible perovskite solar cells in ambient conditions. Solar Energy, 150, 570–576. https://doi.org/10.1016/j.solener.2017.04.071 32. Ciro, J., Ramírez, D., Mejía Escobar, M. A., Montoya, J. F., Mesa, S., Betancur, R., & Jaramillo, F. (2017a). Self-Functionalization behind a Solution-Processed NiOx Film Used As Hole Transporting Layer for Efficient Perovskite Solar Cells. ACS Applied Materials and Interfaces, 9(14), 12348–12354. https://doi.org/10.1021/ACSAMI.6B15975/SUPPL_FILE/AM6B15975_SI_001.PDF 33. Ciro, J., Ramírez, D., Mejía Escobar, M. A., Montoya, J. F., Mesa, S., Betancur, R., & Jaramillo, F. (2017b). Self-Functionalization Behind a Solution-Processed NiOx Film Used As Hole Transporting Layer for Efficient Perovskite Solar Cells. ACS Applied Materials & Interfaces, 9(14), 12348–12354. https://doi.org/10.1021/acsami.6b15975 34. Dai, X., Deng, Y., Van Brackle, C. H., Chen, S., Rudd, P. N., Xiao, X., Lin, Y., Chen, B., & Huang, J. (2020). Scalable Fabrication of Efficient Perovskite Solar Modules on Flexible Glass Substrates. Advanced Energy Materials, 10(1), 1–7. https://doi.org/10.1002/aenm.201903108 35. Deng, Y., van Brackle, C. H., Dai, X., Zhao, J., Chen, B., & Huang, J. (2019). Tailoring solvent coordination for high-speed, room-temperature blading of perovskite photovoltaic films. Science Advances, 5(12), 1–9. https://doi.org/10.1126/sciadv.aax7537 36. Deng, Y., Van Brackle, C. H., Dai, X., Zhao, J., Chen, B., & Huang, J. (2019). Tailoring solvent coordination for high-speed, room-temperature blading of perovskite photovoltaic films. In Sci. Adv (Vol. 5). http://advances.sciencemag.org/ 37. Deng, Y., Zheng, X., Bai, Y., Wang, Q., Zhao, J., & Huang, J. (2018a). Surfactant-controlled ink drying enables high-speed deposition of perovskite films for efficient photovoltaic modules. Nature Energy, 3(7), 560–566. https://doi.org/10.1038/s41560-018-0153-9 38. Deng, Y., Zheng, X., Bai, Y., Wang, Q., Zhao, J., & Huang, J. (2018b). Surfactant-controlled ink drying enables high-speed deposition of perovskite films for efficient photovoltaic modules. Nature Energy, 3(7), 560–566. https://doi.org/10.1038/s41560-018-0153-9 39. Dong, Q., Chen, M., Liu, Y., Eickemeyer, F. T., Zhao, W., Dai, Z., Yin, Y., Jiang, C., Feng, J., Jin, S., Liu, S. (Frank), Zakeeruddin, S. M., Grätzel, M., Padture, N. P., & Shi, Y. (2021). Flexible perovskite solar cells with simultaneously improved efficiency, operational stability, and mechanical reliability. Joule, 5(6), 1587–1601. https://doi.org/10.1016/j.joule.2021.04.014 40. Dou, B., Whitaker, J. B., Bruening, K., Moore, D. T., Wheeler, L. M., Ryter, J., Breslin, N. J., Berry, J. J., Garner, S. M., Barnes, F. S., Shaheen, S. E., Tassone, C. J., Zhu, K., & Van Hest, M. F. A. M. (2018). Roll-to-Roll Printing of Perovskite Solar Cells. ACS Energy Letters, 3(10), 2558–2565. https://doi.org/10.1021/acsenergylett.8b01556 41. Du, C., Wang, S., Miao, X., Sun, W., Zhu, Y., Wang, C., & Ma, R. (2019). Polyvinylpyrrolidone as additive for perovskite solar cells with water and isopropanol as solvents. Beilstein Journal of Nanotechnology, 10, 2374–2382. https://doi.org/10.3762/bjnano.10.228 42. Dunlap-Shohl, W. A., Zhou, Y., Padture, N. P., & Mitzi, D. B. (2019). Synthetic Approaches for Halide Perovskite Thin Films [Review-article]. Chemical Reviews, 119(5), 3193–3295. https://doi.org/10.1021/acs.chemrev.8b00318 43. Elangovan, N. K., Kannadasan, R., Beenarani, B. B., Alsharif, M. H., Kim, M. K., & Hasan Inamul, Z. (2024). Recent developments in perovskite materials, fabrication techniques, band gap engineering, and the stability of perovskite solar cells. Energy Reports, 11, 1171–1190. https://doi.org/10.1016/J.EGYR.2023.12.068 44. Fateev, S. A., Petrov, A. A., Khrustalev, V. N., Dorovatovskii, P. V., Zubavichus, Y. V., Goodilin, E. A., & Tarasov, A. B. (2018). Solution Processing of Methylammonium Lead Iodide Perovskite from γ-Butyrolactone: Crystallization Mediated by Solvation Equilibrium. Chemistry of Materials, 30(15), 5237–5244. https://doi.org/10.1021/ACS.CHEMMATER.8B01906/SUPPL_FILE/CM8B01906_SI_004.CIF 45. Feng, M., Wang, M., Zhou, H., Li, W., Wang, S., Zang, Z., & Chen, S. (2020). High-Efficiency and Stable Inverted Planar Perovskite Solar Cells with Pulsed Laser Deposited Cu-Doped NiOxHole-Transport Layers. ACS Applied Materials and Interfaces, 12(45), 50684–50691. https://doi.org/10.1021/acsami.0c15923 46. Francisco-López, A., Charles, B., Isabel Alonso, M., Garriga, M., Campoy-Quiles, M., T. Weller, M., & R. Goñi, A. (2020). Phase Diagram of Methylammonium/Formamidinium Lead Iodide Perovskite Solid Solutions from Temperature-Dependent Photoluminescence and Raman Spectroscopies. The Journal of Physical Chemistry C, 124(6), 3448–3458. https://doi.org/10.1021/acs.jpcc.9b10185 47. Gao, Y., Huang, K., Long, C., Ding, Y., Chang, J., Zhang, D., Etgar, L., Liu, M., Zhang, J., & Yang, J. (2022). Flexible Perovskite Solar Cells: From Materials and Device Architectures to Applications. ACS Energy Letters, 7(4), 1412–1445. https://doi.org/10.1021/acsenergylett.1c02768 48. Ghosh, R., Singh, A., & Agarwal, P. (2023). Study on effect of different HTL and ETL materials on the perovskite solar cell performance with TCAD simulator. Materials Today: Proceedings. https://doi.org/10.1016/j.matpr.2023.06.161 49. Giuri, A., Masi, S., Listorti, A., Gigli, G., Colella, S., Esposito Corcione, C., & Rizzo, A. (2018a). Polymeric rheology modifier allows single-step coating of perovskite ink for highly efficient and stable solar cells. Nano Energy, 54, 400–408. https://doi.org/10.1016/j.nanoen.2018.10.039 50. Giuri, A., Masi, S., Listorti, A., Gigli, G., Colella, S., Esposito Corcione, C., & Rizzo, A. (2018b). Polymeric rheology modifier allows single-step coating of perovskite ink for highly efficient and stable solar cells. Nano Energy, 54(October), 400–408. https://doi.org/10.1016/j.nanoen.2018.10.039 51. Giuri, A., Munir, R., Listorti, A., Esposito Corcione, C., Gigli, G., Rizzo, A., Amassian, A., & Colella, S. (2021). Implication of polymeric template agent on the formation process of hybrid halide perovskite films. Nanotechnology, 32(26). https://doi.org/10.1088/1361-6528/abed72 52. Giuri, A., Saleh, E., Listorti, A., Colella, S., Rizzo, A., Tuck, C., & Corcione, C. E. (2019). Rheological tunability of perovskite precursor solutions: From spin coating to inkjet printing process. Nanomaterials, 9(4). https://doi.org/10.3390/nano9040582 53. Guo, K. (2023). Organic halide salts and PbI2 in improving the efficiency of perovskite solar cells. Energy Reports, 9, 62–73. https://doi.org/10.1016/j.egyr.2023.08.050 54. Han, Q., Wei, Y., Lin, R., Fang, Z., Xiao, K., Luo, X., Gu, S., Zhu, J., Ding, L., & Tan, H. (2019). Low-temperature processed inorganic hole transport layer for efficient and stable mixed Pb-Sn low-bandgap perovskite solar cells. Science Bulletin, 64(19), 1399–1401. https://doi.org/10.1016/j.scib.2019.08.002 55. Hao, F., Stoumpos, C. C., Liu, Z., Chang, R. P. H., & Kanatzidis, M. G. (2014). Controllable perovskite crystallization at a gas-solid interface for hole conductor-free solar cells with steady power conversion efficiency over 10%. Journal of the American Chemical Society, 136(46), 16411–16419. https://doi.org/10.1021/JA509245X/SUPPL_FILE/JA509245X_SI_003.CIF 56. He, Q., Yao, K., Wang, X., Xia, X., Leng, S., & Li, F. (2017). Room-Temperature and Solution-Processable Cu-Doped Nickel Oxide Nanoparticles for Efficient Hole-Transport Layers of Flexible Large-Area Perovskite Solar Cells. ACS Applied Materials and Interfaces, 9(48), 41887–41897. https://pubs.acs.org/doi/full/10.1021/acsami.7b13621 57. Hoang, M. T., Ünlü, F., Martens, W., Bell, J., Mathur, S., & Wang, H. (2021a). Towards the environmentally friendly solution processing of metal halide perovskite technology. Green Chemistry, 23(15), 5302–5336. https://doi.org/10.1039/D1GC01756J 58. Hoang, M. T., Ünlü, F., Martens, W., Bell, J., Mathur, S., & Wang, H. (2021b). Towards the environmentally friendly solution processing of metal halide perovskite technology. Green Chemistry, 23(15), 5302–5336. https://doi.org/10.1039/D1GC01756J 59. Holzhey, P., Prettl, M., Collavini, S., Mortan, C., & Saliba, M. (2023). Understanding the impact of surface roughness: changing from FTO to ITO to PEN/ITO for flexible perovskite solar cells. https://doi.org/10.1038/s41598-023-33147-6 60. Hossain, M. K., Rubel, M. H. K., Toki, G. F. I., Alam, I., Rahman, M. F., & Bencherif, H. (2022). Effect of Various Electron and Hole Transport Layers on the Performance of CsPbI3-Based Perovskite Solar Cells: A Numerical Investigation in DFT, SCAPS-1D, and wxAMPS Frameworks. ACS Omega, 7(47), 43210–43230. https://doi.org/10.1021/ACSOMEGA.2C05912/ASSET/IMAGES/LARGE/AO2C05912_0013.JPEG 61. Hu, X., Liu, C., Zhang, Z., Jiang, X. F., Garcia, J., Sheehan, C., Shui, L., Priya, S., Zhou, G., Zhang, S., & Wang, K. (2020). 22% Efficiency Inverted Perovskite Photovoltaic Cell Using Cation-Doped Brookite TiO2 Top Buffer. Advanced Science, 7(16). https://doi.org/10.1002/advs.202001285 62. Hu, Z., Chen, D., Yang, P., Yang, L., Qin, L., Huang, Y., & Zhao, X. (2018). Sol-gel-processed yttrium-doped NiO as hole transport layer in inverted perovskite solar cells for enhanced performance. Applied Surface Science, 441, 258–264. https://doi.org/10.1016/j.apsusc.2018.01.236 63. Huang, K. W., Li, M. H., Chen, Y. T., Wen, Z. X., Lin, C. F., & Chen, P. (2024). Fast fabrication of μm-thick perovskite films by using a one-step doctor-blade coating method for direct X-ray detectors. Journal of Materials Chemistry C, 12(4), 1533–1542. https://doi.org/10.1039/D3TC02736H 64. Huang, S. H., Tian, K. Y., Huang, H. C., Li, C. F., Chu, W. C., Lee, K. M., Lee, K. M., Huang, Y. C., & Su, W. F. (2020). Controlling the Morphology and Interface of the Perovskite Layer for Scalable High-Efficiency Solar Cells Fabricated Using Green Solvents and Blade Coating in an Ambient Environment. ACS Applied Materials and Interfaces, 12(23), 26041–26049. https://doi.org/10.1021/acsami.0c06211 65. Islam, M. B., Yanagida, M., Shirai, Y., Nabetani, Y., & Miyano, K. (2017). NiOx Hole Transport Layer for Perovskite Solar Cells with Improved Stability and Reproducibility. ACS Omega, 2(5), 2291–2299. https://doi.org/10.1021/ACSOMEGA.7B00538/SUPPL_FILE/AO7B00538_SI_001.PDF 66. Jacobsson, T. J., Hultqvist, A., García-Fernández, A., Anand, A., Al-Ashouri, A., Hagfeldt, A., Crovetto, A., Abate, A., Ricciardulli, A. G., Vijayan, A., Kulkarni, A., Anderson, A. Y., Darwich, B. P., Yang, B., Coles, B. L., Perini, C. A. R., Rehermann, C., Ramirez, D., Fairen-Jimenez, D., … Unger, E. (2022). An open-access database and analysis tool for perovskite solar cells based on the FAIR data principles. Nature Energy, 7(1), 107–115. https://doi.org/10.1038/s41560-021-00941-3 67. Jeong, D. N., Lee, D. K., Seo, S., Lim, S. Y., Zhang, Y., Shin, H., Cheong, H., & Park, N. G. (2019). Perovskite Cluster-Containing Solution for Scalable D-Bar Coating toward High-Throughput Perovskite Solar Cells. ACS Energy Letters, 4(5), 1189–1195. https://doi.org/10.1021/acsenergylett.9b00042 68. Jiang, C. S., Yang, M., Zhou, Y., To, B., Nanayakkara, S. U., Luther, J. M., Zhou, W., Berry, J. J., Van De Lagemaat, J., Padture, N. P., Zhu, K., & Al-Jassim, M. M. (2015). Carrier separation and transport in perovskite solar cells studied by nanometre-scale profiling of electrical potential. Nature Communications, 6, 1–10. https://doi.org/10.1038/ncomms9397 69. Jiang, P., Jones, T. W., Duffy, N. W., Anderson, K. F., Bennett, R., Grigore, M., Marvig, P., Xiong, Y., Liu, T., Sheng, Y., Hong, L., Hou, X., Duan, M., Hu, Y., Rong, Y., Wilson, G. J., & Han, H. (2018). Fully printable perovskite solar cells with highly-conductive, low-temperature, perovskite-compatible carbon electrode. Carbon, 129, 830–836. https://doi.org/10.1016/j.carbon.2017.09.008 70. Jonathan, L., Diguna, L. J., Samy, O., Muqoyyanah, M., Bakar, S. A., Birowosuto, M. D., & El Moutaouakil, A. (2022). Hybrid Organic–Inorganic Perovskite Halide Materials for Photovoltaics towards Their Commercialization. Polymers, 14(5). https://doi.org/10.3390/polym14051059 71. Ju, Y., Park, S. Y., Yeom, K. M., Noh, J. H., & Jung, H. S. (2019). Single-Solution Bar-Coated Halide Perovskite Films via Mediating Crystallization for Scalable Solar Cell Fabrication [Research-article]. ACS Applied Materials and Interfaces, 11(12), 11537–11544. https://doi.org/10.1021/acsami.9b02125 72. Kafedjiska, I., Levine, I., Musiienko, A., Maticiuc, N., Bertram, T., Al-Ashouri, A., Kaufmann, C. A., Albrecht, S., Schlatmann, R., & Lauermann, I. (2023a). Advanced Characterization and Optimization of NiOx:Cu-SAM Hole-Transporting Bi-Layer for 23.4% Efficient Monolithic Cu(In,Ga)Se2-Perovskite Tandem Solar Cells. Advanced Functional Materials, 33(34). https://doi.org/10.1002/adfm.202302924 73. Kafedjiska, I., Levine, I., Musiienko, A., Maticiuc, N., Bertram, T., Al-Ashouri, A., Kaufmann, C. A., Albrecht, S., Schlatmann, R., & Lauermann, I. (2023b). Advanced Characterization and Optimization of NiOx:Cu-SAM Hole-Transporting Bi-Layer for 23.4% Efficient Monolithic Cu(In,Ga)Se2-Perovskite Tandem Solar Cells. Advanced Functional Materials, 33(34). https://doi.org/10.1002/adfm.202302924 74. Kartikay, P., Paul, A., Yella, A., Mallick, S., & PbI Br, -x. (2023). Cation exchange enabled improved perovskite infiltration in triple-mesoscopic carbon perovskite solar cells • Cation-exchange assisted improvement in perovskite infiltration into triple mesoscopic carbon-based perovskite solar cells. • Conversion of 2D (PEA) 2 PbI 4 into 3D MAPbI. Materials Chemistry and Physics, 307, 128181. https://doi.org/10.1016/j.matchemphys.2023.128181 75. Ke, W., Spanopoulos, I., Stoumpos, C. C., & Kanatzidis, M. G. (2018). Myths and reality of HPbI3 in halide perovskite solar cells. Nature Communications, 9(1). https://doi.org/10.1038/s41467-018-07204-y 76. Kerner, R. A., Schloemer, T. H., Schulz, P., Berry, J. J., Schwartz, J., Sellinger, A., & Rand, B. P. (2019). Amine additive reactions induced by the soft Lewis acidity of Pb2+ in halide perovskites. Part I: Evidence for Pb-alkylamide formation. Journal of Materials Chemistry C, 7(18), 5251–5259. https://doi.org/10.1039/c8tc04871a 77. Khan, L., von Toperczer, F., Ünlü, F., Paramasivam, G., Mathies, F., Nandayapa, E., List-Kratochvil, E. J. W., Fischer, T., Lindfors, K., & Mathur, S. (2023). Electrospun Electroluminescent CsPbBr3 Fibers as Flexible Perovskite Networks for Light-Emitting Application. Advanced Engineering Materials, 25(10), 1–8. https://doi.org/10.1002/adem.202201651 78. Khatoon, S., Kumar Yadav, S., Chakravorty, V., Singh, J., Bahadur Singh, R., Hasnain, M. S., & Hasnain, S. M. M. (2023). Perovskite solar cell’s efficiency, stability and scalability: A review. Materials Science for Energy Technologies, 6, 437–459. https://doi.org/10.1016/J.MSET.2023.04.007 79. Khatoon, S., Kumar Yadav, S., Chakravorty, V., Singh, J., Singh, R. B., Hasnain, S., & Hasnain, S. M. M. (2023). Perovskite solar cell’s efficiency, stability and scalability: A review. https://doi.org/10.1016/j.mset.2023.04.007 80. Kim, J. H., Liang, P.-W., Williams, S. T., Cho, N., Chueh, C.-C., Glaz, M. S., Ginger, D. S., K-Y Jen, A., Kim, J. H., Liang, P., Williams, S. T., Cho, N., Chueh, C., K-Y Jen, A., Glaz, M. S., & Ginger, D. S. (2014). High-Performance and Environmentally Stable Planar Heterojunction Perovskite Solar Cells Based on a Solution-Processed Copper-Doped Nickel Oxide Hole-Transporting Layer. https://doi.org/10.1002/adma.201404189 81. Kim, J., Ho‐Baillie, A., & Huang, S. (2019). Review of Novel Passivation Techniques for Efficient and Stable Perovskite Solar Cells. Solar RRL, 3(4), 1800302. https://doi.org/10.1002/solr.201800302 82. Kim, J. W., Cho, E., Lee, H. J., Kwon, S. N., Park, J. S., Kim, M., Kim, D. H., Na, S. I., & Lee, S. J. (2023). Enhancing Efficiency of Inverted Perovskite Solar Cells by Sputtered Nickel Oxide Hole-Transport Layers. Solar RRL, 2300933, 1–8. https://doi.org/10.1002/solr.202300933 83. Kong, J., Wang, H., Röhr, J. A., Fishman, Z. S., Zhou, Y., Li, M., Cotlet, M., Kim, G., Karpovich, C., Antonio, F., Padture, N. P., & Taylor, A. D. (2020). Perovskite Solar Cells with Enhanced Fill Factors Using Polymer-Capped Solvent Annealing. ACS Applied Energy Materials, 3(8), 7231–7238. https://doi.org/10.1021/ACSAEM.0C00854/SUPPL_FILE/AE0C00854_SI_001.PDF 84. Koushik, D., Jošt, M., Dučinskas, A., Burgess, C., Zardetto, V., Weijtens, C., Verheijen, M. A., Kessels, W. M. M., Albrecht, S., & Creatore, M. (2019). Plasma-assisted atomic layer deposition of nickel oxide as hole transport layer for hybrid perovskite solar cells. Journal of Materials Chemistry C, 7(40), 12532–12543. https://doi.org/10.1039/c9tc04282b 85. Lee, G., Kim, M. C., Choi, Y. W., Ahn, N., Jang, J., Yoon, J., Kim, S. M., Lee, J. G., Kang, D., Jung, H. S., & Choi, M. (2019). Ultra-flexible perovskite solar cells with crumpling durability: toward a wearable power source. Energy & Environmental Science, 12(10), 3182–3191. https://doi.org/10.1039/C9EE01944H 86. Lee, H. J., & Na, S. I. (2022a). Efficient mixed-cation perovskite photovoltaic cells via additive-assisted slot-die deposition. Materials Research Bulletin, 149(October 2021), 111728. https://doi.org/10.1016/j.materresbull.2022.111728 87. Lee, H. J., & Na, S. I. (2022b). Investigation of PCBM/ZnO and C60/BCP-based electron transport layer for high-performance p-i-n perovskite solar cells. Journal of Alloys and Compounds, 921, 166007. https://doi.org/10.1016/J.JALLCOM.2022.166007 88. Lee, J. W., Lee, D. K., Jeong, D. N., & Park, N. G. (2018). Control of Crystal Growth toward Scalable Fabrication of Perovskite Solar Cells. Advanced Functional Materials, 1807047, 1–18. https://doi.org/10.1002/adfm.201807047 89. Lee, Y., Lee, S., Seo, G., Paek, S., Cho, K. T., Huckaba, A. J., Calizzi, M., Choi, D. won, Park, J. S., Lee, D., Lee, H. J., Asiri, A. M., & Nazeeruddin, M. K. (2018). Efficient Planar Perovskite Solar Cells Using Passivated Tin Oxide as an Electron Transport Layer. Advanced Science, 5(6), 1–6. https://doi.org/10.1002/advs.201800130 90. Li, J., Dagar, J., Shargaieva, O., Flatken, M. A., Köbler, H., Fenske, M., Schultz, C., Stegemann, B., Just, J., Többens, D. M., Abate, A., Munir, R., & Unger, E. (2021a). 20.8% Slot-Die Coated MAPbI3 Perovskite Solar Cells by Optimal DMSO-Content and Age of 2-ME Based Precursor Inks. Supporting information. Advanced Energy Materials, 11(10). https://doi.org/10.1002/aenm.202003460 91. Li, J., Dagar, J., Shargaieva, O., Flatken, M. A., Köbler, H., Fenske, M., Schultz, C., Stegemann, B., Just, J., Többens, D. M., Abate, A., Munir, R., & Unger, E. (2021b). 20.8% Slot-Die Coated MAPbI3 Perovskite Solar Cells by Optimal DMSO-Content and Age of 2-ME Based Precursor Inks. Advanced Energy Materials, 11(10). https://doi.org/10.1002/AENM.202003460 92. Li, J., Dagar, J., Shargaieva, O., Flatken, M. A., Köbler, H., Fenske, M., Schultz, C., Stegemann, B., Just, J., Többens, D. M., Abate, A., Munir, R., & Unger, E. (2021c). 20.8% Slot-Die Coated MAPbI3 Perovskite Solar Cells by Optimal DMSO-Content and Age of 2-ME Based Precursor Inks. Advanced Energy Materials, 11(10), 2003460. https://doi.org/10.1002/AENM.202003460 93. Li, N., Xu, F., Qiu, Z., Liu, J., Wan, X., Zhu, X., Yu, H., Li, C., Liu, Y., & Cao, B. (2019). Sealing the domain boundaries and defects passivation by Poly ( acrylic acid ) for scalable blading of e ffi cient perovskite solar cells. Journal of Power Sources, 426(October 2018), 188–196. https://doi.org/10.1016/j.jpowsour.2019.04.041 94. Li, Z., Klein, T. R., Kim, D. H., Yang, M., Berry, J. J., van Hest, M. F. A. M., & Zhu, K. (2018). Scalable fabrication of perovskite solar cells. Nat. Rev. Mater., 3, 18017. 95. Li, Z., Sun, X., Zheng, X., Li, B., Gao, D., Zhang, S., Wu, X., Li, S., Gong, J., Luther, J. M., Li, Z., & Zhu, Z. (2023). Stabilized hole-selective layer for high-performance inverted p-i-n perovskite solar cells. Science, 382(6668), 284–289. https://doi.org/10.1126/SCIENCE.ADE9637 96. Liang, X., Ge, C., Fang, Q., Deng, W., Dey, S., Lin, H., Zhang, Y., Zhang, X., Zhu, Q., & Hu, H. (2021). Flexible Perovskite Solar Cells: Progress and Prospects. Frontiers in Materials, 8(634353), 1–7. https://doi.org/10.3389/fmats.2021.634353 97. Liao, J. F., Wu, W. Q., Jiang, Y., Zhong, J. X., Wang, L., & Kuang, D. Bin. (2020). Understanding of carrier dynamics, heterojunction merits and device physics: Towards designing efficient carrier transport layer-free perovskite solar cells. Chemical Society Reviews, 49(2), 354–381. https://doi.org/10.1039/C8CS01012A 98. Lin, Y., Firdaus, Y., Isikgor, F. H., Nugraha, M. I., Yengel, E., Harrison, G. T., Hallani, R., El-Labban, A., Faber, H., Ma, C., Zheng, X., Subbiah, A., Howells, C. T., Bakr, O. M., McCulloch, I., Wolf, S. De, Tsetseris, L., & Anthopoulos, T. D. (2020). Self-assembled monolayer enables hole transport layer-free organic solar cells with 18% efficiency and improved operational stability. ACS Energy Letters, 5(9), 2935–2944. https://doi.org/10.1021/ACSENERGYLETT.0C01421/SUPPL_FILE/NZ0C01421_SI_001.PDF 99. Liu, C., Cheng, Y. B., & Ge, Z. (2020). Understanding of perovskite crystal growth and film formation in scalable deposition processes. Chemical Society Reviews, 49(6), 1653–1687. https://doi.org/10.
dc.rights.uri.none.fl_str_mv http://creativecommons.org/licenses/by-nd/4.0/
dc.rights.accessrights.none.fl_str_mv info:eu-repo/semantics/embargoedAccess
dc.rights.license.en.fl_str_mv Attribution-NoDerivatives 4.0 International
dc.rights.coar.none.fl_str_mv http://purl.org/coar/access_right/c_f1cf
rights_invalid_str_mv http://creativecommons.org/licenses/by-nd/4.0/
Attribution-NoDerivatives 4.0 International
http://purl.org/coar/access_right/c_f1cf
eu_rights_str_mv embargoedAccess
dc.format.extent.none.fl_str_mv 116 páginas
dc.format.mimetype.none.fl_str_mv application/pdf
dc.publisher.none.fl_str_mv Universidad de Antioquia
dc.publisher.program.none.fl_str_mv Doctorado en Ingeniería de Materiales
dc.publisher.faculty.none.fl_str_mv Facultad de Ingeniería
dc.publisher.branch.none.fl_str_mv Campus Medellín - Ciudad Universitaria
publisher.none.fl_str_mv Universidad de Antioquia
institution Universidad de Antioquia
bitstream.url.fl_str_mv https://bibliotecadigital.udea.edu.co/bitstreams/5075eb48-0cd5-485c-af41-58aafbeee803/download
https://bibliotecadigital.udea.edu.co/bitstreams/ab1dcdd2-8ce3-49c4-b908-1681f2c6c735/download
https://bibliotecadigital.udea.edu.co/bitstreams/cc0a884d-396b-4854-971e-0b1c55a0b7d2/download
https://bibliotecadigital.udea.edu.co/bitstreams/4e2d3906-5626-4a40-bcc6-a818eb23fb51/download
https://bibliotecadigital.udea.edu.co/bitstreams/c065421a-2d2e-47a2-9cc2-b37f92a58cc8/download
bitstream.checksum.fl_str_mv 97f42c60d1878b2467bc5109f4311988
5310bb89a00d5ead086944535cc857c4
b76e7a76e24cf2f94b3ce0ae5ed275d0
8f3e24492de6af8967a749ed65a89b1f
f1c918515e41ed9c2f533f40c1fd6da2
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
MD5
MD5
repository.name.fl_str_mv Repositorio Institucional de la Universidad de Antioquia
repository.mail.fl_str_mv aplicacionbibliotecadigitalbiblioteca@udea.edu.co
_version_ 1851052524374589440
spelling Jaramillo Isaza, FranklinRamírez Zora, Daniel EstibenFlórez Velásquez, Yaneth AlejandraCentro de Investigación Innovación y Desarrollo de Materiales (CIDEMAT)Maticiuc, NataliaGiuri, AntonellaPalomares, Emilio2025-08-25T20:03:23Z2025-12-012025Flórez Velásquez, Y. A. (2025). Processing of Hybrid Perovskite Films Using Scalable Solution Methods for Application as Active Layers in Flexible Solar Cells [Tesis doctoral]. Universidad de Antioquia, Medellín, Colombiahttps://hdl.handle.net/10495/47174This thesis explores scalable solution-based processing techniques for fabricating hybrid perovskite films in flexible solar cells, with a focus on slot-die and doctor blade coating. With the global shift toward renewable energy sources, flexible perovskite solar cells (FPSCs) present a promising alternative to traditional photovoltaic devices. FPSCs are lightweight, compatible with various surfaces, and ideal for scalable production methods, such as roll-to-roll (R2R) processing, which aligns with the industry's demand for cost-efficient, large-area solar cells. However, large-scale fabrication of these solar cells introduces challenges, particularly in achieving high efficiency, uniformity, and stability under ambient processing conditions. This research explores the fundamental mechanics of meniscus formation in slot-die and doctor blade coating, highlighting the importance of a controlled coating window (CCW) for defect-free, high-quality film deposition. Ambient processing requires green solvent systems, with non-toxic alternatives such as γ-valerolactone and protic ionic liquids (PILs), which contribute to the formation of uniform films with superior structural integrity. These environmentally friendly solvents facilitate the perovskite's resilience to humidity, supporting stable fabrication outside controlled environments. The study assesses various compositions and solvent systems for their influence on film morphology, crystallinity, and perovskite performance in flexible solar cells. Additionally, it highlights the role of hole-transport and electron-transport materials in device architecture, explicitly evaluating the performance of nickel oxide (NiOx) as a hole-transport layer in flexible perovskite devices. Findings indicate that optimized NiOx layers significantly enhance the charge transport properties and stability of PSCs, particularly under thermal and mechanical stress. This work establishes optimized parameters for scalable solution processing and provides a comprehensive foundation for the industrial-scale production of flexible perovskite solar cells. The research advances local capabilities in solar technology, positioning this method as a viable addition to Colombia's renewable energy landscape while contributing valuable insights into the broader field of photovoltaic device engineering.CONTENTS Acknowledgments 5 Abstract 6 Keywords 6 Related works 7 INTRODUCTION 12 CHAPTER 1: Fundamental Aspects in the Scaling of Perovskite Solar Cells by Pre-metered Methods 18 1.1. Nickel Oxide as Hole Transport Layer on p-i-n Architecture 22 1.2. Perovskite as the Active Layer 25 1.3. N-type Materials for p-i-n Solar Cells 32 1.4. Flexible Devices 33 1.5. Meniscus Formation in Scalable Methods for Fabrication of PSCs 35 1.6. Processing under ambient conditions 42 Summary 44 CHAPTER 2: Optimizing the Process for Scaling Up Perovskite Solar Cells by Pre-metered Methods 46 2.1. The Processing Variables 46 2.2. Drying and Crystallization 51 2.3. Tuning the Hole Transport Layer 61 Summary 66 CHAPTER 3: Advancing Towards a Full Slot-Die-Coated Perovskite Solar Cell under Ambient Conditions 67 3.1. The Role of a Green Solvent System in the thin film optimization 67 3.2. Full Slot-die-coated Devices Under Ambient Conditions 73 Summary 76 CONCLUSIONS 77 REFERENCES 81 APPENDIX 99 Appendix 1 Materials and Methods 99 Perovskite precursor (MAPbI3 in MA/EtOH/ACN) 99 Perovskite precursor (MAPbI3 in MA/EtOH/ACN with HPC/THF) 100 Synthesis of methylammonium propionate (MAP) 100 Preparation of water-based perovskite precursor ink (MAPbI3 in MAP/H2O) 100 Preparation of water IPA-based perovskite precursor ink (MAPbI3 in MAP/IPA/H2O) 100 Other materials 101 Flexible solar cell fabrication 102 Rigid solar cell fabrication 102 Flux uniformity determination 103 Systematic determination of the evaporation regime 103 Systematic determination of the coating window 103 Appendix 2 Characterization Equipment 104 X-ray diffraction (XRD) 104 Fourier-transformed infrared (FT-IR) 104 Mass spectrometry 104 Nuclear magnetic resonance (NMR) spectroscopy 104 Viscosity 104 Surface tension 105 UV-vis absorption spectroscopy 105 Grazing-Incidence Wide-Angle X-Ray Scattering (GIWAXS) 105 Solar cell testing 105 Appendix 3 Rheology and Uniformity Values 106 Appendix 4 MAPbI3 35wt% - HPC Ink Characterization 107 Appendix 5 Green Ink Characterization 108Celdas SolaresCOL0007927DoctoradoDoctor en Ingeniería de Materiales116 páginasapplication/pdfengUniversidad de AntioquiaDoctorado en Ingeniería de MaterialesFacultad de IngenieríaCampus Medellín - Ciudad Universitariahttp://creativecommons.org/licenses/by-nd/4.0/info:eu-repo/semantics/embargoedAccessAttribution-NoDerivatives 4.0 Internationalhttp://purl.org/coar/access_right/c_f1cfPerovskite solar cellsOrganic solventshttp://id.loc.gov/authorities/subjects/sh87001687Coating processesFactor ambientalEnvironmental factorsSlot-die coatingGreen solventsCoating windowhttp://aims.fao.org/aos/agrovoc/c_2594http://id.loc.gov/authorities/subjects/sh2019000655http://id.loc.gov/authorities/subjects/sh85027503ODS 7: Energía asequible y no contaminante. Garantizar el acceso a una energía asequible, fiable, sostenible y moderna para todosProcessing of Hybrid Perovskite Films Using Scalable Solution Methods for Application as Active Layers in Flexible Solar CellsProcesamiento de Películas de Perovskitas Híbridas Usando Métodos en Solución Escalables para Aplicación como Capas Activas en Celdas Solares FlexiblesTrabajo de grado - Doctoradohttp://purl.org/coar/resource_type/c_db06http://purl.org/redcol/resource_type/TDTexthttp://purl.org/coar/version/c_b1a7d7d4d402bcceinfo:eu-repo/semantics/doctoralThesisinfo:eu-repo/semantics/draftREFERENCES 1. Abdelsamie, M., Li, T., Babbe, F., Xu, J., Han, Q., Blum, V., Sutter-Fella, C. M., Mitzi, D. B., & Toney, M. F. (2021). Mechanism of Additive-Assisted Room-Temperature Processing of Metal Halide Perovskite Thin Films. ACS Applied Materials and Interfaces, 13(11), 13212–13225. https://doi.org/10.1021/ACSAMI.0C22630/ASSET/IMAGES/LARGE/AM0C22630_0010.JPEG 2. Absolute annual change in primary energy consumption, 2022. (n.d.). Retrieved September 25, 2023, from https://ourworldindata.org/grapher/abs-change-energy-consumption 3. Aegerter, Michel A.; Mennig, M. (2004). Sol-Gel Technologies for Glass Producers and Users. In Sol-Gel Technologies for Glass Producers and Users. Springer US. https://doi.org/10.1007/978-0-387-88953-5 4. Alharbi, E. A., Dar, M. I., Arora, N., Alotaibi, M. H., Alzhrani, Y. A., Yadav, P., Tress, W., Alyamani, A., Albadri, A., Zakeeruddin, S. M., & Grätzel, M. (2019). Perovskite Solar Cells Yielding Reproducible Photovoltage of 1.20 V. Research, 2019, 1–9. https://doi.org/10.34133/2019/8474698 5. Ali, N., Liang, C., Ji, C., Zhang, H., Sun, M., Li, D., You, F., & He, Z. (2020). Enlarging crystal grains with ionic liquid enhances perovskite solar cells' performance. Organic Electronics, 84, 105805. https://doi.org/https://doi.org/10.1016/j.orgel.2020.105805 6. Angmo, D., DeLuca, G., Scully, A. D., Chesman, A. S. R., Seeber, A., Zuo, C., Vak, D., Bach, U., & Gao, M. (2021). A Lab-to-Fab Study toward Roll-to-Roll Fabrication of Reproducible Perovskite Solar Cells under Ambient Room Conditions. Cell Reports Physical Science, 2(1), 100293. https://doi.org/10.1016/j.xcrp.2020.100293 7. Angmo, D., Gao, M., & Vak, D. (2017). 0 Organic-Inorganic Hybrid Perovskite Solar Cells with Scalable and Roll-to-Roll Compatible Printing/Coating Processes. Printable Solar Cells, 313–362. https://doi.org/10.1002/9781119283720.ch10 8. Ansari, M. I. H., Qurashi, A., & Nazeeruddin, M. K. (2018). Frontiers, opportunities, and challenges in perovskite solar cells: A critical review. Journal of Photochemistry and Photobiology C: Photochemistry Reviews, 35, 1–24. https://doi.org/10.1016/j.jphotochemrev.2017.11.002 9. Belous, A., Kobylianska, S., V’yunov, O., Torchyniuk, P., Yukhymchuk, V., & Hreshchuk, O. (2019). Effect of non-stoichiometry of initial reagents on morphological and structural properties of perovskites CH 3 NH 3 PbI 3. Nanoscale Research Letters, 14. https://doi.org/10.1186/s11671-018-2841-6 10. Benitez-Rodriguez, J. F., Chen, D., Scully, A. D., Easton, C. D., Vak, D., Li, H., Shaw, P. E., Burn, P. L., Caruso, R. A., & Gao, M. (2022). Slot-die coating of a formamidinium-cesium mixed-cation perovskite for roll-to-roll fabrication of perovskite solar cells under ambient laboratory conditions. https://doi.org/10.1016/j.solmat.2022.111884 11. Berre, L., Chen, Y., & Baigl, D. (2009). From Convective Assembly to Landau-Levich Deposition of Multilayered Phospholipid Films of Controlled Thickness. Langmuir, 25, 2554–2557. https://doi.org/10.1021/la803646e 12. Bogachuk, D., Wagner, L., Mastroianni, S., Daub, M., Hillebrecht, H., & Hinsch, A. (2020a). The nature of the methylamine-MAPbI 3 complex: fundamentals of gas-induced perovskite liquefaction and crystallization †. https://doi.org/10.1039/d0ta02494e 13. Bogachuk, D., Wagner, L., Mastroianni, S., Daub, M., Hillebrecht, H., & Hinsch, A. (2020b). The nature of the methylamine-MAPbI3complex: fundamentals of gas-induced perovskite liquefaction and crystallization. Journal of Materials Chemistry A, 8(19), 9788–9796. https://doi.org/10.1039/d0ta02494e 14. Boyd, C. C., Shallcross, R. C., Moot, T., Kerner, R., Bertoluzzi, L., Onno, A., Kavadiya, S., Chosy, C., Wolf, E. J., Werner, J., Raiford, J. A., de Paula, C., Palmstrom, A. F., Yu, Z. J., Berry, J. J., Bent, S. F., Holman, Z. C., Luther, J. M., Ratcliff, E. L., … McGehee, M. D. (2020). Overcoming Redox Reactions at Perovskite-Nickel Oxide Interfaces to Boost Voltages in Perovskite Solar Cells. Joule, 4(8), 1759–1775. https://doi.org/10.1016/j.joule.2020.06.004 15. Burkitt, D., Patidar, R., Greenwood, P., Hooper, K., McGettrick, J., Dimitrov, S., Colombo, M., Stoichkov, V., Richards, D., Beynon, D., Davies, M., & Watson, T. (2020). Roll-to-roll slot-die coated P-I-N perovskite solar cells using acetonitrile based single step perovskite solvent system. Sustainable Energy and Fuels, 4(7), 3340–3351. https://doi.org/10.1039/d0se00460j 16. Burkitt, D., Searle, J., & Watson, T. (2018). Perovskite solar cells in N-I-P structure with four slot-die-coated layers. Royal Society Open Science, 5(5). https://doi.org/10.1098/rsos.172158 17. Bush, J. W. M. (2004). Lecture 4: Marangoni Flows. MIT Lecture Notes on Surface Tension, 1–5. http://web.mit.edu/2.21/www/Lec-notes/Surfacetension/Lecture4.pdf 18. Cai, W., Zang, Z., & Ding, L. (2021). Ionic liquids in perovskite solar cells. Journal of Semiconductors, 42(8), 40–43. https://doi.org/10.1088/1674-4926/42/8/080201 19. Cai, X., Hu, T., Hou, H., Zhu, P., Liu, R., Peng, J., Luo, W., & Yu, H. (2023a). A review for nickel oxide hole transport layer and its application in halide perovskite solar cells. https://doi.org/10.1016/j.mtsust.2023.100438 20. Cai, X., Hu, T., Hou, H., Zhu, P., Liu, R., Peng, J., Luo, W., & Yu, H. (2023b). A review for nickel oxide hole transport layer and its application in halide perovskite solar cells. https://doi.org/10.1016/j.mtsust.2023.100438 21. Cai, Y., Liang, L., & Gao, P. (2018). Promise of commercialization: Carbon materials for low-cost perovskite solar cells. Chinese Physics B, 27(1). https://doi.org/10.1088/1674-1056/27/1/018805 22. Cao, X., Zhang, G., Cai, Y., Jiang, L., He, X., Zeng, Q., Wei, J., Jia, Y., Xing, G., & Huang, W. (2020a). All Green Solvents for Fabrication of CsPbBr3 Films for Efficient Solar Cells Guided by the Hansen Solubility Theory. Solar RRL, 4(4), 2000008. https://doi.org/https://doi.org/10.1002/solr.202000008 23. Cao, X., Zhang, G., Cai, Y., Jiang, L., He, X., Zeng, Q., Wei, J., Jia, Y., Xing, G., & Huang, W. (2020b). All Green Solvents for Fabrication of CsPbBr3 Films for Efficient Solar Cells Guided by the Hansen Solubility Theory. Solar RRL, 4(4), 2000008. https://doi.org/10.1002/SOLR.202000008 24. Cao, X., Zhang, G., Jiang, L., Cai, Y., Gao, Y., Yang, W., He, X., Zeng, Q., Xing, G., Jia, Y., & Wei, J. (2020a). Water, a Green Solvent for Fabrication of High-Quality CsPbBr3 Films for Efficient Solar Cells. ACS Applied Materials & Interfaces, 12(5), 5925–5931. https://doi.org/10.1021/acsami.9b20376 25. Cao, X., Zhang, G., Jiang, L., Cai, Y., Gao, Y., Yang, W., He, X., Zeng, Q., Xing, G., Jia, Y., & Wei, J. (2020b). Water, a Green Solvent for Fabrication of High-Quality CsPbBr3 Films for Efficient Solar Cells. ACS Applied Materials and Interfaces, 12(5), 5925–5931. https://doi.org/10.1021/ACSAMI.9B20376/SUPPL_FILE/AM9B20376_SI_001.PDF 26. Carvalho, M. S., & Kheshgi, H. S. (2000). Low-flow limit in slot coating: Theory and experiments. AIChE Journal, 46(10), 1907–1917. https://doi.org/10.1002/aic.690461003 27. Chandrasekhar, P. S., Chapagain, S., Blake, M., Armstrong, P. J., Grapperhaus, C., & Druffel, T. L. (2022). Rapid scalable fabrication of roll-to-roll slot-die coated flexible perovskite solar cells using intense pulse light annealing. Sustainable Energy & Fuels, 6(23), 5316–5323. https://doi.org/10.1039/D2SE00911K 28. Chandratre, K., Sharma, P., Thomas, S., Parvazian, E., Patidar, R., Garcia-Rodriguez, R., Pean, E., Suthar, R., Dunlop, T. O., Pathak, S. K., Watson, T. M., & Karak, S. (2024). Empirical Study of a Polymer-in-Perovskite Precursor: Correlation of the Morphological Changes to the Optoelectronics. ACS Applied Energy Materials, 7(14), 5595–5607. https://doi.org/10.1021/ACSAEM.4C00982/SUPPL_FILE/AE4C00982_SI_001.PDF 29. Chang, X., Fang, J., Fan, Y., Luo, T., Su, H., Zhang, Y., Lu, J., Tsetseris, L., Anthopoulos, T. D., Liu, S., Zhao, K., Chang, X., Fang, J., Fan, Y., Luo, T., Su, H., Zhang, Y., Lu, J., Liu, S., … Anthopoulos, T. D. (2020). Printable CsPbI3 Perovskite Solar Cells with PCE of 19% via an Additive Strategy. Advanced Materials, 32(40), 2001243. https://doi.org/10.1002/ADMA.202001243 30. Chen, S., Xiao, X., Chen, B., Kelly, L. L., Zhao, J., Lin, Y., Toney, M. F., & Huang, J. (2021). Crystallization in one-step solution deposition of perovskite films: Upward or downward? In Science Advances (Vol. 7, Issue 4). American Association for the Advancement of Science. https://doi.org/10.1126/SCIADV.ABB2412/SUPPL_FILE/ABB2412_SM.PDF 31. Ciro, J., Mejía-Escobar, M. A., & Jaramillo, F. (2017). Slot-die processing of flexible perovskite solar cells in ambient conditions. Solar Energy, 150, 570–576. https://doi.org/10.1016/j.solener.2017.04.071 32. Ciro, J., Ramírez, D., Mejía Escobar, M. A., Montoya, J. F., Mesa, S., Betancur, R., & Jaramillo, F. (2017a). Self-Functionalization behind a Solution-Processed NiOx Film Used As Hole Transporting Layer for Efficient Perovskite Solar Cells. ACS Applied Materials and Interfaces, 9(14), 12348–12354. https://doi.org/10.1021/ACSAMI.6B15975/SUPPL_FILE/AM6B15975_SI_001.PDF 33. Ciro, J., Ramírez, D., Mejía Escobar, M. A., Montoya, J. F., Mesa, S., Betancur, R., & Jaramillo, F. (2017b). Self-Functionalization Behind a Solution-Processed NiOx Film Used As Hole Transporting Layer for Efficient Perovskite Solar Cells. ACS Applied Materials & Interfaces, 9(14), 12348–12354. https://doi.org/10.1021/acsami.6b15975 34. Dai, X., Deng, Y., Van Brackle, C. H., Chen, S., Rudd, P. N., Xiao, X., Lin, Y., Chen, B., & Huang, J. (2020). Scalable Fabrication of Efficient Perovskite Solar Modules on Flexible Glass Substrates. Advanced Energy Materials, 10(1), 1–7. https://doi.org/10.1002/aenm.201903108 35. Deng, Y., van Brackle, C. H., Dai, X., Zhao, J., Chen, B., & Huang, J. (2019). Tailoring solvent coordination for high-speed, room-temperature blading of perovskite photovoltaic films. Science Advances, 5(12), 1–9. https://doi.org/10.1126/sciadv.aax7537 36. Deng, Y., Van Brackle, C. H., Dai, X., Zhao, J., Chen, B., & Huang, J. (2019). Tailoring solvent coordination for high-speed, room-temperature blading of perovskite photovoltaic films. In Sci. Adv (Vol. 5). http://advances.sciencemag.org/ 37. Deng, Y., Zheng, X., Bai, Y., Wang, Q., Zhao, J., & Huang, J. (2018a). Surfactant-controlled ink drying enables high-speed deposition of perovskite films for efficient photovoltaic modules. Nature Energy, 3(7), 560–566. https://doi.org/10.1038/s41560-018-0153-9 38. Deng, Y., Zheng, X., Bai, Y., Wang, Q., Zhao, J., & Huang, J. (2018b). Surfactant-controlled ink drying enables high-speed deposition of perovskite films for efficient photovoltaic modules. Nature Energy, 3(7), 560–566. https://doi.org/10.1038/s41560-018-0153-9 39. Dong, Q., Chen, M., Liu, Y., Eickemeyer, F. T., Zhao, W., Dai, Z., Yin, Y., Jiang, C., Feng, J., Jin, S., Liu, S. (Frank), Zakeeruddin, S. M., Grätzel, M., Padture, N. P., & Shi, Y. (2021). Flexible perovskite solar cells with simultaneously improved efficiency, operational stability, and mechanical reliability. Joule, 5(6), 1587–1601. https://doi.org/10.1016/j.joule.2021.04.014 40. Dou, B., Whitaker, J. B., Bruening, K., Moore, D. T., Wheeler, L. M., Ryter, J., Breslin, N. J., Berry, J. J., Garner, S. M., Barnes, F. S., Shaheen, S. E., Tassone, C. J., Zhu, K., & Van Hest, M. F. A. M. (2018). Roll-to-Roll Printing of Perovskite Solar Cells. ACS Energy Letters, 3(10), 2558–2565. https://doi.org/10.1021/acsenergylett.8b01556 41. Du, C., Wang, S., Miao, X., Sun, W., Zhu, Y., Wang, C., & Ma, R. (2019). Polyvinylpyrrolidone as additive for perovskite solar cells with water and isopropanol as solvents. Beilstein Journal of Nanotechnology, 10, 2374–2382. https://doi.org/10.3762/bjnano.10.228 42. Dunlap-Shohl, W. A., Zhou, Y., Padture, N. P., & Mitzi, D. B. (2019). Synthetic Approaches for Halide Perovskite Thin Films [Review-article]. Chemical Reviews, 119(5), 3193–3295. https://doi.org/10.1021/acs.chemrev.8b00318 43. Elangovan, N. K., Kannadasan, R., Beenarani, B. B., Alsharif, M. H., Kim, M. K., & Hasan Inamul, Z. (2024). Recent developments in perovskite materials, fabrication techniques, band gap engineering, and the stability of perovskite solar cells. Energy Reports, 11, 1171–1190. https://doi.org/10.1016/J.EGYR.2023.12.068 44. Fateev, S. A., Petrov, A. A., Khrustalev, V. N., Dorovatovskii, P. V., Zubavichus, Y. V., Goodilin, E. A., & Tarasov, A. B. (2018). Solution Processing of Methylammonium Lead Iodide Perovskite from γ-Butyrolactone: Crystallization Mediated by Solvation Equilibrium. Chemistry of Materials, 30(15), 5237–5244. https://doi.org/10.1021/ACS.CHEMMATER.8B01906/SUPPL_FILE/CM8B01906_SI_004.CIF 45. Feng, M., Wang, M., Zhou, H., Li, W., Wang, S., Zang, Z., & Chen, S. (2020). High-Efficiency and Stable Inverted Planar Perovskite Solar Cells with Pulsed Laser Deposited Cu-Doped NiOxHole-Transport Layers. ACS Applied Materials and Interfaces, 12(45), 50684–50691. https://doi.org/10.1021/acsami.0c15923 46. Francisco-López, A., Charles, B., Isabel Alonso, M., Garriga, M., Campoy-Quiles, M., T. Weller, M., & R. Goñi, A. (2020). Phase Diagram of Methylammonium/Formamidinium Lead Iodide Perovskite Solid Solutions from Temperature-Dependent Photoluminescence and Raman Spectroscopies. The Journal of Physical Chemistry C, 124(6), 3448–3458. https://doi.org/10.1021/acs.jpcc.9b10185 47. Gao, Y., Huang, K., Long, C., Ding, Y., Chang, J., Zhang, D., Etgar, L., Liu, M., Zhang, J., & Yang, J. (2022). Flexible Perovskite Solar Cells: From Materials and Device Architectures to Applications. ACS Energy Letters, 7(4), 1412–1445. https://doi.org/10.1021/acsenergylett.1c02768 48. Ghosh, R., Singh, A., & Agarwal, P. (2023). Study on effect of different HTL and ETL materials on the perovskite solar cell performance with TCAD simulator. Materials Today: Proceedings. https://doi.org/10.1016/j.matpr.2023.06.161 49. Giuri, A., Masi, S., Listorti, A., Gigli, G., Colella, S., Esposito Corcione, C., & Rizzo, A. (2018a). Polymeric rheology modifier allows single-step coating of perovskite ink for highly efficient and stable solar cells. Nano Energy, 54, 400–408. https://doi.org/10.1016/j.nanoen.2018.10.039 50. Giuri, A., Masi, S., Listorti, A., Gigli, G., Colella, S., Esposito Corcione, C., & Rizzo, A. (2018b). Polymeric rheology modifier allows single-step coating of perovskite ink for highly efficient and stable solar cells. Nano Energy, 54(October), 400–408. https://doi.org/10.1016/j.nanoen.2018.10.039 51. Giuri, A., Munir, R., Listorti, A., Esposito Corcione, C., Gigli, G., Rizzo, A., Amassian, A., & Colella, S. (2021). Implication of polymeric template agent on the formation process of hybrid halide perovskite films. Nanotechnology, 32(26). https://doi.org/10.1088/1361-6528/abed72 52. Giuri, A., Saleh, E., Listorti, A., Colella, S., Rizzo, A., Tuck, C., & Corcione, C. E. (2019). Rheological tunability of perovskite precursor solutions: From spin coating to inkjet printing process. Nanomaterials, 9(4). https://doi.org/10.3390/nano9040582 53. Guo, K. (2023). Organic halide salts and PbI2 in improving the efficiency of perovskite solar cells. Energy Reports, 9, 62–73. https://doi.org/10.1016/j.egyr.2023.08.050 54. Han, Q., Wei, Y., Lin, R., Fang, Z., Xiao, K., Luo, X., Gu, S., Zhu, J., Ding, L., & Tan, H. (2019). Low-temperature processed inorganic hole transport layer for efficient and stable mixed Pb-Sn low-bandgap perovskite solar cells. Science Bulletin, 64(19), 1399–1401. https://doi.org/10.1016/j.scib.2019.08.002 55. Hao, F., Stoumpos, C. C., Liu, Z., Chang, R. P. H., & Kanatzidis, M. G. (2014). Controllable perovskite crystallization at a gas-solid interface for hole conductor-free solar cells with steady power conversion efficiency over 10%. Journal of the American Chemical Society, 136(46), 16411–16419. https://doi.org/10.1021/JA509245X/SUPPL_FILE/JA509245X_SI_003.CIF 56. He, Q., Yao, K., Wang, X., Xia, X., Leng, S., & Li, F. (2017). Room-Temperature and Solution-Processable Cu-Doped Nickel Oxide Nanoparticles for Efficient Hole-Transport Layers of Flexible Large-Area Perovskite Solar Cells. ACS Applied Materials and Interfaces, 9(48), 41887–41897. https://pubs.acs.org/doi/full/10.1021/acsami.7b13621 57. Hoang, M. T., Ünlü, F., Martens, W., Bell, J., Mathur, S., & Wang, H. (2021a). Towards the environmentally friendly solution processing of metal halide perovskite technology. Green Chemistry, 23(15), 5302–5336. https://doi.org/10.1039/D1GC01756J 58. Hoang, M. T., Ünlü, F., Martens, W., Bell, J., Mathur, S., & Wang, H. (2021b). Towards the environmentally friendly solution processing of metal halide perovskite technology. Green Chemistry, 23(15), 5302–5336. https://doi.org/10.1039/D1GC01756J 59. Holzhey, P., Prettl, M., Collavini, S., Mortan, C., & Saliba, M. (2023). Understanding the impact of surface roughness: changing from FTO to ITO to PEN/ITO for flexible perovskite solar cells. https://doi.org/10.1038/s41598-023-33147-6 60. Hossain, M. K., Rubel, M. H. K., Toki, G. F. I., Alam, I., Rahman, M. F., & Bencherif, H. (2022). Effect of Various Electron and Hole Transport Layers on the Performance of CsPbI3-Based Perovskite Solar Cells: A Numerical Investigation in DFT, SCAPS-1D, and wxAMPS Frameworks. ACS Omega, 7(47), 43210–43230. https://doi.org/10.1021/ACSOMEGA.2C05912/ASSET/IMAGES/LARGE/AO2C05912_0013.JPEG 61. Hu, X., Liu, C., Zhang, Z., Jiang, X. F., Garcia, J., Sheehan, C., Shui, L., Priya, S., Zhou, G., Zhang, S., & Wang, K. (2020). 22% Efficiency Inverted Perovskite Photovoltaic Cell Using Cation-Doped Brookite TiO2 Top Buffer. Advanced Science, 7(16). https://doi.org/10.1002/advs.202001285 62. Hu, Z., Chen, D., Yang, P., Yang, L., Qin, L., Huang, Y., & Zhao, X. (2018). Sol-gel-processed yttrium-doped NiO as hole transport layer in inverted perovskite solar cells for enhanced performance. Applied Surface Science, 441, 258–264. https://doi.org/10.1016/j.apsusc.2018.01.236 63. Huang, K. W., Li, M. H., Chen, Y. T., Wen, Z. X., Lin, C. F., & Chen, P. (2024). Fast fabrication of μm-thick perovskite films by using a one-step doctor-blade coating method for direct X-ray detectors. Journal of Materials Chemistry C, 12(4), 1533–1542. https://doi.org/10.1039/D3TC02736H 64. Huang, S. H., Tian, K. Y., Huang, H. C., Li, C. F., Chu, W. C., Lee, K. M., Lee, K. M., Huang, Y. C., & Su, W. F. (2020). Controlling the Morphology and Interface of the Perovskite Layer for Scalable High-Efficiency Solar Cells Fabricated Using Green Solvents and Blade Coating in an Ambient Environment. ACS Applied Materials and Interfaces, 12(23), 26041–26049. https://doi.org/10.1021/acsami.0c06211 65. Islam, M. B., Yanagida, M., Shirai, Y., Nabetani, Y., & Miyano, K. (2017). NiOx Hole Transport Layer for Perovskite Solar Cells with Improved Stability and Reproducibility. ACS Omega, 2(5), 2291–2299. https://doi.org/10.1021/ACSOMEGA.7B00538/SUPPL_FILE/AO7B00538_SI_001.PDF 66. Jacobsson, T. J., Hultqvist, A., García-Fernández, A., Anand, A., Al-Ashouri, A., Hagfeldt, A., Crovetto, A., Abate, A., Ricciardulli, A. G., Vijayan, A., Kulkarni, A., Anderson, A. Y., Darwich, B. P., Yang, B., Coles, B. L., Perini, C. A. R., Rehermann, C., Ramirez, D., Fairen-Jimenez, D., … Unger, E. (2022). An open-access database and analysis tool for perovskite solar cells based on the FAIR data principles. Nature Energy, 7(1), 107–115. https://doi.org/10.1038/s41560-021-00941-3 67. Jeong, D. N., Lee, D. K., Seo, S., Lim, S. Y., Zhang, Y., Shin, H., Cheong, H., & Park, N. G. (2019). Perovskite Cluster-Containing Solution for Scalable D-Bar Coating toward High-Throughput Perovskite Solar Cells. ACS Energy Letters, 4(5), 1189–1195. https://doi.org/10.1021/acsenergylett.9b00042 68. Jiang, C. S., Yang, M., Zhou, Y., To, B., Nanayakkara, S. U., Luther, J. M., Zhou, W., Berry, J. J., Van De Lagemaat, J., Padture, N. P., Zhu, K., & Al-Jassim, M. M. (2015). Carrier separation and transport in perovskite solar cells studied by nanometre-scale profiling of electrical potential. Nature Communications, 6, 1–10. https://doi.org/10.1038/ncomms9397 69. Jiang, P., Jones, T. W., Duffy, N. W., Anderson, K. F., Bennett, R., Grigore, M., Marvig, P., Xiong, Y., Liu, T., Sheng, Y., Hong, L., Hou, X., Duan, M., Hu, Y., Rong, Y., Wilson, G. J., & Han, H. (2018). Fully printable perovskite solar cells with highly-conductive, low-temperature, perovskite-compatible carbon electrode. Carbon, 129, 830–836. https://doi.org/10.1016/j.carbon.2017.09.008 70. Jonathan, L., Diguna, L. J., Samy, O., Muqoyyanah, M., Bakar, S. A., Birowosuto, M. D., & El Moutaouakil, A. (2022). Hybrid Organic–Inorganic Perovskite Halide Materials for Photovoltaics towards Their Commercialization. Polymers, 14(5). https://doi.org/10.3390/polym14051059 71. Ju, Y., Park, S. Y., Yeom, K. M., Noh, J. H., & Jung, H. S. (2019). Single-Solution Bar-Coated Halide Perovskite Films via Mediating Crystallization for Scalable Solar Cell Fabrication [Research-article]. ACS Applied Materials and Interfaces, 11(12), 11537–11544. https://doi.org/10.1021/acsami.9b02125 72. Kafedjiska, I., Levine, I., Musiienko, A., Maticiuc, N., Bertram, T., Al-Ashouri, A., Kaufmann, C. A., Albrecht, S., Schlatmann, R., & Lauermann, I. (2023a). Advanced Characterization and Optimization of NiOx:Cu-SAM Hole-Transporting Bi-Layer for 23.4% Efficient Monolithic Cu(In,Ga)Se2-Perovskite Tandem Solar Cells. Advanced Functional Materials, 33(34). https://doi.org/10.1002/adfm.202302924 73. Kafedjiska, I., Levine, I., Musiienko, A., Maticiuc, N., Bertram, T., Al-Ashouri, A., Kaufmann, C. A., Albrecht, S., Schlatmann, R., & Lauermann, I. (2023b). Advanced Characterization and Optimization of NiOx:Cu-SAM Hole-Transporting Bi-Layer for 23.4% Efficient Monolithic Cu(In,Ga)Se2-Perovskite Tandem Solar Cells. Advanced Functional Materials, 33(34). https://doi.org/10.1002/adfm.202302924 74. Kartikay, P., Paul, A., Yella, A., Mallick, S., & PbI Br, -x. (2023). Cation exchange enabled improved perovskite infiltration in triple-mesoscopic carbon perovskite solar cells • Cation-exchange assisted improvement in perovskite infiltration into triple mesoscopic carbon-based perovskite solar cells. • Conversion of 2D (PEA) 2 PbI 4 into 3D MAPbI. Materials Chemistry and Physics, 307, 128181. https://doi.org/10.1016/j.matchemphys.2023.128181 75. Ke, W., Spanopoulos, I., Stoumpos, C. C., & Kanatzidis, M. G. (2018). Myths and reality of HPbI3 in halide perovskite solar cells. Nature Communications, 9(1). https://doi.org/10.1038/s41467-018-07204-y 76. Kerner, R. A., Schloemer, T. H., Schulz, P., Berry, J. J., Schwartz, J., Sellinger, A., & Rand, B. P. (2019). Amine additive reactions induced by the soft Lewis acidity of Pb2+ in halide perovskites. Part I: Evidence for Pb-alkylamide formation. Journal of Materials Chemistry C, 7(18), 5251–5259. https://doi.org/10.1039/c8tc04871a 77. Khan, L., von Toperczer, F., Ünlü, F., Paramasivam, G., Mathies, F., Nandayapa, E., List-Kratochvil, E. J. W., Fischer, T., Lindfors, K., & Mathur, S. (2023). Electrospun Electroluminescent CsPbBr3 Fibers as Flexible Perovskite Networks for Light-Emitting Application. Advanced Engineering Materials, 25(10), 1–8. https://doi.org/10.1002/adem.202201651 78. Khatoon, S., Kumar Yadav, S., Chakravorty, V., Singh, J., Bahadur Singh, R., Hasnain, M. S., & Hasnain, S. M. M. (2023). Perovskite solar cell’s efficiency, stability and scalability: A review. Materials Science for Energy Technologies, 6, 437–459. https://doi.org/10.1016/J.MSET.2023.04.007 79. Khatoon, S., Kumar Yadav, S., Chakravorty, V., Singh, J., Singh, R. B., Hasnain, S., & Hasnain, S. M. M. (2023). Perovskite solar cell’s efficiency, stability and scalability: A review. https://doi.org/10.1016/j.mset.2023.04.007 80. Kim, J. H., Liang, P.-W., Williams, S. T., Cho, N., Chueh, C.-C., Glaz, M. S., Ginger, D. S., K-Y Jen, A., Kim, J. H., Liang, P., Williams, S. T., Cho, N., Chueh, C., K-Y Jen, A., Glaz, M. S., & Ginger, D. S. (2014). High-Performance and Environmentally Stable Planar Heterojunction Perovskite Solar Cells Based on a Solution-Processed Copper-Doped Nickel Oxide Hole-Transporting Layer. https://doi.org/10.1002/adma.201404189 81. Kim, J., Ho‐Baillie, A., & Huang, S. (2019). Review of Novel Passivation Techniques for Efficient and Stable Perovskite Solar Cells. Solar RRL, 3(4), 1800302. https://doi.org/10.1002/solr.201800302 82. Kim, J. W., Cho, E., Lee, H. J., Kwon, S. N., Park, J. S., Kim, M., Kim, D. H., Na, S. I., & Lee, S. J. (2023). Enhancing Efficiency of Inverted Perovskite Solar Cells by Sputtered Nickel Oxide Hole-Transport Layers. Solar RRL, 2300933, 1–8. https://doi.org/10.1002/solr.202300933 83. Kong, J., Wang, H., Röhr, J. A., Fishman, Z. S., Zhou, Y., Li, M., Cotlet, M., Kim, G., Karpovich, C., Antonio, F., Padture, N. P., & Taylor, A. D. (2020). Perovskite Solar Cells with Enhanced Fill Factors Using Polymer-Capped Solvent Annealing. ACS Applied Energy Materials, 3(8), 7231–7238. https://doi.org/10.1021/ACSAEM.0C00854/SUPPL_FILE/AE0C00854_SI_001.PDF 84. Koushik, D., Jošt, M., Dučinskas, A., Burgess, C., Zardetto, V., Weijtens, C., Verheijen, M. A., Kessels, W. M. M., Albrecht, S., & Creatore, M. (2019). Plasma-assisted atomic layer deposition of nickel oxide as hole transport layer for hybrid perovskite solar cells. Journal of Materials Chemistry C, 7(40), 12532–12543. https://doi.org/10.1039/c9tc04282b 85. Lee, G., Kim, M. C., Choi, Y. W., Ahn, N., Jang, J., Yoon, J., Kim, S. M., Lee, J. G., Kang, D., Jung, H. S., & Choi, M. (2019). Ultra-flexible perovskite solar cells with crumpling durability: toward a wearable power source. Energy & Environmental Science, 12(10), 3182–3191. https://doi.org/10.1039/C9EE01944H 86. Lee, H. J., & Na, S. I. (2022a). Efficient mixed-cation perovskite photovoltaic cells via additive-assisted slot-die deposition. Materials Research Bulletin, 149(October 2021), 111728. https://doi.org/10.1016/j.materresbull.2022.111728 87. Lee, H. J., & Na, S. I. (2022b). Investigation of PCBM/ZnO and C60/BCP-based electron transport layer for high-performance p-i-n perovskite solar cells. Journal of Alloys and Compounds, 921, 166007. https://doi.org/10.1016/J.JALLCOM.2022.166007 88. Lee, J. W., Lee, D. K., Jeong, D. N., & Park, N. G. (2018). Control of Crystal Growth toward Scalable Fabrication of Perovskite Solar Cells. Advanced Functional Materials, 1807047, 1–18. https://doi.org/10.1002/adfm.201807047 89. Lee, Y., Lee, S., Seo, G., Paek, S., Cho, K. T., Huckaba, A. J., Calizzi, M., Choi, D. won, Park, J. S., Lee, D., Lee, H. J., Asiri, A. M., & Nazeeruddin, M. K. (2018). Efficient Planar Perovskite Solar Cells Using Passivated Tin Oxide as an Electron Transport Layer. Advanced Science, 5(6), 1–6. https://doi.org/10.1002/advs.201800130 90. Li, J., Dagar, J., Shargaieva, O., Flatken, M. A., Köbler, H., Fenske, M., Schultz, C., Stegemann, B., Just, J., Többens, D. M., Abate, A., Munir, R., & Unger, E. (2021a). 20.8% Slot-Die Coated MAPbI3 Perovskite Solar Cells by Optimal DMSO-Content and Age of 2-ME Based Precursor Inks. Supporting information. Advanced Energy Materials, 11(10). https://doi.org/10.1002/aenm.202003460 91. Li, J., Dagar, J., Shargaieva, O., Flatken, M. A., Köbler, H., Fenske, M., Schultz, C., Stegemann, B., Just, J., Többens, D. M., Abate, A., Munir, R., & Unger, E. (2021b). 20.8% Slot-Die Coated MAPbI3 Perovskite Solar Cells by Optimal DMSO-Content and Age of 2-ME Based Precursor Inks. Advanced Energy Materials, 11(10). https://doi.org/10.1002/AENM.202003460 92. Li, J., Dagar, J., Shargaieva, O., Flatken, M. A., Köbler, H., Fenske, M., Schultz, C., Stegemann, B., Just, J., Többens, D. M., Abate, A., Munir, R., & Unger, E. (2021c). 20.8% Slot-Die Coated MAPbI3 Perovskite Solar Cells by Optimal DMSO-Content and Age of 2-ME Based Precursor Inks. Advanced Energy Materials, 11(10), 2003460. https://doi.org/10.1002/AENM.202003460 93. Li, N., Xu, F., Qiu, Z., Liu, J., Wan, X., Zhu, X., Yu, H., Li, C., Liu, Y., & Cao, B. (2019). Sealing the domain boundaries and defects passivation by Poly ( acrylic acid ) for scalable blading of e ffi cient perovskite solar cells. Journal of Power Sources, 426(October 2018), 188–196. https://doi.org/10.1016/j.jpowsour.2019.04.041 94. Li, Z., Klein, T. R., Kim, D. H., Yang, M., Berry, J. J., van Hest, M. F. A. M., & Zhu, K. (2018). Scalable fabrication of perovskite solar cells. Nat. Rev. Mater., 3, 18017. 95. Li, Z., Sun, X., Zheng, X., Li, B., Gao, D., Zhang, S., Wu, X., Li, S., Gong, J., Luther, J. M., Li, Z., & Zhu, Z. (2023). Stabilized hole-selective layer for high-performance inverted p-i-n perovskite solar cells. Science, 382(6668), 284–289. https://doi.org/10.1126/SCIENCE.ADE9637 96. Liang, X., Ge, C., Fang, Q., Deng, W., Dey, S., Lin, H., Zhang, Y., Zhang, X., Zhu, Q., & Hu, H. (2021). Flexible Perovskite Solar Cells: Progress and Prospects. Frontiers in Materials, 8(634353), 1–7. https://doi.org/10.3389/fmats.2021.634353 97. Liao, J. F., Wu, W. Q., Jiang, Y., Zhong, J. X., Wang, L., & Kuang, D. Bin. (2020). Understanding of carrier dynamics, heterojunction merits and device physics: Towards designing efficient carrier transport layer-free perovskite solar cells. Chemical Society Reviews, 49(2), 354–381. https://doi.org/10.1039/C8CS01012A 98. Lin, Y., Firdaus, Y., Isikgor, F. H., Nugraha, M. I., Yengel, E., Harrison, G. T., Hallani, R., El-Labban, A., Faber, H., Ma, C., Zheng, X., Subbiah, A., Howells, C. T., Bakr, O. M., McCulloch, I., Wolf, S. De, Tsetseris, L., & Anthopoulos, T. D. (2020). Self-assembled monolayer enables hole transport layer-free organic solar cells with 18% efficiency and improved operational stability. ACS Energy Letters, 5(9), 2935–2944. https://doi.org/10.1021/ACSENERGYLETT.0C01421/SUPPL_FILE/NZ0C01421_SI_001.PDF 99. Liu, C., Cheng, Y. B., & Ge, Z. (2020). Understanding of perovskite crystal growth and film formation in scalable deposition processes. Chemical Society Reviews, 49(6), 1653–1687. https://doi.org/10.1039/c9cs00711c 100. Liu D., Traverse C.J., Elinski M., Yang C., Wang L., Young M., L. R. R. (2017). Aqueous‐Containing Precursor Solutions for Efficient Perovskite Solar Cells. Advanced Science, 5(1700484). https://doi.org/10.1002/advs.201700484 101. Liu, D., Shao, Z., Gui, J., Chen, M., Liu, M., Cui, G., Pang, S., & Zhou, Y. (2019). A polar-hydrophobic ionic liquid induces grain growth and stabilization in halide perovskites. Chemical Communications, 55(74), 11059–11062. https://doi.org/10.1039/c9cc05490a 102. Liu, D., Traverse, C. J., Chen, P., Elinski, M., Yang, C., Wang, L., Young, M., & Lunt, R. R. (2018). Aqueous-Containing Precursor Solutions for Efficient Perovskite Solar Cells. Advanced Science, 5(1), 1700484. https://doi.org/https://doi.org/10.1002/advs.201700484 103. Liu, M.-H., Zhou, Z.-J., Zhang, P.-P., Tian, Q.-W., Zhou, W.-H., Kou, D.-X., & Wu, S.-X. (2016). p-type Li, Cu-codoped NiOx hole-transporting layer for efficient planar perovskite solar cells. Optics Express, 24(22), A1349. https://doi.org/10.1364/oe.24.0a1349 104. Liu, M., Johnston, M. B., & Snaith, H. J. (2013). Efficient planar heterojunction perovskite solar cells by vapour deposition. Nature 2013 501:7467, 501(7467), 395–398. https://doi.org/10.1038/nature12509 105. Liu, Z., Chang, J., Lin, Z., Zhou, L., Yang, Z., Chen, D., Zhang, C., Liu, S. (Frank), & Hao, Y. (2018a). High-Performance Planar Perovskite Solar Cells Using Low Temperature, Solution–Combustion-Based Nickel Oxide Hole Transporting Layer with Efficiency Exceeding 20%. Advanced Energy Materials, 8(19), 1–9. https://doi.org/10.1002/aenm.201703432 106. Liu, Z., Chang, J., Lin, Z., Zhou, L., Yang, Z., Chen, D., Zhang, C., Liu, S. (Frank), & Hao, Y. (2018b). High-Performance Planar Perovskite Solar Cells Using Low Temperature, Solution–Combustion-Based Nickel Oxide Hole Transporting Layer with Efficiency Exceeding 20%. Advanced Energy Materials, 8(19). https://doi.org/10.1002/AENM.201703432 107. Liu, Z., Zhu, A., Cai, F., Tao, L. M., Zhou, Y., Zhao, Z., Chen, Q., Cheng, Y. B., & Zhou, H. (2017). Nickel oxide nanoparticles for efficient hole transport in p-i-n and n-i-p perovskite solar cells. Journal of Materials Chemistry A, 5(14), 6597–6605. https://doi.org/10.1039/c7ta01593c 108. Long, J., Huang, Z., Zhang, J., Hu, X., Tan, L., & Chen, Y. (2020). Flexible perovskite solar cells: Device design and perspective. Flexible and Printed Electronics, 5(1). https://doi.org/10.1088/2058-8585/ab556e 109. Loudon, C., & Tordesillas, A. (1998). The use of the dimensionless Womersley number to characterize the unsteady nature of internal flow. Journal of Theoretical Biology, 191(1), 63–78. https://doi.org/10.1006/jtbi.1997.0564 110. Ma, F., Zhao, Y., Qu, Z., & You, J. (2023). Developments of Highly Efficient Perovskite Solar Cells. Accounts of Materials Research. https://doi.org/10.1021/accountsmr.3c00068 111. Ma, Y., Ge, J., Jen, A. K. Y., You, J., & Liu, S. (2023). Polymer Boosts High Performance Perovskite Solar Cells: A Review. Advanced Optical Materials, 2301623, 1–28. https://doi.org/10.1002/adom.202301623 112. Ma, Y., Lu, Z., Su, X., Zou, G., & Zhao, Q. (2023). Recent Progress Toward Commercialization of Flexible Perovskite Solar Cells: From Materials and Structures to Mechanical Stabilities. Advanced Energy and Sustainability Research, 4(1), 2200133. https://doi.org/10.1002/aesr.202200133 113. Macomber, R. S. (1992). An introduction to NMR titration for studying rapid reversible complexation. Journal of Chemical Education, 69(5), 375–378. https://doi.org/10.1021/ED069P375 114. Mahajan, P., Padha, B., Verma, S., Gupta, V., Datt, R., Tsoi, W. C., Satapathi, S., & Arya, S. (2022). Review of current progress in hole-transporting materials for perovskite solar cells. Journal of Energy Chemistry, 68, 330–386. https://doi.org/10.1016/j.jechem.2021.12.003 115. Marć, M., Wolak, W., Drzewiński, A., & Dudek, M. R. (2022). Coffee-ring formation through the use of the multi-ring mechanism guided by the self-assembly of magnetic nanoparticles. Scientific Reports, 12(1), 1–10. https://doi.org/10.1038/s41598-022-24521-x 116. Nayak, P. K., Moore, D. T., Wenger, B., Nayak, S., Haghighirad, A. A., Fineberg, A., Noel, N. K., Reid, O. G., Rumbles, G., Kukura, P., Vincent, K. A., & Snaith, H. J. (2016). Mechanism for rapid growth of organic-inorganic halide perovskite crystals. Nature Communications, 7. https://doi.org/10.1038/NCOMMS13303 117. Nie, W., Tsai, H., Blancon, J.-C., Liu, F., Stoumpos, C. C., Traore, B., Kepenekian, M., Durand, O., Katan, C., Tretiak, S., Crochet, J., Ajayan, P. M., Kanatzidis, M. G., Even, J., Mohite, A. D., Nie, W., Tsai, H., Blancon, J., Liu, F., … Crochet, J. (2018). Critical Role of Interface and Crystallinity on the Performance and Photostability of Perovskite Solar Cell on Nickel Oxide. Advanced Materials, 30(5), 1703879. https://doi.org/10.1002/ADMA.201703879 118. Nimal Perera, W., Hefter, G., & Sipos, P. M. (2001). An investigation of the Lead(II)-hydroxide system. Inorganic Chemistry, 40(16), 3974–3978. https://doi.org/10.1021/IC001415O/SUPPL_FILE/IC001415O_S.PDF 119. Niu, X., Li, N., Chen, Q., & Zhou, H. (2021). Insights into Large-Scale Fabrication Methods in Perovskite Photovoltaics. Advanced Energy and Sustainability Research, 2(2). https://doi.org/10.1002/aesr.202000046 120. Noël, C., Pescetelli, S., Agresti, A., Franquet, A., Spampinato, V., Felten, A., di Carlo, A., Houssiau, L., & Busby, Y. (2019). Hybrid perovskites depth profiling with variable-size argon clusters and monatomic ions beams. Materials, 12(5). https://doi.org/10.3390/ma12050726 121. Noel, N. K., Habisreutinger, S. N., Wenger, B., Klug, M. T., Hörantner, M. T., Johnston, M. B., Nicholas, R. J., Moore, D. T., & Snaith, H. J. (2017). A low viscosity, low boiling point, clean solvent system for the rapid crystallisation of highly specular perovskite films. Energy and Environmental Science, 10(1), 145–152. https://doi.org/10.1039/c6ee02373h 122. NREL. (2023). Best Emmerging Research-Cell Efficiencies Chart. https://www.nrel.gov/pv/interactive-cell-efficiency.html# 123. NREL. (2024). Best Research-Cell Efficiencies. NREL, 1. https://www.nrel.gov/pv/cell-efficiency.html 124. Nyiekaa, E. A., Aika, T. A., Orukpe, P. E., Akhabue, C. E., & Danladi, E. (2024). Development on inverted perovskite solar cells: A review. Heliyon, 10(2). https://doi.org/10.1016/j.heliyon.2024.e24689 125. Oesinghaus, L., Schlipf, J., Giesbrecht, N., Song, L., Hu, Y., Bein, T., Docampo, P., & Müller-Buschbaum, P. (2016). Toward Tailored Film Morphologies: The Origin of Crystal Orientation in Hybrid Perovskite Thin Films. Advanced Materials Interfaces, 3(19), 1600403. https://doi.org/10.1002/ADMI.201600403 126. Oldenburg, K., & Vogler, A. (1993). Electronic Spectra and Photochemistry of Tin(II), Lead(II), Antimony(III), and Bismuth(III) Bromide Complexes in Solution. Zeitschrift Fur Naturforschung - Section B Journal of Chemical Sciences, 48(11), 1519–1523. https://doi.org/10.1515/znb-1993-1109 127. Ono, L. K., Qi, Y., & Liu, S. F. (2018). Progress toward Stable Lead Halide Perovskite Solar Cells. Joule, 1–30. https://doi.org/10.1016/j.joule.2018.07.007 128. Othman, M., Zheng, F., Seeber, A., Chesman, A. S. R., Scully, A. D., Ghiggino, K. P., Gao, M., Etheridge, J., & Angmo, D. (2022). Millimeter-Sized Clusters of Triple Cation Perovskite Enables Highly Efficient and Reproducible Roll-to-Roll Fabricated Inverted Perovskite Solar Cells. Advanced Functional Materials, 32(12), 1–12. https://doi.org/10.1002/adfm.202110700 129. Öz, S., Burschka, J., Jung, E., Bhattacharjee, R., Fischer, T., Mettenbörger, A., Wang, H., & Mathur, S. (2018). Protic ionic liquid assisted solution processing of lead halide perovskites with water, alcohols and acetonitrile. Nano Energy, 51(May), 632–638. https://doi.org/10.1016/j.nanoen.2018.07.005 130. Pablo Velásquez, J., Ramírez, E. A., Flórez, A., Montoya, J. F., Betancur, R., Ramírez, D., Da, M., Carvalho, S., Jaramillo, F., Velasquez, J. P., Ramirez, E. A., Flórez, A., Montoya, J. F., Betancur, R., Ramirez, D., Carvalho, M. da S., & Jaramillo, F. (2023). Reaching Highly Uniform Perovskite Ink Flow from a Slot-Die Head Toward Printed Solar Cells. Advanced Engineering Materials, 25(8), 2201561. https://doi.org/10.1002/adem.202201561 131. Pang, S., Zhang, C., Dong, H., Chen, D., Zhu, W., Xi, H., Chang, J., Lin, Z., Zhang, J., & Hao, Y. (2019). Efficient NiO x Hole Transporting Layer Obtained by the Oxidation of Metal Nickel Film for Perovskite Solar Cells. ACS Applied Energy Materials, 2(7), 4700–4707. https://doi.org/10.1021/acsaem.9b00169 132. Park, B. C., Cho, J., Kim, M. S., Ko, M. J., Pan, L., Na, J. Y., & Kim, Y. K. (2020). Strategy to control magnetic coercivity by elucidating crystallization pathway-dependent microstructural evolution of magnetite mesocrystals. Nature Communications 2020 11:1, 11(1), 1–10. https://doi.org/10.1038/s41467-019-14168-0 133. Park, I. J., Kang, G., Park, M. A., Kim, J. S., Seo, S. W., Kim, D. H., Zhu, K., Park, T., & Kim, J. Y. (2017). Highly Efficient and Uniform 1 cm2 Perovskite Solar Cells with an Electrochemically Deposited NiOx Hole-Extraction Layer. ChemSusChem, 10(12), 2660–2667. https://doi.org/10.1002/cssc.201700612 134. Park, N. (2020). Scalable fabrication and coating. Nature Reviews Materials. https://doi.org/10.1038/s41578-019-0176-2 135. Patidar, R., Burkitt, D., Hooper, K., Richards, D., & Watson, T. (2020). Slot-die coating of perovskite solar cells: An overview. Materials Today Communications, 22(September 2019), 100808. https://doi.org/10.1016/j.mtcomm.2019.100808 136. Patil, N. D., Bange, P. G., Bhardwaj, R., & Sharma, A. (2016). Effects of Substrate Heating and Wettability on Evaporation Dynamics and Deposition Patterns for a Sessile Water Droplet Containing Colloidal Particles. Langmuir, 32(45), 11958–11972. https://doi.org/10.1021/acs.langmuir.6b02769 137. Petrov, A. A., Sokolova, I. P., Belich, N. A., Peters, G. S., Dorovatovskii, P. V., Zubavichus, Y. V., Khrustalev, V. N., Petrov, A. V., Grätzel, M., Goodilin, E. A., & Tarasov, A. B. (2017). Crystal Structure of DMF-Intermediate Phases Uncovers the Link between CH3NH3PbI3 Morphology and Precursor Stoichiometry. Journal of Physical Chemistry C, 121(38), 20739–20743. https://doi.org/10.1021/ACS.JPCC.7B08468/SUPPL_FILE/JP7B08468_SI_004.CIF 138. Pratap, S., Keller, E., & Müller-Buschbaum, P. (2019). Emergence of lead halide perovskite colloidal dispersions through aggregation and fragmentation: Insights from the nanoscale to the mesoscale. Nanoscale, 11(8), 3495–3499. https://doi.org/10.1039/c8nr09853k 139. Qaid, S. M. H., Ghaithan, H. M., Bawazir, H. S., & Aldwayyan, A. S. (2023). Simple approach for crystallizing growth of MAPbI3 perovskite nanorod without thermal annealing for Next-Generation optoelectronic applications. Materials Chemistry and Physics, 298. https://doi.org/10.1016/j.matchemphys.2023.127423 140. Radicchi, E., Mosconi, E., Elisei, F., Nunzi, F., & De Angelis, F. (2019). Understanding the Solution Chemistry of Lead Halide Perovskites Precursors. ACS Applied Energy Materials, 2(5), 3400–3409. https://doi.org/10.1021/ACSAEM.9B00206/SUPPL_FILE/AE9B00206_SI_001.PDF 141. Ramirez, D., Alejandro Mejía Escobar, M., Montoya, J. F., & Jaramillo, F. (2016). Understanding the Role of the Mesoporous Layer in the Thermal Crystallization of a Meso-Superstructured Perovskite Solar Cell. Journal of Physical Chemistry C, 120(16), 8559–8567. https://doi.org/10.1021/acs.jpcc.6b02808 142. Ramirez, D., Schutt, K., Montoya, J. F., Mesa, S., Lim, J., Snaith, H. J., & Jaramillo, F. (2018). Meso-Superstructured Perovskite Solar Cells: Revealing the Role of the Mesoporous Layer [Research-article]. Journal of Physical Chemistry C, 122(37), 21239–21247. https://doi.org/10.1021/acs.jpcc.8b07124 143. Ramirez, D., Velilla, E., Montoya, J. F., & Jaramillo, F. (2019). Mitigating scalability issues of perovskite photovoltaic technology through a p-i-n meso-superstructured solar cell architecture. Solar Energy Materials and Solar Cells, 195(January), 191–197. https://doi.org/10.1016/j.solmat.2019.03.014 144. Ramirez, E. A., Velásquez, J. P., Flórez, A., Montoya, J. F., Betancur, R., & Jaramillo, F. (2023). Blade‐Coated Solar Minimodules of Homogeneous Perovskite Films Achieved by an Air Knife Design and a Machine Learning‐Based Optimization. Advanced Engineering Materials, 25(3), 2200964. 145. Rao, H., Ye, S., Gu, F., Zhao, Z., Liu, Z., Bian, Z., Huang, C., Rao, H., Ye, S., Gu, F., Zhao, Z., Liu, Z., Bian, Z., & Huang, C. (2018). CommuniCation 1800758 (1 of 8) Morphology Controlling of All-Inorganic Perovskite at Low Temperature for Efficient Rigid and Flexible Solar Cells. https://doi.org/10.1002/aenm.201800758 146. Ren, C., Cao, L., & Wu, T. (2023). Meniscus-Guided Deposition of Organic Semiconductor Thin Films: Materials, Mechanism, and Application in Organic Field-Effect Transistors. Small, 19(2300151), 1–31. https://doi.org/10.1002/smll.202300151 147. Reus, M. A., Reb, L. K., Weinzierl, A. F., Weindl, C. L., Guo, R., Xiao, T., Schwartzkopf, M., Chumakov, A., Roth, S. V., & Müller-Buschbaum, P. (2022). Time-Resolved Orientation and Phase Analysis of Lead Halide Perovskite Film Annealing Probed by In Situ GIWAXS. Advanced Optical Materials, 10(14), 2102722. https://doi.org/10.1002/ADOM.202102722 148. Rezaee E., Kutsarov D., Zhang J., Kotsourakis G., Li B., Castro F., S. S. . (2024). Green Solvent Ethanol-Based Inks for Industrially Applicable Deposition ofHigh-Quality Perovskite Films for Optoelectronic Device Applications. Small Methods, 8(2300564), 1–10. https://doi.org/10.1002/smtd.202300564 149. Rezaee, E., Kutsarov, D., Li, B., Bi, J., Ravi, S., Silva, P., & Silva, S. R. P. (2022). A route towards the fabrication of large-scale and high-quality perovskite films for optoelectronic devices. Scientific Reports, 12(1), 1–11. https://doi.org/10.1038/s41598-022-10790-z 150. Richards, D., Burkitt, D., Patidar, R., Beynon, D., & Watson, T. (2022). Predicting a process window for the roll-to-roll deposition of solvent-engineered SnO2 in perovskite solar cells. Materials Advances. https://doi.org/10.1039/d2ma00841f 151. Romero, O. J., Scriven, L. E., & Carvalho, M. D. S. (2006a). Effect of curvature of coating die edges on the pinning of contact line. AIChE Journal, 52(2), 447–455. https://doi.org/10.1002/aic.10672 152. Romero, O. J., Scriven, L. E., & Carvalho, M. S. (2006b). Slot coating of mildly viscoelastic liquids. Journal of Non-Newtonian Fluid Mechanics, 138(2–3), 63–75. https://doi.org/10.1016/j.jnnfm.2005.11.010 153. Romero, O. J., Suszynski, W. J., Scriven, L. E., & Carvalho, M. S. (2004). Low-flow limit in slot coating of dilute solutions of high molecular weight polymer. Journal of Non-Newtonian Fluid Mechanics, 118(2–3), 137–156. https://doi.org/10.1016/j.jnnfm.2004.03.004 154. Rong, Y., Ming, Y., Ji, W., Li, D., Mei, A., Hu, Y., & Han, H. (2018). Toward Industrial-Scale Production of Perovskite Solar Cells: Screen Printing, Slot-Die Coating, and Emerging Techniques. Journal of Physical Chemistry Letters, 9(10), 2707–2713. https://doi.org/10.1021/acs.jpclett.8b00912 155. Roy, P., Ghosh, A., Barclay, F., Khare, A., & Cuce, E. (2022). Perovskite Solar Cells: A Review of the Recent Advances. Coatings, 12(8). https://doi.org/10.3390/COATINGS12081089 156. Sánchez Molina, P. (2023). Chinese solar exports rose by 64% in 2022. PV Magazine. https://www.pv-magazine.com/2023/05/24/chinese-solar-exports-rose-by-64-in-2022-says-wood-mackenzie/#:~:text=pv magazine International-,Chinese solar exports rose by 64%25 in 2022%2C says Wood,GW%2C according to Wood Mackenzie. 157. Sanchez, S., Hua, X., Phung, N., Steiner, U., & Abate, A. (2018). Flash Infrared Annealing for Antisolvent-Free Highly Efficient Perovskite Solar Cells. Advanced Energy Materials, 8(12), 1–7. https://doi.org/10.1002/aenm.201702915 158. Saranin, D. S., Mazov, V. N., Luchnikov, L. O., Lypenko, D. A., Gostishev, P. A., Muratov, D. S., Podgorny, D. A., Migunov, D. M., Didenko, S. I., Orlova, M. N., Kuznetsov, D. V., Tameev, A. R., & Di Carlo, A. (2018). Tris(ethylene diamine) nickel acetate as a promising precursor for hole transport layer in planar structured perovskite solar cells. Journal of Materials Chemistry C, 6(23), 6179–6186. https://doi.org/10.1039/c8tc01169a 159. Schmidt, T. M., Larsen-Olsen, T. T., Carlé, J. E., Angmo, D., & Krebs, F. C. (2015). Upscaling of Perovskite Solar Cells: Fully Ambient Roll Processing of Flexible Perovskite Solar Cells with Printed Back Electrodes. Advanced Energy Materials, 5(15), 1–9. https://doi.org/10.1002/aenm.201500569 160. Seo, J. Y., Matsui, T., Luo, J., Correa-Baena, J. P., Giordano, F., Saliba, M., Schenk, K., Ummadisingu, A., Domanski, K., Hadadian, M., Hagfeldt, A., Zakeeruddin, S. M., Steiner, U., Grätzel, M., & Abate, A. (2016). Ionic Liquid Control Crystal Growth to Enhance Planar Perovskite Solar Cells Efficiency. Advanced Energy Materials, 6(20), 1–6. https://doi.org/10.1002/aenm.201600767 161. Seo, S., Jeong, S., Bae, C., Park, N. G., & Shin, H. (2018). Perovskite Solar Cells with Inorganic Electron- and Hole-Transport Layers Exhibiting Long-Term (≈500 h) Stability at 85 °C under Continuous 1 Sun Illumination in Ambient Air. Advanced Materials, 30(29), 1–8. https://doi.org/10.1002/adma.201801010 162. Seo, S., Park, I. J., Kim, M., Lee, S., Bae, C., Jung, H. S., Park, N. G., Kim, J. Y., & Shin, H. (2016). An ultra-thin, un-doped NiO hole transporting layer of highly efficient (16.4%) organic-inorganic hybrid perovskite solar cells. Nanoscale, 8(22), 11403–11412. https://doi.org/10.1039/c6nr01601d 163. Seo, Y. H., Cho, S. P., Lee, H. J., Kang, Y. J., Kwon, S. N., & Na, S. I. (2022). Temperature-controlled slot-die coating for efficient and stable perovskite solar cells. Journal of Power Sources, 539, 231621. https://doi.org/10.1016/J.JPOWSOUR.2022.231621 164. Shargaieva, O., Kuske, L., Rappich, J., Unger, E., & Nickel, N. H. (2020). Building Blocks of Hybrid Perovskites: A Photoluminescence Study of Lead-Iodide Solution Species. ChemPhysChem, 21(20), 2327–2333. https://doi.org/10.1002/CPHC.202000479 165. Snaith, H. J. (2018). Present status and future prospects of perovskite photovoltaics. Nature Materials, 17(5), 372–376. https://doi.org/10.1038/s41563-018-0071-z 166. Snively, C. T. (2002). Temperature dependent rheology of surfactant-hydroxypropyl cellulose solutions. 167. Song, J., Zhao, L., Huang, S., Yan, X., Qiu, Q., Zhao, Y., Zhu, L., Qiang, Y., Li, H., & Li, G. (2021). A p-p+ Homojunction-Enhanced Hole Transfer in Inverted Planar Perovskite Solar Cells. ChemSusChem, 14(5), 1396–1403. https://doi.org/10.1002/cssc.202100083 168. Sorenson, B. A., Yoon, L. U., Holmgren, E., Choi, J. J., & Clancy, P. (2021). A new metric to control nucleation and grain size distribution in hybrid organic–inorganic perovskites by tuning the dielectric constant of the antisolvent. Journal of Materials Chemistry A, 9(6), 3668–3676. https://doi.org/10.1039/D0TA12364A 169. Stamplecoskie, K. G., Manser, J. S., & Kamat, P. V. (2014). Dual nature of the excited state in organic–inorganic lead halide perovskites. Energy & Environmental Science, 8(1), 208–215. https://doi.org/10.1039/C4EE02988G 170. Steele, J. A., Solano, E., Hardy, D., Dayton, D., Ladd, D., White, K., Chen, P., Hou, J., Huang, H., Saha, R. A., Wang, L., Gao, F., Hofkens, J., Roeffaers, M. B. J., Chernyshov, D., & Toney, M. F. (2023). How to GIWAXS: Grazing Incidence Wide Angle X-Ray Scattering Applied to Metal Halide Perovskite Thin Films. Advanced Energy Materials, 13(27), 2300760. https://doi.org/10.1002/AENM.202300760 171. Sun, J., Lu, J., Li, B., Jiang, L., Chesman, A. S. R., Scully, A. D., Gengenbach, T. R., Cheng, Y. B., & Jasieniak, J. J. (2018). Inverted perovskite solar cells with high fill-factors featuring chemical bath deposited mesoporous NiO hole transporting layers. Nano Energy, 49, 163–171. https://doi.org/10.1016/j.nanoen.2018.04.026 172. Sutherland, B. R. (2020). Solar Materials Find Their Band Gap. Joule, 4(5), 984–985. https://doi.org/10.1016/j.joule.2020.05.001 173. Tang, G., & Yan, F. (2021). Recent progress of flexible perovskite solar cells. Nano Today, 39, 101155. https://doi.org/10.1016/j.nantod.2021.101155 174. Tao, S., Schmidt, I., Brocks, G., Jiang, J., Tranca, I., Meerholz, K., & Olthof, S. (2019). Absolute energy level positions in tin- and lead-based halide perovskites. Nature Communications, 10(1), 1–10. https://doi.org/10.1038/s41467-019-10468-7 175. Teo, S., Guo, Z., Xu, Z., Zhang, C., Kamata, Y., Hayase, S., & Ma, T. (2019). The Role of Lanthanum in a Nickel Oxide-Based Inverted Perovskite Solar Cell for Efficiency and Stability Improvement. ChemSusChem, 12(2), 518–526. https://doi.org/10.1002/cssc.201802231 176. Ternes, S., Börnhorst, T., Schwenzer, J. A., Hossain, I. M., Abzieher, T., Mehlmann, W., Lemmer, U., Scharfer, P., Schabel, W., Richards, B. S., & Paetzold, U. W. (2019). Drying Dynamics of Solution-Processed Perovskite Thin-Film Photovoltaics: In Situ Characterization, Modeling, and Process Control. Advanced Energy Materials, 9(39), 1–12. https://doi.org/10.1002/aenm.201901581 177. Thakur, U. K., Kumar, P., Gusarov, S., Kobryn, A. E., Riddell, S., Goswami, A., Alam, K. M., Savela, S., Kar, P., Thundat, T., Meldrum, A., & Shankar, K. (2020). Consistently High Voc Values in p-i-n Type Perovskite Solar Cells Using Ni3+-Doped NiO Nanomesh as the Hole Transporting Layer. ACS Applied Materials and Interfaces, 12(10), 11467–11478. https://doi.org/10.1021/acsami.9b18197 178. Tien, C., Liu, Y., Vasudevan, T., & Chen, L. (2024). Heliyon Improved stability and efficiency of inverted triple-cation mixed-halide perovskite solar cells with CsI-modified NiOx hole transporting layer. Heliyon, 10(3), e25352. https://doi.org/10.1016/j.heliyon.2024.e25352 179. Tu, Y., Ye, J., Yang, G., Zang, Y., Zhang, L., Wang, Y., Li, G., Liang, C. ⁎, & Yan, W. (2023). Slot-die coating fabrication of perovskite solar cells toward commercialization. https://doi.org/10.1016/j.jallcom.2023.169104 180. Ünlü, F., Florez, A., Dodd-Clements, K., Reb, L. K., Götte, M., Grosch, M., Yang, F., Öz, S., Mathies, F., Mathur, S., Ramírez, D., Jaramillo, F., & Unger, E. (2025). Toward Green Processing of Perovskite Solar Cells: Protic Ionic Liquids Enable Water- and Alcohol-Based MAPbI3 Precursors Inks for Slot-Die Coating. Advanced Energy Materials, 2403626. https://doi.org/10.1002/aenm.202403626 181. van de Ven, D. J., Capellan-Peréz, I., Arto, I., Cazcarro, I., de Castro, C., Patel, P., & Gonzalez-Eguino, M. (2021). The potential land requirements and related land use change emissions of solar energy. Scientific Reports, 11(1), 2907. https://doi.org/10.1038/s41598-021-82042-5 182. Vásquez-Montoya, M., Montoya, J. F., Ramirez, D., & Jaramillo, F. (2021). Understanding the precursor chemistry for one-step deposition of mixed cation perovskite solar cells by methylamine route. Journal of Energy Chemistry, 57(September), 386–391. https://doi.org/10.1016/j.jechem.2020.08.059 183. Velásquez, J. P., Ramírez, E. A., Flórez, A., Montoya, J. F., Betancur, R., Ramírez, D., Carvalho, S., & Jaramillo, F. (2023). Reaching Highly Uniform Perovskite Ink Flow from a Slot-Die Head Toward Printed Solar Cells. 2201561, 1–7. https://doi.org/10.1002/adem.202201561 184. Vijayan, A., Johansson, M. B., Svanström, S., Cappel, U. B., Rensmo, H., & Boschloo, G. (2020a). Simple Method for Efficient Slot-Die Coating of MAPbI3Perovskite Thin Films in Ambient Air Conditions. ACS Applied Energy Materials, 3(5), 4331–4337. https://doi.org/10.1021/acsaem.0c00039 185. Vijayan, A., Johansson, M. B., Svanström, S., Cappel, U. B., Rensmo, H., & Boschloo, G. (2020b). Simple Method for Efficient Slot-Die Coating of MAPbI3Perovskite Thin Films in Ambient Air Conditions. ACS Applied Energy Materials, 3(5), 4331–4337. https://doi.org/10.1021/ACSAEM.0C00039 186. Wan, X., Jiang, Y., Qiu, Z., Zhang, H., Zhu, X., Sikandar, I., Liu, X., Chen, X., & Cao, B. (2018). Zinc as a New Dopant for NiOx-Based Planar Perovskite Solar Cells with Stable Efficiency near 20%. ACS Applied Energy Materials, 1(8), 3947–3954. https://doi.org/10.1021/acsaem.8b00671 187. Wang, H., Qin, Z., Li, X. J., Zhao, C., & Liang, C. (2023a). High-Performance Inverted Perovskite Solar Cells with Sol–Gel-Processed Sliver-Doped NiOX Hole Transporting Layer. Energy & Environmental Materials, e12666. https://doi.org/10.1002/EEM2.12666 188. Wang, H., Qin, Z., Li, X., Zhao, C., & Liang, C. (2023b). High-Performance Inverted Perovskite Solar Cells with Sol-Gel-Processed Sliver-Doped NiO X Hole Transporting Layer. https://doi.org/10.1002/eem2.12666 189. Wang, K., Wu, C., Hou, Y., Yang, D., Li, W., Deng, G., Jiang, Y., & Priya, S. (2020). A Nonionic and Low-Entropic MA(MMA)nPbI3-Ink for Fast Crystallization of Perovskite Thin Films. Joule, 4(3), 615–630. https://doi.org/10.1016/j.joule.2020.01.004 190. Wang, M., Feng, Y., Dong, Q., Bian, J., Ma, C., Chen, R., & Shi, Y. (2020). Degradation mechanism of flexible perovskite solar cells: Investigated by tracking of the heterojunction property. Materials Research Bulletin, 123(November 2019), 110696. https://doi.org/10.1016/j.materresbull.2019.110696 191. Wang, Q., Chueh, C. C., Zhao, T., Cheng, J., Eslamian, M., Choy, W. C. H., & Jen, A. K. Y. (2017). Effects of Self-Assembled Monolayer Modification of Nickel Oxide Nanoparticles Layer on the Performance and Application of Inverted Perovskite Solar Cells. ChemSusChem, 10(19), 3794–3803. https://doi.org/10.1002/cssc.201701262 192. Wang, T., Ding, D., Wang, X., Zeng, R., Liu, H., & Shen, W. (2018). High-Performance Inverted Perovskite Solar Cells with Mesoporous NiO x Hole Transport Layer by Electrochemical Deposition [Research-article]. ACS Omega, 3(12), 18434–18443. https://doi.org/10.1021/acsomega.8b02612 193. Wang, Y., Cheng, Y., Yin, C., Zhang, J., You, J., Wang, J., Wang, J., & Zhang, J. (2024). Manipulating Crystal Growth and Secondary Phase PbI2 to Enable Efficient and Stable Perovskite Solar Cells with Natural Additives. Nano-Micro Letters, 16(1), 1–17. https://doi.org/10.1007/S40820-024-01400-W/FIGURES/5 194. We Build Value. (2021). Solar energy: how it works and how it can be integrated into infrastructure. Digital Magazine. https://www.webuildvalue.com/en/infrastructure-news/solar-energy.html 195. Weber, S., Rath, T., Mangalam, J., Kunert, B., Coclite, A. M., Bauch, M., Dimopoulos, T., & Trimmel, G. (2018). Investigation of NiOx-hole transport layers in triple cation perovskite solar cells. Journal of Materials Science: Materials in Electronics, 29(3), 1847–1855. https://doi.org/10.1007/s10854-017-8094-9 196. Wei, J., Huang, F., Wang, S., Zhou, L., Jin, P., Xin, Y., Cai, Z., Yin, Z., Pang, Q., & Zhang, J. Z. (2018). Highly Stable Hybrid Perovskite Solar Cells Modified with Polyethylenimine via Ionic Bonding. ChemNanoMat, 4(7), 649–655. https://doi.org/10.1002/cnma.201800064 197. Wei, J., Huang, F., Wang, S., Zhou, L., Xin, Y., Jin, P., Cai, Z., Yin, Z., Pang, Q., & Zhang, J. Z. (2018). Highly stable and efficient hybrid perovskite solar cells improved with conductive polyanilines. Materials Research Bulletin, 106(April), 35–39. https://doi.org/10.1016/j.materresbull.2018.04.015 198. Wei, Y., Yao, K., Wang, X., Jiang, Y., Liu, X., Zhou, N., & Li, F. (2018). Improving the efficiency and environmental stability of inverted planar perovskite solar cells via silver-doped nickel oxide hole-transporting layer. Applied Surface Science, 427, 782–790. https://doi.org/10.1016/J.APSUSC.2017.08.184 199. Whitaker, J. B., Kim, D. H., Larson, B. W., Zhang, F., Berry, J. J., Van Hest, M. F. A. M., & Zhu, K. (2018). Scalable slot-die coating of high performance perovskite solar cells. Sustainable Energy and Fuels, 2(11), 2442–2449. https://doi.org/10.1039/c8se00368h 200. Wojciechowski, K., Leijtens, T., Siprova, S., Schlueter, C., Hörantner, M. T., Wang, J. T. W., Li, C. Z., Jen, A. K. Y., Lee, T. L., & Snaith, H. J. (2015). C60 as an efficient n-type compact layer in perovskite solar cells. Journal of Physical Chemistry Letters, 6(12), 2399–2405. https://doi.org/10.1021/ACS.JPCLETT.5B00902/SUPPL_FILE/JZ5B00902_SI_001.PDF 201. Woong Jung, J., Chueh, C.-C., K-Y Jen, A., Jung, J. W., Chueh, C., & K-Y Jen, A. (2015). A Low-Temperature, Solution-Processable, Cu-Doped Nickel Oxide Hole-Transporting Layer via the Combustion Method for High-Performance Thin-Film Perovskite Solar Cells. Advanced Materials, 27(47), 7874–7880. https://doi.org/10.1002/ADMA.201503298 202. Worsley, C. A., Dunlop, T. O., Potts, S. J., Garcia-Rodriguez, R., Bolton, R. S., Davies, M. L., Jewell, E., & Watson, T. M. (2024). Quantifying Infiltration for Quality Control in Printed Mesoscopic Perovskite Solar Cells: A Microscopic Perspective. ACS Applied Energy Materials, 7(5), 1938–1948. https://doi.org/10.1021/ACSAEM.3C03056/ASSET/IMAGES/LARGE/AE3C03056_0009.JPEG 203. Wu, C., Wang, K., Li, J., Liang, Z., Li, J., Li, W., Zhao, L., Chi, B., & Wang, S. (2021). Volatile solution: the way toward scalable fabrication of perovskite solar cells? Matter, 4(3), 775–793. https://doi.org/10.1016/j.matt.2020.12.025 204. Wu, R., Wang, C., Jiang, M., Liu, C., Liu, D., Li, S., Kong, Q., He, W., Zhan, C., Zhang, F., Liu, X., Yang, B., & Hu, W. (2021). Progress in blade-coating method for perovskite solar cells toward commercialization. Journal of Renewable and Sustainable Energy, 13(1). https://doi.org/10.1063/5.0037307 205. Wu, T., Qin, Z., Wang, Y., Wu, Y., Chen, W., Zhang, S., Cai, M., Dai, S., Zhang, J., Liu, J., Zhou, Z., Liu, X., Segawa, H., Tan, H., Tang, Q., Fang, J., Li, Y., Ding, L., Ning, Z., … Han, L. (2021). The Main Progress of Perovskite Solar Cells in 2020–2021. Nano-Micro Letters, 13(1), 1–18. https://doi.org/10.1007/s40820-021-00672-w 206. X. Ding, J. Liu, T. H. (2016). A Review of the Operating Limits in Slot Die Coating Processes Xiaoyu. AIChE Journal, 62(7), 2508–2524. https://doi.org/DOI 10.1002/aic.15268 207. Xia, X., Jiang, Y., Wan, Q., Wang, X., Wang, L., & Li, F. (2018). Lithium and Silver Co-Doped Nickel Oxide Hole-Transporting Layer Boosting the Efficiency and Stability of Inverted Planar Perovskite Solar Cells. ACS Applied Materials & Interfaces, 10(51), 44501–44510. https://doi.org/10.1021/acsami.8b16649 208. Xiao, Y., Zhang, H., Zhao, Y., Liu, P., Kondamareddy, K. K., & Wang, C. (2023). Carrier Modulation via Tunnel Oxide Passivating at Buried Perovskite Interface for Stable Carbon-Based Solar Cells. Nanomaterials, 13(19). https://doi.org/10.3390/nano13192640 209. Xie, Y., Lu, K., Duan, J., Jiang, Y., Hu, L., Liu, T., Zhou, Y., & Hu, B. (2018). Enhancing Photovoltaic Performance of Inverted Planar Perovskite Solar Cells by Cobalt-Doped Nickel Oxide Hole Transport Layer. 10(16), 14153–14159. www.acsami.org 210. Xu, J., Boyd, C. C., Yu, Z. J., Palmstrom, A. F., Witter, D. J., Larson, B. W., France, R. M., Werner, J., Harvey, S. P., Wolf, E. J., Weigand, W., Manzoor, S., Hest, M. F. A. M. Van, Berry, J. J., Luther, J. M., Holman, Z. C., & Mcgehee, M. D. (2020). suppressed phase segregation for efficient tandems. 1104(March), 1097–1104. 211. Yan, K., Long, M., Zhang, T., Wei, Z., Chen, H., Yang, S., & Xu, J. (2015). Hybrid Halide Perovskite Solar Cell Precursors: Colloidal Chemistry and Coordination Engineering behind Device Processing for High Efficiency. Journal of the American Chemical Society, 137(13), 4460–4468. https://doi.org/10.1021/jacs.5b00321 212. Yang, F., Tockhorn, P., Musiienko, A., Lang, F., Menzel, D., Macqueen, R., Köhnen, E., Xu, K., Mariotti, S., Mantione, D., Merten, L., Hinderhofer, A., Li, B., Wargulski, D. R., Harvey, S. P., Zhang, J., Scheler, F., Berwig, S., Roß, M., … Albrecht, S. (2024). Minimizing Interfacial Recombination in 1 . 8 eV Triple-Halide Perovskites for 27 . 5 % Efficient All-Perovskite Tandems. 2307743. https://doi.org/10.1002/adma.202307743 213. Yang, I. S., Dai, Z., Ranka, A., Chen, D., Zhu, K., Berry, J. J., Guo, P., Padture, N. P., Yang, I. S., Dai, Z., Ranka, A., Padture, N. P., Chen, D., Guo, P., Zhu, K., & Berry, J. J. (n.d.). Simultaneous Enhancement of Efficiency and Operational-Stability of Mesoscopic Perovskite Solar Cells via Interfacial Toughening. https://doi.org/10.1002/adma.202308819 214. Yang, M., Zhou, Y., Zeng, Y., Jiang, C.-S., Padture, N. P., Zhu, K., Yang, M., Zeng, Y., Jiang, C., Zhu, K., Zhou, Y., & Padture, N. P. (2015). Square-Centimeter Solution-Processed Planar CH 3 NH 3 PbI 3 Perovskite Solar Cells with Effi ciency Exceeding 15%. https://doi.org/10.1002/adma.201502586 215. Yang, Y., Cheng, S., Zhu, X., Li, S., Zheng, Z., Zhao, K., Ji, L., Li, R., Liu, Y., Liu, C., Lin, Q., Yan, N., & Wang, Z. (2023). Inverted perovskite solar cells with over 2,000 h operational stability at 85 °C using fixed charge passivation. Nature Energy. https://doi.org/10.1038/s41560-023-01377-7 216. Yang, Z., Chueh, C. C., Zuo, F., Kim, J. H., Liang, P. W., & Jen, A. K. Y. (2015). High-Performance Fully Printable Perovskite Solar Cells via Blade-Coating Technique under the Ambient Condition. Advanced Energy Materials, 5(13), 1–6. https://doi.org/10.1002/aenm.201500328 217. Ye, F., Chen, H., Xie, F., Tang, W., Yin, M., He, J., Bi, E., Wang, Y., Yang, X., & Han, L. (2016). Soft-cover deposition of scaling-up uniform perovskite thin films for high cost-performance solar cells. Energy and Environmental Science, 9(7), 2295–2301. https://doi.org/10.1039/c6ee01411a 218. Yi, C., Luo, J., Meloni, S., Boziki, A., Ashari-Astani, N., Grätzel, C., Zakeeruddin, S. M., Röthlisberger, U., & Grätzel, M. (2016). Entropic stabilization of mixed A-cation ABX3 metal halide perovskites for high performance perovskite solar cells. Energy and Environmental Science, 9(2), 656–662. https://doi.org/10.1039/c5ee03255e 219. Yoon, S. J., Stamplecoskie, K. G., & Kamat, P. V. (2016). How Lead Halide Complex Chemistry Dictates the Composition of Mixed Halide Perovskites. Journal of Physical Chemistry Letters, 7(7), 1368–1373. https://doi.org/10.1021/ACS.JPCLETT.6B00433/SUPPL_FILE/JZ6B00433_SI_001.PDF 220. Yulia Galagan. (2018). Perovskite Solar Cells: Toward Industrial-Scale Methods. The Journal of Physical Chemeistry Letters, 9, 4326–2335. 221. Zarabinia, N., Lucarelli, G., Rasuli, R., De Rossi, F., Taheri, B., Javanbakht, H., Brunetti, F., & Brown, T. M. (2022). Simple and effective deposition method for solar cell perovskite films using a sheet of paper. IScience, 25(2), 103712. https://doi.org/10.1016/J.ISCI.2021.103712 222. Zhang, H., & Park, N.-G. (2023). Progress and issues in p-i-n type perovskite solar cells. https://doi.org/10.1016/j.decarb.2023.100025 223. Zhang, L., Wang, Y., Yu, L., Liu, H., Simon, G., Zhang, N., & Chen, L. (2015). Rheological and gel properties of hydroxypropyl methylcellulose/hydroxypropyl starch blends. Colloid and Polymer Science, 293(1), 229–237. https://doi.org/10.1007/s00396-014-3407-5 224. Zhao, L., Sun, X., Yao, Q., Huang, S., Zhu, L., Song, J., Zhao, Y., & Qiang, Y. (2022). Field-Effect Control in Hole Transport Layer Composed of Li:NiO/NiO for Highly Efficient Inverted Planar Perovskite Solar Cells. Advanced Materials Interfaces, 9(2). https://doi.org/10.1002/ADMI.202101562 225. Zhao, P., Liu, Z., Lin, Z., Chen, D., Su, J., Zhang, C., Zhang, J., Chang, J., & Hao, Y. (2018). Device simulation of inverted CH3NH3PbI3−xClx perovskite solar cells based on PCBM electron transport layer and NiO hole transport layer. Solar Energy, 169(January), 11–18. https://doi.org/10.1016/j.solener.2018.04.027 226. Zheng, X., Li, Z., Zhang, Y., Chen, M., Liu, T., Xiao, C., Gao, D., Patel, J. B., Kuciauskas, D., Magomedov, A., Scheidt, R. A., Wang, X., Harvey, S. P., Dai, Z., Zhang, C., Morales, D., Pruett, H., Wieliczka, B. M., Kirmani, A. R., … Luther, J. M. (2023). Co-deposition of hole-selective contact and absorber for improving the processability of perovskite solar cells. Nature Energy, 8(5), 462–472. https://doi.org/10.1038/s41560-023-01227-6 227. Zhu, X., Lin, R., Gu, H., Hu, H. C., Liu, Z., Xing, G., Wu, Y., & Ouyang, X. (2022). Ecofriendly Hydroxyalkyl Cellulose Additives for Efficient and Stable MAPbI3-Based Inverted Perovskite Solar Cells. Energy and Environmental Materials. https://doi.org/10.1002/eem2.12426 228. Zuo, C., Scully, A. D., Vak, D., Tan, W., Jiao, X., McNeill, C. R., Angmo, D., Ding, L., & Gao, M. (2019). Self-Assembled 2D Perovskite Layers for Efficient Printable Solar Cells. Advanced Energy Materials, 9(4), 1–9. https://doi.org/10.1002/aenm.201803258 229. Zuo, L., Guo, H., DeQuilettes, D. W., Jariwala, S., De Marco, N., Dong, S., DeBlock, R., Ginger, D. S., Dunn, B., Wang, M., & Yang, Y. (2017). Polymer-modified halide perovskite films for efficient and stable planar heterojunction solar cells. Science Advances, 3(8), 1–12. https://doi.org/10.1126/sciadv.1700106PublicationSÉNECA-COLOMBIA CIENTÍFICAVIPERLAB PROJECT-European UnionORIGINALFlorezYaneth_2025_ProcessingHybridPerovskiteFlorezYaneth_2025_ProcessingHybridPerovskiteTesis doctoralapplication/pdf6824395https://bibliotecadigital.udea.edu.co/bitstreams/5075eb48-0cd5-485c-af41-58aafbeee803/download97f42c60d1878b2467bc5109f4311988MD52trueAnonymousREAD2025-11-30CC-LICENSElicense_rdflicense_rdfapplication/rdf+xml; charset=utf-8893https://bibliotecadigital.udea.edu.co/bitstreams/ab1dcdd2-8ce3-49c4-b908-1681f2c6c735/download5310bb89a00d5ead086944535cc857c4MD53falseAnonymousREADLICENSElicense.txtlicense.txttext/plain; charset=utf-814837https://bibliotecadigital.udea.edu.co/bitstreams/cc0a884d-396b-4854-971e-0b1c55a0b7d2/downloadb76e7a76e24cf2f94b3ce0ae5ed275d0MD54falseAnonymousREADTEXTFlorezYaneth_2025_ProcessingHybridPerovskite.txtFlorezYaneth_2025_ProcessingHybridPerovskite.txtExtracted texttext/plain100662https://bibliotecadigital.udea.edu.co/bitstreams/4e2d3906-5626-4a40-bcc6-a818eb23fb51/download8f3e24492de6af8967a749ed65a89b1fMD55falseAnonymousREAD2025-11-30THUMBNAILFlorezYaneth_2025_ProcessingHybridPerovskite.jpgFlorezYaneth_2025_ProcessingHybridPerovskite.jpgGenerated Thumbnailimage/jpeg6657https://bibliotecadigital.udea.edu.co/bitstreams/c065421a-2d2e-47a2-9cc2-b37f92a58cc8/downloadf1c918515e41ed9c2f533f40c1fd6da2MD56falseAnonymousREAD2025-11-3010495/47174oai:bibliotecadigital.udea.edu.co:10495/471742025-08-26 04:11:07.254http://creativecommons.org/licenses/by-nd/4.0/Attribution-NoDerivatives 4.0 Internationalembargo2025-11-30https://bibliotecadigital.udea.edu.coRepositorio Institucional de la Universidad de Antioquiaaplicacionbibliotecadigitalbiblioteca@udea.edu.coTEEgT0JSQSAoVEFMIFkgQ09NTyBTRSBERUZJTkUgTcOBUyBBREVMQU5URSkgU0UgT1RPUkdBIEJBSk8gTE9TIFRFUk1JTk9TIERFIEVTVEEgTElDRU5DSUEgUMOaQkxJQ0EgREUgQ1JFQVRJVkUgQ09NTU9OUyAo4oCcTFBDQ+KAnSBPIOKAnExJQ0VOQ0lB4oCdKS4gTEEgT0JSQSBFU1TDgSBQUk9URUdJREEgUE9SIERFUkVDSE9TIERFIEFVVE9SIFkvVSBPVFJBUyBMRVlFUyBBUExJQ0FCTEVTLiBRVUVEQSBQUk9ISUJJRE8gQ1VBTFFVSUVSIFVTTyBRVUUgU0UgSEFHQSBERSBMQSBPQlJBIFFVRSBOTyBDVUVOVEUgQ09OIExBIEFVVE9SSVpBQ0nDk04gUEVSVElORU5URSBERSBDT05GT1JNSURBRCBDT04gTE9TIFTDiVJNSU5PUyBERSBFU1RBIExJQ0VOQ0lBIFkgREUgTEEgTEVZIERFIERFUkVDSE8gREUgQVVUT1IuCgpNRURJQU5URSBFTCBFSkVSQ0lDSU8gREUgQ1VBTFFVSUVSQSBERSBMT1MgREVSRUNIT1MgUVVFIFNFIE9UT1JHQU4gRU4gRVNUQSBMSUNFTkNJQSwgVVNURUQgQUNFUFRBIFkgQUNVRVJEQSBRVUVEQVIgT0JMSUdBRE8gRU4gTE9TIFRFUk1JTk9TIFFVRSBTRSBTRcORQUxBTiBFTiBFTExBLiBFTCBMSUNFTkNJQU5URSBDT05DRURFIEEgVVNURUQgTE9TIERFUkVDSE9TIENPTlRFTklET1MgRU4gRVNUQSBMSUNFTkNJQSBDT05ESUNJT05BRE9TIEEgTEEgQUNFUFRBQ0nDk04gREUgU1VTIFRFUk1JTk9TIFkgQ09ORElDSU9ORVMuIAoKMS4gRGVmaW5pY2lvbmVzCmEuIE9icmEgQ29sZWN0aXZhIGVzIHVuYSBvYnJhLCB0YWwgY29tbyB1bmEgcHVibGljYWNpw7NuIHBlcmnDs2RpY2EsIHVuYSBhbnRvbG9nw61hLCBvIHVuYSBlbmNpY2xvcGVkaWEsIGVuIGxhIHF1ZSBsYSBvYnJhIGVuIHN1IHRvdGFsaWRhZCwgc2luIG1vZGlmaWNhY2nDs24gYWxndW5hLCBqdW50byBjb24gdW4gZ3J1cG8gZGUgb3RyYXMgY29udHJpYnVjaW9uZXMgcXVlIGNvbnN0aXR1eWVuIG9icmFzIHNlcGFyYWRhcyBlIGluZGVwZW5kaWVudGVzIGVuIHPDrSBtaXNtYXMsIHNlIGludGVncmFuIGVuIHVuIHRvZG8gY29sZWN0aXZvLiBVbmEgT2JyYSBxdWUgY29uc3RpdHV5ZSB1bmEgb2JyYSBjb2xlY3RpdmEgbm8gc2UgY29uc2lkZXJhcsOhIHVuYSBPYnJhIERlcml2YWRhIChjb21vIHNlIGRlZmluZSBhYmFqbykgcGFyYSBsb3MgcHJvcMOzc2l0b3MgZGUgZXN0YSBsaWNlbmNpYS4gYXF1ZWxsYSBwcm9kdWNpZGEgcG9yIHVuIGdydXBvIGRlIGF1dG9yZXMsIGVuIHF1ZSBsYSBPYnJhIHNlIGVuY3VlbnRyYSBzaW4gbW9kaWZpY2FjaW9uZXMsIGp1bnRvIGNvbiB1bmEgY2llcnRhIGNhbnRpZGFkIGRlIG90cmFzIGNvbnRyaWJ1Y2lvbmVzLCBxdWUgY29uc3RpdHV5ZW4gZW4gc8OtIG1pc21vcyB0cmFiYWpvcyBzZXBhcmFkb3MgZSBpbmRlcGVuZGllbnRlcywgcXVlIHNvbiBpbnRlZ3JhZG9zIGFsIHRvZG8gY29sZWN0aXZvLCB0YWxlcyBjb21vIHB1YmxpY2FjaW9uZXMgcGVyacOzZGljYXMsIGFudG9sb2fDrWFzIG8gZW5jaWNsb3BlZGlhcy4KYi4gT2JyYSBEZXJpdmFkYSBzaWduaWZpY2EgdW5hIG9icmEgYmFzYWRhIGVuIGxhIG9icmEgb2JqZXRvIGRlIGVzdGEgbGljZW5jaWEgbyBlbiDDqXN0YSB5IG90cmFzIG9icmFzIHByZWV4aXN0ZW50ZXMsIHRhbGVzIGNvbW8gdHJhZHVjY2lvbmVzLCBhcnJlZ2xvcyBtdXNpY2FsZXMsIGRyYW1hdGl6YWNpb25lcywg4oCcZmljY2lvbmFsaXphY2lvbmVz4oCdLCB2ZXJzaW9uZXMgcGFyYSBjaW5lLCDigJxncmFiYWNpb25lcyBkZSBzb25pZG/igJ0sIHJlcHJvZHVjY2lvbmVzIGRlIGFydGUsIHJlc8O6bWVuZXMsIGNvbmRlbnNhY2lvbmVzLCBvIGN1YWxxdWllciBvdHJhIGVuIGxhIHF1ZSBsYSBvYnJhIHB1ZWRhIHNlciB0cmFuc2Zvcm1hZGEsIGNhbWJpYWRhIG8gYWRhcHRhZGEsIGV4Y2VwdG8gYXF1ZWxsYXMgcXVlIGNvbnN0aXR1eWFuIHVuYSBvYnJhIGNvbGVjdGl2YSwgbGFzIHF1ZSBubyBzZXLDoW4gY29uc2lkZXJhZGFzIHVuYSBvYnJhIGRlcml2YWRhIHBhcmEgZWZlY3RvcyBkZSBlc3RhIGxpY2VuY2lhLiAoUGFyYSBldml0YXIgZHVkYXMsIGVuIGVsIGNhc28gZGUgcXVlIGxhIE9icmEgc2VhIHVuYSBjb21wb3NpY2nDs24gbXVzaWNhbCBvIHVuYSBncmFiYWNpw7NuIHNvbm9yYSwgcGFyYSBsb3MgZWZlY3RvcyBkZSBlc3RhIExpY2VuY2lhIGxhIHNpbmNyb25pemFjacOzbiB0ZW1wb3JhbCBkZSBsYSBPYnJhIGNvbiB1bmEgaW1hZ2VuIGVuIG1vdmltaWVudG8gc2UgY29uc2lkZXJhcsOhIHVuYSBPYnJhIERlcml2YWRhIHBhcmEgbG9zIGZpbmVzIGRlIGVzdGEgbGljZW5jaWEpLgpjLiBMaWNlbmNpYW50ZSwgZXMgZWwgaW5kaXZpZHVvIG8gbGEgZW50aWRhZCB0aXR1bGFyIGRlIGxvcyBkZXJlY2hvcyBkZSBhdXRvciBxdWUgb2ZyZWNlIGxhIE9icmEgZW4gY29uZm9ybWlkYWQgY29uIGxhcyBjb25kaWNpb25lcyBkZSBlc3RhIExpY2VuY2lhLgpkLiBBdXRvciBvcmlnaW5hbCwgZXMgZWwgaW5kaXZpZHVvIHF1ZSBjcmXDsyBsYSBPYnJhLgplLiBPYnJhLCBlcyBhcXVlbGxhIG9icmEgc3VzY2VwdGlibGUgZGUgcHJvdGVjY2nDs24gcG9yIGVsIHLDqWdpbWVuIGRlIERlcmVjaG8gZGUgQXV0b3IgeSBxdWUgZXMgb2ZyZWNpZGEgZW4gbG9zIHTDqXJtaW5vcyBkZSBlc3RhIGxpY2VuY2lhCmYuIFVzdGVkLCBlcyBlbCBpbmRpdmlkdW8gbyBsYSBlbnRpZGFkIHF1ZSBlamVyY2l0YSBsb3MgZGVyZWNob3Mgb3RvcmdhZG9zIGFsIGFtcGFybyBkZSBlc3RhIExpY2VuY2lhIHkgcXVlIGNvbiBhbnRlcmlvcmlkYWQgbm8gaGEgdmlvbGFkbyBsYXMgY29uZGljaW9uZXMgZGUgbGEgbWlzbWEgcmVzcGVjdG8gYSBsYSBPYnJhLCBvIHF1ZSBoYXlhIG9idGVuaWRvIGF1dG9yaXphY2nDs24gZXhwcmVzYSBwb3IgcGFydGUgZGVsIExpY2VuY2lhbnRlIHBhcmEgZWplcmNlciBsb3MgZGVyZWNob3MgYWwgYW1wYXJvIGRlIGVzdGEgTGljZW5jaWEgcGVzZSBhIHVuYSB2aW9sYWNpw7NuIGFudGVyaW9yLgoJICAKMi4gRGVyZWNob3MgZGUgVXNvcyBIb25yYWRvcyB5IGV4Y2VwY2lvbmVzIExlZ2FsZXMuCk5hZGEgZW4gZXN0YSBMaWNlbmNpYSBwb2Ryw6Egc2VyIGludGVycHJldGFkbyBjb21vIHVuYSBkaXNtaW51Y2nDs24sIGxpbWl0YWNpw7NuIG8gcmVzdHJpY2Npw7NuIGRlIGxvcyBkZXJlY2hvcyBkZXJpdmFkb3MgZGVsIHVzbyBob25yYWRvIHkgb3RyYXMgbGltaXRhY2lvbmVzIG8gZXhjZXBjaW9uZXMgYSBsb3MgZGVyZWNob3MgZGVsIGF1dG9yIGJham8gZWwgcsOpZ2ltZW4gbGVnYWwgdmlnZW50ZSBvIGRlcml2YWRvIGRlIGN1YWxxdWllciBvdHJhIG5vcm1hIHF1ZSBzZSBsZSBhcGxpcXVlLgogIAozLiBDb25jZXNpw7NuIGRlIGxhIExpY2VuY2lhLgpCYWpvIGxvcyB0w6lybWlub3MgeSBjb25kaWNpb25lcyBkZSBlc3RhIExpY2VuY2lhLCBlbCBMaWNlbmNpYW50ZSBvdG9yZ2EgYSBVc3RlZCB1bmEgbGljZW5jaWEgbXVuZGlhbCwgbGlicmUgZGUgcmVnYWzDrWFzLCBubyBleGNsdXNpdmEgeSBwZXJwZXR1YSAoZHVyYW50ZSB0b2RvIGVsIHBlcsOtb2RvIGRlIHZpZ2VuY2lhIGRlIGxvcyBkZXJlY2hvcyBkZSBhdXRvcikgcGFyYSBlamVyY2VyIGVzdG9zIGRlcmVjaG9zIHNvYnJlIGxhIE9icmEgdGFsIHkgY29tbyBzZSBpbmRpY2EgYSBjb250aW51YWNpw7NuOgphLiBSZXByb2R1Y2lyIGxhIE9icmEsIGluY29ycG9yYXIgbGEgT2JyYSBlbiB1bmEgbyBtw6FzIE9icmFzIENvbGVjdGl2YXMsIHkgcmVwcm9kdWNpciBsYSBPYnJhIGluY29ycG9yYWRhIGVuIGxhcyBPYnJhcyBDb2xlY3RpdmFzLgpiLiBEaXN0cmlidWlyIGNvcGlhcyBvIGZvbm9ncmFtYXMgZGUgbGFzIE9icmFzLCBleGhpYmlybGFzIHDDumJsaWNhbWVudGUsIGVqZWN1dGFybGFzIHDDumJsaWNhbWVudGUgeS9vIHBvbmVybGFzIGEgZGlzcG9zaWNpw7NuIHDDumJsaWNhLCBpbmNsdXnDqW5kb2xhcyBjb21vIGluY29ycG9yYWRhcyBlbiBPYnJhcyBDb2xlY3RpdmFzLCBzZWfDum4gY29ycmVzcG9uZGEuCmMuIERpc3RyaWJ1aXIgY29waWFzIGRlIGxhcyBPYnJhcyBEZXJpdmFkYXMgcXVlIHNlIGdlbmVyZW4sIGV4aGliaXJsYXMgcMO6YmxpY2FtZW50ZSwgZWplY3V0YXJsYXMgcMO6YmxpY2FtZW50ZSB5L28gcG9uZXJsYXMgYSBkaXNwb3NpY2nDs24gcMO6YmxpY2EuCgpMb3MgZGVyZWNob3MgbWVuY2lvbmFkb3MgYW50ZXJpb3JtZW50ZSBwdWVkZW4gc2VyIGVqZXJjaWRvcyBlbiB0b2RvcyBsb3MgbWVkaW9zIHkgZm9ybWF0b3MsIGFjdHVhbG1lbnRlIGNvbm9jaWRvcyBvIHF1ZSBzZSBpbnZlbnRlbiBlbiBlbCBmdXR1cm8uIExvcyBkZXJlY2hvcyBhbnRlcyBtZW5jaW9uYWRvcyBpbmNsdXllbiBlbCBkZXJlY2hvIGEgcmVhbGl6YXIgZGljaGFzIG1vZGlmaWNhY2lvbmVzIGVuIGxhIG1lZGlkYSBxdWUgc2VhbiB0w6ljbmljYW1lbnRlIG5lY2VzYXJpYXMgcGFyYSBlamVyY2VyIGxvcyBkZXJlY2hvcyBlbiBvdHJvIG1lZGlvIG8gZm9ybWF0b3MsIHBlcm8gZGUgb3RyYSBtYW5lcmEgdXN0ZWQgbm8gZXN0w6EgYXV0b3JpemFkbyBwYXJhIHJlYWxpemFyIG9icmFzIGRlcml2YWRhcy4gVG9kb3MgbG9zIGRlcmVjaG9zIG5vIG90b3JnYWRvcyBleHByZXNhbWVudGUgcG9yIGVsIExpY2VuY2lhbnRlIHF1ZWRhbiBwb3IgZXN0ZSBtZWRpbyByZXNlcnZhZG9zLCBpbmNsdXllbmRvIHBlcm8gc2luIGxpbWl0YXJzZSBhIGFxdWVsbG9zIHF1ZSBzZSBtZW5jaW9uYW4gZW4gbGFzIHNlY2Npb25lcyA0KGQpIHkgNChlKS4KICAgIAo0LiBSZXN0cmljY2lvbmVzLgpMYSBsaWNlbmNpYSBvdG9yZ2FkYSBlbiBsYSBhbnRlcmlvciBTZWNjacOzbiAzIGVzdMOhIGV4cHJlc2FtZW50ZSBzdWpldGEgeSBsaW1pdGFkYSBwb3IgbGFzIHNpZ3VpZW50ZXMgcmVzdHJpY2Npb25lczoKYS4gVXN0ZWQgcHVlZGUgZGlzdHJpYnVpciwgZXhoaWJpciBww7pibGljYW1lbnRlLCBlamVjdXRhciBww7pibGljYW1lbnRlLCBvIHBvbmVyIGEgZGlzcG9zaWNpw7NuIHDDumJsaWNhIGxhIE9icmEgc8OzbG8gYmFqbyBsYXMgY29uZGljaW9uZXMgZGUgZXN0YSBMaWNlbmNpYSwgeSBVc3RlZCBkZWJlIGluY2x1aXIgdW5hIGNvcGlhIGRlIGVzdGEgbGljZW5jaWEgbyBkZWwgSWRlbnRpZmljYWRvciBVbml2ZXJzYWwgZGUgUmVjdXJzb3MgZGUgbGEgbWlzbWEgY29uIGNhZGEgY29waWEgZGUgbGEgT2JyYSBxdWUgZGlzdHJpYnV5YSwgZXhoaWJhIHDDumJsaWNhbWVudGUsIGVqZWN1dGUgcMO6YmxpY2FtZW50ZSBvIHBvbmdhIGEgZGlzcG9zaWNpw7NuIHDDumJsaWNhLiBObyBlcyBwb3NpYmxlIG9mcmVjZXIgbyBpbXBvbmVyIG5pbmd1bmEgY29uZGljacOzbiBzb2JyZSBsYSBPYnJhIHF1ZSBhbHRlcmUgbyBsaW1pdGUgbGFzIGNvbmRpY2lvbmVzIGRlIGVzdGEgTGljZW5jaWEgbyBlbCBlamVyY2ljaW8gZGUgbG9zIGRlcmVjaG9zIGRlIGxvcyBkZXN0aW5hdGFyaW9zIG90b3JnYWRvcyBlbiBlc3RlIGRvY3VtZW50by4gTm8gZXMgcG9zaWJsZSBzdWJsaWNlbmNpYXIgbGEgT2JyYS4gVXN0ZWQgZGViZSBtYW50ZW5lciBpbnRhY3RvcyB0b2RvcyBsb3MgYXZpc29zIHF1ZSBoYWdhbiByZWZlcmVuY2lhIGEgZXN0YSBMaWNlbmNpYSB5IGEgbGEgY2zDoXVzdWxhIGRlIGxpbWl0YWNpw7NuIGRlIGdhcmFudMOtYXMuIFVzdGVkIG5vIHB1ZWRlIGRpc3RyaWJ1aXIsIGV4aGliaXIgcMO6YmxpY2FtZW50ZSwgZWplY3V0YXIgcMO6YmxpY2FtZW50ZSwgbyBwb25lciBhIGRpc3Bvc2ljacOzbiBww7pibGljYSBsYSBPYnJhIGNvbiBhbGd1bmEgbWVkaWRhIHRlY25vbMOzZ2ljYSBxdWUgY29udHJvbGUgZWwgYWNjZXNvIG8gbGEgdXRpbGl6YWNpw7NuIGRlIGVsbGEgZGUgdW5hIGZvcm1hIHF1ZSBzZWEgaW5jb25zaXN0ZW50ZSBjb24gbGFzIGNvbmRpY2lvbmVzIGRlIGVzdGEgTGljZW5jaWEuIExvIGFudGVyaW9yIHNlIGFwbGljYSBhIGxhIE9icmEgaW5jb3Jwb3JhZGEgYSB1bmEgT2JyYSBDb2xlY3RpdmEsIHBlcm8gZXN0byBubyBleGlnZSBxdWUgbGEgT2JyYSBDb2xlY3RpdmEgYXBhcnRlIGRlIGxhIG9icmEgbWlzbWEgcXVlZGUgc3VqZXRhIGEgbGFzIGNvbmRpY2lvbmVzIGRlIGVzdGEgTGljZW5jaWEuIFNpIFVzdGVkIGNyZWEgdW5hIE9icmEgQ29sZWN0aXZhLCBwcmV2aW8gYXZpc28gZGUgY3VhbHF1aWVyIExpY2VuY2lhbnRlIGRlYmUsIGVuIGxhIG1lZGlkYSBkZSBsbyBwb3NpYmxlLCBlbGltaW5hciBkZSBsYSBPYnJhIENvbGVjdGl2YSBjdWFscXVpZXIgcmVmZXJlbmNpYSBhIGRpY2hvIExpY2VuY2lhbnRlIG8gYWwgQXV0b3IgT3JpZ2luYWwsIHNlZ8O6biBsbyBzb2xpY2l0YWRvIHBvciBlbCBMaWNlbmNpYW50ZSB5IGNvbmZvcm1lIGxvIGV4aWdlIGxhIGNsw6F1c3VsYSA0KGMpLgpiLiBVc3RlZCBubyBwdWVkZSBlamVyY2VyIG5pbmd1bm8gZGUgbG9zIGRlcmVjaG9zIHF1ZSBsZSBoYW4gc2lkbyBvdG9yZ2Fkb3MgZW4gbGEgU2VjY2nDs24gMyBwcmVjZWRlbnRlIGRlIG1vZG8gcXVlIGVzdMOpbiBwcmluY2lwYWxtZW50ZSBkZXN0aW5hZG9zIG8gZGlyZWN0YW1lbnRlIGRpcmlnaWRvcyBhIGNvbnNlZ3VpciB1biBwcm92ZWNobyBjb21lcmNpYWwgbyB1bmEgY29tcGVuc2FjacOzbiBtb25ldGFyaWEgcHJpdmFkYS4gRWwgaW50ZXJjYW1iaW8gZGUgbGEgT2JyYSBwb3Igb3RyYXMgb2JyYXMgcHJvdGVnaWRhcyBwb3IgZGVyZWNob3MgZGUgYXV0b3IsIHlhIHNlYSBhIHRyYXbDqXMgZGUgdW4gc2lzdGVtYSBwYXJhIGNvbXBhcnRpciBhcmNoaXZvcyBkaWdpdGFsZXMgKGRpZ2l0YWwgZmlsZS1zaGFyaW5nKSBvIGRlIGN1YWxxdWllciBvdHJhIG1hbmVyYSBubyBzZXLDoSBjb25zaWRlcmFkbyBjb21vIGVzdGFyIGRlc3RpbmFkbyBwcmluY2lwYWxtZW50ZSBvIGRpcmlnaWRvIGRpcmVjdGFtZW50ZSBhIGNvbnNlZ3VpciB1biBwcm92ZWNobyBjb21lcmNpYWwgbyB1bmEgY29tcGVuc2FjacOzbiBtb25ldGFyaWEgcHJpdmFkYSwgc2llbXByZSBxdWUgbm8gc2UgcmVhbGljZSB1biBwYWdvIG1lZGlhbnRlIHVuYSBjb21wZW5zYWNpw7NuIG1vbmV0YXJpYSBlbiByZWxhY2nDs24gY29uIGVsIGludGVyY2FtYmlvIGRlIG9icmFzIHByb3RlZ2lkYXMgcG9yIGVsIGRlcmVjaG8gZGUgYXV0b3IuCmMuIFNpIHVzdGVkIGRpc3RyaWJ1eWUsIGV4aGliZSBww7pibGljYW1lbnRlLCBlamVjdXRhIHDDumJsaWNhbWVudGUgbyBlamVjdXRhIHDDumJsaWNhbWVudGUgZW4gZm9ybWEgZGlnaXRhbCBsYSBPYnJhIG8gY3VhbHF1aWVyIE9icmEgRGVyaXZhZGEgdSBPYnJhIENvbGVjdGl2YSwgVXN0ZWQgZGViZSBtYW50ZW5lciBpbnRhY3RhIHRvZGEgbGEgaW5mb3JtYWNpw7NuIGRlIGRlcmVjaG8gZGUgYXV0b3IgZGUgbGEgT2JyYSB5IHByb3BvcmNpb25hciwgZGUgZm9ybWEgcmF6b25hYmxlIHNlZ8O6biBlbCBtZWRpbyBvIG1hbmVyYSBxdWUgVXN0ZWQgZXN0w6kgdXRpbGl6YW5kbzogKGkpIGVsIG5vbWJyZSBkZWwgQXV0b3IgT3JpZ2luYWwgc2kgZXN0w6EgcHJvdmlzdG8gKG8gc2V1ZMOzbmltbywgc2kgZnVlcmUgYXBsaWNhYmxlKSwgeS9vIChpaSkgZWwgbm9tYnJlIGRlIGxhIHBhcnRlIG8gbGFzIHBhcnRlcyBxdWUgZWwgQXV0b3IgT3JpZ2luYWwgeS9vIGVsIExpY2VuY2lhbnRlIGh1YmllcmVuIGRlc2lnbmFkbyBwYXJhIGxhIGF0cmlidWNpw7NuICh2LmcuLCB1biBpbnN0aXR1dG8gcGF0cm9jaW5hZG9yLCBlZGl0b3JpYWwsIHB1YmxpY2FjacOzbikgZW4gbGEgaW5mb3JtYWNpw7NuIGRlIGxvcyBkZXJlY2hvcyBkZSBhdXRvciBkZWwgTGljZW5jaWFudGUsIHTDqXJtaW5vcyBkZSBzZXJ2aWNpb3MgbyBkZSBvdHJhcyBmb3JtYXMgcmF6b25hYmxlczsgZWwgdMOtdHVsbyBkZSBsYSBPYnJhIHNpIGVzdMOhIHByb3Zpc3RvOyBlbiBsYSBtZWRpZGEgZGUgbG8gcmF6b25hYmxlbWVudGUgZmFjdGlibGUgeSwgc2kgZXN0w6EgcHJvdmlzdG8sIGVsIElkZW50aWZpY2Fkb3IgVW5pZm9ybWUgZGUgUmVjdXJzb3MgKFVuaWZvcm0gUmVzb3VyY2UgSWRlbnRpZmllcikgcXVlIGVsIExpY2VuY2lhbnRlIGVzcGVjaWZpY2EgcGFyYSBzZXIgYXNvY2lhZG8gY29uIGxhIE9icmEsIHNhbHZvIHF1ZSB0YWwgVVJJIG5vIHNlIHJlZmllcmEgYSBsYSBub3RhIHNvYnJlIGxvcyBkZXJlY2hvcyBkZSBhdXRvciBvIGEgbGEgaW5mb3JtYWNpw7NuIHNvYnJlIGVsIGxpY2VuY2lhbWllbnRvIGRlIGxhIE9icmE7IHkgZW4gZWwgY2FzbyBkZSB1bmEgT2JyYSBEZXJpdmFkYSwgYXRyaWJ1aXIgZWwgY3LDqWRpdG8gaWRlbnRpZmljYW5kbyBlbCB1c28gZGUgbGEgT2JyYSBlbiBsYSBPYnJhIERlcml2YWRhICh2LmcuLCAiVHJhZHVjY2nDs24gRnJhbmNlc2EgZGUgbGEgT2JyYSBkZWwgQXV0b3IgT3JpZ2luYWwsIiBvICJHdWnDs24gQ2luZW1hdG9ncsOhZmljbyBiYXNhZG8gZW4gbGEgT2JyYSBvcmlnaW5hbCBkZWwgQXV0b3IgT3JpZ2luYWwiKS4gVGFsIGNyw6lkaXRvIHB1ZWRlIHNlciBpbXBsZW1lbnRhZG8gZGUgY3VhbHF1aWVyIGZvcm1hIHJhem9uYWJsZTsgZW4gZWwgY2Fzbywgc2luIGVtYmFyZ28sIGRlIE9icmFzIERlcml2YWRhcyB1IE9icmFzIENvbGVjdGl2YXMsIHRhbCBjcsOpZGl0byBhcGFyZWNlcsOhLCBjb21vIG3DrW5pbW8sIGRvbmRlIGFwYXJlY2UgZWwgY3LDqWRpdG8gZGUgY3VhbHF1aWVyIG90cm8gYXV0b3IgY29tcGFyYWJsZSB5IGRlIHVuYSBtYW5lcmEsIGFsIG1lbm9zLCB0YW4gZGVzdGFjYWRhIGNvbW8gZWwgY3LDqWRpdG8gZGUgb3RybyBhdXRvciBjb21wYXJhYmxlLiAgCmQuIFBhcmEgZXZpdGFyIHRvZGEgY29uZnVzacOzbiwgZWwgTGljZW5jaWFudGUgYWNsYXJhIHF1ZSwgY3VhbmRvIGxhIG9icmEgZXMgdW5hIGNvbXBvc2ljacOzbiBtdXNpY2FsOgoKaS4gUmVnYWzDrWFzIHBvciBpbnRlcnByZXRhY2nDs24geSBlamVjdWNpw7NuIGJham8gbGljZW5jaWFzIGdlbmVyYWxlcy4gRWwgTGljZW5jaWFudGUgc2UgcmVzZXJ2YSBlbCBkZXJlY2hvIGV4Y2x1c2l2byBkZSBhdXRvcml6YXIgbGEgZWplY3VjacOzbiBww7pibGljYSBvIGxhIGVqZWN1Y2nDs24gcMO6YmxpY2EgZGlnaXRhbCBkZSBsYSBvYnJhIHkgZGUgcmVjb2xlY3Rhciwgc2VhIGluZGl2aWR1YWxtZW50ZSBvIGEgdHJhdsOpcyBkZSB1bmEgc29jaWVkYWQgZGUgZ2VzdGnDs24gY29sZWN0aXZhIGRlIGRlcmVjaG9zIGRlIGF1dG9yIHkgZGVyZWNob3MgY29uZXhvcyAocG9yIGVqZW1wbG8sIFNBWUNPKSwgbGFzIHJlZ2Fsw61hcyBwb3IgbGEgZWplY3VjacOzbiBww7pibGljYSBvIHBvciBsYSBlamVjdWNpw7NuIHDDumJsaWNhIGRpZ2l0YWwgZGUgbGEgb2JyYSAocG9yIGVqZW1wbG8gV2ViY2FzdCkgbGljZW5jaWFkYSBiYWpvIGxpY2VuY2lhcyBnZW5lcmFsZXMsIHNpIGxhIGludGVycHJldGFjacOzbiBvIGVqZWN1Y2nDs24gZGUgbGEgb2JyYSBlc3TDoSBwcmltb3JkaWFsbWVudGUgb3JpZW50YWRhIHBvciBvIGRpcmlnaWRhIGEgbGEgb2J0ZW5jacOzbiBkZSB1bmEgdmVudGFqYSBjb21lcmNpYWwgbyB1bmEgY29tcGVuc2FjacOzbiBtb25ldGFyaWEgcHJpdmFkYS4KaWkuIFJlZ2Fsw61hcyBwb3IgRm9ub2dyYW1hcy4gRWwgTGljZW5jaWFudGUgc2UgcmVzZXJ2YSBlbCBkZXJlY2hvIGV4Y2x1c2l2byBkZSByZWNvbGVjdGFyLCBpbmRpdmlkdWFsbWVudGUgbyBhIHRyYXbDqXMgZGUgdW5hIHNvY2llZGFkIGRlIGdlc3Rpw7NuIGNvbGVjdGl2YSBkZSBkZXJlY2hvcyBkZSBhdXRvciB5IGRlcmVjaG9zIGNvbmV4b3MgKHBvciBlamVtcGxvLCBsb3MgY29uc2FncmFkb3MgcG9yIGxhIFNBWUNPKSwgdW5hIGFnZW5jaWEgZGUgZGVyZWNob3MgbXVzaWNhbGVzIG8gYWxnw7puIGFnZW50ZSBkZXNpZ25hZG8sIGxhcyByZWdhbMOtYXMgcG9yIGN1YWxxdWllciBmb25vZ3JhbWEgcXVlIFVzdGVkIGNyZWUgYSBwYXJ0aXIgZGUgbGEgb2JyYSAo4oCcdmVyc2nDs24gY292ZXLigJ0pIHkgZGlzdHJpYnV5YSwgZW4gbG9zIHTDqXJtaW5vcyBkZWwgcsOpZ2ltZW4gZGUgZGVyZWNob3MgZGUgYXV0b3IsIHNpIGxhIGNyZWFjacOzbiBvIGRpc3RyaWJ1Y2nDs24gZGUgZXNhIHZlcnNpw7NuIGNvdmVyIGVzdMOhIHByaW1vcmRpYWxtZW50ZSBkZXN0aW5hZGEgbyBkaXJpZ2lkYSBhIG9idGVuZXIgdW5hIHZlbnRhamEgY29tZXJjaWFsIG8gdW5hIGNvbXBlbnNhY2nDs24gbW9uZXRhcmlhIHByaXZhZGEuCiAgICAgIAplLiBHZXN0acOzbiBkZSBEZXJlY2hvcyBkZSBBdXRvciBzb2JyZSBJbnRlcnByZXRhY2lvbmVzIHkgRWplY3VjaW9uZXMgRGlnaXRhbGVzIChXZWJDYXN0aW5nKS4gUGFyYSBldml0YXIgdG9kYSBjb25mdXNpw7NuLCBlbCBMaWNlbmNpYW50ZSBhY2xhcmEgcXVlLCBjdWFuZG8gbGEgb2JyYSBzZWEgdW4gZm9ub2dyYW1hLCBlbCBMaWNlbmNpYW50ZSBzZSByZXNlcnZhIGVsIGRlcmVjaG8gZXhjbHVzaXZvIGRlIGF1dG9yaXphciBsYSBlamVjdWNpw7NuIHDDumJsaWNhIGRpZ2l0YWwgZGUgbGEgb2JyYSAocG9yIGVqZW1wbG8sIHdlYmNhc3QpIHkgZGUgcmVjb2xlY3RhciwgaW5kaXZpZHVhbG1lbnRlIG8gYSB0cmF2w6lzIGRlIHVuYSBzb2NpZWRhZCBkZSBnZXN0acOzbiBjb2xlY3RpdmEgZGUgZGVyZWNob3MgZGUgYXV0b3IgeSBkZXJlY2hvcyBjb25leG9zIChwb3IgZWplbXBsbywgQUNJTlBSTyksIGxhcyByZWdhbMOtYXMgcG9yIGxhIGVqZWN1Y2nDs24gcMO6YmxpY2EgZGlnaXRhbCBkZSBsYSBvYnJhIChwb3IgZWplbXBsbywgd2ViY2FzdCksIHN1amV0YSBhIGxhcyBkaXNwb3NpY2lvbmVzIGFwbGljYWJsZXMgZGVsIHLDqWdpbWVuIGRlIERlcmVjaG8gZGUgQXV0b3IsIHNpIGVzdGEgZWplY3VjacOzbiBww7pibGljYSBkaWdpdGFsIGVzdMOhIHByaW1vcmRpYWxtZW50ZSBkaXJpZ2lkYSBhIG9idGVuZXIgdW5hIHZlbnRhamEgY29tZXJjaWFsIG8gdW5hIGNvbXBlbnNhY2nDs24gbW9uZXRhcmlhIHByaXZhZGEuCiAgCjUuIFJlcHJlc2VudGFjaW9uZXMsIEdhcmFudMOtYXMgeSBMaW1pdGFjaW9uZXMgZGUgUmVzcG9uc2FiaWxpZGFkLgpBIE1FTk9TIFFVRSBMQVMgUEFSVEVTIExPIEFDT1JEQVJBTiBERSBPVFJBIEZPUk1BIFBPUiBFU0NSSVRPLCBFTCBMSUNFTkNJQU5URSBPRlJFQ0UgTEEgT0JSQSAoRU4gRUwgRVNUQURPIEVOIEVMIFFVRSBTRSBFTkNVRU5UUkEpIOKAnFRBTCBDVUFM4oCdLCBTSU4gQlJJTkRBUiBHQVJBTlTDjUFTIERFIENMQVNFIEFMR1VOQSBSRVNQRUNUTyBERSBMQSBPQlJBLCBZQSBTRUEgRVhQUkVTQSwgSU1QTMONQ0lUQSwgTEVHQUwgTyBDVUFMUVVJRVJBIE9UUkEsIElOQ0xVWUVORE8sIFNJTiBMSU1JVEFSU0UgQSBFTExBUywgR0FSQU5Uw41BUyBERSBUSVRVTEFSSURBRCwgQ09NRVJDSUFCSUxJREFELCBBREFQVEFCSUxJREFEIE8gQURFQ1VBQ0nDk04gQSBQUk9Qw5NTSVRPIERFVEVSTUlOQURPLCBBVVNFTkNJQSBERSBJTkZSQUNDScOTTiwgREUgQVVTRU5DSUEgREUgREVGRUNUT1MgTEFURU5URVMgTyBERSBPVFJPIFRJUE8sIE8gTEEgUFJFU0VOQ0lBIE8gQVVTRU5DSUEgREUgRVJST1JFUywgU0VBTiBPIE5PIERFU0NVQlJJQkxFUyAoUFVFREFOIE8gTk8gU0VSIEVTVE9TIERFU0NVQklFUlRPUykuIEFMR1VOQVMgSlVSSVNESUNDSU9ORVMgTk8gUEVSTUlURU4gTEEgRVhDTFVTScOTTiBERSBHQVJBTlTDjUFTIElNUEzDjUNJVEFTLCBFTiBDVVlPIENBU08gRVNUQSBFWENMVVNJw5NOIFBVRURFIE5PIEFQTElDQVJTRSBBIFVTVEVELgogIAo2LiBMaW1pdGFjacOzbiBkZSByZXNwb25zYWJpbGlkYWQuCkEgTUVOT1MgUVVFIExPIEVYSUpBIEVYUFJFU0FNRU5URSBMQSBMRVkgQVBMSUNBQkxFLCBFTCBMSUNFTkNJQU5URSBOTyBTRVLDgSBSRVNQT05TQUJMRSBBTlRFIFVTVEVEIFBPUiBEQcORTyBBTEdVTk8sIFNFQSBQT1IgUkVTUE9OU0FCSUxJREFEIEVYVFJBQ09OVFJBQ1RVQUwsIFBSRUNPTlRSQUNUVUFMIE8gQ09OVFJBQ1RVQUwsIE9CSkVUSVZBIE8gU1VCSkVUSVZBLCBTRSBUUkFURSBERSBEQcORT1MgTU9SQUxFUyBPIFBBVFJJTU9OSUFMRVMsIERJUkVDVE9TIE8gSU5ESVJFQ1RPUywgUFJFVklTVE9TIE8gSU1QUkVWSVNUT1MgUFJPRFVDSURPUyBQT1IgRUwgVVNPIERFIEVTVEEgTElDRU5DSUEgTyBERSBMQSBPQlJBLCBBVU4gQ1VBTkRPIEVMIExJQ0VOQ0lBTlRFIEhBWUEgU0lETyBBRFZFUlRJRE8gREUgTEEgUE9TSUJJTElEQUQgREUgRElDSE9TIERBw5FPUy4gQUxHVU5BUyBMRVlFUyBOTyBQRVJNSVRFTiBMQSBFWENMVVNJw5NOIERFIENJRVJUQSBSRVNQT05TQUJJTElEQUQsIEVOIENVWU8gQ0FTTyBFU1RBIEVYQ0xVU0nDk04gUFVFREUgTk8gQVBMSUNBUlNFIEEgVVNURUQuCiAgCjcuIFTDqXJtaW5vLgkKYS4gRXN0YSBMaWNlbmNpYSB5IGxvcyBkZXJlY2hvcyBvdG9yZ2Fkb3MgZW4gdmlydHVkIGRlIGVsbGEgdGVybWluYXLDoW4gYXV0b23DoXRpY2FtZW50ZSBzaSBVc3RlZCBpbmZyaW5nZSBhbGd1bmEgY29uZGljacOzbiBlc3RhYmxlY2lkYSBlbiBlbGxhLiBTaW4gZW1iYXJnbywgbG9zIGluZGl2aWR1b3MgbyBlbnRpZGFkZXMgcXVlIGhhbiByZWNpYmlkbyBPYnJhcyBEZXJpdmFkYXMgbyBDb2xlY3RpdmFzIGRlIFVzdGVkIGRlIGNvbmZvcm1pZGFkIGNvbiBlc3RhIExpY2VuY2lhLCBubyB2ZXLDoW4gdGVybWluYWRhcyBzdXMgbGljZW5jaWFzLCBzaWVtcHJlIHF1ZSBlc3RvcyBpbmRpdmlkdW9zIG8gZW50aWRhZGVzIHNpZ2FuIGN1bXBsaWVuZG8gw61udGVncmFtZW50ZSBsYXMgY29uZGljaW9uZXMgZGUgZXN0YXMgbGljZW5jaWFzLiBMYXMgU2VjY2lvbmVzIDEsIDIsIDUsIDYsIDcsIHkgOCBzdWJzaXN0aXLDoW4gYSBjdWFscXVpZXIgdGVybWluYWNpw7NuIGRlIGVzdGEgTGljZW5jaWEuCmIuIFN1amV0YSBhIGxhcyBjb25kaWNpb25lcyB5IHTDqXJtaW5vcyBhbnRlcmlvcmVzLCBsYSBsaWNlbmNpYSBvdG9yZ2FkYSBhcXXDrSBlcyBwZXJwZXR1YSAoZHVyYW50ZSBlbCBwZXLDrW9kbyBkZSB2aWdlbmNpYSBkZSBsb3MgZGVyZWNob3MgZGUgYXV0b3IgZGUgbGEgb2JyYSkuIE5vIG9ic3RhbnRlIGxvIGFudGVyaW9yLCBlbCBMaWNlbmNpYW50ZSBzZSByZXNlcnZhIGVsIGRlcmVjaG8gYSBwdWJsaWNhciB5L28gZXN0cmVuYXIgbGEgT2JyYSBiYWpvIGNvbmRpY2lvbmVzIGRlIGxpY2VuY2lhIGRpZmVyZW50ZXMgbyBhIGRlamFyIGRlIGRpc3RyaWJ1aXJsYSBlbiBsb3MgdMOpcm1pbm9zIGRlIGVzdGEgTGljZW5jaWEgZW4gY3VhbHF1aWVyIG1vbWVudG87IGVuIGVsIGVudGVuZGlkbywgc2luIGVtYmFyZ28sIHF1ZSBlc2EgZWxlY2Npw7NuIG5vIHNlcnZpcsOhIHBhcmEgcmV2b2NhciBlc3RhIGxpY2VuY2lhIG8gcXVlIGRlYmEgc2VyIG90b3JnYWRhICwgYmFqbyBsb3MgdMOpcm1pbm9zIGRlIGVzdGEgbGljZW5jaWEpLCB5IGVzdGEgbGljZW5jaWEgY29udGludWFyw6EgZW4gcGxlbm8gdmlnb3IgeSBlZmVjdG8gYSBtZW5vcyBxdWUgc2VhIHRlcm1pbmFkYSBjb21vIHNlIGV4cHJlc2EgYXRyw6FzLiBMYSBMaWNlbmNpYSByZXZvY2FkYSBjb250aW51YXLDoSBzaWVuZG8gcGxlbmFtZW50ZSB2aWdlbnRlIHkgZWZlY3RpdmEgc2kgbm8gc2UgbGUgZGEgdMOpcm1pbm8gZW4gbGFzIGNvbmRpY2lvbmVzIGluZGljYWRhcyBhbnRlcmlvcm1lbnRlLgogIAo4LiBWYXJpb3MuCmEuIENhZGEgdmV6IHF1ZSBVc3RlZCBkaXN0cmlidXlhIG8gcG9uZ2EgYSBkaXNwb3NpY2nDs24gcMO6YmxpY2EgbGEgT2JyYSBvIHVuYSBPYnJhIENvbGVjdGl2YSwgZWwgTGljZW5jaWFudGUgb2ZyZWNlcsOhIGFsIGRlc3RpbmF0YXJpbyB1bmEgbGljZW5jaWEgZW4gbG9zIG1pc21vcyB0w6lybWlub3MgeSBjb25kaWNpb25lcyBxdWUgbGEgbGljZW5jaWEgb3RvcmdhZGEgYSBVc3RlZCBiYWpvIGVzdGEgTGljZW5jaWEuCmIuIFNpIGFsZ3VuYSBkaXNwb3NpY2nDs24gZGUgZXN0YSBMaWNlbmNpYSByZXN1bHRhIGludmFsaWRhZGEgbyBubyBleGlnaWJsZSwgc2Vnw7puIGxhIGxlZ2lzbGFjacOzbiB2aWdlbnRlLCBlc3RvIG5vIGFmZWN0YXLDoSBuaSBsYSB2YWxpZGV6IG5pIGxhIGFwbGljYWJpbGlkYWQgZGVsIHJlc3RvIGRlIGNvbmRpY2lvbmVzIGRlIGVzdGEgTGljZW5jaWEgeSwgc2luIGFjY2nDs24gYWRpY2lvbmFsIHBvciBwYXJ0ZSBkZSBsb3Mgc3VqZXRvcyBkZSBlc3RlIGFjdWVyZG8sIGFxdcOpbGxhIHNlIGVudGVuZGVyw6EgcmVmb3JtYWRhIGxvIG3DrW5pbW8gbmVjZXNhcmlvIHBhcmEgaGFjZXIgcXVlIGRpY2hhIGRpc3Bvc2ljacOzbiBzZWEgdsOhbGlkYSB5IGV4aWdpYmxlLgpjLiBOaW5nw7puIHTDqXJtaW5vIG8gZGlzcG9zaWNpw7NuIGRlIGVzdGEgTGljZW5jaWEgc2UgZXN0aW1hcsOhIHJlbnVuY2lhZGEgeSBuaW5ndW5hIHZpb2xhY2nDs24gZGUgZWxsYSBzZXLDoSBjb25zZW50aWRhIGEgbWVub3MgcXVlIGVzYSByZW51bmNpYSBvIGNvbnNlbnRpbWllbnRvIHNlYSBvdG9yZ2FkbyBwb3IgZXNjcml0byB5IGZpcm1hZG8gcG9yIGxhIHBhcnRlIHF1ZSByZW51bmNpZSBvIGNvbnNpZW50YS4KZC4gRXN0YSBMaWNlbmNpYSByZWZsZWphIGVsIGFjdWVyZG8gcGxlbm8gZW50cmUgbGFzIHBhcnRlcyByZXNwZWN0byBhIGxhIE9icmEgYXF1w60gbGljZW5jaWFkYS4gTm8gaGF5IGFycmVnbG9zLCBhY3VlcmRvcyBvIGRlY2xhcmFjaW9uZXMgcmVzcGVjdG8gYSBsYSBPYnJhIHF1ZSBubyBlc3TDqW4gZXNwZWNpZmljYWRvcyBlbiBlc3RlIGRvY3VtZW50by4gRWwgTGljZW5jaWFudGUgbm8gc2UgdmVyw6EgbGltaXRhZG8gcG9yIG5pbmd1bmEgZGlzcG9zaWNpw7NuIGFkaWNpb25hbCBxdWUgcHVlZGEgc3VyZ2lyIGVuIGFsZ3VuYSBjb211bmljYWNpw7NuIGVtYW5hZGEgZGUgVXN0ZWQuIEVzdGEgTGljZW5jaWEgbm8gcHVlZGUgc2VyIG1vZGlmaWNhZGEgc2luIGVsIGNvbnNlbnRpbWllbnRvIG11dHVvIHBvciBlc2NyaXRvIGRlbCBMaWNlbmNpYW50ZSB5IFVzdGVkLgo=