Innovación abierta entrante y desempeño innovador digital: el rol del aprendizaje del fracaso en innovación generado por los insights descriptivos, predictivos y prescriptivos
Este artículo analiza el efecto moderador de los insights descriptivos, predictivos y prescriptivos basados en datos en el efecto combinado del aprendizaje del fracaso en innovación y la innovación abierta entrante en el desempeño innovador digital. El modelo de investigación se testeó en una muestr...
- Autores:
-
Vélez Jaramillo, Juan Daniel
Velásquez Sofan, Duvan Alexis
- Tipo de recurso:
- Fecha de publicación:
- 2025
- Institución:
- Universidad de Antioquia
- Repositorio:
- Repositorio UdeA
- Idioma:
- spa
- OAI Identifier:
- oai:bibliotecadigital.udea.edu.co:10495/46766
- Acceso en línea:
- https://hdl.handle.net/10495/46766
- Palabra clave:
- Aprendizaje organizacional
Organizational learning
Aprendizaje del fracaso en innovación
Innovación abierta
Innovación digital
Insights basados en datos
Gestión de la innovación
ODS 9: Industria, innovación e infraestructura. Construir infraestructuras resilientes, promover la industrialización inclusiva y sostenible y fomentar la innovación
- Rights
- embargoedAccess
- License
- http://creativecommons.org/licenses/by-nc-sa/4.0/
| id |
UDEA2_2022475230496e3325a145ac8f3bf208 |
|---|---|
| oai_identifier_str |
oai:bibliotecadigital.udea.edu.co:10495/46766 |
| network_acronym_str |
UDEA2 |
| network_name_str |
Repositorio UdeA |
| repository_id_str |
|
| dc.title.spa.fl_str_mv |
Innovación abierta entrante y desempeño innovador digital: el rol del aprendizaje del fracaso en innovación generado por los insights descriptivos, predictivos y prescriptivos |
| title |
Innovación abierta entrante y desempeño innovador digital: el rol del aprendizaje del fracaso en innovación generado por los insights descriptivos, predictivos y prescriptivos |
| spellingShingle |
Innovación abierta entrante y desempeño innovador digital: el rol del aprendizaje del fracaso en innovación generado por los insights descriptivos, predictivos y prescriptivos Aprendizaje organizacional Organizational learning Aprendizaje del fracaso en innovación Innovación abierta Innovación digital Insights basados en datos Gestión de la innovación ODS 9: Industria, innovación e infraestructura. Construir infraestructuras resilientes, promover la industrialización inclusiva y sostenible y fomentar la innovación |
| title_short |
Innovación abierta entrante y desempeño innovador digital: el rol del aprendizaje del fracaso en innovación generado por los insights descriptivos, predictivos y prescriptivos |
| title_full |
Innovación abierta entrante y desempeño innovador digital: el rol del aprendizaje del fracaso en innovación generado por los insights descriptivos, predictivos y prescriptivos |
| title_fullStr |
Innovación abierta entrante y desempeño innovador digital: el rol del aprendizaje del fracaso en innovación generado por los insights descriptivos, predictivos y prescriptivos |
| title_full_unstemmed |
Innovación abierta entrante y desempeño innovador digital: el rol del aprendizaje del fracaso en innovación generado por los insights descriptivos, predictivos y prescriptivos |
| title_sort |
Innovación abierta entrante y desempeño innovador digital: el rol del aprendizaje del fracaso en innovación generado por los insights descriptivos, predictivos y prescriptivos |
| dc.creator.fl_str_mv |
Vélez Jaramillo, Juan Daniel Velásquez Sofan, Duvan Alexis |
| dc.contributor.advisor.none.fl_str_mv |
Arias Pérez, José Enrique |
| dc.contributor.author.none.fl_str_mv |
Vélez Jaramillo, Juan Daniel Velásquez Sofan, Duvan Alexis |
| dc.subject.lemb.none.fl_str_mv |
Aprendizaje organizacional Organizational learning |
| topic |
Aprendizaje organizacional Organizational learning Aprendizaje del fracaso en innovación Innovación abierta Innovación digital Insights basados en datos Gestión de la innovación ODS 9: Industria, innovación e infraestructura. Construir infraestructuras resilientes, promover la industrialización inclusiva y sostenible y fomentar la innovación |
| dc.subject.proposal.spa.fl_str_mv |
Aprendizaje del fracaso en innovación Innovación abierta Innovación digital Insights basados en datos |
| dc.subject.proposal.none.fl_str_mv |
Gestión de la innovación |
| dc.subject.ods.none.fl_str_mv |
ODS 9: Industria, innovación e infraestructura. Construir infraestructuras resilientes, promover la industrialización inclusiva y sostenible y fomentar la innovación |
| description |
Este artículo analiza el efecto moderador de los insights descriptivos, predictivos y prescriptivos basados en datos en el efecto combinado del aprendizaje del fracaso en innovación y la innovación abierta entrante en el desempeño innovador digital. El modelo de investigación se testeó en una muestra de 197 empresas colombianas pertenecientes a sectores de media y alta intensidad digital a través de ecuaciones estructurales mediante el método de mínimos cuadrados parciales. Los resultados sugieren que el aprendizaje del fracaso en innovación provoca un trauma que deteriora la capacidad organizacional de explotar recursos internos y externos para la innovación digital. Además, los hallazgos sugieren que los insights descriptivo y predictivo son generadores de conocimiento que es insuficiente para corregir este estado de parálisis, mientras el prescriptivo produce insights accionables que proveen una seguridad reforzada al actuar, dotando el aprendizaje del fracaso en innovación de una connotación positiva. Estos hallazgos expanden la literatura sobre el fracaso en innovación como una fuente adicional de conocimiento que se soporta en herramientas de analítica de datos para fortalecer el conocimiento organizacional y la capacidad de seleccionar, complementar y explotar el conocimiento externo para optimizar el desempeño innovador digital. |
| publishDate |
2025 |
| dc.date.accessioned.none.fl_str_mv |
2025-07-15T22:48:52Z |
| dc.date.issued.none.fl_str_mv |
2025 |
| dc.date.available.none.fl_str_mv |
2027-06-11 |
| dc.type.none.fl_str_mv |
Trabajo de grado - Maestría |
| dc.type.redcol.none.fl_str_mv |
http://purl.org/redcol/resource_type/TM |
| dc.type.content.none.fl_str_mv |
Text |
| dc.type.coarversion.none.fl_str_mv |
http://purl.org/coar/version/c_b1a7d7d4d402bcce |
| dc.type.driver.none.fl_str_mv |
info:eu-repo/semantics/masterThesis |
| dc.type.version.none.fl_str_mv |
info:eu-repo/semantics/draft |
| status_str |
draft |
| dc.identifier.citation.none.fl_str_mv |
Vélez Jaramillo, J. D, & Velásquez Sofan, D. A. (2025). Innovación abierta entrante y desempeño innovador digital: el rol del aprendizaje del fracaso en innovación generado por los insights descriptivos, predictivos y prescriptivos [Tesis de maestría]. Universidad de Antioquia, Medellín, Colombia. |
| dc.identifier.uri.none.fl_str_mv |
https://hdl.handle.net/10495/46766 |
| identifier_str_mv |
Vélez Jaramillo, J. D, & Velásquez Sofan, D. A. (2025). Innovación abierta entrante y desempeño innovador digital: el rol del aprendizaje del fracaso en innovación generado por los insights descriptivos, predictivos y prescriptivos [Tesis de maestría]. Universidad de Antioquia, Medellín, Colombia. |
| url |
https://hdl.handle.net/10495/46766 |
| dc.language.iso.none.fl_str_mv |
spa |
| language |
spa |
| dc.relation.references.none.fl_str_mv |
Abadía, S., & Avila, O. (2024). A Preliminary Analysis of the Adoption of Intelligent Information Systems in Colombia. In Enterprise Innovation Systems, 3–20. https://doi.org/10.1007/978-3-031-64748-2_1 Al-Okaily, M., & Al-Okaily, A. (2024). Financial data modeling: an analysis of factors influencing big data analytics-driven financial decision quality. Journal of Modelling in Management. https://doi.org/10.1108/JM2-08-2023-0183 Alsaad, A., Selem, K. M., Alam, M. M., & Melhim, L. K. B. (2022). Linking business intelligence with the performance of new service products: Insight from a dynamic capabilities perspective. Journal of Innovation and Knowledge, 7(4). https://doi.org/10.1016/j.jik.2022.100262 Amankwah-Amoah, J., & Adomako, S. (2019). Big data analytics and business failures in data-Rich environments: An organizing framework. Computers in Industry, 105, 204–212. https://doi.org/10.1016/j.compind.2018.12.015 Ancarani, A., Di Mauro, C., Legenvre, H., & Cardella, M. S. (2020). Internet of things adoption: a typology of projects. International Journal of Operations and Production Management, 40(6), 849–872. https://doi.org/10.1108/IJOPM-01-2019-0095 Appio, F. P., Capo, F., & Annosi, M. C. (2024). Not all (innovation) failures are created equal: A typology of companies’ responses to the consequences of innovation failure. Technovation, 130. https://doi.org/10.1016/j.technovation.2023.102937 Arias-Pérez, J., & Vélez-Jaramillo, J. (2022). Ignoring the three-way interaction of digital orientation, Not-invented-here syndrome and employee’s artificial intelligence awareness in digital innovation performance: A recipe for failure. Technological Forecasting and Social Change, 174. https://doi.org/10.1016/j.techfore.2021.121305 Awan, U., Bhatti, S. H., Shamim, S., Khan, Z., Akhtar, P., & Balta, M. E. (2022). The Role of Big Data Analytics in Manufacturing Agility and Performance: Moderation–Mediation Analysis of Organizational Creativity and of the Involvement of Customers as Data Analysts. British Journal of Management, 33(3), 1200–1220. https://doi.org/10.1111/1467-8551.12549 Awan, U., Shamim, S., Khan, Z., Zia, N. U., Shariq, S. M., & Khan, M. N. (2021). Big data analytics capability and decision-making: The role of data-driven insight on circular economy performance. Technological Forecasting and Social Change, 168. https://doi.org/10.1016/j.techfore.2021.120766 Balzano, M., & Marzi, G. (2023). Exploring the pathways of learning from project failure and success in new product development teams. Technovation, 128. https://doi.org/10.1016/j.technovation.2023.102878 Baxter, D., Trott, P., & Ellwood, P. (2023). Reconceptualising innovation failure. Research Policy, 52(7). https://doi.org/10.1016/j.respol.2023.104811 Bong, K. H., & Park, J. (2024). Revisiting the Failure-Innovation Performance Relationship: A Quantile Regression Evidence From Korean SME. IEEE Transactions on Engineering Management, 71, 5899–5906. https://doi.org/10.1109/TEM.2024.3370726 Calvino, F., Criscuolo, C., Marcolin, L., & Squicciarini, M. (2018). “A taxonomy of digital intensive sectors”, OECD Science, Technology and Industry Working Papers. In OECD Science, Technology and Industry Working Papers (14). OECD Publishing. https://doi.org/10.1787/f404736a-en Chang, C. H., Chen, Y. S., & Tseng, C. W. (2024). Digital transformation anxiety: absorptive capacity, dynamic capability, and digital innovation performance. Management Decision. https://doi.org/10.1108/MD-08-2023-1363 Chatterjee, S., Chaudhuri, R., Mariani, M., & Fosso Wamba, S. (2023). The consequences of innovation failure: An innovation capabilities and dynamic capabilities perspective. Technovation, 128. https://doi.org/10.1016/j.technovation.2023.102858 Chaudhary, S., Kaur, P., Talwar, S., Islam, N., & Dhir, A. (2022). Way off the mark? Open innovation failures: Decoding what really matters to chart the future course of action. Journal of Business Research, 142, 1010–1025. https://doi.org/10.1016/j.jbusres.2021.12.062 Cheng, C. C. J., & Shiu, E. C. (2015). The inconvenient truth of the relationship between open innovation activities and innovation performance. Management Decision, 53(3), 625–647. https://doi.org/10.1108/MD-03-2014-0163 Cheng, C. C. J., & Shiu, E. C. (2023). The relative values of big data analytics versus traditional marketing analytics to firm innovation: An empirical study. Information and Management, 60(7). https://doi.org/10.1016/j.im.2023.103839 Cillo, P., De Luca, L. M., & Troilo, G. (2010). Market information approaches, product innovativeness, and firm performance: An empirical study in the fashion industry. Research Policy, 39(9), 1242–1252. https://doi.org/10.1016/j.respol.2010.06.004 Ciriello, R. F., Richter, A., & Schwabe, G. (2018). Digital Innovation. Business and Information Systems Engineering, 60(6), 563–569. https://doi.org/10.1007/s12599-0180559-8 Coelho, P., & McClure, J. (2005). Learning from failure. American Journal of Business, 20(1), 13–20. https://doi.org/10.1108/19355181200500001 Corvello, V., Troise, C., Schiuma, G., & Jones, P. (2024). How start-ups translate learning from innovation failure into strategies for growth. Technovation, 134. https://doi.org/10.1016/j.technovation.2024.103051 Cristofaro, M., Giardino, P. L., & Barboni, L. (2025). Growth hacking: A scientific approach for data-driven decision making. Journal of Business Research, 186, 115030. https://doi.org/10.1016/j.jbusres.2024.115030 Deist, M. K., McDowell, W. C., & Bouncken, R. B. (2023). Digital units and digital innovation: Balancing fluidity and stability for the Creation, Conversion, and Dissemination of sticky knowledge. Journal of Business Research, 161. https://doi.org/10.1016/j.jbusres.2023.113827 Delen, D., & Ram, S. (2018). Research challenges and opportunities in business analytics. Journal of Business Analytics, 1(1), 2–12. https://doi.org/10.1080/2573234X.2018.1507324 Fernandez-Pinto, H., Duarte, C. A. M., Villamizar, S. P., & Suarez, J. E. S. (2024). Horizontal innovation: The core of open innovation in the construction of the dynamic capacities in the Colombian industry. Journal of Open Innovation: Technology, Market, and Complexity, 10(1). https://doi.org/10.1016/j.joitmc.2024.100229 Fornell, C., & Larcker, D. F. (1981). Structural Equation Models with Unobservable Variables and Measurement Error: Algebra and Statistics. Journal of Marketing Research, 18(3), 382. https://doi.org/10.2307/3150980 Forth, P., De Laubier, R., Chakraborty, S., Charanya, T., & Magagnoli, M. (2021). Performance and Innovation Are the Rewards of Digital Transformation. Freisinger, E., & McCarthy, I. P. (2024). What fails and when? A process view of innovation failure. Technovation, 133. https://doi.org/10.1016/j.technovation.2024.102995 Ghasemaghaei, M., & Calic, G. (2019). Does big data enhance firm innovation competency? The mediating role of data-driven insights. Journal of Business Research, 104, 69–84. https://doi.org/10.1016/j.jbusres.2019.07.006 Gooljar, V., Issa, T., Hardin-Ramanan, S., & Abu-Salih, B. (2024). Sentiment-based predictive models for online purchases in the era of marketing 5.0: a systematic review. Journal of Big Data, 11(1). https://doi.org/10.1186/s40537-024-00947-0 Griva, A., & Karagiannaki, A. (2024). Designing business analytics (BA) platforms: tracing the visual redesign process of a startup’s BA platform. Benchmarking: An international Journal. https://doi.org/10.1108/BIJ-06-2024-0517 Guillaume-Joseph, G., & Wasek, J. S. (2015). Improving software project outcomes through predictive analytics: Part 1. IEEE Engineering Management Review, 43(3), 26–38. https://doi.org/10.1109/EMR.2015.2469451 Hair, J. F. ., Hult, G. T. M. ., Ringle, C. M. ., & Sarstedt, M. (2017). A primer on partial least squares structural equation modeling (PLS-SEM). Sage Publications, Los Angeles, C.A. Hair, J. F., Ringle, C. M., & Sarstedt, M. (2011). PLS-SEM: Indeed a silver bullet. Journal of Marketing Theory and Practice, 19(2), 139–152. https://doi.org/10.2753/MTP10696679190202 Hair, J. F., Risher, J. J., Sarstedt, M., & Ringle, C. M. (2019). When to use and how to report the results of PLS-SEM. European Business Review, 31(1), 2–24. https://doi.org/10.1108/EBR-11-2018-0203 Hair, J., Hult, T., Ringle, C., Sarstedt, M., Danks, N., & Ray, S. (2021). Partial Least Squares Structural Equation Modeling (PLS-SEM) Using R. Springer. Hayes, Andrew. F. (2022). Introduction to mediation, moderation and conditional process analysis: a regression-based approach (Third edition). Guilford Press. Hirvonen, M., Kauppi, K., & Liesiö, J. (2024). Identifying enablers for the successful deployment of prescriptive analytics – a multiple case study. European Business Review. https://doi.org/10.1108/EBR-08-2023-0253 Hu, S., Gong, H., & Li, S. (2024). Fail forward: the relationship between innovation failure and breakthrough innovation in the context of knowledge- based capabilities. European Journal of Innovation Management. https://doi.org/10.1108/EJIM-11-2023-0945 Huang, H. C., Lai, M. C., & Huang, W. W. (2015). Resource complementarity, transformative capacity, and inbound open innovation. Journal of Business and Industrial Marketing, 30(7), 842–854. https://doi.org/10.1108/JBIM-09-2013-0191 Huit, G. T. M., Hair, J. F., Proksch, D., Sarstedt, M., Pinkwart, A., & Ringle, C. M. (2018). Addressing endogeneity in international marketing applications of partial least squares structural equation modeling. Journal of International Marketing, 26(3), 1–21. https://doi.org/10.1509/jim.17.0151 Hung, K. P., & Chou, C. (2013). The impact of open innovation on firm performance: The moderating effects of internal R&D and environmental turbulence. Technovation, 33(10–11), 368–380. https://doi.org/10.1016/j.technovation.2013.06.006 Jalali, A., Palalić, R., Razzak, M. R., & Al-Kharusi, S. (2024). Big data analytics, company innovation and risk-taking: influence of absorptive capacity. Management Decision. https://doi.org/10.1108/MD-01-2024-0137 Jank, M.-H., Dölle, C., & Schuh, G. (2019). Product Portfolio Design Using Prescriptive Analytics. In Advances in Production Research, 584–593. Springer International Publishing. https://doi.org/10.1007/978-3-030-03451-1_57 Kim, S. (2021). Mapping social media analytics for small business: A case study of business analytics. International Journal of Fashion Design, Technology and Education, 14(2), 218–231. https://doi.org/10.1080/17543266.2021.1915392 Klein, P., Van der Vegte, W. F., Hribernik, K., & Klaus-Dieter, T. (2019). Towards an approach integrating various levels of data analytics to exploit product-usage information in product development. Proceedings of the International Conference on Engineering Design, ICED, 2019-August, 2627–2636. https://doi.org/10.1017/dsi.2019.269 Kock, N. (2021). Harman’s single factor test in PLS-SEM: Checking for common method bias. Data Analysis Perspectives Journal 2(2). https://www.scriptwarp.com Kock, N., & Hadaya, P. (2018). Minimum sample size estimation in PLS-SEM: The inverse square root and gamma-exponential methods. Information Systems Journal, 28(1), 227– 261. https://doi.org/10.1111/isj.12131 Lafuente, E., Rabetino, R., & Leiva, J. C. (2024). Learning from success and failure: implications for entrepreneurs, SMEs, and policy. Small Business Economics. https://doi.org/10.1007/s11187-024-00889-0 Mueller, B. A., & Shepherd, D. A. (2016). Making the Most of Failure Experiences: Exploring the Relationship Between Business Failure and the Identification of Business Opportunities. Entrepreneurship: Theory and Practice, 40(3), 457–487. https://doi.org/10.1111/etap.12116 Nestorov, S., Jukić, B., Jukić, N., Sharma, A., & Rossi, S. (2019). Generating insights through data preparation, visualization, and analysis: Framework for combining clustering and data visualization techniques for low-cardinality sequential data. Decision Support Systems, 125. https://doi.org/10.1016/j.dss.2019.113119 Rhaiem, K., & Halilem, N. (2023). The worst is not to fail, but to fail to learn from failure: A multi-method empirical validation of learning from innovation failure. Technological Forecasting and Social Change, 190. https://doi.org/10.1016/j.techfore.2023.122427 Rigby, D., First, Z., & Boyd, M. (2023). How Corporate Purpose Leads to Innovation. https://hbr.org/2023/11/how-corporate-purpose-leads-to-innovation Sheng, J., Amankwah-Amoah, J., Khan, Z., & Wang, X. (2021). COVID-19 Pandemic in the New Era of Big Data Analytics: Methodological Innovations and Future Research Directions. British Journal of Management, 32(4), 1164–1183. https://doi.org/10.1111/1467-8551.12441 Shepherd, D. A., & Wolfe, M. (2011). MOVING FORWARD FROM PROJECT FAILURE: NEGATIVE EMOTIONS, AFFECTIVE COMMITMENT, AND LEARNING FROM THE EXPERIENCE. Academy of Management, 54(6), 1229–1250. http://dx.doi.org/10.5465.amj.2010.0102 Tao, X., Robson, P. J. A., & Wang, C. L. (2023). To learn or not to learn from new product development project failure: The roles of failure experience and error orientation. Technovation, 127. https://doi.org/10.1016/j.technovation.2023.102830 Tao, X., & Ucbasaran, D. (2024). How does failure normalization foster product innovativeness in new product development? The role of passion and learning. Journal of Product Innovation Management. https://doi.org/10.1111/jpim.12755 Wang, X., Yang, F., Liu, S., & Feng, W. (2024). No big deal: how leader self-deprecating humor influences subordinate learning from failure. Journal of Knowledge Management, 28(1), 118–137. https://doi.org/10.1108/JKM-08-2022-0624 West, J., & Bogers, M. (2014). Leveraging external sources of innovation: A review of research on open innovation. In Journal of Product Innovation Management (Vol. 31, Issue 4, pp. 814–831). Blackwell Publishing Ltd. https://doi.org/10.1111/jpim.12125 Zhang, M., Wang, Y., & Wang, W. (2024). Big data analytics managerial skills and organizational agility: a moderated mediation model. Industrial Management and Data Systems. https://doi.org/10.1108/IMDS-01-2024-0053 Zhu, X., & Li, Y. (2023). The use of data-driven insight in ambidextrous digital transformation: How do resource orchestration, organizational strategic decisionmaking, and organizational agility matter? Technological Forecasting and Social Change, 196. https://doi.org/10.1016/j.techfore.2023.122851 |
| dc.rights.uri.none.fl_str_mv |
http://creativecommons.org/licenses/by-nc-sa/4.0/ |
| dc.rights.accessrights.none.fl_str_mv |
info:eu-repo/semantics/embargoedAccess |
| dc.rights.license.en.fl_str_mv |
Attribution-NonCommercial-ShareAlike 4.0 International |
| dc.rights.coar.none.fl_str_mv |
http://purl.org/coar/access_right/c_f1cf |
| rights_invalid_str_mv |
http://creativecommons.org/licenses/by-nc-sa/4.0/ Attribution-NonCommercial-ShareAlike 4.0 International http://purl.org/coar/access_right/c_f1cf |
| eu_rights_str_mv |
embargoedAccess |
| dc.format.extent.none.fl_str_mv |
42 páginas |
| dc.format.mimetype.none.fl_str_mv |
application/pdf |
| dc.coverage.spatial.none.fl_str_mv |
Colombia |
| dc.publisher.none.fl_str_mv |
Universidad de Antioquia |
| dc.publisher.program.none.fl_str_mv |
Maestría en Administración |
| dc.publisher.place.none.fl_str_mv |
Medellín, Colombia |
| dc.publisher.faculty.none.fl_str_mv |
Facultad de Ciencias Económicas |
| dc.publisher.branch.none.fl_str_mv |
Campus Medellín - Sede Posgrados |
| publisher.none.fl_str_mv |
Universidad de Antioquia |
| institution |
Universidad de Antioquia |
| bitstream.url.fl_str_mv |
https://bibliotecadigital.udea.edu.co/bitstreams/871a820d-17ec-4fd3-9d22-b18afac025d5/download https://bibliotecadigital.udea.edu.co/bitstreams/3cac40c4-34ba-495d-a438-99800254b68b/download https://bibliotecadigital.udea.edu.co/bitstreams/663d3bd9-452b-464e-94ec-28ec9e8caf0c/download https://bibliotecadigital.udea.edu.co/bitstreams/7c0f21b0-f958-4187-954b-9eef3240bd66/download https://bibliotecadigital.udea.edu.co/bitstreams/409a406b-a6e0-40c0-bb9b-5c6835134d0a/download |
| bitstream.checksum.fl_str_mv |
955d82ce88f85e231e9c1ac4b799dba3 5643bfd9bcf29d560eeec56d584edaa9 b76e7a76e24cf2f94b3ce0ae5ed275d0 d2fc9856cf1491ba036db00856eb8773 fe1c878d06c864828beaa37685f41c5f |
| bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 MD5 MD5 MD5 |
| repository.name.fl_str_mv |
Repositorio Institucional de la Universidad de Antioquia |
| repository.mail.fl_str_mv |
aplicacionbibliotecadigitalbiblioteca@udea.edu.co |
| _version_ |
1851052231809302528 |
| spelling |
Arias Pérez, José EnriqueVélez Jaramillo, Juan DanielVelásquez Sofan, Duvan AlexisColombia2025-07-15T22:48:52Z2027-06-112025Vélez Jaramillo, J. D, & Velásquez Sofan, D. A. (2025). Innovación abierta entrante y desempeño innovador digital: el rol del aprendizaje del fracaso en innovación generado por los insights descriptivos, predictivos y prescriptivos [Tesis de maestría]. Universidad de Antioquia, Medellín, Colombia.https://hdl.handle.net/10495/46766Este artículo analiza el efecto moderador de los insights descriptivos, predictivos y prescriptivos basados en datos en el efecto combinado del aprendizaje del fracaso en innovación y la innovación abierta entrante en el desempeño innovador digital. El modelo de investigación se testeó en una muestra de 197 empresas colombianas pertenecientes a sectores de media y alta intensidad digital a través de ecuaciones estructurales mediante el método de mínimos cuadrados parciales. Los resultados sugieren que el aprendizaje del fracaso en innovación provoca un trauma que deteriora la capacidad organizacional de explotar recursos internos y externos para la innovación digital. Además, los hallazgos sugieren que los insights descriptivo y predictivo son generadores de conocimiento que es insuficiente para corregir este estado de parálisis, mientras el prescriptivo produce insights accionables que proveen una seguridad reforzada al actuar, dotando el aprendizaje del fracaso en innovación de una connotación positiva. Estos hallazgos expanden la literatura sobre el fracaso en innovación como una fuente adicional de conocimiento que se soporta en herramientas de analítica de datos para fortalecer el conocimiento organizacional y la capacidad de seleccionar, complementar y explotar el conocimiento externo para optimizar el desempeño innovador digital.In both academia and business, there is a strong focus on understanding and reducing the failure rate of digital transformation projects, which currently stands at 80%. Therefore, this paper examines the moderating effect of descriptive, predictive and prescriptive data-driven insights on the combined impact of learning from innovation failure and inbound open innovation on digital innovation performance. The three-way interaction was tested using partial least squares structural equation modeling (PLS-SEM) on a sample of 197 Colombian firms in medium- and high-digital-intensity sectors. The findings reveal that while inbound open innovation enhances digital innovation performance, learning from innovation failure unexpectedly weakens this effect. However, only prescriptive insights reverse this pattern, making the three-way interaction positive and significant, whereas descriptive and predictive insights have no impact. The results suggest that the trauma associated with learning from innovation failure limits an organization’s ability to leverage internal and external resources for digital innovation. Furthermore, descriptive and predictive insights fail to provide the necessary knowledge to overcome this paralysis, while prescriptive insights generate actionable knowledge for well-grounded decision-making, reframing learning from innovation failure in a positive light.MaestríaMagíster en Administración42 páginasapplication/pdfspaUniversidad de AntioquiaMaestría en AdministraciónMedellín, ColombiaFacultad de Ciencias EconómicasCampus Medellín - Sede Posgradoshttp://creativecommons.org/licenses/by-nc-sa/4.0/info:eu-repo/semantics/embargoedAccessAttribution-NonCommercial-ShareAlike 4.0 Internationalhttp://purl.org/coar/access_right/c_f1cfInnovación abierta entrante y desempeño innovador digital: el rol del aprendizaje del fracaso en innovación generado por los insights descriptivos, predictivos y prescriptivosTrabajo de grado - Maestríahttp://purl.org/redcol/resource_type/TMTexthttp://purl.org/coar/version/c_b1a7d7d4d402bcceinfo:eu-repo/semantics/masterThesisinfo:eu-repo/semantics/draftAbadía, S., & Avila, O. (2024). A Preliminary Analysis of the Adoption of Intelligent Information Systems in Colombia. In Enterprise Innovation Systems, 3–20. https://doi.org/10.1007/978-3-031-64748-2_1Al-Okaily, M., & Al-Okaily, A. (2024). Financial data modeling: an analysis of factors influencing big data analytics-driven financial decision quality. Journal of Modelling in Management. https://doi.org/10.1108/JM2-08-2023-0183Alsaad, A., Selem, K. M., Alam, M. M., & Melhim, L. K. B. (2022). Linking business intelligence with the performance of new service products: Insight from a dynamic capabilities perspective. Journal of Innovation and Knowledge, 7(4). https://doi.org/10.1016/j.jik.2022.100262Amankwah-Amoah, J., & Adomako, S. (2019). Big data analytics and business failures in data-Rich environments: An organizing framework. Computers in Industry, 105, 204–212. https://doi.org/10.1016/j.compind.2018.12.015Ancarani, A., Di Mauro, C., Legenvre, H., & Cardella, M. S. (2020). Internet of things adoption: a typology of projects. International Journal of Operations and Production Management, 40(6), 849–872. https://doi.org/10.1108/IJOPM-01-2019-0095Appio, F. P., Capo, F., & Annosi, M. C. (2024). Not all (innovation) failures are created equal: A typology of companies’ responses to the consequences of innovation failure. Technovation, 130. https://doi.org/10.1016/j.technovation.2023.102937Arias-Pérez, J., & Vélez-Jaramillo, J. (2022). Ignoring the three-way interaction of digital orientation, Not-invented-here syndrome and employee’s artificial intelligence awareness in digital innovation performance: A recipe for failure. Technological Forecasting and Social Change, 174. https://doi.org/10.1016/j.techfore.2021.121305Awan, U., Bhatti, S. H., Shamim, S., Khan, Z., Akhtar, P., & Balta, M. E. (2022). The Role of Big Data Analytics in Manufacturing Agility and Performance: Moderation–Mediation Analysis of Organizational Creativity and of the Involvement of Customers as Data Analysts. British Journal of Management, 33(3), 1200–1220. https://doi.org/10.1111/1467-8551.12549Awan, U., Shamim, S., Khan, Z., Zia, N. U., Shariq, S. M., & Khan, M. N. (2021). Big data analytics capability and decision-making: The role of data-driven insight on circular economy performance. Technological Forecasting and Social Change, 168. https://doi.org/10.1016/j.techfore.2021.120766Balzano, M., & Marzi, G. (2023). Exploring the pathways of learning from project failure and success in new product development teams. Technovation, 128. https://doi.org/10.1016/j.technovation.2023.102878Baxter, D., Trott, P., & Ellwood, P. (2023). Reconceptualising innovation failure. Research Policy, 52(7). https://doi.org/10.1016/j.respol.2023.104811Bong, K. H., & Park, J. (2024). Revisiting the Failure-Innovation Performance Relationship: A Quantile Regression Evidence From Korean SME. IEEE Transactions on Engineering Management, 71, 5899–5906. https://doi.org/10.1109/TEM.2024.3370726Calvino, F., Criscuolo, C., Marcolin, L., & Squicciarini, M. (2018). “A taxonomy of digital intensive sectors”, OECD Science, Technology and Industry Working Papers. In OECD Science, Technology and Industry Working Papers (14). OECD Publishing. https://doi.org/10.1787/f404736a-enChang, C. H., Chen, Y. S., & Tseng, C. W. (2024). Digital transformation anxiety: absorptive capacity, dynamic capability, and digital innovation performance. Management Decision. https://doi.org/10.1108/MD-08-2023-1363Chatterjee, S., Chaudhuri, R., Mariani, M., & Fosso Wamba, S. (2023). The consequences of innovation failure: An innovation capabilities and dynamic capabilities perspective. Technovation, 128. https://doi.org/10.1016/j.technovation.2023.102858Chaudhary, S., Kaur, P., Talwar, S., Islam, N., & Dhir, A. (2022). Way off the mark? Open innovation failures: Decoding what really matters to chart the future course of action. Journal of Business Research, 142, 1010–1025. https://doi.org/10.1016/j.jbusres.2021.12.062Cheng, C. C. J., & Shiu, E. C. (2015). The inconvenient truth of the relationship between open innovation activities and innovation performance. Management Decision, 53(3), 625–647. https://doi.org/10.1108/MD-03-2014-0163Cheng, C. C. J., & Shiu, E. C. (2023). The relative values of big data analytics versus traditional marketing analytics to firm innovation: An empirical study. Information and Management, 60(7). https://doi.org/10.1016/j.im.2023.103839Cillo, P., De Luca, L. M., & Troilo, G. (2010). Market information approaches, product innovativeness, and firm performance: An empirical study in the fashion industry. Research Policy, 39(9), 1242–1252. https://doi.org/10.1016/j.respol.2010.06.004Ciriello, R. F., Richter, A., & Schwabe, G. (2018). Digital Innovation. Business and Information Systems Engineering, 60(6), 563–569. https://doi.org/10.1007/s12599-0180559-8Coelho, P., & McClure, J. (2005). Learning from failure. American Journal of Business, 20(1), 13–20. https://doi.org/10.1108/19355181200500001Corvello, V., Troise, C., Schiuma, G., & Jones, P. (2024). How start-ups translate learning from innovation failure into strategies for growth. Technovation, 134. https://doi.org/10.1016/j.technovation.2024.103051Cristofaro, M., Giardino, P. L., & Barboni, L. (2025). Growth hacking: A scientific approach for data-driven decision making. Journal of Business Research, 186, 115030. https://doi.org/10.1016/j.jbusres.2024.115030Deist, M. K., McDowell, W. C., & Bouncken, R. B. (2023). Digital units and digital innovation: Balancing fluidity and stability for the Creation, Conversion, and Dissemination of sticky knowledge. Journal of Business Research, 161. https://doi.org/10.1016/j.jbusres.2023.113827Delen, D., & Ram, S. (2018). Research challenges and opportunities in business analytics. Journal of Business Analytics, 1(1), 2–12. https://doi.org/10.1080/2573234X.2018.1507324Fernandez-Pinto, H., Duarte, C. A. M., Villamizar, S. P., & Suarez, J. E. S. (2024). Horizontal innovation: The core of open innovation in the construction of the dynamic capacities in the Colombian industry. Journal of Open Innovation: Technology, Market, and Complexity, 10(1). https://doi.org/10.1016/j.joitmc.2024.100229Fornell, C., & Larcker, D. F. (1981). Structural Equation Models with Unobservable Variables and Measurement Error: Algebra and Statistics. Journal of Marketing Research, 18(3), 382. https://doi.org/10.2307/3150980Forth, P., De Laubier, R., Chakraborty, S., Charanya, T., & Magagnoli, M. (2021). Performance and Innovation Are the Rewards of Digital Transformation.Freisinger, E., & McCarthy, I. P. (2024). What fails and when? A process view of innovation failure. Technovation, 133. https://doi.org/10.1016/j.technovation.2024.102995Ghasemaghaei, M., & Calic, G. (2019). Does big data enhance firm innovation competency? The mediating role of data-driven insights. Journal of Business Research, 104, 69–84. https://doi.org/10.1016/j.jbusres.2019.07.006Gooljar, V., Issa, T., Hardin-Ramanan, S., & Abu-Salih, B. (2024). Sentiment-based predictive models for online purchases in the era of marketing 5.0: a systematic review. Journal of Big Data, 11(1). https://doi.org/10.1186/s40537-024-00947-0Griva, A., & Karagiannaki, A. (2024). Designing business analytics (BA) platforms: tracing the visual redesign process of a startup’s BA platform. Benchmarking: An international Journal. https://doi.org/10.1108/BIJ-06-2024-0517Guillaume-Joseph, G., & Wasek, J. S. (2015). Improving software project outcomes through predictive analytics: Part 1. IEEE Engineering Management Review, 43(3), 26–38. https://doi.org/10.1109/EMR.2015.2469451Hair, J. F. ., Hult, G. T. M. ., Ringle, C. M. ., & Sarstedt, M. (2017). A primer on partial least squares structural equation modeling (PLS-SEM). Sage Publications, Los Angeles, C.A.Hair, J. F., Ringle, C. M., & Sarstedt, M. (2011). PLS-SEM: Indeed a silver bullet. Journal of Marketing Theory and Practice, 19(2), 139–152. https://doi.org/10.2753/MTP10696679190202Hair, J. F., Risher, J. J., Sarstedt, M., & Ringle, C. M. (2019). When to use and how to report the results of PLS-SEM. European Business Review, 31(1), 2–24. https://doi.org/10.1108/EBR-11-2018-0203Hair, J., Hult, T., Ringle, C., Sarstedt, M., Danks, N., & Ray, S. (2021). Partial Least Squares Structural Equation Modeling (PLS-SEM) Using R. Springer.Hayes, Andrew. F. (2022). Introduction to mediation, moderation and conditional process analysis: a regression-based approach (Third edition). Guilford Press.Hirvonen, M., Kauppi, K., & Liesiö, J. (2024). Identifying enablers for the successful deployment of prescriptive analytics – a multiple case study. European Business Review. https://doi.org/10.1108/EBR-08-2023-0253Hu, S., Gong, H., & Li, S. (2024). Fail forward: the relationship between innovation failure and breakthrough innovation in the context of knowledge- based capabilities. European Journal of Innovation Management. https://doi.org/10.1108/EJIM-11-2023-0945Huang, H. C., Lai, M. C., & Huang, W. W. (2015). Resource complementarity, transformative capacity, and inbound open innovation. Journal of Business and Industrial Marketing, 30(7), 842–854. https://doi.org/10.1108/JBIM-09-2013-0191Huit, G. T. M., Hair, J. F., Proksch, D., Sarstedt, M., Pinkwart, A., & Ringle, C. M. (2018). Addressing endogeneity in international marketing applications of partial least squares structural equation modeling. Journal of International Marketing, 26(3), 1–21. https://doi.org/10.1509/jim.17.0151Hung, K. P., & Chou, C. (2013). The impact of open innovation on firm performance: The moderating effects of internal R&D and environmental turbulence. Technovation, 33(10–11), 368–380. https://doi.org/10.1016/j.technovation.2013.06.006Jalali, A., Palalić, R., Razzak, M. R., & Al-Kharusi, S. (2024). Big data analytics, company innovation and risk-taking: influence of absorptive capacity. Management Decision. https://doi.org/10.1108/MD-01-2024-0137Jank, M.-H., Dölle, C., & Schuh, G. (2019). Product Portfolio Design Using Prescriptive Analytics. In Advances in Production Research, 584–593. Springer International Publishing. https://doi.org/10.1007/978-3-030-03451-1_57Kim, S. (2021). Mapping social media analytics for small business: A case study of business analytics. International Journal of Fashion Design, Technology and Education, 14(2), 218–231. https://doi.org/10.1080/17543266.2021.1915392Klein, P., Van der Vegte, W. F., Hribernik, K., & Klaus-Dieter, T. (2019). Towards an approach integrating various levels of data analytics to exploit product-usage information in product development. Proceedings of the International Conference on Engineering Design, ICED, 2019-August, 2627–2636. https://doi.org/10.1017/dsi.2019.269Kock, N. (2021). Harman’s single factor test in PLS-SEM: Checking for common method bias. Data Analysis Perspectives Journal 2(2). https://www.scriptwarp.comKock, N., & Hadaya, P. (2018). Minimum sample size estimation in PLS-SEM: The inverse square root and gamma-exponential methods. Information Systems Journal, 28(1), 227– 261. https://doi.org/10.1111/isj.12131Lafuente, E., Rabetino, R., & Leiva, J. C. (2024). Learning from success and failure: implications for entrepreneurs, SMEs, and policy. Small Business Economics. https://doi.org/10.1007/s11187-024-00889-0Mueller, B. A., & Shepherd, D. A. (2016). Making the Most of Failure Experiences: Exploring the Relationship Between Business Failure and the Identification of Business Opportunities. Entrepreneurship: Theory and Practice, 40(3), 457–487. https://doi.org/10.1111/etap.12116Nestorov, S., Jukić, B., Jukić, N., Sharma, A., & Rossi, S. (2019). Generating insights through data preparation, visualization, and analysis: Framework for combining clustering and data visualization techniques for low-cardinality sequential data. Decision Support Systems, 125. https://doi.org/10.1016/j.dss.2019.113119Rhaiem, K., & Halilem, N. (2023). The worst is not to fail, but to fail to learn from failure: A multi-method empirical validation of learning from innovation failure. Technological Forecasting and Social Change, 190. https://doi.org/10.1016/j.techfore.2023.122427Rigby, D., First, Z., & Boyd, M. (2023). How Corporate Purpose Leads to Innovation. https://hbr.org/2023/11/how-corporate-purpose-leads-to-innovationSheng, J., Amankwah-Amoah, J., Khan, Z., & Wang, X. (2021). COVID-19 Pandemic in the New Era of Big Data Analytics: Methodological Innovations and Future Research Directions. British Journal of Management, 32(4), 1164–1183. https://doi.org/10.1111/1467-8551.12441Shepherd, D. A., & Wolfe, M. (2011). MOVING FORWARD FROM PROJECT FAILURE: NEGATIVE EMOTIONS, AFFECTIVE COMMITMENT, AND LEARNING FROM THE EXPERIENCE. Academy of Management, 54(6), 1229–1250. http://dx.doi.org/10.5465.amj.2010.0102Tao, X., Robson, P. J. A., & Wang, C. L. (2023). To learn or not to learn from new product development project failure: The roles of failure experience and error orientation. Technovation, 127. https://doi.org/10.1016/j.technovation.2023.102830Tao, X., & Ucbasaran, D. (2024). How does failure normalization foster product innovativeness in new product development? The role of passion and learning. Journal of Product Innovation Management. https://doi.org/10.1111/jpim.12755Wang, X., Yang, F., Liu, S., & Feng, W. (2024). No big deal: how leader self-deprecating humor influences subordinate learning from failure. Journal of Knowledge Management, 28(1), 118–137. https://doi.org/10.1108/JKM-08-2022-0624West, J., & Bogers, M. (2014). Leveraging external sources of innovation: A review of research on open innovation. In Journal of Product Innovation Management (Vol. 31, Issue 4, pp. 814–831). Blackwell Publishing Ltd. https://doi.org/10.1111/jpim.12125Zhang, M., Wang, Y., & Wang, W. (2024). Big data analytics managerial skills and organizational agility: a moderated mediation model. Industrial Management and Data Systems. https://doi.org/10.1108/IMDS-01-2024-0053Zhu, X., & Li, Y. (2023). The use of data-driven insight in ambidextrous digital transformation: How do resource orchestration, organizational strategic decisionmaking, and organizational agility matter? Technological Forecasting and Social Change, 196. https://doi.org/10.1016/j.techfore.2023.122851Aprendizaje organizacionalOrganizational learningAprendizaje del fracaso en innovaciónInnovación abiertaInnovación digitalInsights basados en datosGestión de la innovaciónODS 9: Industria, innovación e infraestructura. Construir infraestructuras resilientes, promover la industrialización inclusiva y sostenible y fomentar la innovaciónPublicationORIGINALVelezJuan_2025_DesempenoInnovadorDigital.pdfVelezJuan_2025_DesempenoInnovadorDigital.pdfapplication/pdf566530https://bibliotecadigital.udea.edu.co/bitstreams/871a820d-17ec-4fd3-9d22-b18afac025d5/download955d82ce88f85e231e9c1ac4b799dba3MD51trueAnonymousREAD2027-06-10CC-LICENSElicense_rdflicense_rdfapplication/rdf+xml; charset=utf-81160https://bibliotecadigital.udea.edu.co/bitstreams/3cac40c4-34ba-495d-a438-99800254b68b/download5643bfd9bcf29d560eeec56d584edaa9MD52falseAnonymousREADLICENSElicense.txtlicense.txttext/plain; charset=utf-814837https://bibliotecadigital.udea.edu.co/bitstreams/663d3bd9-452b-464e-94ec-28ec9e8caf0c/downloadb76e7a76e24cf2f94b3ce0ae5ed275d0MD53falseAnonymousREADTEXTVelezJuan_2025_DesempenoInnovadorDigital.pdf.txtVelezJuan_2025_DesempenoInnovadorDigital.pdf.txtExtracted texttext/plain90400https://bibliotecadigital.udea.edu.co/bitstreams/7c0f21b0-f958-4187-954b-9eef3240bd66/downloadd2fc9856cf1491ba036db00856eb8773MD54falseAnonymousREAD2027-06-10THUMBNAILVelezJuan_2025_DesempenoInnovadorDigital.pdf.jpgVelezJuan_2025_DesempenoInnovadorDigital.pdf.jpgGenerated Thumbnailimage/jpeg6937https://bibliotecadigital.udea.edu.co/bitstreams/409a406b-a6e0-40c0-bb9b-5c6835134d0a/downloadfe1c878d06c864828beaa37685f41c5fMD55falseAnonymousREAD2027-06-1010495/46766oai:bibliotecadigital.udea.edu.co:10495/467662025-07-18 04:03:11.419http://creativecommons.org/licenses/by-nc-sa/4.0/Attribution-NonCommercial-ShareAlike 4.0 Internationalembargo2027-06-10https://bibliotecadigital.udea.edu.coRepositorio Institucional de la Universidad de Antioquiaaplicacionbibliotecadigitalbiblioteca@udea.edu.coTEEgT0JSQSAoVEFMIFkgQ09NTyBTRSBERUZJTkUgTcOBUyBBREVMQU5URSkgU0UgT1RPUkdBIEJBSk8gTE9TIFRFUk1JTk9TIERFIEVTVEEgTElDRU5DSUEgUMOaQkxJQ0EgREUgQ1JFQVRJVkUgQ09NTU9OUyAo4oCcTFBDQ+KAnSBPIOKAnExJQ0VOQ0lB4oCdKS4gTEEgT0JSQSBFU1TDgSBQUk9URUdJREEgUE9SIERFUkVDSE9TIERFIEFVVE9SIFkvVSBPVFJBUyBMRVlFUyBBUExJQ0FCTEVTLiBRVUVEQSBQUk9ISUJJRE8gQ1VBTFFVSUVSIFVTTyBRVUUgU0UgSEFHQSBERSBMQSBPQlJBIFFVRSBOTyBDVUVOVEUgQ09OIExBIEFVVE9SSVpBQ0nDk04gUEVSVElORU5URSBERSBDT05GT1JNSURBRCBDT04gTE9TIFTDiVJNSU5PUyBERSBFU1RBIExJQ0VOQ0lBIFkgREUgTEEgTEVZIERFIERFUkVDSE8gREUgQVVUT1IuCgpNRURJQU5URSBFTCBFSkVSQ0lDSU8gREUgQ1VBTFFVSUVSQSBERSBMT1MgREVSRUNIT1MgUVVFIFNFIE9UT1JHQU4gRU4gRVNUQSBMSUNFTkNJQSwgVVNURUQgQUNFUFRBIFkgQUNVRVJEQSBRVUVEQVIgT0JMSUdBRE8gRU4gTE9TIFRFUk1JTk9TIFFVRSBTRSBTRcORQUxBTiBFTiBFTExBLiBFTCBMSUNFTkNJQU5URSBDT05DRURFIEEgVVNURUQgTE9TIERFUkVDSE9TIENPTlRFTklET1MgRU4gRVNUQSBMSUNFTkNJQSBDT05ESUNJT05BRE9TIEEgTEEgQUNFUFRBQ0nDk04gREUgU1VTIFRFUk1JTk9TIFkgQ09ORElDSU9ORVMuIAoKMS4gRGVmaW5pY2lvbmVzCmEuIE9icmEgQ29sZWN0aXZhIGVzIHVuYSBvYnJhLCB0YWwgY29tbyB1bmEgcHVibGljYWNpw7NuIHBlcmnDs2RpY2EsIHVuYSBhbnRvbG9nw61hLCBvIHVuYSBlbmNpY2xvcGVkaWEsIGVuIGxhIHF1ZSBsYSBvYnJhIGVuIHN1IHRvdGFsaWRhZCwgc2luIG1vZGlmaWNhY2nDs24gYWxndW5hLCBqdW50byBjb24gdW4gZ3J1cG8gZGUgb3RyYXMgY29udHJpYnVjaW9uZXMgcXVlIGNvbnN0aXR1eWVuIG9icmFzIHNlcGFyYWRhcyBlIGluZGVwZW5kaWVudGVzIGVuIHPDrSBtaXNtYXMsIHNlIGludGVncmFuIGVuIHVuIHRvZG8gY29sZWN0aXZvLiBVbmEgT2JyYSBxdWUgY29uc3RpdHV5ZSB1bmEgb2JyYSBjb2xlY3RpdmEgbm8gc2UgY29uc2lkZXJhcsOhIHVuYSBPYnJhIERlcml2YWRhIChjb21vIHNlIGRlZmluZSBhYmFqbykgcGFyYSBsb3MgcHJvcMOzc2l0b3MgZGUgZXN0YSBsaWNlbmNpYS4gYXF1ZWxsYSBwcm9kdWNpZGEgcG9yIHVuIGdydXBvIGRlIGF1dG9yZXMsIGVuIHF1ZSBsYSBPYnJhIHNlIGVuY3VlbnRyYSBzaW4gbW9kaWZpY2FjaW9uZXMsIGp1bnRvIGNvbiB1bmEgY2llcnRhIGNhbnRpZGFkIGRlIG90cmFzIGNvbnRyaWJ1Y2lvbmVzLCBxdWUgY29uc3RpdHV5ZW4gZW4gc8OtIG1pc21vcyB0cmFiYWpvcyBzZXBhcmFkb3MgZSBpbmRlcGVuZGllbnRlcywgcXVlIHNvbiBpbnRlZ3JhZG9zIGFsIHRvZG8gY29sZWN0aXZvLCB0YWxlcyBjb21vIHB1YmxpY2FjaW9uZXMgcGVyacOzZGljYXMsIGFudG9sb2fDrWFzIG8gZW5jaWNsb3BlZGlhcy4KYi4gT2JyYSBEZXJpdmFkYSBzaWduaWZpY2EgdW5hIG9icmEgYmFzYWRhIGVuIGxhIG9icmEgb2JqZXRvIGRlIGVzdGEgbGljZW5jaWEgbyBlbiDDqXN0YSB5IG90cmFzIG9icmFzIHByZWV4aXN0ZW50ZXMsIHRhbGVzIGNvbW8gdHJhZHVjY2lvbmVzLCBhcnJlZ2xvcyBtdXNpY2FsZXMsIGRyYW1hdGl6YWNpb25lcywg4oCcZmljY2lvbmFsaXphY2lvbmVz4oCdLCB2ZXJzaW9uZXMgcGFyYSBjaW5lLCDigJxncmFiYWNpb25lcyBkZSBzb25pZG/igJ0sIHJlcHJvZHVjY2lvbmVzIGRlIGFydGUsIHJlc8O6bWVuZXMsIGNvbmRlbnNhY2lvbmVzLCBvIGN1YWxxdWllciBvdHJhIGVuIGxhIHF1ZSBsYSBvYnJhIHB1ZWRhIHNlciB0cmFuc2Zvcm1hZGEsIGNhbWJpYWRhIG8gYWRhcHRhZGEsIGV4Y2VwdG8gYXF1ZWxsYXMgcXVlIGNvbnN0aXR1eWFuIHVuYSBvYnJhIGNvbGVjdGl2YSwgbGFzIHF1ZSBubyBzZXLDoW4gY29uc2lkZXJhZGFzIHVuYSBvYnJhIGRlcml2YWRhIHBhcmEgZWZlY3RvcyBkZSBlc3RhIGxpY2VuY2lhLiAoUGFyYSBldml0YXIgZHVkYXMsIGVuIGVsIGNhc28gZGUgcXVlIGxhIE9icmEgc2VhIHVuYSBjb21wb3NpY2nDs24gbXVzaWNhbCBvIHVuYSBncmFiYWNpw7NuIHNvbm9yYSwgcGFyYSBsb3MgZWZlY3RvcyBkZSBlc3RhIExpY2VuY2lhIGxhIHNpbmNyb25pemFjacOzbiB0ZW1wb3JhbCBkZSBsYSBPYnJhIGNvbiB1bmEgaW1hZ2VuIGVuIG1vdmltaWVudG8gc2UgY29uc2lkZXJhcsOhIHVuYSBPYnJhIERlcml2YWRhIHBhcmEgbG9zIGZpbmVzIGRlIGVzdGEgbGljZW5jaWEpLgpjLiBMaWNlbmNpYW50ZSwgZXMgZWwgaW5kaXZpZHVvIG8gbGEgZW50aWRhZCB0aXR1bGFyIGRlIGxvcyBkZXJlY2hvcyBkZSBhdXRvciBxdWUgb2ZyZWNlIGxhIE9icmEgZW4gY29uZm9ybWlkYWQgY29uIGxhcyBjb25kaWNpb25lcyBkZSBlc3RhIExpY2VuY2lhLgpkLiBBdXRvciBvcmlnaW5hbCwgZXMgZWwgaW5kaXZpZHVvIHF1ZSBjcmXDsyBsYSBPYnJhLgplLiBPYnJhLCBlcyBhcXVlbGxhIG9icmEgc3VzY2VwdGlibGUgZGUgcHJvdGVjY2nDs24gcG9yIGVsIHLDqWdpbWVuIGRlIERlcmVjaG8gZGUgQXV0b3IgeSBxdWUgZXMgb2ZyZWNpZGEgZW4gbG9zIHTDqXJtaW5vcyBkZSBlc3RhIGxpY2VuY2lhCmYuIFVzdGVkLCBlcyBlbCBpbmRpdmlkdW8gbyBsYSBlbnRpZGFkIHF1ZSBlamVyY2l0YSBsb3MgZGVyZWNob3Mgb3RvcmdhZG9zIGFsIGFtcGFybyBkZSBlc3RhIExpY2VuY2lhIHkgcXVlIGNvbiBhbnRlcmlvcmlkYWQgbm8gaGEgdmlvbGFkbyBsYXMgY29uZGljaW9uZXMgZGUgbGEgbWlzbWEgcmVzcGVjdG8gYSBsYSBPYnJhLCBvIHF1ZSBoYXlhIG9idGVuaWRvIGF1dG9yaXphY2nDs24gZXhwcmVzYSBwb3IgcGFydGUgZGVsIExpY2VuY2lhbnRlIHBhcmEgZWplcmNlciBsb3MgZGVyZWNob3MgYWwgYW1wYXJvIGRlIGVzdGEgTGljZW5jaWEgcGVzZSBhIHVuYSB2aW9sYWNpw7NuIGFudGVyaW9yLgoJICAKMi4gRGVyZWNob3MgZGUgVXNvcyBIb25yYWRvcyB5IGV4Y2VwY2lvbmVzIExlZ2FsZXMuCk5hZGEgZW4gZXN0YSBMaWNlbmNpYSBwb2Ryw6Egc2VyIGludGVycHJldGFkbyBjb21vIHVuYSBkaXNtaW51Y2nDs24sIGxpbWl0YWNpw7NuIG8gcmVzdHJpY2Npw7NuIGRlIGxvcyBkZXJlY2hvcyBkZXJpdmFkb3MgZGVsIHVzbyBob25yYWRvIHkgb3RyYXMgbGltaXRhY2lvbmVzIG8gZXhjZXBjaW9uZXMgYSBsb3MgZGVyZWNob3MgZGVsIGF1dG9yIGJham8gZWwgcsOpZ2ltZW4gbGVnYWwgdmlnZW50ZSBvIGRlcml2YWRvIGRlIGN1YWxxdWllciBvdHJhIG5vcm1hIHF1ZSBzZSBsZSBhcGxpcXVlLgogIAozLiBDb25jZXNpw7NuIGRlIGxhIExpY2VuY2lhLgpCYWpvIGxvcyB0w6lybWlub3MgeSBjb25kaWNpb25lcyBkZSBlc3RhIExpY2VuY2lhLCBlbCBMaWNlbmNpYW50ZSBvdG9yZ2EgYSBVc3RlZCB1bmEgbGljZW5jaWEgbXVuZGlhbCwgbGlicmUgZGUgcmVnYWzDrWFzLCBubyBleGNsdXNpdmEgeSBwZXJwZXR1YSAoZHVyYW50ZSB0b2RvIGVsIHBlcsOtb2RvIGRlIHZpZ2VuY2lhIGRlIGxvcyBkZXJlY2hvcyBkZSBhdXRvcikgcGFyYSBlamVyY2VyIGVzdG9zIGRlcmVjaG9zIHNvYnJlIGxhIE9icmEgdGFsIHkgY29tbyBzZSBpbmRpY2EgYSBjb250aW51YWNpw7NuOgphLiBSZXByb2R1Y2lyIGxhIE9icmEsIGluY29ycG9yYXIgbGEgT2JyYSBlbiB1bmEgbyBtw6FzIE9icmFzIENvbGVjdGl2YXMsIHkgcmVwcm9kdWNpciBsYSBPYnJhIGluY29ycG9yYWRhIGVuIGxhcyBPYnJhcyBDb2xlY3RpdmFzLgpiLiBEaXN0cmlidWlyIGNvcGlhcyBvIGZvbm9ncmFtYXMgZGUgbGFzIE9icmFzLCBleGhpYmlybGFzIHDDumJsaWNhbWVudGUsIGVqZWN1dGFybGFzIHDDumJsaWNhbWVudGUgeS9vIHBvbmVybGFzIGEgZGlzcG9zaWNpw7NuIHDDumJsaWNhLCBpbmNsdXnDqW5kb2xhcyBjb21vIGluY29ycG9yYWRhcyBlbiBPYnJhcyBDb2xlY3RpdmFzLCBzZWfDum4gY29ycmVzcG9uZGEuCmMuIERpc3RyaWJ1aXIgY29waWFzIGRlIGxhcyBPYnJhcyBEZXJpdmFkYXMgcXVlIHNlIGdlbmVyZW4sIGV4aGliaXJsYXMgcMO6YmxpY2FtZW50ZSwgZWplY3V0YXJsYXMgcMO6YmxpY2FtZW50ZSB5L28gcG9uZXJsYXMgYSBkaXNwb3NpY2nDs24gcMO6YmxpY2EuCgpMb3MgZGVyZWNob3MgbWVuY2lvbmFkb3MgYW50ZXJpb3JtZW50ZSBwdWVkZW4gc2VyIGVqZXJjaWRvcyBlbiB0b2RvcyBsb3MgbWVkaW9zIHkgZm9ybWF0b3MsIGFjdHVhbG1lbnRlIGNvbm9jaWRvcyBvIHF1ZSBzZSBpbnZlbnRlbiBlbiBlbCBmdXR1cm8uIExvcyBkZXJlY2hvcyBhbnRlcyBtZW5jaW9uYWRvcyBpbmNsdXllbiBlbCBkZXJlY2hvIGEgcmVhbGl6YXIgZGljaGFzIG1vZGlmaWNhY2lvbmVzIGVuIGxhIG1lZGlkYSBxdWUgc2VhbiB0w6ljbmljYW1lbnRlIG5lY2VzYXJpYXMgcGFyYSBlamVyY2VyIGxvcyBkZXJlY2hvcyBlbiBvdHJvIG1lZGlvIG8gZm9ybWF0b3MsIHBlcm8gZGUgb3RyYSBtYW5lcmEgdXN0ZWQgbm8gZXN0w6EgYXV0b3JpemFkbyBwYXJhIHJlYWxpemFyIG9icmFzIGRlcml2YWRhcy4gVG9kb3MgbG9zIGRlcmVjaG9zIG5vIG90b3JnYWRvcyBleHByZXNhbWVudGUgcG9yIGVsIExpY2VuY2lhbnRlIHF1ZWRhbiBwb3IgZXN0ZSBtZWRpbyByZXNlcnZhZG9zLCBpbmNsdXllbmRvIHBlcm8gc2luIGxpbWl0YXJzZSBhIGFxdWVsbG9zIHF1ZSBzZSBtZW5jaW9uYW4gZW4gbGFzIHNlY2Npb25lcyA0KGQpIHkgNChlKS4KICAgIAo0LiBSZXN0cmljY2lvbmVzLgpMYSBsaWNlbmNpYSBvdG9yZ2FkYSBlbiBsYSBhbnRlcmlvciBTZWNjacOzbiAzIGVzdMOhIGV4cHJlc2FtZW50ZSBzdWpldGEgeSBsaW1pdGFkYSBwb3IgbGFzIHNpZ3VpZW50ZXMgcmVzdHJpY2Npb25lczoKYS4gVXN0ZWQgcHVlZGUgZGlzdHJpYnVpciwgZXhoaWJpciBww7pibGljYW1lbnRlLCBlamVjdXRhciBww7pibGljYW1lbnRlLCBvIHBvbmVyIGEgZGlzcG9zaWNpw7NuIHDDumJsaWNhIGxhIE9icmEgc8OzbG8gYmFqbyBsYXMgY29uZGljaW9uZXMgZGUgZXN0YSBMaWNlbmNpYSwgeSBVc3RlZCBkZWJlIGluY2x1aXIgdW5hIGNvcGlhIGRlIGVzdGEgbGljZW5jaWEgbyBkZWwgSWRlbnRpZmljYWRvciBVbml2ZXJzYWwgZGUgUmVjdXJzb3MgZGUgbGEgbWlzbWEgY29uIGNhZGEgY29waWEgZGUgbGEgT2JyYSBxdWUgZGlzdHJpYnV5YSwgZXhoaWJhIHDDumJsaWNhbWVudGUsIGVqZWN1dGUgcMO6YmxpY2FtZW50ZSBvIHBvbmdhIGEgZGlzcG9zaWNpw7NuIHDDumJsaWNhLiBObyBlcyBwb3NpYmxlIG9mcmVjZXIgbyBpbXBvbmVyIG5pbmd1bmEgY29uZGljacOzbiBzb2JyZSBsYSBPYnJhIHF1ZSBhbHRlcmUgbyBsaW1pdGUgbGFzIGNvbmRpY2lvbmVzIGRlIGVzdGEgTGljZW5jaWEgbyBlbCBlamVyY2ljaW8gZGUgbG9zIGRlcmVjaG9zIGRlIGxvcyBkZXN0aW5hdGFyaW9zIG90b3JnYWRvcyBlbiBlc3RlIGRvY3VtZW50by4gTm8gZXMgcG9zaWJsZSBzdWJsaWNlbmNpYXIgbGEgT2JyYS4gVXN0ZWQgZGViZSBtYW50ZW5lciBpbnRhY3RvcyB0b2RvcyBsb3MgYXZpc29zIHF1ZSBoYWdhbiByZWZlcmVuY2lhIGEgZXN0YSBMaWNlbmNpYSB5IGEgbGEgY2zDoXVzdWxhIGRlIGxpbWl0YWNpw7NuIGRlIGdhcmFudMOtYXMuIFVzdGVkIG5vIHB1ZWRlIGRpc3RyaWJ1aXIsIGV4aGliaXIgcMO6YmxpY2FtZW50ZSwgZWplY3V0YXIgcMO6YmxpY2FtZW50ZSwgbyBwb25lciBhIGRpc3Bvc2ljacOzbiBww7pibGljYSBsYSBPYnJhIGNvbiBhbGd1bmEgbWVkaWRhIHRlY25vbMOzZ2ljYSBxdWUgY29udHJvbGUgZWwgYWNjZXNvIG8gbGEgdXRpbGl6YWNpw7NuIGRlIGVsbGEgZGUgdW5hIGZvcm1hIHF1ZSBzZWEgaW5jb25zaXN0ZW50ZSBjb24gbGFzIGNvbmRpY2lvbmVzIGRlIGVzdGEgTGljZW5jaWEuIExvIGFudGVyaW9yIHNlIGFwbGljYSBhIGxhIE9icmEgaW5jb3Jwb3JhZGEgYSB1bmEgT2JyYSBDb2xlY3RpdmEsIHBlcm8gZXN0byBubyBleGlnZSBxdWUgbGEgT2JyYSBDb2xlY3RpdmEgYXBhcnRlIGRlIGxhIG9icmEgbWlzbWEgcXVlZGUgc3VqZXRhIGEgbGFzIGNvbmRpY2lvbmVzIGRlIGVzdGEgTGljZW5jaWEuIFNpIFVzdGVkIGNyZWEgdW5hIE9icmEgQ29sZWN0aXZhLCBwcmV2aW8gYXZpc28gZGUgY3VhbHF1aWVyIExpY2VuY2lhbnRlIGRlYmUsIGVuIGxhIG1lZGlkYSBkZSBsbyBwb3NpYmxlLCBlbGltaW5hciBkZSBsYSBPYnJhIENvbGVjdGl2YSBjdWFscXVpZXIgcmVmZXJlbmNpYSBhIGRpY2hvIExpY2VuY2lhbnRlIG8gYWwgQXV0b3IgT3JpZ2luYWwsIHNlZ8O6biBsbyBzb2xpY2l0YWRvIHBvciBlbCBMaWNlbmNpYW50ZSB5IGNvbmZvcm1lIGxvIGV4aWdlIGxhIGNsw6F1c3VsYSA0KGMpLgpiLiBVc3RlZCBubyBwdWVkZSBlamVyY2VyIG5pbmd1bm8gZGUgbG9zIGRlcmVjaG9zIHF1ZSBsZSBoYW4gc2lkbyBvdG9yZ2Fkb3MgZW4gbGEgU2VjY2nDs24gMyBwcmVjZWRlbnRlIGRlIG1vZG8gcXVlIGVzdMOpbiBwcmluY2lwYWxtZW50ZSBkZXN0aW5hZG9zIG8gZGlyZWN0YW1lbnRlIGRpcmlnaWRvcyBhIGNvbnNlZ3VpciB1biBwcm92ZWNobyBjb21lcmNpYWwgbyB1bmEgY29tcGVuc2FjacOzbiBtb25ldGFyaWEgcHJpdmFkYS4gRWwgaW50ZXJjYW1iaW8gZGUgbGEgT2JyYSBwb3Igb3RyYXMgb2JyYXMgcHJvdGVnaWRhcyBwb3IgZGVyZWNob3MgZGUgYXV0b3IsIHlhIHNlYSBhIHRyYXbDqXMgZGUgdW4gc2lzdGVtYSBwYXJhIGNvbXBhcnRpciBhcmNoaXZvcyBkaWdpdGFsZXMgKGRpZ2l0YWwgZmlsZS1zaGFyaW5nKSBvIGRlIGN1YWxxdWllciBvdHJhIG1hbmVyYSBubyBzZXLDoSBjb25zaWRlcmFkbyBjb21vIGVzdGFyIGRlc3RpbmFkbyBwcmluY2lwYWxtZW50ZSBvIGRpcmlnaWRvIGRpcmVjdGFtZW50ZSBhIGNvbnNlZ3VpciB1biBwcm92ZWNobyBjb21lcmNpYWwgbyB1bmEgY29tcGVuc2FjacOzbiBtb25ldGFyaWEgcHJpdmFkYSwgc2llbXByZSBxdWUgbm8gc2UgcmVhbGljZSB1biBwYWdvIG1lZGlhbnRlIHVuYSBjb21wZW5zYWNpw7NuIG1vbmV0YXJpYSBlbiByZWxhY2nDs24gY29uIGVsIGludGVyY2FtYmlvIGRlIG9icmFzIHByb3RlZ2lkYXMgcG9yIGVsIGRlcmVjaG8gZGUgYXV0b3IuCmMuIFNpIHVzdGVkIGRpc3RyaWJ1eWUsIGV4aGliZSBww7pibGljYW1lbnRlLCBlamVjdXRhIHDDumJsaWNhbWVudGUgbyBlamVjdXRhIHDDumJsaWNhbWVudGUgZW4gZm9ybWEgZGlnaXRhbCBsYSBPYnJhIG8gY3VhbHF1aWVyIE9icmEgRGVyaXZhZGEgdSBPYnJhIENvbGVjdGl2YSwgVXN0ZWQgZGViZSBtYW50ZW5lciBpbnRhY3RhIHRvZGEgbGEgaW5mb3JtYWNpw7NuIGRlIGRlcmVjaG8gZGUgYXV0b3IgZGUgbGEgT2JyYSB5IHByb3BvcmNpb25hciwgZGUgZm9ybWEgcmF6b25hYmxlIHNlZ8O6biBlbCBtZWRpbyBvIG1hbmVyYSBxdWUgVXN0ZWQgZXN0w6kgdXRpbGl6YW5kbzogKGkpIGVsIG5vbWJyZSBkZWwgQXV0b3IgT3JpZ2luYWwgc2kgZXN0w6EgcHJvdmlzdG8gKG8gc2V1ZMOzbmltbywgc2kgZnVlcmUgYXBsaWNhYmxlKSwgeS9vIChpaSkgZWwgbm9tYnJlIGRlIGxhIHBhcnRlIG8gbGFzIHBhcnRlcyBxdWUgZWwgQXV0b3IgT3JpZ2luYWwgeS9vIGVsIExpY2VuY2lhbnRlIGh1YmllcmVuIGRlc2lnbmFkbyBwYXJhIGxhIGF0cmlidWNpw7NuICh2LmcuLCB1biBpbnN0aXR1dG8gcGF0cm9jaW5hZG9yLCBlZGl0b3JpYWwsIHB1YmxpY2FjacOzbikgZW4gbGEgaW5mb3JtYWNpw7NuIGRlIGxvcyBkZXJlY2hvcyBkZSBhdXRvciBkZWwgTGljZW5jaWFudGUsIHTDqXJtaW5vcyBkZSBzZXJ2aWNpb3MgbyBkZSBvdHJhcyBmb3JtYXMgcmF6b25hYmxlczsgZWwgdMOtdHVsbyBkZSBsYSBPYnJhIHNpIGVzdMOhIHByb3Zpc3RvOyBlbiBsYSBtZWRpZGEgZGUgbG8gcmF6b25hYmxlbWVudGUgZmFjdGlibGUgeSwgc2kgZXN0w6EgcHJvdmlzdG8sIGVsIElkZW50aWZpY2Fkb3IgVW5pZm9ybWUgZGUgUmVjdXJzb3MgKFVuaWZvcm0gUmVzb3VyY2UgSWRlbnRpZmllcikgcXVlIGVsIExpY2VuY2lhbnRlIGVzcGVjaWZpY2EgcGFyYSBzZXIgYXNvY2lhZG8gY29uIGxhIE9icmEsIHNhbHZvIHF1ZSB0YWwgVVJJIG5vIHNlIHJlZmllcmEgYSBsYSBub3RhIHNvYnJlIGxvcyBkZXJlY2hvcyBkZSBhdXRvciBvIGEgbGEgaW5mb3JtYWNpw7NuIHNvYnJlIGVsIGxpY2VuY2lhbWllbnRvIGRlIGxhIE9icmE7IHkgZW4gZWwgY2FzbyBkZSB1bmEgT2JyYSBEZXJpdmFkYSwgYXRyaWJ1aXIgZWwgY3LDqWRpdG8gaWRlbnRpZmljYW5kbyBlbCB1c28gZGUgbGEgT2JyYSBlbiBsYSBPYnJhIERlcml2YWRhICh2LmcuLCAiVHJhZHVjY2nDs24gRnJhbmNlc2EgZGUgbGEgT2JyYSBkZWwgQXV0b3IgT3JpZ2luYWwsIiBvICJHdWnDs24gQ2luZW1hdG9ncsOhZmljbyBiYXNhZG8gZW4gbGEgT2JyYSBvcmlnaW5hbCBkZWwgQXV0b3IgT3JpZ2luYWwiKS4gVGFsIGNyw6lkaXRvIHB1ZWRlIHNlciBpbXBsZW1lbnRhZG8gZGUgY3VhbHF1aWVyIGZvcm1hIHJhem9uYWJsZTsgZW4gZWwgY2Fzbywgc2luIGVtYmFyZ28sIGRlIE9icmFzIERlcml2YWRhcyB1IE9icmFzIENvbGVjdGl2YXMsIHRhbCBjcsOpZGl0byBhcGFyZWNlcsOhLCBjb21vIG3DrW5pbW8sIGRvbmRlIGFwYXJlY2UgZWwgY3LDqWRpdG8gZGUgY3VhbHF1aWVyIG90cm8gYXV0b3IgY29tcGFyYWJsZSB5IGRlIHVuYSBtYW5lcmEsIGFsIG1lbm9zLCB0YW4gZGVzdGFjYWRhIGNvbW8gZWwgY3LDqWRpdG8gZGUgb3RybyBhdXRvciBjb21wYXJhYmxlLiAgCmQuIFBhcmEgZXZpdGFyIHRvZGEgY29uZnVzacOzbiwgZWwgTGljZW5jaWFudGUgYWNsYXJhIHF1ZSwgY3VhbmRvIGxhIG9icmEgZXMgdW5hIGNvbXBvc2ljacOzbiBtdXNpY2FsOgoKaS4gUmVnYWzDrWFzIHBvciBpbnRlcnByZXRhY2nDs24geSBlamVjdWNpw7NuIGJham8gbGljZW5jaWFzIGdlbmVyYWxlcy4gRWwgTGljZW5jaWFudGUgc2UgcmVzZXJ2YSBlbCBkZXJlY2hvIGV4Y2x1c2l2byBkZSBhdXRvcml6YXIgbGEgZWplY3VjacOzbiBww7pibGljYSBvIGxhIGVqZWN1Y2nDs24gcMO6YmxpY2EgZGlnaXRhbCBkZSBsYSBvYnJhIHkgZGUgcmVjb2xlY3Rhciwgc2VhIGluZGl2aWR1YWxtZW50ZSBvIGEgdHJhdsOpcyBkZSB1bmEgc29jaWVkYWQgZGUgZ2VzdGnDs24gY29sZWN0aXZhIGRlIGRlcmVjaG9zIGRlIGF1dG9yIHkgZGVyZWNob3MgY29uZXhvcyAocG9yIGVqZW1wbG8sIFNBWUNPKSwgbGFzIHJlZ2Fsw61hcyBwb3IgbGEgZWplY3VjacOzbiBww7pibGljYSBvIHBvciBsYSBlamVjdWNpw7NuIHDDumJsaWNhIGRpZ2l0YWwgZGUgbGEgb2JyYSAocG9yIGVqZW1wbG8gV2ViY2FzdCkgbGljZW5jaWFkYSBiYWpvIGxpY2VuY2lhcyBnZW5lcmFsZXMsIHNpIGxhIGludGVycHJldGFjacOzbiBvIGVqZWN1Y2nDs24gZGUgbGEgb2JyYSBlc3TDoSBwcmltb3JkaWFsbWVudGUgb3JpZW50YWRhIHBvciBvIGRpcmlnaWRhIGEgbGEgb2J0ZW5jacOzbiBkZSB1bmEgdmVudGFqYSBjb21lcmNpYWwgbyB1bmEgY29tcGVuc2FjacOzbiBtb25ldGFyaWEgcHJpdmFkYS4KaWkuIFJlZ2Fsw61hcyBwb3IgRm9ub2dyYW1hcy4gRWwgTGljZW5jaWFudGUgc2UgcmVzZXJ2YSBlbCBkZXJlY2hvIGV4Y2x1c2l2byBkZSByZWNvbGVjdGFyLCBpbmRpdmlkdWFsbWVudGUgbyBhIHRyYXbDqXMgZGUgdW5hIHNvY2llZGFkIGRlIGdlc3Rpw7NuIGNvbGVjdGl2YSBkZSBkZXJlY2hvcyBkZSBhdXRvciB5IGRlcmVjaG9zIGNvbmV4b3MgKHBvciBlamVtcGxvLCBsb3MgY29uc2FncmFkb3MgcG9yIGxhIFNBWUNPKSwgdW5hIGFnZW5jaWEgZGUgZGVyZWNob3MgbXVzaWNhbGVzIG8gYWxnw7puIGFnZW50ZSBkZXNpZ25hZG8sIGxhcyByZWdhbMOtYXMgcG9yIGN1YWxxdWllciBmb25vZ3JhbWEgcXVlIFVzdGVkIGNyZWUgYSBwYXJ0aXIgZGUgbGEgb2JyYSAo4oCcdmVyc2nDs24gY292ZXLigJ0pIHkgZGlzdHJpYnV5YSwgZW4gbG9zIHTDqXJtaW5vcyBkZWwgcsOpZ2ltZW4gZGUgZGVyZWNob3MgZGUgYXV0b3IsIHNpIGxhIGNyZWFjacOzbiBvIGRpc3RyaWJ1Y2nDs24gZGUgZXNhIHZlcnNpw7NuIGNvdmVyIGVzdMOhIHByaW1vcmRpYWxtZW50ZSBkZXN0aW5hZGEgbyBkaXJpZ2lkYSBhIG9idGVuZXIgdW5hIHZlbnRhamEgY29tZXJjaWFsIG8gdW5hIGNvbXBlbnNhY2nDs24gbW9uZXRhcmlhIHByaXZhZGEuCiAgICAgIAplLiBHZXN0acOzbiBkZSBEZXJlY2hvcyBkZSBBdXRvciBzb2JyZSBJbnRlcnByZXRhY2lvbmVzIHkgRWplY3VjaW9uZXMgRGlnaXRhbGVzIChXZWJDYXN0aW5nKS4gUGFyYSBldml0YXIgdG9kYSBjb25mdXNpw7NuLCBlbCBMaWNlbmNpYW50ZSBhY2xhcmEgcXVlLCBjdWFuZG8gbGEgb2JyYSBzZWEgdW4gZm9ub2dyYW1hLCBlbCBMaWNlbmNpYW50ZSBzZSByZXNlcnZhIGVsIGRlcmVjaG8gZXhjbHVzaXZvIGRlIGF1dG9yaXphciBsYSBlamVjdWNpw7NuIHDDumJsaWNhIGRpZ2l0YWwgZGUgbGEgb2JyYSAocG9yIGVqZW1wbG8sIHdlYmNhc3QpIHkgZGUgcmVjb2xlY3RhciwgaW5kaXZpZHVhbG1lbnRlIG8gYSB0cmF2w6lzIGRlIHVuYSBzb2NpZWRhZCBkZSBnZXN0acOzbiBjb2xlY3RpdmEgZGUgZGVyZWNob3MgZGUgYXV0b3IgeSBkZXJlY2hvcyBjb25leG9zIChwb3IgZWplbXBsbywgQUNJTlBSTyksIGxhcyByZWdhbMOtYXMgcG9yIGxhIGVqZWN1Y2nDs24gcMO6YmxpY2EgZGlnaXRhbCBkZSBsYSBvYnJhIChwb3IgZWplbXBsbywgd2ViY2FzdCksIHN1amV0YSBhIGxhcyBkaXNwb3NpY2lvbmVzIGFwbGljYWJsZXMgZGVsIHLDqWdpbWVuIGRlIERlcmVjaG8gZGUgQXV0b3IsIHNpIGVzdGEgZWplY3VjacOzbiBww7pibGljYSBkaWdpdGFsIGVzdMOhIHByaW1vcmRpYWxtZW50ZSBkaXJpZ2lkYSBhIG9idGVuZXIgdW5hIHZlbnRhamEgY29tZXJjaWFsIG8gdW5hIGNvbXBlbnNhY2nDs24gbW9uZXRhcmlhIHByaXZhZGEuCiAgCjUuIFJlcHJlc2VudGFjaW9uZXMsIEdhcmFudMOtYXMgeSBMaW1pdGFjaW9uZXMgZGUgUmVzcG9uc2FiaWxpZGFkLgpBIE1FTk9TIFFVRSBMQVMgUEFSVEVTIExPIEFDT1JEQVJBTiBERSBPVFJBIEZPUk1BIFBPUiBFU0NSSVRPLCBFTCBMSUNFTkNJQU5URSBPRlJFQ0UgTEEgT0JSQSAoRU4gRUwgRVNUQURPIEVOIEVMIFFVRSBTRSBFTkNVRU5UUkEpIOKAnFRBTCBDVUFM4oCdLCBTSU4gQlJJTkRBUiBHQVJBTlTDjUFTIERFIENMQVNFIEFMR1VOQSBSRVNQRUNUTyBERSBMQSBPQlJBLCBZQSBTRUEgRVhQUkVTQSwgSU1QTMONQ0lUQSwgTEVHQUwgTyBDVUFMUVVJRVJBIE9UUkEsIElOQ0xVWUVORE8sIFNJTiBMSU1JVEFSU0UgQSBFTExBUywgR0FSQU5Uw41BUyBERSBUSVRVTEFSSURBRCwgQ09NRVJDSUFCSUxJREFELCBBREFQVEFCSUxJREFEIE8gQURFQ1VBQ0nDk04gQSBQUk9Qw5NTSVRPIERFVEVSTUlOQURPLCBBVVNFTkNJQSBERSBJTkZSQUNDScOTTiwgREUgQVVTRU5DSUEgREUgREVGRUNUT1MgTEFURU5URVMgTyBERSBPVFJPIFRJUE8sIE8gTEEgUFJFU0VOQ0lBIE8gQVVTRU5DSUEgREUgRVJST1JFUywgU0VBTiBPIE5PIERFU0NVQlJJQkxFUyAoUFVFREFOIE8gTk8gU0VSIEVTVE9TIERFU0NVQklFUlRPUykuIEFMR1VOQVMgSlVSSVNESUNDSU9ORVMgTk8gUEVSTUlURU4gTEEgRVhDTFVTScOTTiBERSBHQVJBTlTDjUFTIElNUEzDjUNJVEFTLCBFTiBDVVlPIENBU08gRVNUQSBFWENMVVNJw5NOIFBVRURFIE5PIEFQTElDQVJTRSBBIFVTVEVELgogIAo2LiBMaW1pdGFjacOzbiBkZSByZXNwb25zYWJpbGlkYWQuCkEgTUVOT1MgUVVFIExPIEVYSUpBIEVYUFJFU0FNRU5URSBMQSBMRVkgQVBMSUNBQkxFLCBFTCBMSUNFTkNJQU5URSBOTyBTRVLDgSBSRVNQT05TQUJMRSBBTlRFIFVTVEVEIFBPUiBEQcORTyBBTEdVTk8sIFNFQSBQT1IgUkVTUE9OU0FCSUxJREFEIEVYVFJBQ09OVFJBQ1RVQUwsIFBSRUNPTlRSQUNUVUFMIE8gQ09OVFJBQ1RVQUwsIE9CSkVUSVZBIE8gU1VCSkVUSVZBLCBTRSBUUkFURSBERSBEQcORT1MgTU9SQUxFUyBPIFBBVFJJTU9OSUFMRVMsIERJUkVDVE9TIE8gSU5ESVJFQ1RPUywgUFJFVklTVE9TIE8gSU1QUkVWSVNUT1MgUFJPRFVDSURPUyBQT1IgRUwgVVNPIERFIEVTVEEgTElDRU5DSUEgTyBERSBMQSBPQlJBLCBBVU4gQ1VBTkRPIEVMIExJQ0VOQ0lBTlRFIEhBWUEgU0lETyBBRFZFUlRJRE8gREUgTEEgUE9TSUJJTElEQUQgREUgRElDSE9TIERBw5FPUy4gQUxHVU5BUyBMRVlFUyBOTyBQRVJNSVRFTiBMQSBFWENMVVNJw5NOIERFIENJRVJUQSBSRVNQT05TQUJJTElEQUQsIEVOIENVWU8gQ0FTTyBFU1RBIEVYQ0xVU0nDk04gUFVFREUgTk8gQVBMSUNBUlNFIEEgVVNURUQuCiAgCjcuIFTDqXJtaW5vLgkKYS4gRXN0YSBMaWNlbmNpYSB5IGxvcyBkZXJlY2hvcyBvdG9yZ2Fkb3MgZW4gdmlydHVkIGRlIGVsbGEgdGVybWluYXLDoW4gYXV0b23DoXRpY2FtZW50ZSBzaSBVc3RlZCBpbmZyaW5nZSBhbGd1bmEgY29uZGljacOzbiBlc3RhYmxlY2lkYSBlbiBlbGxhLiBTaW4gZW1iYXJnbywgbG9zIGluZGl2aWR1b3MgbyBlbnRpZGFkZXMgcXVlIGhhbiByZWNpYmlkbyBPYnJhcyBEZXJpdmFkYXMgbyBDb2xlY3RpdmFzIGRlIFVzdGVkIGRlIGNvbmZvcm1pZGFkIGNvbiBlc3RhIExpY2VuY2lhLCBubyB2ZXLDoW4gdGVybWluYWRhcyBzdXMgbGljZW5jaWFzLCBzaWVtcHJlIHF1ZSBlc3RvcyBpbmRpdmlkdW9zIG8gZW50aWRhZGVzIHNpZ2FuIGN1bXBsaWVuZG8gw61udGVncmFtZW50ZSBsYXMgY29uZGljaW9uZXMgZGUgZXN0YXMgbGljZW5jaWFzLiBMYXMgU2VjY2lvbmVzIDEsIDIsIDUsIDYsIDcsIHkgOCBzdWJzaXN0aXLDoW4gYSBjdWFscXVpZXIgdGVybWluYWNpw7NuIGRlIGVzdGEgTGljZW5jaWEuCmIuIFN1amV0YSBhIGxhcyBjb25kaWNpb25lcyB5IHTDqXJtaW5vcyBhbnRlcmlvcmVzLCBsYSBsaWNlbmNpYSBvdG9yZ2FkYSBhcXXDrSBlcyBwZXJwZXR1YSAoZHVyYW50ZSBlbCBwZXLDrW9kbyBkZSB2aWdlbmNpYSBkZSBsb3MgZGVyZWNob3MgZGUgYXV0b3IgZGUgbGEgb2JyYSkuIE5vIG9ic3RhbnRlIGxvIGFudGVyaW9yLCBlbCBMaWNlbmNpYW50ZSBzZSByZXNlcnZhIGVsIGRlcmVjaG8gYSBwdWJsaWNhciB5L28gZXN0cmVuYXIgbGEgT2JyYSBiYWpvIGNvbmRpY2lvbmVzIGRlIGxpY2VuY2lhIGRpZmVyZW50ZXMgbyBhIGRlamFyIGRlIGRpc3RyaWJ1aXJsYSBlbiBsb3MgdMOpcm1pbm9zIGRlIGVzdGEgTGljZW5jaWEgZW4gY3VhbHF1aWVyIG1vbWVudG87IGVuIGVsIGVudGVuZGlkbywgc2luIGVtYmFyZ28sIHF1ZSBlc2EgZWxlY2Npw7NuIG5vIHNlcnZpcsOhIHBhcmEgcmV2b2NhciBlc3RhIGxpY2VuY2lhIG8gcXVlIGRlYmEgc2VyIG90b3JnYWRhICwgYmFqbyBsb3MgdMOpcm1pbm9zIGRlIGVzdGEgbGljZW5jaWEpLCB5IGVzdGEgbGljZW5jaWEgY29udGludWFyw6EgZW4gcGxlbm8gdmlnb3IgeSBlZmVjdG8gYSBtZW5vcyBxdWUgc2VhIHRlcm1pbmFkYSBjb21vIHNlIGV4cHJlc2EgYXRyw6FzLiBMYSBMaWNlbmNpYSByZXZvY2FkYSBjb250aW51YXLDoSBzaWVuZG8gcGxlbmFtZW50ZSB2aWdlbnRlIHkgZWZlY3RpdmEgc2kgbm8gc2UgbGUgZGEgdMOpcm1pbm8gZW4gbGFzIGNvbmRpY2lvbmVzIGluZGljYWRhcyBhbnRlcmlvcm1lbnRlLgogIAo4LiBWYXJpb3MuCmEuIENhZGEgdmV6IHF1ZSBVc3RlZCBkaXN0cmlidXlhIG8gcG9uZ2EgYSBkaXNwb3NpY2nDs24gcMO6YmxpY2EgbGEgT2JyYSBvIHVuYSBPYnJhIENvbGVjdGl2YSwgZWwgTGljZW5jaWFudGUgb2ZyZWNlcsOhIGFsIGRlc3RpbmF0YXJpbyB1bmEgbGljZW5jaWEgZW4gbG9zIG1pc21vcyB0w6lybWlub3MgeSBjb25kaWNpb25lcyBxdWUgbGEgbGljZW5jaWEgb3RvcmdhZGEgYSBVc3RlZCBiYWpvIGVzdGEgTGljZW5jaWEuCmIuIFNpIGFsZ3VuYSBkaXNwb3NpY2nDs24gZGUgZXN0YSBMaWNlbmNpYSByZXN1bHRhIGludmFsaWRhZGEgbyBubyBleGlnaWJsZSwgc2Vnw7puIGxhIGxlZ2lzbGFjacOzbiB2aWdlbnRlLCBlc3RvIG5vIGFmZWN0YXLDoSBuaSBsYSB2YWxpZGV6IG5pIGxhIGFwbGljYWJpbGlkYWQgZGVsIHJlc3RvIGRlIGNvbmRpY2lvbmVzIGRlIGVzdGEgTGljZW5jaWEgeSwgc2luIGFjY2nDs24gYWRpY2lvbmFsIHBvciBwYXJ0ZSBkZSBsb3Mgc3VqZXRvcyBkZSBlc3RlIGFjdWVyZG8sIGFxdcOpbGxhIHNlIGVudGVuZGVyw6EgcmVmb3JtYWRhIGxvIG3DrW5pbW8gbmVjZXNhcmlvIHBhcmEgaGFjZXIgcXVlIGRpY2hhIGRpc3Bvc2ljacOzbiBzZWEgdsOhbGlkYSB5IGV4aWdpYmxlLgpjLiBOaW5nw7puIHTDqXJtaW5vIG8gZGlzcG9zaWNpw7NuIGRlIGVzdGEgTGljZW5jaWEgc2UgZXN0aW1hcsOhIHJlbnVuY2lhZGEgeSBuaW5ndW5hIHZpb2xhY2nDs24gZGUgZWxsYSBzZXLDoSBjb25zZW50aWRhIGEgbWVub3MgcXVlIGVzYSByZW51bmNpYSBvIGNvbnNlbnRpbWllbnRvIHNlYSBvdG9yZ2FkbyBwb3IgZXNjcml0byB5IGZpcm1hZG8gcG9yIGxhIHBhcnRlIHF1ZSByZW51bmNpZSBvIGNvbnNpZW50YS4KZC4gRXN0YSBMaWNlbmNpYSByZWZsZWphIGVsIGFjdWVyZG8gcGxlbm8gZW50cmUgbGFzIHBhcnRlcyByZXNwZWN0byBhIGxhIE9icmEgYXF1w60gbGljZW5jaWFkYS4gTm8gaGF5IGFycmVnbG9zLCBhY3VlcmRvcyBvIGRlY2xhcmFjaW9uZXMgcmVzcGVjdG8gYSBsYSBPYnJhIHF1ZSBubyBlc3TDqW4gZXNwZWNpZmljYWRvcyBlbiBlc3RlIGRvY3VtZW50by4gRWwgTGljZW5jaWFudGUgbm8gc2UgdmVyw6EgbGltaXRhZG8gcG9yIG5pbmd1bmEgZGlzcG9zaWNpw7NuIGFkaWNpb25hbCBxdWUgcHVlZGEgc3VyZ2lyIGVuIGFsZ3VuYSBjb211bmljYWNpw7NuIGVtYW5hZGEgZGUgVXN0ZWQuIEVzdGEgTGljZW5jaWEgbm8gcHVlZGUgc2VyIG1vZGlmaWNhZGEgc2luIGVsIGNvbnNlbnRpbWllbnRvIG11dHVvIHBvciBlc2NyaXRvIGRlbCBMaWNlbmNpYW50ZSB5IFVzdGVkLgo= |
