Innovación abierta entrante y desempeño innovador digital: el rol del aprendizaje del fracaso en innovación generado por los insights descriptivos, predictivos y prescriptivos

Este artículo analiza el efecto moderador de los insights descriptivos, predictivos y prescriptivos basados en datos en el efecto combinado del aprendizaje del fracaso en innovación y la innovación abierta entrante en el desempeño innovador digital. El modelo de investigación se testeó en una muestr...

Full description

Autores:
Vélez Jaramillo, Juan Daniel
Velásquez Sofan, Duvan Alexis
Tipo de recurso:
Fecha de publicación:
2025
Institución:
Universidad de Antioquia
Repositorio:
Repositorio UdeA
Idioma:
spa
OAI Identifier:
oai:bibliotecadigital.udea.edu.co:10495/46766
Acceso en línea:
https://hdl.handle.net/10495/46766
Palabra clave:
Aprendizaje organizacional
Organizational learning
Aprendizaje del fracaso en innovación
Innovación abierta
Innovación digital
Insights basados en datos
Gestión de la innovación
ODS 9: Industria, innovación e infraestructura. Construir infraestructuras resilientes, promover la industrialización inclusiva y sostenible y fomentar la innovación
Rights
embargoedAccess
License
http://creativecommons.org/licenses/by-nc-sa/4.0/
id UDEA2_2022475230496e3325a145ac8f3bf208
oai_identifier_str oai:bibliotecadigital.udea.edu.co:10495/46766
network_acronym_str UDEA2
network_name_str Repositorio UdeA
repository_id_str
dc.title.spa.fl_str_mv Innovación abierta entrante y desempeño innovador digital: el rol del aprendizaje del fracaso en innovación generado por los insights descriptivos, predictivos y prescriptivos
title Innovación abierta entrante y desempeño innovador digital: el rol del aprendizaje del fracaso en innovación generado por los insights descriptivos, predictivos y prescriptivos
spellingShingle Innovación abierta entrante y desempeño innovador digital: el rol del aprendizaje del fracaso en innovación generado por los insights descriptivos, predictivos y prescriptivos
Aprendizaje organizacional
Organizational learning
Aprendizaje del fracaso en innovación
Innovación abierta
Innovación digital
Insights basados en datos
Gestión de la innovación
ODS 9: Industria, innovación e infraestructura. Construir infraestructuras resilientes, promover la industrialización inclusiva y sostenible y fomentar la innovación
title_short Innovación abierta entrante y desempeño innovador digital: el rol del aprendizaje del fracaso en innovación generado por los insights descriptivos, predictivos y prescriptivos
title_full Innovación abierta entrante y desempeño innovador digital: el rol del aprendizaje del fracaso en innovación generado por los insights descriptivos, predictivos y prescriptivos
title_fullStr Innovación abierta entrante y desempeño innovador digital: el rol del aprendizaje del fracaso en innovación generado por los insights descriptivos, predictivos y prescriptivos
title_full_unstemmed Innovación abierta entrante y desempeño innovador digital: el rol del aprendizaje del fracaso en innovación generado por los insights descriptivos, predictivos y prescriptivos
title_sort Innovación abierta entrante y desempeño innovador digital: el rol del aprendizaje del fracaso en innovación generado por los insights descriptivos, predictivos y prescriptivos
dc.creator.fl_str_mv Vélez Jaramillo, Juan Daniel
Velásquez Sofan, Duvan Alexis
dc.contributor.advisor.none.fl_str_mv Arias Pérez, José Enrique
dc.contributor.author.none.fl_str_mv Vélez Jaramillo, Juan Daniel
Velásquez Sofan, Duvan Alexis
dc.subject.lemb.none.fl_str_mv Aprendizaje organizacional
Organizational learning
topic Aprendizaje organizacional
Organizational learning
Aprendizaje del fracaso en innovación
Innovación abierta
Innovación digital
Insights basados en datos
Gestión de la innovación
ODS 9: Industria, innovación e infraestructura. Construir infraestructuras resilientes, promover la industrialización inclusiva y sostenible y fomentar la innovación
dc.subject.proposal.spa.fl_str_mv Aprendizaje del fracaso en innovación
Innovación abierta
Innovación digital
Insights basados en datos
dc.subject.proposal.none.fl_str_mv Gestión de la innovación
dc.subject.ods.none.fl_str_mv ODS 9: Industria, innovación e infraestructura. Construir infraestructuras resilientes, promover la industrialización inclusiva y sostenible y fomentar la innovación
description Este artículo analiza el efecto moderador de los insights descriptivos, predictivos y prescriptivos basados en datos en el efecto combinado del aprendizaje del fracaso en innovación y la innovación abierta entrante en el desempeño innovador digital. El modelo de investigación se testeó en una muestra de 197 empresas colombianas pertenecientes a sectores de media y alta intensidad digital a través de ecuaciones estructurales mediante el método de mínimos cuadrados parciales. Los resultados sugieren que el aprendizaje del fracaso en innovación provoca un trauma que deteriora la capacidad organizacional de explotar recursos internos y externos para la innovación digital. Además, los hallazgos sugieren que los insights descriptivo y predictivo son generadores de conocimiento que es insuficiente para corregir este estado de parálisis, mientras el prescriptivo produce insights accionables que proveen una seguridad reforzada al actuar, dotando el aprendizaje del fracaso en innovación de una connotación positiva. Estos hallazgos expanden la literatura sobre el fracaso en innovación como una fuente adicional de conocimiento que se soporta en herramientas de analítica de datos para fortalecer el conocimiento organizacional y la capacidad de seleccionar, complementar y explotar el conocimiento externo para optimizar el desempeño innovador digital.
publishDate 2025
dc.date.accessioned.none.fl_str_mv 2025-07-15T22:48:52Z
dc.date.issued.none.fl_str_mv 2025
dc.date.available.none.fl_str_mv 2027-06-11
dc.type.none.fl_str_mv Trabajo de grado - Maestría
dc.type.redcol.none.fl_str_mv http://purl.org/redcol/resource_type/TM
dc.type.content.none.fl_str_mv Text
dc.type.coarversion.none.fl_str_mv http://purl.org/coar/version/c_b1a7d7d4d402bcce
dc.type.driver.none.fl_str_mv info:eu-repo/semantics/masterThesis
dc.type.version.none.fl_str_mv info:eu-repo/semantics/draft
status_str draft
dc.identifier.citation.none.fl_str_mv Vélez Jaramillo, J. D, & Velásquez Sofan, D. A. (2025). Innovación abierta entrante y desempeño innovador digital: el rol del aprendizaje del fracaso en innovación generado por los insights descriptivos, predictivos y prescriptivos [Tesis de maestría]. Universidad de Antioquia, Medellín, Colombia.
dc.identifier.uri.none.fl_str_mv https://hdl.handle.net/10495/46766
identifier_str_mv Vélez Jaramillo, J. D, & Velásquez Sofan, D. A. (2025). Innovación abierta entrante y desempeño innovador digital: el rol del aprendizaje del fracaso en innovación generado por los insights descriptivos, predictivos y prescriptivos [Tesis de maestría]. Universidad de Antioquia, Medellín, Colombia.
url https://hdl.handle.net/10495/46766
dc.language.iso.none.fl_str_mv spa
language spa
dc.relation.references.none.fl_str_mv Abadía, S., & Avila, O. (2024). A Preliminary Analysis of the Adoption of Intelligent Information Systems in Colombia. In Enterprise Innovation Systems, 3–20. https://doi.org/10.1007/978-3-031-64748-2_1
Al-Okaily, M., & Al-Okaily, A. (2024). Financial data modeling: an analysis of factors influencing big data analytics-driven financial decision quality. Journal of Modelling in Management. https://doi.org/10.1108/JM2-08-2023-0183
Alsaad, A., Selem, K. M., Alam, M. M., & Melhim, L. K. B. (2022). Linking business intelligence with the performance of new service products: Insight from a dynamic capabilities perspective. Journal of Innovation and Knowledge, 7(4). https://doi.org/10.1016/j.jik.2022.100262
Amankwah-Amoah, J., & Adomako, S. (2019). Big data analytics and business failures in data-Rich environments: An organizing framework. Computers in Industry, 105, 204–212. https://doi.org/10.1016/j.compind.2018.12.015
Ancarani, A., Di Mauro, C., Legenvre, H., & Cardella, M. S. (2020). Internet of things adoption: a typology of projects. International Journal of Operations and Production Management, 40(6), 849–872. https://doi.org/10.1108/IJOPM-01-2019-0095
Appio, F. P., Capo, F., & Annosi, M. C. (2024). Not all (innovation) failures are created equal: A typology of companies’ responses to the consequences of innovation failure. Technovation, 130. https://doi.org/10.1016/j.technovation.2023.102937
Arias-Pérez, J., & Vélez-Jaramillo, J. (2022). Ignoring the three-way interaction of digital orientation, Not-invented-here syndrome and employee’s artificial intelligence awareness in digital innovation performance: A recipe for failure. Technological Forecasting and Social Change, 174. https://doi.org/10.1016/j.techfore.2021.121305
Awan, U., Bhatti, S. H., Shamim, S., Khan, Z., Akhtar, P., & Balta, M. E. (2022). The Role of Big Data Analytics in Manufacturing Agility and Performance: Moderation–Mediation Analysis of Organizational Creativity and of the Involvement of Customers as Data Analysts. British Journal of Management, 33(3), 1200–1220. https://doi.org/10.1111/1467-8551.12549
Awan, U., Shamim, S., Khan, Z., Zia, N. U., Shariq, S. M., & Khan, M. N. (2021). Big data analytics capability and decision-making: The role of data-driven insight on circular economy performance. Technological Forecasting and Social Change, 168. https://doi.org/10.1016/j.techfore.2021.120766
Balzano, M., & Marzi, G. (2023). Exploring the pathways of learning from project failure and success in new product development teams. Technovation, 128. https://doi.org/10.1016/j.technovation.2023.102878
Baxter, D., Trott, P., & Ellwood, P. (2023). Reconceptualising innovation failure. Research Policy, 52(7). https://doi.org/10.1016/j.respol.2023.104811
Bong, K. H., & Park, J. (2024). Revisiting the Failure-Innovation Performance Relationship: A Quantile Regression Evidence From Korean SME. IEEE Transactions on Engineering Management, 71, 5899–5906. https://doi.org/10.1109/TEM.2024.3370726
Calvino, F., Criscuolo, C., Marcolin, L., & Squicciarini, M. (2018). “A taxonomy of digital intensive sectors”, OECD Science, Technology and Industry Working Papers. In OECD Science, Technology and Industry Working Papers (14). OECD Publishing. https://doi.org/10.1787/f404736a-en
Chang, C. H., Chen, Y. S., & Tseng, C. W. (2024). Digital transformation anxiety: absorptive capacity, dynamic capability, and digital innovation performance. Management Decision. https://doi.org/10.1108/MD-08-2023-1363
Chatterjee, S., Chaudhuri, R., Mariani, M., & Fosso Wamba, S. (2023). The consequences of innovation failure: An innovation capabilities and dynamic capabilities perspective. Technovation, 128. https://doi.org/10.1016/j.technovation.2023.102858
Chaudhary, S., Kaur, P., Talwar, S., Islam, N., & Dhir, A. (2022). Way off the mark? Open innovation failures: Decoding what really matters to chart the future course of action. Journal of Business Research, 142, 1010–1025. https://doi.org/10.1016/j.jbusres.2021.12.062
Cheng, C. C. J., & Shiu, E. C. (2015). The inconvenient truth of the relationship between open innovation activities and innovation performance. Management Decision, 53(3), 625–647. https://doi.org/10.1108/MD-03-2014-0163
Cheng, C. C. J., & Shiu, E. C. (2023). The relative values of big data analytics versus traditional marketing analytics to firm innovation: An empirical study. Information and Management, 60(7). https://doi.org/10.1016/j.im.2023.103839
Cillo, P., De Luca, L. M., & Troilo, G. (2010). Market information approaches, product innovativeness, and firm performance: An empirical study in the fashion industry. Research Policy, 39(9), 1242–1252. https://doi.org/10.1016/j.respol.2010.06.004
Ciriello, R. F., Richter, A., & Schwabe, G. (2018). Digital Innovation. Business and Information Systems Engineering, 60(6), 563–569. https://doi.org/10.1007/s12599-0180559-8
Coelho, P., & McClure, J. (2005). Learning from failure. American Journal of Business, 20(1), 13–20. https://doi.org/10.1108/19355181200500001
Corvello, V., Troise, C., Schiuma, G., & Jones, P. (2024). How start-ups translate learning from innovation failure into strategies for growth. Technovation, 134. https://doi.org/10.1016/j.technovation.2024.103051
Cristofaro, M., Giardino, P. L., & Barboni, L. (2025). Growth hacking: A scientific approach for data-driven decision making. Journal of Business Research, 186, 115030. https://doi.org/10.1016/j.jbusres.2024.115030
Deist, M. K., McDowell, W. C., & Bouncken, R. B. (2023). Digital units and digital innovation: Balancing fluidity and stability for the Creation, Conversion, and Dissemination of sticky knowledge. Journal of Business Research, 161. https://doi.org/10.1016/j.jbusres.2023.113827
Delen, D., & Ram, S. (2018). Research challenges and opportunities in business analytics. Journal of Business Analytics, 1(1), 2–12. https://doi.org/10.1080/2573234X.2018.1507324
Fernandez-Pinto, H., Duarte, C. A. M., Villamizar, S. P., & Suarez, J. E. S. (2024). Horizontal innovation: The core of open innovation in the construction of the dynamic capacities in the Colombian industry. Journal of Open Innovation: Technology, Market, and Complexity, 10(1). https://doi.org/10.1016/j.joitmc.2024.100229
Fornell, C., & Larcker, D. F. (1981). Structural Equation Models with Unobservable Variables and Measurement Error: Algebra and Statistics. Journal of Marketing Research, 18(3), 382. https://doi.org/10.2307/3150980
Forth, P., De Laubier, R., Chakraborty, S., Charanya, T., & Magagnoli, M. (2021). Performance and Innovation Are the Rewards of Digital Transformation.
Freisinger, E., & McCarthy, I. P. (2024). What fails and when? A process view of innovation failure. Technovation, 133. https://doi.org/10.1016/j.technovation.2024.102995
Ghasemaghaei, M., & Calic, G. (2019). Does big data enhance firm innovation competency? The mediating role of data-driven insights. Journal of Business Research, 104, 69–84. https://doi.org/10.1016/j.jbusres.2019.07.006
Gooljar, V., Issa, T., Hardin-Ramanan, S., & Abu-Salih, B. (2024). Sentiment-based predictive models for online purchases in the era of marketing 5.0: a systematic review. Journal of Big Data, 11(1). https://doi.org/10.1186/s40537-024-00947-0
Griva, A., & Karagiannaki, A. (2024). Designing business analytics (BA) platforms: tracing the visual redesign process of a startup’s BA platform. Benchmarking: An international Journal. https://doi.org/10.1108/BIJ-06-2024-0517
Guillaume-Joseph, G., & Wasek, J. S. (2015). Improving software project outcomes through predictive analytics: Part 1. IEEE Engineering Management Review, 43(3), 26–38. https://doi.org/10.1109/EMR.2015.2469451
Hair, J. F. ., Hult, G. T. M. ., Ringle, C. M. ., & Sarstedt, M. (2017). A primer on partial least squares structural equation modeling (PLS-SEM). Sage Publications, Los Angeles, C.A.
Hair, J. F., Ringle, C. M., & Sarstedt, M. (2011). PLS-SEM: Indeed a silver bullet. Journal of Marketing Theory and Practice, 19(2), 139–152. https://doi.org/10.2753/MTP10696679190202
Hair, J. F., Risher, J. J., Sarstedt, M., & Ringle, C. M. (2019). When to use and how to report the results of PLS-SEM. European Business Review, 31(1), 2–24. https://doi.org/10.1108/EBR-11-2018-0203
Hair, J., Hult, T., Ringle, C., Sarstedt, M., Danks, N., & Ray, S. (2021). Partial Least Squares Structural Equation Modeling (PLS-SEM) Using R. Springer.
Hayes, Andrew. F. (2022). Introduction to mediation, moderation and conditional process analysis: a regression-based approach (Third edition). Guilford Press.
Hirvonen, M., Kauppi, K., & Liesiö, J. (2024). Identifying enablers for the successful deployment of prescriptive analytics – a multiple case study. European Business Review. https://doi.org/10.1108/EBR-08-2023-0253
Hu, S., Gong, H., & Li, S. (2024). Fail forward: the relationship between innovation failure and breakthrough innovation in the context of knowledge- based capabilities. European Journal of Innovation Management. https://doi.org/10.1108/EJIM-11-2023-0945
Huang, H. C., Lai, M. C., & Huang, W. W. (2015). Resource complementarity, transformative capacity, and inbound open innovation. Journal of Business and Industrial Marketing, 30(7), 842–854. https://doi.org/10.1108/JBIM-09-2013-0191
Huit, G. T. M., Hair, J. F., Proksch, D., Sarstedt, M., Pinkwart, A., & Ringle, C. M. (2018). Addressing endogeneity in international marketing applications of partial least squares structural equation modeling. Journal of International Marketing, 26(3), 1–21. https://doi.org/10.1509/jim.17.0151
Hung, K. P., & Chou, C. (2013). The impact of open innovation on firm performance: The moderating effects of internal R&D and environmental turbulence. Technovation, 33(10–11), 368–380. https://doi.org/10.1016/j.technovation.2013.06.006
Jalali, A., Palalić, R., Razzak, M. R., & Al-Kharusi, S. (2024). Big data analytics, company innovation and risk-taking: influence of absorptive capacity. Management Decision. https://doi.org/10.1108/MD-01-2024-0137
Jank, M.-H., Dölle, C., & Schuh, G. (2019). Product Portfolio Design Using Prescriptive Analytics. In Advances in Production Research, 584–593. Springer International Publishing. https://doi.org/10.1007/978-3-030-03451-1_57
Kim, S. (2021). Mapping social media analytics for small business: A case study of business analytics. International Journal of Fashion Design, Technology and Education, 14(2), 218–231. https://doi.org/10.1080/17543266.2021.1915392
Klein, P., Van der Vegte, W. F., Hribernik, K., & Klaus-Dieter, T. (2019). Towards an approach integrating various levels of data analytics to exploit product-usage information in product development. Proceedings of the International Conference on Engineering Design, ICED, 2019-August, 2627–2636. https://doi.org/10.1017/dsi.2019.269
Kock, N. (2021). Harman’s single factor test in PLS-SEM: Checking for common method bias. Data Analysis Perspectives Journal 2(2). https://www.scriptwarp.com
Kock, N., & Hadaya, P. (2018). Minimum sample size estimation in PLS-SEM: The inverse square root and gamma-exponential methods. Information Systems Journal, 28(1), 227– 261. https://doi.org/10.1111/isj.12131
Lafuente, E., Rabetino, R., & Leiva, J. C. (2024). Learning from success and failure: implications for entrepreneurs, SMEs, and policy. Small Business Economics. https://doi.org/10.1007/s11187-024-00889-0
Mueller, B. A., & Shepherd, D. A. (2016). Making the Most of Failure Experiences: Exploring the Relationship Between Business Failure and the Identification of Business Opportunities. Entrepreneurship: Theory and Practice, 40(3), 457–487. https://doi.org/10.1111/etap.12116
Nestorov, S., Jukić, B., Jukić, N., Sharma, A., & Rossi, S. (2019). Generating insights through data preparation, visualization, and analysis: Framework for combining clustering and data visualization techniques for low-cardinality sequential data. Decision Support Systems, 125. https://doi.org/10.1016/j.dss.2019.113119
Rhaiem, K., & Halilem, N. (2023). The worst is not to fail, but to fail to learn from failure: A multi-method empirical validation of learning from innovation failure. Technological Forecasting and Social Change, 190. https://doi.org/10.1016/j.techfore.2023.122427
Rigby, D., First, Z., & Boyd, M. (2023). How Corporate Purpose Leads to Innovation. https://hbr.org/2023/11/how-corporate-purpose-leads-to-innovation
Sheng, J., Amankwah-Amoah, J., Khan, Z., & Wang, X. (2021). COVID-19 Pandemic in the New Era of Big Data Analytics: Methodological Innovations and Future Research Directions. British Journal of Management, 32(4), 1164–1183. https://doi.org/10.1111/1467-8551.12441
Shepherd, D. A., & Wolfe, M. (2011). MOVING FORWARD FROM PROJECT FAILURE: NEGATIVE EMOTIONS, AFFECTIVE COMMITMENT, AND LEARNING FROM THE EXPERIENCE. Academy of Management, 54(6), 1229–1250. http://dx.doi.org/10.5465.amj.2010.0102
Tao, X., Robson, P. J. A., & Wang, C. L. (2023). To learn or not to learn from new product development project failure: The roles of failure experience and error orientation. Technovation, 127. https://doi.org/10.1016/j.technovation.2023.102830
Tao, X., & Ucbasaran, D. (2024). How does failure normalization foster product innovativeness in new product development? The role of passion and learning. Journal of Product Innovation Management. https://doi.org/10.1111/jpim.12755
Wang, X., Yang, F., Liu, S., & Feng, W. (2024). No big deal: how leader self-deprecating humor influences subordinate learning from failure. Journal of Knowledge Management, 28(1), 118–137. https://doi.org/10.1108/JKM-08-2022-0624
West, J., & Bogers, M. (2014). Leveraging external sources of innovation: A review of research on open innovation. In Journal of Product Innovation Management (Vol. 31, Issue 4, pp. 814–831). Blackwell Publishing Ltd. https://doi.org/10.1111/jpim.12125
Zhang, M., Wang, Y., & Wang, W. (2024). Big data analytics managerial skills and organizational agility: a moderated mediation model. Industrial Management and Data Systems. https://doi.org/10.1108/IMDS-01-2024-0053
Zhu, X., & Li, Y. (2023). The use of data-driven insight in ambidextrous digital transformation: How do resource orchestration, organizational strategic decisionmaking, and organizational agility matter? Technological Forecasting and Social Change, 196. https://doi.org/10.1016/j.techfore.2023.122851
dc.rights.uri.none.fl_str_mv http://creativecommons.org/licenses/by-nc-sa/4.0/
dc.rights.accessrights.none.fl_str_mv info:eu-repo/semantics/embargoedAccess
dc.rights.license.en.fl_str_mv Attribution-NonCommercial-ShareAlike 4.0 International
dc.rights.coar.none.fl_str_mv http://purl.org/coar/access_right/c_f1cf
rights_invalid_str_mv http://creativecommons.org/licenses/by-nc-sa/4.0/
Attribution-NonCommercial-ShareAlike 4.0 International
http://purl.org/coar/access_right/c_f1cf
eu_rights_str_mv embargoedAccess
dc.format.extent.none.fl_str_mv 42 páginas
dc.format.mimetype.none.fl_str_mv application/pdf
dc.coverage.spatial.none.fl_str_mv Colombia
dc.publisher.none.fl_str_mv Universidad de Antioquia
dc.publisher.program.none.fl_str_mv Maestría en Administración
dc.publisher.place.none.fl_str_mv Medellín, Colombia
dc.publisher.faculty.none.fl_str_mv Facultad de Ciencias Económicas
dc.publisher.branch.none.fl_str_mv Campus Medellín - Sede Posgrados
publisher.none.fl_str_mv Universidad de Antioquia
institution Universidad de Antioquia
bitstream.url.fl_str_mv https://bibliotecadigital.udea.edu.co/bitstreams/871a820d-17ec-4fd3-9d22-b18afac025d5/download
https://bibliotecadigital.udea.edu.co/bitstreams/3cac40c4-34ba-495d-a438-99800254b68b/download
https://bibliotecadigital.udea.edu.co/bitstreams/663d3bd9-452b-464e-94ec-28ec9e8caf0c/download
https://bibliotecadigital.udea.edu.co/bitstreams/7c0f21b0-f958-4187-954b-9eef3240bd66/download
https://bibliotecadigital.udea.edu.co/bitstreams/409a406b-a6e0-40c0-bb9b-5c6835134d0a/download
bitstream.checksum.fl_str_mv 955d82ce88f85e231e9c1ac4b799dba3
5643bfd9bcf29d560eeec56d584edaa9
b76e7a76e24cf2f94b3ce0ae5ed275d0
d2fc9856cf1491ba036db00856eb8773
fe1c878d06c864828beaa37685f41c5f
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
MD5
MD5
repository.name.fl_str_mv Repositorio Institucional de la Universidad de Antioquia
repository.mail.fl_str_mv aplicacionbibliotecadigitalbiblioteca@udea.edu.co
_version_ 1851052231809302528
spelling Arias Pérez, José EnriqueVélez Jaramillo, Juan DanielVelásquez Sofan, Duvan AlexisColombia2025-07-15T22:48:52Z2027-06-112025Vélez Jaramillo, J. D, & Velásquez Sofan, D. A. (2025). Innovación abierta entrante y desempeño innovador digital: el rol del aprendizaje del fracaso en innovación generado por los insights descriptivos, predictivos y prescriptivos [Tesis de maestría]. Universidad de Antioquia, Medellín, Colombia.https://hdl.handle.net/10495/46766Este artículo analiza el efecto moderador de los insights descriptivos, predictivos y prescriptivos basados en datos en el efecto combinado del aprendizaje del fracaso en innovación y la innovación abierta entrante en el desempeño innovador digital. El modelo de investigación se testeó en una muestra de 197 empresas colombianas pertenecientes a sectores de media y alta intensidad digital a través de ecuaciones estructurales mediante el método de mínimos cuadrados parciales. Los resultados sugieren que el aprendizaje del fracaso en innovación provoca un trauma que deteriora la capacidad organizacional de explotar recursos internos y externos para la innovación digital. Además, los hallazgos sugieren que los insights descriptivo y predictivo son generadores de conocimiento que es insuficiente para corregir este estado de parálisis, mientras el prescriptivo produce insights accionables que proveen una seguridad reforzada al actuar, dotando el aprendizaje del fracaso en innovación de una connotación positiva. Estos hallazgos expanden la literatura sobre el fracaso en innovación como una fuente adicional de conocimiento que se soporta en herramientas de analítica de datos para fortalecer el conocimiento organizacional y la capacidad de seleccionar, complementar y explotar el conocimiento externo para optimizar el desempeño innovador digital.In both academia and business, there is a strong focus on understanding and reducing the failure rate of digital transformation projects, which currently stands at 80%. Therefore, this paper examines the moderating effect of descriptive, predictive and prescriptive data-driven insights on the combined impact of learning from innovation failure and inbound open innovation on digital innovation performance. The three-way interaction was tested using partial least squares structural equation modeling (PLS-SEM) on a sample of 197 Colombian firms in medium- and high-digital-intensity sectors. The findings reveal that while inbound open innovation enhances digital innovation performance, learning from innovation failure unexpectedly weakens this effect. However, only prescriptive insights reverse this pattern, making the three-way interaction positive and significant, whereas descriptive and predictive insights have no impact. The results suggest that the trauma associated with learning from innovation failure limits an organization’s ability to leverage internal and external resources for digital innovation. Furthermore, descriptive and predictive insights fail to provide the necessary knowledge to overcome this paralysis, while prescriptive insights generate actionable knowledge for well-grounded decision-making, reframing learning from innovation failure in a positive light.MaestríaMagíster en Administración42 páginasapplication/pdfspaUniversidad de AntioquiaMaestría en AdministraciónMedellín, ColombiaFacultad de Ciencias EconómicasCampus Medellín - Sede Posgradoshttp://creativecommons.org/licenses/by-nc-sa/4.0/info:eu-repo/semantics/embargoedAccessAttribution-NonCommercial-ShareAlike 4.0 Internationalhttp://purl.org/coar/access_right/c_f1cfInnovación abierta entrante y desempeño innovador digital: el rol del aprendizaje del fracaso en innovación generado por los insights descriptivos, predictivos y prescriptivosTrabajo de grado - Maestríahttp://purl.org/redcol/resource_type/TMTexthttp://purl.org/coar/version/c_b1a7d7d4d402bcceinfo:eu-repo/semantics/masterThesisinfo:eu-repo/semantics/draftAbadía, S., & Avila, O. (2024). A Preliminary Analysis of the Adoption of Intelligent Information Systems in Colombia. In Enterprise Innovation Systems, 3–20. https://doi.org/10.1007/978-3-031-64748-2_1Al-Okaily, M., & Al-Okaily, A. (2024). Financial data modeling: an analysis of factors influencing big data analytics-driven financial decision quality. Journal of Modelling in Management. https://doi.org/10.1108/JM2-08-2023-0183Alsaad, A., Selem, K. M., Alam, M. M., & Melhim, L. K. B. (2022). Linking business intelligence with the performance of new service products: Insight from a dynamic capabilities perspective. Journal of Innovation and Knowledge, 7(4). https://doi.org/10.1016/j.jik.2022.100262Amankwah-Amoah, J., & Adomako, S. (2019). Big data analytics and business failures in data-Rich environments: An organizing framework. Computers in Industry, 105, 204–212. https://doi.org/10.1016/j.compind.2018.12.015Ancarani, A., Di Mauro, C., Legenvre, H., & Cardella, M. S. (2020). Internet of things adoption: a typology of projects. International Journal of Operations and Production Management, 40(6), 849–872. https://doi.org/10.1108/IJOPM-01-2019-0095Appio, F. P., Capo, F., & Annosi, M. C. (2024). Not all (innovation) failures are created equal: A typology of companies’ responses to the consequences of innovation failure. Technovation, 130. https://doi.org/10.1016/j.technovation.2023.102937Arias-Pérez, J., & Vélez-Jaramillo, J. (2022). Ignoring the three-way interaction of digital orientation, Not-invented-here syndrome and employee’s artificial intelligence awareness in digital innovation performance: A recipe for failure. Technological Forecasting and Social Change, 174. https://doi.org/10.1016/j.techfore.2021.121305Awan, U., Bhatti, S. H., Shamim, S., Khan, Z., Akhtar, P., & Balta, M. E. (2022). The Role of Big Data Analytics in Manufacturing Agility and Performance: Moderation–Mediation Analysis of Organizational Creativity and of the Involvement of Customers as Data Analysts. British Journal of Management, 33(3), 1200–1220. https://doi.org/10.1111/1467-8551.12549Awan, U., Shamim, S., Khan, Z., Zia, N. U., Shariq, S. M., & Khan, M. N. (2021). Big data analytics capability and decision-making: The role of data-driven insight on circular economy performance. Technological Forecasting and Social Change, 168. https://doi.org/10.1016/j.techfore.2021.120766Balzano, M., & Marzi, G. (2023). Exploring the pathways of learning from project failure and success in new product development teams. Technovation, 128. https://doi.org/10.1016/j.technovation.2023.102878Baxter, D., Trott, P., & Ellwood, P. (2023). Reconceptualising innovation failure. Research Policy, 52(7). https://doi.org/10.1016/j.respol.2023.104811Bong, K. H., & Park, J. (2024). Revisiting the Failure-Innovation Performance Relationship: A Quantile Regression Evidence From Korean SME. IEEE Transactions on Engineering Management, 71, 5899–5906. https://doi.org/10.1109/TEM.2024.3370726Calvino, F., Criscuolo, C., Marcolin, L., & Squicciarini, M. (2018). “A taxonomy of digital intensive sectors”, OECD Science, Technology and Industry Working Papers. In OECD Science, Technology and Industry Working Papers (14). OECD Publishing. https://doi.org/10.1787/f404736a-enChang, C. H., Chen, Y. S., & Tseng, C. W. (2024). Digital transformation anxiety: absorptive capacity, dynamic capability, and digital innovation performance. Management Decision. https://doi.org/10.1108/MD-08-2023-1363Chatterjee, S., Chaudhuri, R., Mariani, M., & Fosso Wamba, S. (2023). The consequences of innovation failure: An innovation capabilities and dynamic capabilities perspective. Technovation, 128. https://doi.org/10.1016/j.technovation.2023.102858Chaudhary, S., Kaur, P., Talwar, S., Islam, N., & Dhir, A. (2022). Way off the mark? Open innovation failures: Decoding what really matters to chart the future course of action. Journal of Business Research, 142, 1010–1025. https://doi.org/10.1016/j.jbusres.2021.12.062Cheng, C. C. J., & Shiu, E. C. (2015). The inconvenient truth of the relationship between open innovation activities and innovation performance. Management Decision, 53(3), 625–647. https://doi.org/10.1108/MD-03-2014-0163Cheng, C. C. J., & Shiu, E. C. (2023). The relative values of big data analytics versus traditional marketing analytics to firm innovation: An empirical study. Information and Management, 60(7). https://doi.org/10.1016/j.im.2023.103839Cillo, P., De Luca, L. M., & Troilo, G. (2010). Market information approaches, product innovativeness, and firm performance: An empirical study in the fashion industry. Research Policy, 39(9), 1242–1252. https://doi.org/10.1016/j.respol.2010.06.004Ciriello, R. F., Richter, A., & Schwabe, G. (2018). Digital Innovation. Business and Information Systems Engineering, 60(6), 563–569. https://doi.org/10.1007/s12599-0180559-8Coelho, P., & McClure, J. (2005). Learning from failure. American Journal of Business, 20(1), 13–20. https://doi.org/10.1108/19355181200500001Corvello, V., Troise, C., Schiuma, G., & Jones, P. (2024). How start-ups translate learning from innovation failure into strategies for growth. Technovation, 134. https://doi.org/10.1016/j.technovation.2024.103051Cristofaro, M., Giardino, P. L., & Barboni, L. (2025). Growth hacking: A scientific approach for data-driven decision making. Journal of Business Research, 186, 115030. https://doi.org/10.1016/j.jbusres.2024.115030Deist, M. K., McDowell, W. C., & Bouncken, R. B. (2023). Digital units and digital innovation: Balancing fluidity and stability for the Creation, Conversion, and Dissemination of sticky knowledge. Journal of Business Research, 161. https://doi.org/10.1016/j.jbusres.2023.113827Delen, D., & Ram, S. (2018). Research challenges and opportunities in business analytics. Journal of Business Analytics, 1(1), 2–12. https://doi.org/10.1080/2573234X.2018.1507324Fernandez-Pinto, H., Duarte, C. A. M., Villamizar, S. P., & Suarez, J. E. S. (2024). Horizontal innovation: The core of open innovation in the construction of the dynamic capacities in the Colombian industry. Journal of Open Innovation: Technology, Market, and Complexity, 10(1). https://doi.org/10.1016/j.joitmc.2024.100229Fornell, C., & Larcker, D. F. (1981). Structural Equation Models with Unobservable Variables and Measurement Error: Algebra and Statistics. Journal of Marketing Research, 18(3), 382. https://doi.org/10.2307/3150980Forth, P., De Laubier, R., Chakraborty, S., Charanya, T., & Magagnoli, M. (2021). Performance and Innovation Are the Rewards of Digital Transformation.Freisinger, E., & McCarthy, I. P. (2024). What fails and when? A process view of innovation failure. Technovation, 133. https://doi.org/10.1016/j.technovation.2024.102995Ghasemaghaei, M., & Calic, G. (2019). Does big data enhance firm innovation competency? The mediating role of data-driven insights. Journal of Business Research, 104, 69–84. https://doi.org/10.1016/j.jbusres.2019.07.006Gooljar, V., Issa, T., Hardin-Ramanan, S., & Abu-Salih, B. (2024). Sentiment-based predictive models for online purchases in the era of marketing 5.0: a systematic review. Journal of Big Data, 11(1). https://doi.org/10.1186/s40537-024-00947-0Griva, A., & Karagiannaki, A. (2024). Designing business analytics (BA) platforms: tracing the visual redesign process of a startup’s BA platform. Benchmarking: An international Journal. https://doi.org/10.1108/BIJ-06-2024-0517Guillaume-Joseph, G., & Wasek, J. S. (2015). Improving software project outcomes through predictive analytics: Part 1. IEEE Engineering Management Review, 43(3), 26–38. https://doi.org/10.1109/EMR.2015.2469451Hair, J. F. ., Hult, G. T. M. ., Ringle, C. M. ., & Sarstedt, M. (2017). A primer on partial least squares structural equation modeling (PLS-SEM). Sage Publications, Los Angeles, C.A.Hair, J. F., Ringle, C. M., & Sarstedt, M. (2011). PLS-SEM: Indeed a silver bullet. Journal of Marketing Theory and Practice, 19(2), 139–152. https://doi.org/10.2753/MTP10696679190202Hair, J. F., Risher, J. J., Sarstedt, M., & Ringle, C. M. (2019). When to use and how to report the results of PLS-SEM. European Business Review, 31(1), 2–24. https://doi.org/10.1108/EBR-11-2018-0203Hair, J., Hult, T., Ringle, C., Sarstedt, M., Danks, N., & Ray, S. (2021). Partial Least Squares Structural Equation Modeling (PLS-SEM) Using R. Springer.Hayes, Andrew. F. (2022). Introduction to mediation, moderation and conditional process analysis: a regression-based approach (Third edition). Guilford Press.Hirvonen, M., Kauppi, K., & Liesiö, J. (2024). Identifying enablers for the successful deployment of prescriptive analytics – a multiple case study. European Business Review. https://doi.org/10.1108/EBR-08-2023-0253Hu, S., Gong, H., & Li, S. (2024). Fail forward: the relationship between innovation failure and breakthrough innovation in the context of knowledge- based capabilities. European Journal of Innovation Management. https://doi.org/10.1108/EJIM-11-2023-0945Huang, H. C., Lai, M. C., & Huang, W. W. (2015). Resource complementarity, transformative capacity, and inbound open innovation. Journal of Business and Industrial Marketing, 30(7), 842–854. https://doi.org/10.1108/JBIM-09-2013-0191Huit, G. T. M., Hair, J. F., Proksch, D., Sarstedt, M., Pinkwart, A., & Ringle, C. M. (2018). Addressing endogeneity in international marketing applications of partial least squares structural equation modeling. Journal of International Marketing, 26(3), 1–21. https://doi.org/10.1509/jim.17.0151Hung, K. P., & Chou, C. (2013). The impact of open innovation on firm performance: The moderating effects of internal R&D and environmental turbulence. Technovation, 33(10–11), 368–380. https://doi.org/10.1016/j.technovation.2013.06.006Jalali, A., Palalić, R., Razzak, M. R., & Al-Kharusi, S. (2024). Big data analytics, company innovation and risk-taking: influence of absorptive capacity. Management Decision. https://doi.org/10.1108/MD-01-2024-0137Jank, M.-H., Dölle, C., & Schuh, G. (2019). Product Portfolio Design Using Prescriptive Analytics. In Advances in Production Research, 584–593. Springer International Publishing. https://doi.org/10.1007/978-3-030-03451-1_57Kim, S. (2021). Mapping social media analytics for small business: A case study of business analytics. International Journal of Fashion Design, Technology and Education, 14(2), 218–231. https://doi.org/10.1080/17543266.2021.1915392Klein, P., Van der Vegte, W. F., Hribernik, K., & Klaus-Dieter, T. (2019). Towards an approach integrating various levels of data analytics to exploit product-usage information in product development. Proceedings of the International Conference on Engineering Design, ICED, 2019-August, 2627–2636. https://doi.org/10.1017/dsi.2019.269Kock, N. (2021). Harman’s single factor test in PLS-SEM: Checking for common method bias. Data Analysis Perspectives Journal 2(2). https://www.scriptwarp.comKock, N., & Hadaya, P. (2018). Minimum sample size estimation in PLS-SEM: The inverse square root and gamma-exponential methods. Information Systems Journal, 28(1), 227– 261. https://doi.org/10.1111/isj.12131Lafuente, E., Rabetino, R., & Leiva, J. C. (2024). Learning from success and failure: implications for entrepreneurs, SMEs, and policy. Small Business Economics. https://doi.org/10.1007/s11187-024-00889-0Mueller, B. A., & Shepherd, D. A. (2016). Making the Most of Failure Experiences: Exploring the Relationship Between Business Failure and the Identification of Business Opportunities. Entrepreneurship: Theory and Practice, 40(3), 457–487. https://doi.org/10.1111/etap.12116Nestorov, S., Jukić, B., Jukić, N., Sharma, A., & Rossi, S. (2019). Generating insights through data preparation, visualization, and analysis: Framework for combining clustering and data visualization techniques for low-cardinality sequential data. Decision Support Systems, 125. https://doi.org/10.1016/j.dss.2019.113119Rhaiem, K., & Halilem, N. (2023). The worst is not to fail, but to fail to learn from failure: A multi-method empirical validation of learning from innovation failure. Technological Forecasting and Social Change, 190. https://doi.org/10.1016/j.techfore.2023.122427Rigby, D., First, Z., & Boyd, M. (2023). How Corporate Purpose Leads to Innovation. https://hbr.org/2023/11/how-corporate-purpose-leads-to-innovationSheng, J., Amankwah-Amoah, J., Khan, Z., & Wang, X. (2021). COVID-19 Pandemic in the New Era of Big Data Analytics: Methodological Innovations and Future Research Directions. British Journal of Management, 32(4), 1164–1183. https://doi.org/10.1111/1467-8551.12441Shepherd, D. A., & Wolfe, M. (2011). MOVING FORWARD FROM PROJECT FAILURE: NEGATIVE EMOTIONS, AFFECTIVE COMMITMENT, AND LEARNING FROM THE EXPERIENCE. Academy of Management, 54(6), 1229–1250. http://dx.doi.org/10.5465.amj.2010.0102Tao, X., Robson, P. J. A., & Wang, C. L. (2023). To learn or not to learn from new product development project failure: The roles of failure experience and error orientation. Technovation, 127. https://doi.org/10.1016/j.technovation.2023.102830Tao, X., & Ucbasaran, D. (2024). How does failure normalization foster product innovativeness in new product development? The role of passion and learning. Journal of Product Innovation Management. https://doi.org/10.1111/jpim.12755Wang, X., Yang, F., Liu, S., & Feng, W. (2024). No big deal: how leader self-deprecating humor influences subordinate learning from failure. Journal of Knowledge Management, 28(1), 118–137. https://doi.org/10.1108/JKM-08-2022-0624West, J., & Bogers, M. (2014). Leveraging external sources of innovation: A review of research on open innovation. In Journal of Product Innovation Management (Vol. 31, Issue 4, pp. 814–831). Blackwell Publishing Ltd. https://doi.org/10.1111/jpim.12125Zhang, M., Wang, Y., & Wang, W. (2024). Big data analytics managerial skills and organizational agility: a moderated mediation model. Industrial Management and Data Systems. https://doi.org/10.1108/IMDS-01-2024-0053Zhu, X., & Li, Y. (2023). The use of data-driven insight in ambidextrous digital transformation: How do resource orchestration, organizational strategic decisionmaking, and organizational agility matter? Technological Forecasting and Social Change, 196. https://doi.org/10.1016/j.techfore.2023.122851Aprendizaje organizacionalOrganizational learningAprendizaje del fracaso en innovaciónInnovación abiertaInnovación digitalInsights basados en datosGestión de la innovaciónODS 9: Industria, innovación e infraestructura. Construir infraestructuras resilientes, promover la industrialización inclusiva y sostenible y fomentar la innovaciónPublicationORIGINALVelezJuan_2025_DesempenoInnovadorDigital.pdfVelezJuan_2025_DesempenoInnovadorDigital.pdfapplication/pdf566530https://bibliotecadigital.udea.edu.co/bitstreams/871a820d-17ec-4fd3-9d22-b18afac025d5/download955d82ce88f85e231e9c1ac4b799dba3MD51trueAnonymousREAD2027-06-10CC-LICENSElicense_rdflicense_rdfapplication/rdf+xml; charset=utf-81160https://bibliotecadigital.udea.edu.co/bitstreams/3cac40c4-34ba-495d-a438-99800254b68b/download5643bfd9bcf29d560eeec56d584edaa9MD52falseAnonymousREADLICENSElicense.txtlicense.txttext/plain; charset=utf-814837https://bibliotecadigital.udea.edu.co/bitstreams/663d3bd9-452b-464e-94ec-28ec9e8caf0c/downloadb76e7a76e24cf2f94b3ce0ae5ed275d0MD53falseAnonymousREADTEXTVelezJuan_2025_DesempenoInnovadorDigital.pdf.txtVelezJuan_2025_DesempenoInnovadorDigital.pdf.txtExtracted texttext/plain90400https://bibliotecadigital.udea.edu.co/bitstreams/7c0f21b0-f958-4187-954b-9eef3240bd66/downloadd2fc9856cf1491ba036db00856eb8773MD54falseAnonymousREAD2027-06-10THUMBNAILVelezJuan_2025_DesempenoInnovadorDigital.pdf.jpgVelezJuan_2025_DesempenoInnovadorDigital.pdf.jpgGenerated Thumbnailimage/jpeg6937https://bibliotecadigital.udea.edu.co/bitstreams/409a406b-a6e0-40c0-bb9b-5c6835134d0a/downloadfe1c878d06c864828beaa37685f41c5fMD55falseAnonymousREAD2027-06-1010495/46766oai:bibliotecadigital.udea.edu.co:10495/467662025-07-18 04:03:11.419http://creativecommons.org/licenses/by-nc-sa/4.0/Attribution-NonCommercial-ShareAlike 4.0 Internationalembargo2027-06-10https://bibliotecadigital.udea.edu.coRepositorio Institucional de la Universidad de Antioquiaaplicacionbibliotecadigitalbiblioteca@udea.edu.coTEEgT0JSQSAoVEFMIFkgQ09NTyBTRSBERUZJTkUgTcOBUyBBREVMQU5URSkgU0UgT1RPUkdBIEJBSk8gTE9TIFRFUk1JTk9TIERFIEVTVEEgTElDRU5DSUEgUMOaQkxJQ0EgREUgQ1JFQVRJVkUgQ09NTU9OUyAo4oCcTFBDQ+KAnSBPIOKAnExJQ0VOQ0lB4oCdKS4gTEEgT0JSQSBFU1TDgSBQUk9URUdJREEgUE9SIERFUkVDSE9TIERFIEFVVE9SIFkvVSBPVFJBUyBMRVlFUyBBUExJQ0FCTEVTLiBRVUVEQSBQUk9ISUJJRE8gQ1VBTFFVSUVSIFVTTyBRVUUgU0UgSEFHQSBERSBMQSBPQlJBIFFVRSBOTyBDVUVOVEUgQ09OIExBIEFVVE9SSVpBQ0nDk04gUEVSVElORU5URSBERSBDT05GT1JNSURBRCBDT04gTE9TIFTDiVJNSU5PUyBERSBFU1RBIExJQ0VOQ0lBIFkgREUgTEEgTEVZIERFIERFUkVDSE8gREUgQVVUT1IuCgpNRURJQU5URSBFTCBFSkVSQ0lDSU8gREUgQ1VBTFFVSUVSQSBERSBMT1MgREVSRUNIT1MgUVVFIFNFIE9UT1JHQU4gRU4gRVNUQSBMSUNFTkNJQSwgVVNURUQgQUNFUFRBIFkgQUNVRVJEQSBRVUVEQVIgT0JMSUdBRE8gRU4gTE9TIFRFUk1JTk9TIFFVRSBTRSBTRcORQUxBTiBFTiBFTExBLiBFTCBMSUNFTkNJQU5URSBDT05DRURFIEEgVVNURUQgTE9TIERFUkVDSE9TIENPTlRFTklET1MgRU4gRVNUQSBMSUNFTkNJQSBDT05ESUNJT05BRE9TIEEgTEEgQUNFUFRBQ0nDk04gREUgU1VTIFRFUk1JTk9TIFkgQ09ORElDSU9ORVMuIAoKMS4gRGVmaW5pY2lvbmVzCmEuIE9icmEgQ29sZWN0aXZhIGVzIHVuYSBvYnJhLCB0YWwgY29tbyB1bmEgcHVibGljYWNpw7NuIHBlcmnDs2RpY2EsIHVuYSBhbnRvbG9nw61hLCBvIHVuYSBlbmNpY2xvcGVkaWEsIGVuIGxhIHF1ZSBsYSBvYnJhIGVuIHN1IHRvdGFsaWRhZCwgc2luIG1vZGlmaWNhY2nDs24gYWxndW5hLCBqdW50byBjb24gdW4gZ3J1cG8gZGUgb3RyYXMgY29udHJpYnVjaW9uZXMgcXVlIGNvbnN0aXR1eWVuIG9icmFzIHNlcGFyYWRhcyBlIGluZGVwZW5kaWVudGVzIGVuIHPDrSBtaXNtYXMsIHNlIGludGVncmFuIGVuIHVuIHRvZG8gY29sZWN0aXZvLiBVbmEgT2JyYSBxdWUgY29uc3RpdHV5ZSB1bmEgb2JyYSBjb2xlY3RpdmEgbm8gc2UgY29uc2lkZXJhcsOhIHVuYSBPYnJhIERlcml2YWRhIChjb21vIHNlIGRlZmluZSBhYmFqbykgcGFyYSBsb3MgcHJvcMOzc2l0b3MgZGUgZXN0YSBsaWNlbmNpYS4gYXF1ZWxsYSBwcm9kdWNpZGEgcG9yIHVuIGdydXBvIGRlIGF1dG9yZXMsIGVuIHF1ZSBsYSBPYnJhIHNlIGVuY3VlbnRyYSBzaW4gbW9kaWZpY2FjaW9uZXMsIGp1bnRvIGNvbiB1bmEgY2llcnRhIGNhbnRpZGFkIGRlIG90cmFzIGNvbnRyaWJ1Y2lvbmVzLCBxdWUgY29uc3RpdHV5ZW4gZW4gc8OtIG1pc21vcyB0cmFiYWpvcyBzZXBhcmFkb3MgZSBpbmRlcGVuZGllbnRlcywgcXVlIHNvbiBpbnRlZ3JhZG9zIGFsIHRvZG8gY29sZWN0aXZvLCB0YWxlcyBjb21vIHB1YmxpY2FjaW9uZXMgcGVyacOzZGljYXMsIGFudG9sb2fDrWFzIG8gZW5jaWNsb3BlZGlhcy4KYi4gT2JyYSBEZXJpdmFkYSBzaWduaWZpY2EgdW5hIG9icmEgYmFzYWRhIGVuIGxhIG9icmEgb2JqZXRvIGRlIGVzdGEgbGljZW5jaWEgbyBlbiDDqXN0YSB5IG90cmFzIG9icmFzIHByZWV4aXN0ZW50ZXMsIHRhbGVzIGNvbW8gdHJhZHVjY2lvbmVzLCBhcnJlZ2xvcyBtdXNpY2FsZXMsIGRyYW1hdGl6YWNpb25lcywg4oCcZmljY2lvbmFsaXphY2lvbmVz4oCdLCB2ZXJzaW9uZXMgcGFyYSBjaW5lLCDigJxncmFiYWNpb25lcyBkZSBzb25pZG/igJ0sIHJlcHJvZHVjY2lvbmVzIGRlIGFydGUsIHJlc8O6bWVuZXMsIGNvbmRlbnNhY2lvbmVzLCBvIGN1YWxxdWllciBvdHJhIGVuIGxhIHF1ZSBsYSBvYnJhIHB1ZWRhIHNlciB0cmFuc2Zvcm1hZGEsIGNhbWJpYWRhIG8gYWRhcHRhZGEsIGV4Y2VwdG8gYXF1ZWxsYXMgcXVlIGNvbnN0aXR1eWFuIHVuYSBvYnJhIGNvbGVjdGl2YSwgbGFzIHF1ZSBubyBzZXLDoW4gY29uc2lkZXJhZGFzIHVuYSBvYnJhIGRlcml2YWRhIHBhcmEgZWZlY3RvcyBkZSBlc3RhIGxpY2VuY2lhLiAoUGFyYSBldml0YXIgZHVkYXMsIGVuIGVsIGNhc28gZGUgcXVlIGxhIE9icmEgc2VhIHVuYSBjb21wb3NpY2nDs24gbXVzaWNhbCBvIHVuYSBncmFiYWNpw7NuIHNvbm9yYSwgcGFyYSBsb3MgZWZlY3RvcyBkZSBlc3RhIExpY2VuY2lhIGxhIHNpbmNyb25pemFjacOzbiB0ZW1wb3JhbCBkZSBsYSBPYnJhIGNvbiB1bmEgaW1hZ2VuIGVuIG1vdmltaWVudG8gc2UgY29uc2lkZXJhcsOhIHVuYSBPYnJhIERlcml2YWRhIHBhcmEgbG9zIGZpbmVzIGRlIGVzdGEgbGljZW5jaWEpLgpjLiBMaWNlbmNpYW50ZSwgZXMgZWwgaW5kaXZpZHVvIG8gbGEgZW50aWRhZCB0aXR1bGFyIGRlIGxvcyBkZXJlY2hvcyBkZSBhdXRvciBxdWUgb2ZyZWNlIGxhIE9icmEgZW4gY29uZm9ybWlkYWQgY29uIGxhcyBjb25kaWNpb25lcyBkZSBlc3RhIExpY2VuY2lhLgpkLiBBdXRvciBvcmlnaW5hbCwgZXMgZWwgaW5kaXZpZHVvIHF1ZSBjcmXDsyBsYSBPYnJhLgplLiBPYnJhLCBlcyBhcXVlbGxhIG9icmEgc3VzY2VwdGlibGUgZGUgcHJvdGVjY2nDs24gcG9yIGVsIHLDqWdpbWVuIGRlIERlcmVjaG8gZGUgQXV0b3IgeSBxdWUgZXMgb2ZyZWNpZGEgZW4gbG9zIHTDqXJtaW5vcyBkZSBlc3RhIGxpY2VuY2lhCmYuIFVzdGVkLCBlcyBlbCBpbmRpdmlkdW8gbyBsYSBlbnRpZGFkIHF1ZSBlamVyY2l0YSBsb3MgZGVyZWNob3Mgb3RvcmdhZG9zIGFsIGFtcGFybyBkZSBlc3RhIExpY2VuY2lhIHkgcXVlIGNvbiBhbnRlcmlvcmlkYWQgbm8gaGEgdmlvbGFkbyBsYXMgY29uZGljaW9uZXMgZGUgbGEgbWlzbWEgcmVzcGVjdG8gYSBsYSBPYnJhLCBvIHF1ZSBoYXlhIG9idGVuaWRvIGF1dG9yaXphY2nDs24gZXhwcmVzYSBwb3IgcGFydGUgZGVsIExpY2VuY2lhbnRlIHBhcmEgZWplcmNlciBsb3MgZGVyZWNob3MgYWwgYW1wYXJvIGRlIGVzdGEgTGljZW5jaWEgcGVzZSBhIHVuYSB2aW9sYWNpw7NuIGFudGVyaW9yLgoJICAKMi4gRGVyZWNob3MgZGUgVXNvcyBIb25yYWRvcyB5IGV4Y2VwY2lvbmVzIExlZ2FsZXMuCk5hZGEgZW4gZXN0YSBMaWNlbmNpYSBwb2Ryw6Egc2VyIGludGVycHJldGFkbyBjb21vIHVuYSBkaXNtaW51Y2nDs24sIGxpbWl0YWNpw7NuIG8gcmVzdHJpY2Npw7NuIGRlIGxvcyBkZXJlY2hvcyBkZXJpdmFkb3MgZGVsIHVzbyBob25yYWRvIHkgb3RyYXMgbGltaXRhY2lvbmVzIG8gZXhjZXBjaW9uZXMgYSBsb3MgZGVyZWNob3MgZGVsIGF1dG9yIGJham8gZWwgcsOpZ2ltZW4gbGVnYWwgdmlnZW50ZSBvIGRlcml2YWRvIGRlIGN1YWxxdWllciBvdHJhIG5vcm1hIHF1ZSBzZSBsZSBhcGxpcXVlLgogIAozLiBDb25jZXNpw7NuIGRlIGxhIExpY2VuY2lhLgpCYWpvIGxvcyB0w6lybWlub3MgeSBjb25kaWNpb25lcyBkZSBlc3RhIExpY2VuY2lhLCBlbCBMaWNlbmNpYW50ZSBvdG9yZ2EgYSBVc3RlZCB1bmEgbGljZW5jaWEgbXVuZGlhbCwgbGlicmUgZGUgcmVnYWzDrWFzLCBubyBleGNsdXNpdmEgeSBwZXJwZXR1YSAoZHVyYW50ZSB0b2RvIGVsIHBlcsOtb2RvIGRlIHZpZ2VuY2lhIGRlIGxvcyBkZXJlY2hvcyBkZSBhdXRvcikgcGFyYSBlamVyY2VyIGVzdG9zIGRlcmVjaG9zIHNvYnJlIGxhIE9icmEgdGFsIHkgY29tbyBzZSBpbmRpY2EgYSBjb250aW51YWNpw7NuOgphLiBSZXByb2R1Y2lyIGxhIE9icmEsIGluY29ycG9yYXIgbGEgT2JyYSBlbiB1bmEgbyBtw6FzIE9icmFzIENvbGVjdGl2YXMsIHkgcmVwcm9kdWNpciBsYSBPYnJhIGluY29ycG9yYWRhIGVuIGxhcyBPYnJhcyBDb2xlY3RpdmFzLgpiLiBEaXN0cmlidWlyIGNvcGlhcyBvIGZvbm9ncmFtYXMgZGUgbGFzIE9icmFzLCBleGhpYmlybGFzIHDDumJsaWNhbWVudGUsIGVqZWN1dGFybGFzIHDDumJsaWNhbWVudGUgeS9vIHBvbmVybGFzIGEgZGlzcG9zaWNpw7NuIHDDumJsaWNhLCBpbmNsdXnDqW5kb2xhcyBjb21vIGluY29ycG9yYWRhcyBlbiBPYnJhcyBDb2xlY3RpdmFzLCBzZWfDum4gY29ycmVzcG9uZGEuCmMuIERpc3RyaWJ1aXIgY29waWFzIGRlIGxhcyBPYnJhcyBEZXJpdmFkYXMgcXVlIHNlIGdlbmVyZW4sIGV4aGliaXJsYXMgcMO6YmxpY2FtZW50ZSwgZWplY3V0YXJsYXMgcMO6YmxpY2FtZW50ZSB5L28gcG9uZXJsYXMgYSBkaXNwb3NpY2nDs24gcMO6YmxpY2EuCgpMb3MgZGVyZWNob3MgbWVuY2lvbmFkb3MgYW50ZXJpb3JtZW50ZSBwdWVkZW4gc2VyIGVqZXJjaWRvcyBlbiB0b2RvcyBsb3MgbWVkaW9zIHkgZm9ybWF0b3MsIGFjdHVhbG1lbnRlIGNvbm9jaWRvcyBvIHF1ZSBzZSBpbnZlbnRlbiBlbiBlbCBmdXR1cm8uIExvcyBkZXJlY2hvcyBhbnRlcyBtZW5jaW9uYWRvcyBpbmNsdXllbiBlbCBkZXJlY2hvIGEgcmVhbGl6YXIgZGljaGFzIG1vZGlmaWNhY2lvbmVzIGVuIGxhIG1lZGlkYSBxdWUgc2VhbiB0w6ljbmljYW1lbnRlIG5lY2VzYXJpYXMgcGFyYSBlamVyY2VyIGxvcyBkZXJlY2hvcyBlbiBvdHJvIG1lZGlvIG8gZm9ybWF0b3MsIHBlcm8gZGUgb3RyYSBtYW5lcmEgdXN0ZWQgbm8gZXN0w6EgYXV0b3JpemFkbyBwYXJhIHJlYWxpemFyIG9icmFzIGRlcml2YWRhcy4gVG9kb3MgbG9zIGRlcmVjaG9zIG5vIG90b3JnYWRvcyBleHByZXNhbWVudGUgcG9yIGVsIExpY2VuY2lhbnRlIHF1ZWRhbiBwb3IgZXN0ZSBtZWRpbyByZXNlcnZhZG9zLCBpbmNsdXllbmRvIHBlcm8gc2luIGxpbWl0YXJzZSBhIGFxdWVsbG9zIHF1ZSBzZSBtZW5jaW9uYW4gZW4gbGFzIHNlY2Npb25lcyA0KGQpIHkgNChlKS4KICAgIAo0LiBSZXN0cmljY2lvbmVzLgpMYSBsaWNlbmNpYSBvdG9yZ2FkYSBlbiBsYSBhbnRlcmlvciBTZWNjacOzbiAzIGVzdMOhIGV4cHJlc2FtZW50ZSBzdWpldGEgeSBsaW1pdGFkYSBwb3IgbGFzIHNpZ3VpZW50ZXMgcmVzdHJpY2Npb25lczoKYS4gVXN0ZWQgcHVlZGUgZGlzdHJpYnVpciwgZXhoaWJpciBww7pibGljYW1lbnRlLCBlamVjdXRhciBww7pibGljYW1lbnRlLCBvIHBvbmVyIGEgZGlzcG9zaWNpw7NuIHDDumJsaWNhIGxhIE9icmEgc8OzbG8gYmFqbyBsYXMgY29uZGljaW9uZXMgZGUgZXN0YSBMaWNlbmNpYSwgeSBVc3RlZCBkZWJlIGluY2x1aXIgdW5hIGNvcGlhIGRlIGVzdGEgbGljZW5jaWEgbyBkZWwgSWRlbnRpZmljYWRvciBVbml2ZXJzYWwgZGUgUmVjdXJzb3MgZGUgbGEgbWlzbWEgY29uIGNhZGEgY29waWEgZGUgbGEgT2JyYSBxdWUgZGlzdHJpYnV5YSwgZXhoaWJhIHDDumJsaWNhbWVudGUsIGVqZWN1dGUgcMO6YmxpY2FtZW50ZSBvIHBvbmdhIGEgZGlzcG9zaWNpw7NuIHDDumJsaWNhLiBObyBlcyBwb3NpYmxlIG9mcmVjZXIgbyBpbXBvbmVyIG5pbmd1bmEgY29uZGljacOzbiBzb2JyZSBsYSBPYnJhIHF1ZSBhbHRlcmUgbyBsaW1pdGUgbGFzIGNvbmRpY2lvbmVzIGRlIGVzdGEgTGljZW5jaWEgbyBlbCBlamVyY2ljaW8gZGUgbG9zIGRlcmVjaG9zIGRlIGxvcyBkZXN0aW5hdGFyaW9zIG90b3JnYWRvcyBlbiBlc3RlIGRvY3VtZW50by4gTm8gZXMgcG9zaWJsZSBzdWJsaWNlbmNpYXIgbGEgT2JyYS4gVXN0ZWQgZGViZSBtYW50ZW5lciBpbnRhY3RvcyB0b2RvcyBsb3MgYXZpc29zIHF1ZSBoYWdhbiByZWZlcmVuY2lhIGEgZXN0YSBMaWNlbmNpYSB5IGEgbGEgY2zDoXVzdWxhIGRlIGxpbWl0YWNpw7NuIGRlIGdhcmFudMOtYXMuIFVzdGVkIG5vIHB1ZWRlIGRpc3RyaWJ1aXIsIGV4aGliaXIgcMO6YmxpY2FtZW50ZSwgZWplY3V0YXIgcMO6YmxpY2FtZW50ZSwgbyBwb25lciBhIGRpc3Bvc2ljacOzbiBww7pibGljYSBsYSBPYnJhIGNvbiBhbGd1bmEgbWVkaWRhIHRlY25vbMOzZ2ljYSBxdWUgY29udHJvbGUgZWwgYWNjZXNvIG8gbGEgdXRpbGl6YWNpw7NuIGRlIGVsbGEgZGUgdW5hIGZvcm1hIHF1ZSBzZWEgaW5jb25zaXN0ZW50ZSBjb24gbGFzIGNvbmRpY2lvbmVzIGRlIGVzdGEgTGljZW5jaWEuIExvIGFudGVyaW9yIHNlIGFwbGljYSBhIGxhIE9icmEgaW5jb3Jwb3JhZGEgYSB1bmEgT2JyYSBDb2xlY3RpdmEsIHBlcm8gZXN0byBubyBleGlnZSBxdWUgbGEgT2JyYSBDb2xlY3RpdmEgYXBhcnRlIGRlIGxhIG9icmEgbWlzbWEgcXVlZGUgc3VqZXRhIGEgbGFzIGNvbmRpY2lvbmVzIGRlIGVzdGEgTGljZW5jaWEuIFNpIFVzdGVkIGNyZWEgdW5hIE9icmEgQ29sZWN0aXZhLCBwcmV2aW8gYXZpc28gZGUgY3VhbHF1aWVyIExpY2VuY2lhbnRlIGRlYmUsIGVuIGxhIG1lZGlkYSBkZSBsbyBwb3NpYmxlLCBlbGltaW5hciBkZSBsYSBPYnJhIENvbGVjdGl2YSBjdWFscXVpZXIgcmVmZXJlbmNpYSBhIGRpY2hvIExpY2VuY2lhbnRlIG8gYWwgQXV0b3IgT3JpZ2luYWwsIHNlZ8O6biBsbyBzb2xpY2l0YWRvIHBvciBlbCBMaWNlbmNpYW50ZSB5IGNvbmZvcm1lIGxvIGV4aWdlIGxhIGNsw6F1c3VsYSA0KGMpLgpiLiBVc3RlZCBubyBwdWVkZSBlamVyY2VyIG5pbmd1bm8gZGUgbG9zIGRlcmVjaG9zIHF1ZSBsZSBoYW4gc2lkbyBvdG9yZ2Fkb3MgZW4gbGEgU2VjY2nDs24gMyBwcmVjZWRlbnRlIGRlIG1vZG8gcXVlIGVzdMOpbiBwcmluY2lwYWxtZW50ZSBkZXN0aW5hZG9zIG8gZGlyZWN0YW1lbnRlIGRpcmlnaWRvcyBhIGNvbnNlZ3VpciB1biBwcm92ZWNobyBjb21lcmNpYWwgbyB1bmEgY29tcGVuc2FjacOzbiBtb25ldGFyaWEgcHJpdmFkYS4gRWwgaW50ZXJjYW1iaW8gZGUgbGEgT2JyYSBwb3Igb3RyYXMgb2JyYXMgcHJvdGVnaWRhcyBwb3IgZGVyZWNob3MgZGUgYXV0b3IsIHlhIHNlYSBhIHRyYXbDqXMgZGUgdW4gc2lzdGVtYSBwYXJhIGNvbXBhcnRpciBhcmNoaXZvcyBkaWdpdGFsZXMgKGRpZ2l0YWwgZmlsZS1zaGFyaW5nKSBvIGRlIGN1YWxxdWllciBvdHJhIG1hbmVyYSBubyBzZXLDoSBjb25zaWRlcmFkbyBjb21vIGVzdGFyIGRlc3RpbmFkbyBwcmluY2lwYWxtZW50ZSBvIGRpcmlnaWRvIGRpcmVjdGFtZW50ZSBhIGNvbnNlZ3VpciB1biBwcm92ZWNobyBjb21lcmNpYWwgbyB1bmEgY29tcGVuc2FjacOzbiBtb25ldGFyaWEgcHJpdmFkYSwgc2llbXByZSBxdWUgbm8gc2UgcmVhbGljZSB1biBwYWdvIG1lZGlhbnRlIHVuYSBjb21wZW5zYWNpw7NuIG1vbmV0YXJpYSBlbiByZWxhY2nDs24gY29uIGVsIGludGVyY2FtYmlvIGRlIG9icmFzIHByb3RlZ2lkYXMgcG9yIGVsIGRlcmVjaG8gZGUgYXV0b3IuCmMuIFNpIHVzdGVkIGRpc3RyaWJ1eWUsIGV4aGliZSBww7pibGljYW1lbnRlLCBlamVjdXRhIHDDumJsaWNhbWVudGUgbyBlamVjdXRhIHDDumJsaWNhbWVudGUgZW4gZm9ybWEgZGlnaXRhbCBsYSBPYnJhIG8gY3VhbHF1aWVyIE9icmEgRGVyaXZhZGEgdSBPYnJhIENvbGVjdGl2YSwgVXN0ZWQgZGViZSBtYW50ZW5lciBpbnRhY3RhIHRvZGEgbGEgaW5mb3JtYWNpw7NuIGRlIGRlcmVjaG8gZGUgYXV0b3IgZGUgbGEgT2JyYSB5IHByb3BvcmNpb25hciwgZGUgZm9ybWEgcmF6b25hYmxlIHNlZ8O6biBlbCBtZWRpbyBvIG1hbmVyYSBxdWUgVXN0ZWQgZXN0w6kgdXRpbGl6YW5kbzogKGkpIGVsIG5vbWJyZSBkZWwgQXV0b3IgT3JpZ2luYWwgc2kgZXN0w6EgcHJvdmlzdG8gKG8gc2V1ZMOzbmltbywgc2kgZnVlcmUgYXBsaWNhYmxlKSwgeS9vIChpaSkgZWwgbm9tYnJlIGRlIGxhIHBhcnRlIG8gbGFzIHBhcnRlcyBxdWUgZWwgQXV0b3IgT3JpZ2luYWwgeS9vIGVsIExpY2VuY2lhbnRlIGh1YmllcmVuIGRlc2lnbmFkbyBwYXJhIGxhIGF0cmlidWNpw7NuICh2LmcuLCB1biBpbnN0aXR1dG8gcGF0cm9jaW5hZG9yLCBlZGl0b3JpYWwsIHB1YmxpY2FjacOzbikgZW4gbGEgaW5mb3JtYWNpw7NuIGRlIGxvcyBkZXJlY2hvcyBkZSBhdXRvciBkZWwgTGljZW5jaWFudGUsIHTDqXJtaW5vcyBkZSBzZXJ2aWNpb3MgbyBkZSBvdHJhcyBmb3JtYXMgcmF6b25hYmxlczsgZWwgdMOtdHVsbyBkZSBsYSBPYnJhIHNpIGVzdMOhIHByb3Zpc3RvOyBlbiBsYSBtZWRpZGEgZGUgbG8gcmF6b25hYmxlbWVudGUgZmFjdGlibGUgeSwgc2kgZXN0w6EgcHJvdmlzdG8sIGVsIElkZW50aWZpY2Fkb3IgVW5pZm9ybWUgZGUgUmVjdXJzb3MgKFVuaWZvcm0gUmVzb3VyY2UgSWRlbnRpZmllcikgcXVlIGVsIExpY2VuY2lhbnRlIGVzcGVjaWZpY2EgcGFyYSBzZXIgYXNvY2lhZG8gY29uIGxhIE9icmEsIHNhbHZvIHF1ZSB0YWwgVVJJIG5vIHNlIHJlZmllcmEgYSBsYSBub3RhIHNvYnJlIGxvcyBkZXJlY2hvcyBkZSBhdXRvciBvIGEgbGEgaW5mb3JtYWNpw7NuIHNvYnJlIGVsIGxpY2VuY2lhbWllbnRvIGRlIGxhIE9icmE7IHkgZW4gZWwgY2FzbyBkZSB1bmEgT2JyYSBEZXJpdmFkYSwgYXRyaWJ1aXIgZWwgY3LDqWRpdG8gaWRlbnRpZmljYW5kbyBlbCB1c28gZGUgbGEgT2JyYSBlbiBsYSBPYnJhIERlcml2YWRhICh2LmcuLCAiVHJhZHVjY2nDs24gRnJhbmNlc2EgZGUgbGEgT2JyYSBkZWwgQXV0b3IgT3JpZ2luYWwsIiBvICJHdWnDs24gQ2luZW1hdG9ncsOhZmljbyBiYXNhZG8gZW4gbGEgT2JyYSBvcmlnaW5hbCBkZWwgQXV0b3IgT3JpZ2luYWwiKS4gVGFsIGNyw6lkaXRvIHB1ZWRlIHNlciBpbXBsZW1lbnRhZG8gZGUgY3VhbHF1aWVyIGZvcm1hIHJhem9uYWJsZTsgZW4gZWwgY2Fzbywgc2luIGVtYmFyZ28sIGRlIE9icmFzIERlcml2YWRhcyB1IE9icmFzIENvbGVjdGl2YXMsIHRhbCBjcsOpZGl0byBhcGFyZWNlcsOhLCBjb21vIG3DrW5pbW8sIGRvbmRlIGFwYXJlY2UgZWwgY3LDqWRpdG8gZGUgY3VhbHF1aWVyIG90cm8gYXV0b3IgY29tcGFyYWJsZSB5IGRlIHVuYSBtYW5lcmEsIGFsIG1lbm9zLCB0YW4gZGVzdGFjYWRhIGNvbW8gZWwgY3LDqWRpdG8gZGUgb3RybyBhdXRvciBjb21wYXJhYmxlLiAgCmQuIFBhcmEgZXZpdGFyIHRvZGEgY29uZnVzacOzbiwgZWwgTGljZW5jaWFudGUgYWNsYXJhIHF1ZSwgY3VhbmRvIGxhIG9icmEgZXMgdW5hIGNvbXBvc2ljacOzbiBtdXNpY2FsOgoKaS4gUmVnYWzDrWFzIHBvciBpbnRlcnByZXRhY2nDs24geSBlamVjdWNpw7NuIGJham8gbGljZW5jaWFzIGdlbmVyYWxlcy4gRWwgTGljZW5jaWFudGUgc2UgcmVzZXJ2YSBlbCBkZXJlY2hvIGV4Y2x1c2l2byBkZSBhdXRvcml6YXIgbGEgZWplY3VjacOzbiBww7pibGljYSBvIGxhIGVqZWN1Y2nDs24gcMO6YmxpY2EgZGlnaXRhbCBkZSBsYSBvYnJhIHkgZGUgcmVjb2xlY3Rhciwgc2VhIGluZGl2aWR1YWxtZW50ZSBvIGEgdHJhdsOpcyBkZSB1bmEgc29jaWVkYWQgZGUgZ2VzdGnDs24gY29sZWN0aXZhIGRlIGRlcmVjaG9zIGRlIGF1dG9yIHkgZGVyZWNob3MgY29uZXhvcyAocG9yIGVqZW1wbG8sIFNBWUNPKSwgbGFzIHJlZ2Fsw61hcyBwb3IgbGEgZWplY3VjacOzbiBww7pibGljYSBvIHBvciBsYSBlamVjdWNpw7NuIHDDumJsaWNhIGRpZ2l0YWwgZGUgbGEgb2JyYSAocG9yIGVqZW1wbG8gV2ViY2FzdCkgbGljZW5jaWFkYSBiYWpvIGxpY2VuY2lhcyBnZW5lcmFsZXMsIHNpIGxhIGludGVycHJldGFjacOzbiBvIGVqZWN1Y2nDs24gZGUgbGEgb2JyYSBlc3TDoSBwcmltb3JkaWFsbWVudGUgb3JpZW50YWRhIHBvciBvIGRpcmlnaWRhIGEgbGEgb2J0ZW5jacOzbiBkZSB1bmEgdmVudGFqYSBjb21lcmNpYWwgbyB1bmEgY29tcGVuc2FjacOzbiBtb25ldGFyaWEgcHJpdmFkYS4KaWkuIFJlZ2Fsw61hcyBwb3IgRm9ub2dyYW1hcy4gRWwgTGljZW5jaWFudGUgc2UgcmVzZXJ2YSBlbCBkZXJlY2hvIGV4Y2x1c2l2byBkZSByZWNvbGVjdGFyLCBpbmRpdmlkdWFsbWVudGUgbyBhIHRyYXbDqXMgZGUgdW5hIHNvY2llZGFkIGRlIGdlc3Rpw7NuIGNvbGVjdGl2YSBkZSBkZXJlY2hvcyBkZSBhdXRvciB5IGRlcmVjaG9zIGNvbmV4b3MgKHBvciBlamVtcGxvLCBsb3MgY29uc2FncmFkb3MgcG9yIGxhIFNBWUNPKSwgdW5hIGFnZW5jaWEgZGUgZGVyZWNob3MgbXVzaWNhbGVzIG8gYWxnw7puIGFnZW50ZSBkZXNpZ25hZG8sIGxhcyByZWdhbMOtYXMgcG9yIGN1YWxxdWllciBmb25vZ3JhbWEgcXVlIFVzdGVkIGNyZWUgYSBwYXJ0aXIgZGUgbGEgb2JyYSAo4oCcdmVyc2nDs24gY292ZXLigJ0pIHkgZGlzdHJpYnV5YSwgZW4gbG9zIHTDqXJtaW5vcyBkZWwgcsOpZ2ltZW4gZGUgZGVyZWNob3MgZGUgYXV0b3IsIHNpIGxhIGNyZWFjacOzbiBvIGRpc3RyaWJ1Y2nDs24gZGUgZXNhIHZlcnNpw7NuIGNvdmVyIGVzdMOhIHByaW1vcmRpYWxtZW50ZSBkZXN0aW5hZGEgbyBkaXJpZ2lkYSBhIG9idGVuZXIgdW5hIHZlbnRhamEgY29tZXJjaWFsIG8gdW5hIGNvbXBlbnNhY2nDs24gbW9uZXRhcmlhIHByaXZhZGEuCiAgICAgIAplLiBHZXN0acOzbiBkZSBEZXJlY2hvcyBkZSBBdXRvciBzb2JyZSBJbnRlcnByZXRhY2lvbmVzIHkgRWplY3VjaW9uZXMgRGlnaXRhbGVzIChXZWJDYXN0aW5nKS4gUGFyYSBldml0YXIgdG9kYSBjb25mdXNpw7NuLCBlbCBMaWNlbmNpYW50ZSBhY2xhcmEgcXVlLCBjdWFuZG8gbGEgb2JyYSBzZWEgdW4gZm9ub2dyYW1hLCBlbCBMaWNlbmNpYW50ZSBzZSByZXNlcnZhIGVsIGRlcmVjaG8gZXhjbHVzaXZvIGRlIGF1dG9yaXphciBsYSBlamVjdWNpw7NuIHDDumJsaWNhIGRpZ2l0YWwgZGUgbGEgb2JyYSAocG9yIGVqZW1wbG8sIHdlYmNhc3QpIHkgZGUgcmVjb2xlY3RhciwgaW5kaXZpZHVhbG1lbnRlIG8gYSB0cmF2w6lzIGRlIHVuYSBzb2NpZWRhZCBkZSBnZXN0acOzbiBjb2xlY3RpdmEgZGUgZGVyZWNob3MgZGUgYXV0b3IgeSBkZXJlY2hvcyBjb25leG9zIChwb3IgZWplbXBsbywgQUNJTlBSTyksIGxhcyByZWdhbMOtYXMgcG9yIGxhIGVqZWN1Y2nDs24gcMO6YmxpY2EgZGlnaXRhbCBkZSBsYSBvYnJhIChwb3IgZWplbXBsbywgd2ViY2FzdCksIHN1amV0YSBhIGxhcyBkaXNwb3NpY2lvbmVzIGFwbGljYWJsZXMgZGVsIHLDqWdpbWVuIGRlIERlcmVjaG8gZGUgQXV0b3IsIHNpIGVzdGEgZWplY3VjacOzbiBww7pibGljYSBkaWdpdGFsIGVzdMOhIHByaW1vcmRpYWxtZW50ZSBkaXJpZ2lkYSBhIG9idGVuZXIgdW5hIHZlbnRhamEgY29tZXJjaWFsIG8gdW5hIGNvbXBlbnNhY2nDs24gbW9uZXRhcmlhIHByaXZhZGEuCiAgCjUuIFJlcHJlc2VudGFjaW9uZXMsIEdhcmFudMOtYXMgeSBMaW1pdGFjaW9uZXMgZGUgUmVzcG9uc2FiaWxpZGFkLgpBIE1FTk9TIFFVRSBMQVMgUEFSVEVTIExPIEFDT1JEQVJBTiBERSBPVFJBIEZPUk1BIFBPUiBFU0NSSVRPLCBFTCBMSUNFTkNJQU5URSBPRlJFQ0UgTEEgT0JSQSAoRU4gRUwgRVNUQURPIEVOIEVMIFFVRSBTRSBFTkNVRU5UUkEpIOKAnFRBTCBDVUFM4oCdLCBTSU4gQlJJTkRBUiBHQVJBTlTDjUFTIERFIENMQVNFIEFMR1VOQSBSRVNQRUNUTyBERSBMQSBPQlJBLCBZQSBTRUEgRVhQUkVTQSwgSU1QTMONQ0lUQSwgTEVHQUwgTyBDVUFMUVVJRVJBIE9UUkEsIElOQ0xVWUVORE8sIFNJTiBMSU1JVEFSU0UgQSBFTExBUywgR0FSQU5Uw41BUyBERSBUSVRVTEFSSURBRCwgQ09NRVJDSUFCSUxJREFELCBBREFQVEFCSUxJREFEIE8gQURFQ1VBQ0nDk04gQSBQUk9Qw5NTSVRPIERFVEVSTUlOQURPLCBBVVNFTkNJQSBERSBJTkZSQUNDScOTTiwgREUgQVVTRU5DSUEgREUgREVGRUNUT1MgTEFURU5URVMgTyBERSBPVFJPIFRJUE8sIE8gTEEgUFJFU0VOQ0lBIE8gQVVTRU5DSUEgREUgRVJST1JFUywgU0VBTiBPIE5PIERFU0NVQlJJQkxFUyAoUFVFREFOIE8gTk8gU0VSIEVTVE9TIERFU0NVQklFUlRPUykuIEFMR1VOQVMgSlVSSVNESUNDSU9ORVMgTk8gUEVSTUlURU4gTEEgRVhDTFVTScOTTiBERSBHQVJBTlTDjUFTIElNUEzDjUNJVEFTLCBFTiBDVVlPIENBU08gRVNUQSBFWENMVVNJw5NOIFBVRURFIE5PIEFQTElDQVJTRSBBIFVTVEVELgogIAo2LiBMaW1pdGFjacOzbiBkZSByZXNwb25zYWJpbGlkYWQuCkEgTUVOT1MgUVVFIExPIEVYSUpBIEVYUFJFU0FNRU5URSBMQSBMRVkgQVBMSUNBQkxFLCBFTCBMSUNFTkNJQU5URSBOTyBTRVLDgSBSRVNQT05TQUJMRSBBTlRFIFVTVEVEIFBPUiBEQcORTyBBTEdVTk8sIFNFQSBQT1IgUkVTUE9OU0FCSUxJREFEIEVYVFJBQ09OVFJBQ1RVQUwsIFBSRUNPTlRSQUNUVUFMIE8gQ09OVFJBQ1RVQUwsIE9CSkVUSVZBIE8gU1VCSkVUSVZBLCBTRSBUUkFURSBERSBEQcORT1MgTU9SQUxFUyBPIFBBVFJJTU9OSUFMRVMsIERJUkVDVE9TIE8gSU5ESVJFQ1RPUywgUFJFVklTVE9TIE8gSU1QUkVWSVNUT1MgUFJPRFVDSURPUyBQT1IgRUwgVVNPIERFIEVTVEEgTElDRU5DSUEgTyBERSBMQSBPQlJBLCBBVU4gQ1VBTkRPIEVMIExJQ0VOQ0lBTlRFIEhBWUEgU0lETyBBRFZFUlRJRE8gREUgTEEgUE9TSUJJTElEQUQgREUgRElDSE9TIERBw5FPUy4gQUxHVU5BUyBMRVlFUyBOTyBQRVJNSVRFTiBMQSBFWENMVVNJw5NOIERFIENJRVJUQSBSRVNQT05TQUJJTElEQUQsIEVOIENVWU8gQ0FTTyBFU1RBIEVYQ0xVU0nDk04gUFVFREUgTk8gQVBMSUNBUlNFIEEgVVNURUQuCiAgCjcuIFTDqXJtaW5vLgkKYS4gRXN0YSBMaWNlbmNpYSB5IGxvcyBkZXJlY2hvcyBvdG9yZ2Fkb3MgZW4gdmlydHVkIGRlIGVsbGEgdGVybWluYXLDoW4gYXV0b23DoXRpY2FtZW50ZSBzaSBVc3RlZCBpbmZyaW5nZSBhbGd1bmEgY29uZGljacOzbiBlc3RhYmxlY2lkYSBlbiBlbGxhLiBTaW4gZW1iYXJnbywgbG9zIGluZGl2aWR1b3MgbyBlbnRpZGFkZXMgcXVlIGhhbiByZWNpYmlkbyBPYnJhcyBEZXJpdmFkYXMgbyBDb2xlY3RpdmFzIGRlIFVzdGVkIGRlIGNvbmZvcm1pZGFkIGNvbiBlc3RhIExpY2VuY2lhLCBubyB2ZXLDoW4gdGVybWluYWRhcyBzdXMgbGljZW5jaWFzLCBzaWVtcHJlIHF1ZSBlc3RvcyBpbmRpdmlkdW9zIG8gZW50aWRhZGVzIHNpZ2FuIGN1bXBsaWVuZG8gw61udGVncmFtZW50ZSBsYXMgY29uZGljaW9uZXMgZGUgZXN0YXMgbGljZW5jaWFzLiBMYXMgU2VjY2lvbmVzIDEsIDIsIDUsIDYsIDcsIHkgOCBzdWJzaXN0aXLDoW4gYSBjdWFscXVpZXIgdGVybWluYWNpw7NuIGRlIGVzdGEgTGljZW5jaWEuCmIuIFN1amV0YSBhIGxhcyBjb25kaWNpb25lcyB5IHTDqXJtaW5vcyBhbnRlcmlvcmVzLCBsYSBsaWNlbmNpYSBvdG9yZ2FkYSBhcXXDrSBlcyBwZXJwZXR1YSAoZHVyYW50ZSBlbCBwZXLDrW9kbyBkZSB2aWdlbmNpYSBkZSBsb3MgZGVyZWNob3MgZGUgYXV0b3IgZGUgbGEgb2JyYSkuIE5vIG9ic3RhbnRlIGxvIGFudGVyaW9yLCBlbCBMaWNlbmNpYW50ZSBzZSByZXNlcnZhIGVsIGRlcmVjaG8gYSBwdWJsaWNhciB5L28gZXN0cmVuYXIgbGEgT2JyYSBiYWpvIGNvbmRpY2lvbmVzIGRlIGxpY2VuY2lhIGRpZmVyZW50ZXMgbyBhIGRlamFyIGRlIGRpc3RyaWJ1aXJsYSBlbiBsb3MgdMOpcm1pbm9zIGRlIGVzdGEgTGljZW5jaWEgZW4gY3VhbHF1aWVyIG1vbWVudG87IGVuIGVsIGVudGVuZGlkbywgc2luIGVtYmFyZ28sIHF1ZSBlc2EgZWxlY2Npw7NuIG5vIHNlcnZpcsOhIHBhcmEgcmV2b2NhciBlc3RhIGxpY2VuY2lhIG8gcXVlIGRlYmEgc2VyIG90b3JnYWRhICwgYmFqbyBsb3MgdMOpcm1pbm9zIGRlIGVzdGEgbGljZW5jaWEpLCB5IGVzdGEgbGljZW5jaWEgY29udGludWFyw6EgZW4gcGxlbm8gdmlnb3IgeSBlZmVjdG8gYSBtZW5vcyBxdWUgc2VhIHRlcm1pbmFkYSBjb21vIHNlIGV4cHJlc2EgYXRyw6FzLiBMYSBMaWNlbmNpYSByZXZvY2FkYSBjb250aW51YXLDoSBzaWVuZG8gcGxlbmFtZW50ZSB2aWdlbnRlIHkgZWZlY3RpdmEgc2kgbm8gc2UgbGUgZGEgdMOpcm1pbm8gZW4gbGFzIGNvbmRpY2lvbmVzIGluZGljYWRhcyBhbnRlcmlvcm1lbnRlLgogIAo4LiBWYXJpb3MuCmEuIENhZGEgdmV6IHF1ZSBVc3RlZCBkaXN0cmlidXlhIG8gcG9uZ2EgYSBkaXNwb3NpY2nDs24gcMO6YmxpY2EgbGEgT2JyYSBvIHVuYSBPYnJhIENvbGVjdGl2YSwgZWwgTGljZW5jaWFudGUgb2ZyZWNlcsOhIGFsIGRlc3RpbmF0YXJpbyB1bmEgbGljZW5jaWEgZW4gbG9zIG1pc21vcyB0w6lybWlub3MgeSBjb25kaWNpb25lcyBxdWUgbGEgbGljZW5jaWEgb3RvcmdhZGEgYSBVc3RlZCBiYWpvIGVzdGEgTGljZW5jaWEuCmIuIFNpIGFsZ3VuYSBkaXNwb3NpY2nDs24gZGUgZXN0YSBMaWNlbmNpYSByZXN1bHRhIGludmFsaWRhZGEgbyBubyBleGlnaWJsZSwgc2Vnw7puIGxhIGxlZ2lzbGFjacOzbiB2aWdlbnRlLCBlc3RvIG5vIGFmZWN0YXLDoSBuaSBsYSB2YWxpZGV6IG5pIGxhIGFwbGljYWJpbGlkYWQgZGVsIHJlc3RvIGRlIGNvbmRpY2lvbmVzIGRlIGVzdGEgTGljZW5jaWEgeSwgc2luIGFjY2nDs24gYWRpY2lvbmFsIHBvciBwYXJ0ZSBkZSBsb3Mgc3VqZXRvcyBkZSBlc3RlIGFjdWVyZG8sIGFxdcOpbGxhIHNlIGVudGVuZGVyw6EgcmVmb3JtYWRhIGxvIG3DrW5pbW8gbmVjZXNhcmlvIHBhcmEgaGFjZXIgcXVlIGRpY2hhIGRpc3Bvc2ljacOzbiBzZWEgdsOhbGlkYSB5IGV4aWdpYmxlLgpjLiBOaW5nw7puIHTDqXJtaW5vIG8gZGlzcG9zaWNpw7NuIGRlIGVzdGEgTGljZW5jaWEgc2UgZXN0aW1hcsOhIHJlbnVuY2lhZGEgeSBuaW5ndW5hIHZpb2xhY2nDs24gZGUgZWxsYSBzZXLDoSBjb25zZW50aWRhIGEgbWVub3MgcXVlIGVzYSByZW51bmNpYSBvIGNvbnNlbnRpbWllbnRvIHNlYSBvdG9yZ2FkbyBwb3IgZXNjcml0byB5IGZpcm1hZG8gcG9yIGxhIHBhcnRlIHF1ZSByZW51bmNpZSBvIGNvbnNpZW50YS4KZC4gRXN0YSBMaWNlbmNpYSByZWZsZWphIGVsIGFjdWVyZG8gcGxlbm8gZW50cmUgbGFzIHBhcnRlcyByZXNwZWN0byBhIGxhIE9icmEgYXF1w60gbGljZW5jaWFkYS4gTm8gaGF5IGFycmVnbG9zLCBhY3VlcmRvcyBvIGRlY2xhcmFjaW9uZXMgcmVzcGVjdG8gYSBsYSBPYnJhIHF1ZSBubyBlc3TDqW4gZXNwZWNpZmljYWRvcyBlbiBlc3RlIGRvY3VtZW50by4gRWwgTGljZW5jaWFudGUgbm8gc2UgdmVyw6EgbGltaXRhZG8gcG9yIG5pbmd1bmEgZGlzcG9zaWNpw7NuIGFkaWNpb25hbCBxdWUgcHVlZGEgc3VyZ2lyIGVuIGFsZ3VuYSBjb211bmljYWNpw7NuIGVtYW5hZGEgZGUgVXN0ZWQuIEVzdGEgTGljZW5jaWEgbm8gcHVlZGUgc2VyIG1vZGlmaWNhZGEgc2luIGVsIGNvbnNlbnRpbWllbnRvIG11dHVvIHBvciBlc2NyaXRvIGRlbCBMaWNlbmNpYW50ZSB5IFVzdGVkLgo=