Changing Cellular Phenotypes Induced by Soluble Factors from Dengue Virus Infection
Dengue is a viral disease and a global public health problem. It can be presented as complicated (Severe Dengue, SD), characterized by endothelial dysfunction, for which there is only palliative treatment. It has been considered that soluble factors in conditioned media from Dengue virus infection (...
- Autores:
-
Alfaro García, Jenny Paola
- Tipo de recurso:
- Doctoral thesis
- Fecha de publicación:
- 2025
- Institución:
- Universidad de Antioquia
- Repositorio:
- Repositorio UdeA
- Idioma:
- eng
- OAI Identifier:
- oai:bibliotecadigital.udea.edu.co:10495/47470
- Acceso en línea:
- https://hdl.handle.net/10495/47470
- Palabra clave:
- Cell plasticity
Plasticidad de la célula
Dengue
Endothelial cells
Células endoteliales
Endothelial-mesenchymal transition
Transición endotelial-mesenquimatosa
Endothelial dysfunction
Soluble factors
https://id.nlm.nih.gov/mesh/D000066670
https://id.nlm.nih.gov/mesh/D003715
https://id.nlm.nih.gov/mesh/D042783
https://id.nlm.nih.gov/mesh/D000096382
ODS 3: Salud y bienestar. Garantizar una vida sana y promover el bienestar de todos a todas las edades
- Rights
- embargoedAccess
- License
- http://creativecommons.org/licenses/by-nc-sa/4.0/
| id |
UDEA2_1eccfbbb8ccb19503f777d439f71aecd |
|---|---|
| oai_identifier_str |
oai:bibliotecadigital.udea.edu.co:10495/47470 |
| network_acronym_str |
UDEA2 |
| network_name_str |
Repositorio UdeA |
| repository_id_str |
|
| dc.title.eng.fl_str_mv |
Changing Cellular Phenotypes Induced by Soluble Factors from Dengue Virus Infection |
| title |
Changing Cellular Phenotypes Induced by Soluble Factors from Dengue Virus Infection |
| spellingShingle |
Changing Cellular Phenotypes Induced by Soluble Factors from Dengue Virus Infection Cell plasticity Plasticidad de la célula Dengue Endothelial cells Células endoteliales Endothelial-mesenchymal transition Transición endotelial-mesenquimatosa Endothelial dysfunction Soluble factors https://id.nlm.nih.gov/mesh/D000066670 https://id.nlm.nih.gov/mesh/D003715 https://id.nlm.nih.gov/mesh/D042783 https://id.nlm.nih.gov/mesh/D000096382 ODS 3: Salud y bienestar. Garantizar una vida sana y promover el bienestar de todos a todas las edades |
| title_short |
Changing Cellular Phenotypes Induced by Soluble Factors from Dengue Virus Infection |
| title_full |
Changing Cellular Phenotypes Induced by Soluble Factors from Dengue Virus Infection |
| title_fullStr |
Changing Cellular Phenotypes Induced by Soluble Factors from Dengue Virus Infection |
| title_full_unstemmed |
Changing Cellular Phenotypes Induced by Soluble Factors from Dengue Virus Infection |
| title_sort |
Changing Cellular Phenotypes Induced by Soluble Factors from Dengue Virus Infection |
| dc.creator.fl_str_mv |
Alfaro García, Jenny Paola |
| dc.contributor.advisor.none.fl_str_mv |
Gallego Goméz, Juan Carlos Orozco Castaño, Carlos Alberto |
| dc.contributor.author.none.fl_str_mv |
Alfaro García, Jenny Paola |
| dc.contributor.researchgroup.none.fl_str_mv |
Grupo Medicina Molecular y de Translación |
| dc.contributor.jury.none.fl_str_mv |
Rojas Lopéz, Mauricio Nieto Toledano, María Ángela Núñez de Cáceres, Rosa María del Ángel |
| dc.subject.decs.none.fl_str_mv |
Cell plasticity Plasticidad de la célula Dengue Endothelial cells Células endoteliales Endothelial-mesenchymal transition Transición endotelial-mesenquimatosa |
| topic |
Cell plasticity Plasticidad de la célula Dengue Endothelial cells Células endoteliales Endothelial-mesenchymal transition Transición endotelial-mesenquimatosa Endothelial dysfunction Soluble factors https://id.nlm.nih.gov/mesh/D000066670 https://id.nlm.nih.gov/mesh/D003715 https://id.nlm.nih.gov/mesh/D042783 https://id.nlm.nih.gov/mesh/D000096382 ODS 3: Salud y bienestar. Garantizar una vida sana y promover el bienestar de todos a todas las edades |
| dc.subject.proposal.eng.fl_str_mv |
Endothelial dysfunction Soluble factors |
| dc.subject.meshuri.none.fl_str_mv |
https://id.nlm.nih.gov/mesh/D000066670 https://id.nlm.nih.gov/mesh/D003715 https://id.nlm.nih.gov/mesh/D042783 https://id.nlm.nih.gov/mesh/D000096382 |
| dc.subject.ods.none.fl_str_mv |
ODS 3: Salud y bienestar. Garantizar una vida sana y promover el bienestar de todos a todas las edades |
| description |
Dengue is a viral disease and a global public health problem. It can be presented as complicated (Severe Dengue, SD), characterized by endothelial dysfunction, for which there is only palliative treatment. It has been considered that soluble factors in conditioned media from Dengue virus infection (CMDV) can induce a cellular plasticity event, such as the endothelial-mesenchymal transition (EndMT), and influence the dysfunction. The objectives of this work are to determine if CMDV induces cellular phenotypical changes and if it promotes endothelial permeability. Endothelial microvasculature cells were exposed to CMDV for 48 to 120 hours, and alterations in endothelial permeability (TEER), morphology (confocal laser microscopy and atomic force microscopy), and the expression of markers associated with EndMT (In-cell western and RNA-seq bulk) were evaluated. CMDV was found to have a biphasic effect on cells: in the acute phase, they induce temporary alterations of the ECM and cytoskeleton, generating a migratory phenotype, increasing the expression of mesenchymal proteins (SNAIL, TWIST1, N-Cad), and inducing a temporary proinflammatory response followed by an endothelial repair response phase. This dynamic behavior can be model in an asynchronous Boolean network that allows elucidating the mechanisms associated with both cellular responses caused by CMDV and it highlights possible therapeutic targets such as IL-6 and FN1, which can be tested to prevent endothelial dysfunction. The results show that soluble CMDV factors induce a transient EndMT-like state and influence endothelial dysfunction, which can be modeled to detail the mechanisms involved in it and to identify potential therapeutic targets. |
| publishDate |
2025 |
| dc.date.accessioned.none.fl_str_mv |
2025-09-30T19:07:57Z |
| dc.date.issued.none.fl_str_mv |
2025 |
| dc.date.available.none.fl_str_mv |
2027-09-30 |
| dc.type.none.fl_str_mv |
Trabajo de grado - Doctorado |
| dc.type.coar.none.fl_str_mv |
http://purl.org/coar/resource_type/c_db06 |
| dc.type.content.none.fl_str_mv |
Text |
| dc.type.coarversion.none.fl_str_mv |
http://purl.org/coar/version/c_b1a7d7d4d402bcce |
| dc.type.driver.none.fl_str_mv |
info:eu-repo/semantics/doctoralThesis |
| dc.type.version.none.fl_str_mv |
info:eu-repo/semantics/draft |
| format |
http://purl.org/coar/resource_type/c_db06 |
| status_str |
draft |
| dc.identifier.citation.none.fl_str_mv |
Alfaro García J.P. Changing Cellular Phenotypes Induced by soluble factors from Dengue Virus infection. Doctoral thesis. Medellín, Colombia. University of Antioquia; 2025. |
| dc.identifier.uri.none.fl_str_mv |
https://hdl.handle.net/10495/47470 |
| identifier_str_mv |
Alfaro García J.P. Changing Cellular Phenotypes Induced by soluble factors from Dengue Virus infection. Doctoral thesis. Medellín, Colombia. University of Antioquia; 2025. |
| url |
https://hdl.handle.net/10495/47470 |
| dc.language.iso.none.fl_str_mv |
eng |
| language |
eng |
| dc.relation.references.none.fl_str_mv |
1. Brady OJ, Gething PW, Bhatt S, Messina JP, Brownstein JS, Hoen AG, et al. Refining the Global Spatial Limits of Dengue Virus Transmission by Evidence-Based Consensus. PLoS Negl Trop Dis. 2012;6(8). 2. Akinsulie OC, Idris I. Global re-emergence of dengue fever: The need for a rapid response and surveillance. The Microbe [Internet]. 2024;4(January):100107. Available from: https://doi.org/10.1016/j.microb.2024.100107 3. Pan American Health Organization (PAHO), World Health Organization (WHO). Dengue Situation Report Region of the Americas. 2023;2019(1). Available from: www.paho.org 4. Rodríguez RC, Carrasquilla G, Porras A, Galera-Gelvez K, Yescas JGL, Rueda-Gallardo JA. The burden of dengue and the financial cost to Colombia, 2010-2012. Am J Trop Med Hyg. 2016;94(5):1065–72. 5. Rocklöv J, Tozan Y. Climate change and the rising infectiousness of dengue. Emerg Top Life Sci. 2019;3(2):133–42. 6. World Health Organization. Regional Office for the Americas of the World Health Organization. 2019. Modified dengue severity classification. Available from: https://www.paho.org/en/documents/modified-dengue-severity-classification 7. Tayal A, Kabra SK, Lodha R. Management of Dengue: An Updated Review. Indian J Pediatr. 2023;90(2):168–77. 8. Tejo AM, Hamasaki DT, Menezes LM, Ho YL. Severe dengue in the intensive care unit. J Intensive Med. 2024;4(1):16–33. 9. Teo A, Chua CLL, Chia PY, Yeo TW. Insights into potential causes of vascular hyperpermeability in dengue. PLoS Pathog [Internet]. 2021;17(12):1–7. Available from: http://dx.doi.org/10.1371/journal.ppat.1010065 10. Aguilar-Briseño JA, Moser J, Rodenhuis-Zybert IA. Understanding immunopathology of severe dengue: lessons learnt from sepsis. Curr Opin Virol. 2020;43:41–9. 11. Bhatt P, Sabeena SP, Varma M, Arunkumar G. Current Understanding of the Pathogenesis of Dengue Virus Infection. Curr Microbiol [Internet]. 2021;78(1):17–32. Available from: https://doi.org/10.1007/s00284-020-02284-w 12. Mishra R, Lata S, Ali A, Banerjea AC. Dengue haemorrhagic fever: a job done via exosomes? Emerg Microbes Infect. 2019;8(1):1626–35. 13. Khanam A, Gutiérrez-Barbosa H, Lyke KE, Chua J V. Immune-Mediated Pathogenesis in Dengue Virus Infection. Viruses. 2022;14(11):1–19. 14. Martina B, Koraka P, Osterhaus A. Dengue Virus Pathogenesis: an Integrated View. Clin Microbiol Rev [Internet]. 2009;22:564–81. Available from: https://www.semanticscholar.org/paper/4d2d1e48e13ed1616c9af149bb39c4e7b4c155d9 15. Guzman MG, Gubler DJ, Izquierdo A, Martinez E, Halstead SB. Dengue infection. Nat Rev Dis Prim [Internet]. 2016;2:1–26. Available from: http://dx.doi.org/10.1038/nrdp.2016.55 16. Ospina-bedoya M, Campillo-pedroza N, Franco-salazar JP, Gallego-gómez JC. Bioinformatics and Biology Insights their Cellular Targets. JT Efird, Assoc Ed. 2014;169–76. 17. Cuartas-López AM, Hernández-Cuellar CE, Gallego-Gómez JC. Disentangling the role of PI3K/Akt, Rho GTPase and the actin cytoskeleton on dengue virus infection. Virus Res [Internet]. 2018;256:153–65. Available from: https://doi.org/10.1016/j.virusres.2018.08.013 18. Álvarez-Díaz DA, Gutiérrez-Díaz AA, Orozco-García E, Puerta-González A, Bermúdez-Santana CI, Gallego-Gómez JC. Dengue virus potentially promotes migratory responses on endothelial cells by enhancing pro-migratory soluble factors and miRNAs. Virus Res [Internet]. 2019;259(September 2018):68–76. Available from: https://doi.org/10.1016/j.virusres.2018.10.018 19. Escudero-Flórez M, Torres-Hoyos D, Miranda-Brand Y, Boudreau RL, Gallego-Gómez JC, Vicente-Manzanares M. Dengue Virus Infection Alters Inter-Endothelial Junctions and Promotes Endothelial–Mesenchymal-Transition-like Changes in Human Microvascular Endothelial Cells (Viruses, (2023), 15, 7, (1437), 10.3390/v15071437). Viruses. 2023;15(11). 20. Spatz LB, Jin RU, Mills JC. Cellular plasticity at the nexus of development and disease. Dev. 2021;148(3):1–6. 21. Shen S, Clairambault J. Cell plasticity in cancer cell populations. F1000Research 2020 [Internet]. 2020;9(F1000 Faculty Rev):635. Available from: https://f1000research.com/articles/9-635 22. Yao Y, Wang C. Dedifferentiation: inspiration for devising engineering strategies for regenerative medicine. npj Regen Med [Internet]. 2020;5(1). Available from: http://dx.doi.org/10.1038/s41536-020-00099-8 23. Yanjie GUO, Weini WU, Yang X, Xiaobing FU. Dedifferentiation and in vivo reprogramming of committed cells in wound repair (Review). Mol Med Rep. 2022;26(6):1–12. 24. Graf T. Historical origins of transdifferentiation and reprogramming. Cell Stem Cell [Internet]. 2011;9(6):504–16. Available from: http://dx.doi.org/10.1016/j.stem.2011.11.012 25. Rezaei-Lotfi S, Vujovic F, Simonian M, Hunter N, Farahani RM. Programmed genomic instability regulates neural transdifferentiation of human brain microvascular pericytes. Genome Biol. 2021;22(1):1–27. 26. Ng N, Newbery M, Maksour S, Dottori M, Sluyter R, Ooi L. Transgene and Chemical Transdifferentiation of Somatic Cells for Rapid and Efficient Neurological Disease Cell Models. Front Cell Neurosci. 2022;16(May):1–9. 27. Pesaresi M, Sebastian-Perez R, Cosma MP. Dedifferentiation, transdifferentiation and cell fusion: in vivo reprogramming strategies for regenerative medicine. FEBS J. 2019;286(6):1074–93. 28. Takahashi K, Yamanaka S. Induction of Pluripotent Stem Cells from Mouse Embryonic and Adult Fibroblast Cultures by Defined Factors. Cell. 2006;126(4):663–76. 29. Nieto MA, Huang RYYJ, Jackson RAA, Thiery JPP. Emt: 2016. Cell. 2016;166(1):21–45. 30. Lambert AW, Weinberg RA. Linking EMT programmes to normal and neoplastic epithelial stem cells. Nat Rev Cancer [Internet]. 2021;21(5):325–38. Available from: http://dx.doi.org/10.1038/s41568-021-00332-6 31. Canciello A, Cerveró-Varona A, Peserico A, Mauro A, Russo V, Morrione A, et al. “In medio stat virtus”: Insights into hybrid E/M phenotype attitudes. Front Cell Dev Biol. 2022;10(November):1–21. 32. Trapnell C, Cacchiarelli D, Grimsby J, Pokharel P, Li S, Morse M, et al. The dynamics and regulators of cell fate decisions are revealed by pseudotemporal ordering of single cells. Nat Biotechnol [Internet]. 2014;32(4):381–6. Available from: http://dx.doi.org/10.1038/nbt.2859 33. Jiménez S, Schreiber V, Mercier R, Gradwohl G, Molina N. Characterization of cell-fate decision landscapes by estimating transcription factor dynamics. Cell Reports Methods. 2023;3(7). 34. Lee J, Kim N, Cho KH. Decoding the principle of cell-fate determination for its reverse control. npj Syst Biol Appl. 2024;10(1):1–11. 35. Simons M. Endothelial-to-mesenchymal transition: advances and controversies. Curr Opin Physiol. 2023;34:1–5. 36. Hong L, Du X, Li W, Mao Y, Sun L, Li X. EndMT: A promising and controversial field. Eur J Cell Biol. 2018;97(7):493–500. 37. Takahashi K. Cellular reprogramming - lowering gravity on Waddington’s epigenetic landscape. J Cell Sci. 2012;125(11):2553–60. 38. Piera-Velazquez S, Jimenez SA. Endothelial to mesenchymal transition: Role in physiology and in the pathogenesis of human diseases. Physiol Rev. 2019;99(2):1281–324. 39. Alfaro-García JP, Granados-Alzate MC, Vicente-Manzanares M, Gallego-Gómez JC. An integrated view of virus-triggered cellular plasticity using boolean networks. Cells. 2021;10(11):1–15. 40. Saito A. EMT and EndMT: regulated in similar ways? J Biochem. 2013;153(6):493–5. 41. Shu DY, Butcher E, Saint-Geniez M. EMT and ENDMT: Emerging roles in age-related macular degeneration. Int J Mol Sci. 2020;21(12):1–26. 42. Naipauer J, Mesri EA. The Kaposi’s sarcoma progenitor enigma: KSHV-induced MEndT–EndMT axis. Trends Mol Med [Internet]. 2023;29(3):188–200. Available from: https://doi.org/10.1016/j.molmed.2022.12.003 43. Ciszewski WM, Woźniak LA, Sobierajska K. Diverse roles of SARS-CoV-2 Spike and Nucleocapsid proteins in EndMT stimulation through the TGF-β-MRTF axis inhibited by aspirin. Cell Commun Signal. 2024;1–23. 44. Póvoa TF, Alves AMB, Oliveira CAB, Nuovo GJ, Chagas VLA, Paes M V. The pathology of severe dengue in multiple organs of human fatal cases: Histopathology, ultrastructure and virus replication. PLoS One. 2014;9(4). 45. Vásquez Ochoa M, García Cordero J, Gutiérrez Castañeda B, Santos Argumedo L, Villegas Sepúlveda N, Cedillo Barrón L. A clinical isolate of dengue virus and its proteins induce apoptosis in HMEC-1 cells: A possible implication in pathogenesis. Arch Virol. 2009;154(6):919–28. 46. Vervaeke P, Vermeire K, Liekens S. Endothelial dysfunction in dengue virus pathology. Rev Med Virol [Internet]. 2015;25:50–67. Available from: https://www.semanticscholar.org/paper/907f641b51834ee991542c47015393ac7f8c2627 47. Rivera JA, Rengifo AC, Parra EA, Castellanos JE, Caldas ML. Histopatología ilustrada de casos fatales de dengue en Colombia. Biomedica. 2020;40(3):438–47. 48. Rathi KR, Arora MM, Sahai K, Tripathi S, Singh SP, Raman DK, et al. Autopsy findings in fatal dengue haemorrhagic fever - 06 cases. Med J Armed Forces India [Internet]. 2013;69(3):254–9. Available from: http://dx.doi.org/10.1016/j.mjafi.2012.08.021 49. Irurzun-Arana I, Pastor JM, Trocóniz IF, Gómez-Mantilla JD. Advanced Boolean modeling of biological networks applied to systems pharmacology. Bioinformatics. 2017;33(7):1040–8. 50. Weerasinghe HN, Burrage PM, Burrage K, Nicolau D V. Mathematical Models of Cancer Cell Plasticity. J Oncol. 2019;2019. 51. Weinstein N, Mendoza L, Álvarez-Buylla ER. A Computational Model of the Endothelial to Mesenchymal Transition. Front Genet. 2020;11(March). 52. Ma Y, Yang Q, Zhong Z, Liang W, Zhang L, Yang Y, et al. Role of c-Abl and nephrin in podocyte cytoskeletal remodeling induced by angiotensin II. Cell Death Dis [Internet]. 2018;9(2). Available from: http://dx.doi.org/10.1038/s41419-017-0225-y 53. Cleary RA, Wang R, Waqar O, Singer HA, Tang DD. Role of c-Abl tyrosine kinase in smooth muscle cell migration. Am J Physiol - Cell Physiol. 2014;306(8):753–61. 54. Luttman JH, Colemon A, Mayro B, Pendergast AM. Role of the ABL tyrosine kinases in the epithelial–mesenchymal transition and the metastatic cascade. Cell Commun Signal [Internet]. 2021;19(1):1–16. Available from: https://doi.org/10.1186/s12964-021-00739-6 55. Choi KJ, Nam JK, Kim JH, Choi SH, Lee YJ. Endothelial-to-mesenchymal transition in anticancer therapy and normal tissue damage. Exp Mol Med [Internet]. 2020;52(5):781–92. Available from: http://dx.doi.org/10.1038/s12276-020-0439-4 56. Song S, Zhang M, Yi Z, Zhang H, Shen T, Yu X, et al. The role of PDGF-B/TGF-β1/neprilysin network in regulating endothelial-to-mesenchymal transition in pulmonary artery remodeling. Cell Signal [Internet]. 2016;28(10):1489–501. Available from: http://dx.doi.org/10.1016/j.cellsig.2016.06.022 57. Schermuly RT, Dony E, Ghofrani HA, Pullamsetti S, Savai R, Roth M, et al. Reversal of experimental pulmonary hypertension by PDGF inhibition. J Clin Invest. 2005;115(10):2811–21. 58. Chislock EM, Pendergast AM. Abl Family Kinases Regulate Endothelial Barrier Function In Vitro and in Mice. PLoS One. 2013;8(12):1–17. 59. Clark MJ, Miduturu C, Schmidt AG, Jang J, Chu H, Gray NS, et al. GNF-2 Inhibits Dengue Virus by Targeting Abl Kinases and the Viral E Protein Article GNF-2 Inhibits Dengue Virus by Targeting Abl Kinases and the Viral E Protein. Cell Chem Biol [Internet]. 2016;23(4):443–52. Available from: http://dx.doi.org/10.1016/j.chembiol.2016.03.010 60. Nanaware N, Banerjee A, Bagchi SM, Bagchi P, Mukherjee A. Dengue virus infection: A tale of viral exploitations and host responses. Viruses. 2021;13(10). 61. Stanaway JD, Shepard DS, Undurraga EA, Halasa YA, Coffeng LE, Brady OJ, et al. The global burden of dengue: an analysis from the Global Burden of Disease Study 2013. Lancet Infect Dis. 2016;16(6):712–23. 62. Organization WH. Disease Outbreak News. 2023 [cited 2024 Sep 24]. Dengue – the Region of the Americas. Available from: https://www.who.int/emergencies/disease-outbreak-news/item/2023-DON475 63. Ebi KL, Nealon J. Dengue in a changing climate. Environ Res [Internet]. 2016;151:115–23. Available from: http://dx.doi.org/10.1016/j.envres.2016.07.026 64. World Health Organization & UNICEF/UNDP/World Bank/WHO Special Programme for Research and Training in Tropical Diseases. DENGUE Guidelines for Diagnosis, Treatment, Prevention and Control. 2009. 11 p. 65. The Lancet. Dengue: the threat to health now and in the future. Lancet [Internet]. 2024;404(10450):311. Available from: http://dx.doi.org/10.1016/S0140-6736(24)01542-3 66. Messina JP, Brady OJ, Golding N, Kraemer MUG, Wint GRW, Ray SE, et al. The current and future global distribution and population at risk of dengue. Nat Microbiol [Internet]. 2019;4(9):1508–15. Available from: http://dx.doi.org/10.1038/s41564-019-0476-8 67. Dick OB, San Martín JL, Montoya RH, Del Diego J, Zambrano B, Dayan GH. Review: The history of dengue outbreaks in the Americas. Am J Trop Med Hyg. 2012;87(4):584–93. 68. Dominguez, N., & Nerissa MA. Current DF/DHF Prevention and Control Programme in the Philippines. Dengue Bull. 1997;21:41–7. 69. Brem J, Elankeswaran B, Erne D, Hedrich N, Lovey T, Marzetta V, et al. Dengue “homegrown” in Europe (2022 to 2023). New Microbes New Infect. 2024;56(November 2023):2023–5. 70. Buchs A, Conde A, Frank A, Gottet C, Hedrich N, Lovey T, et al. The threat of dengue in Europe. New Microbes New Infect [Internet]. 2022;49–50:101061. Available from: https://doi.org/10.1016/j.nmni.2022.101061 71. Chen LH, Marti C, Perez CD, Jackson BM, Simon AM, Lu M. Epidemiology and burden of dengue fever in the United States: a systematic review. J Travel Med. 2023;30(7):1–17. 72. Ryff KR, Rivera A, Rodriguez DM, Santiago GA, Medina FA, Ellis EM, et al. Epidemiologic Trends of Dengue in U.S. Territories, 2010–2020. MMWR Surveill Summ. 2023;72(4):2010–20. 73. Horstick O, Tozan Y, Wilder-Smith A. Reviewing Dengue: Still a Neglected Tropical Disease? PLoS Negl Trop Dis. 2015;9(4):1–18. 74. Jisamerin J, Mohamedkalifa A, Gaur A, Geetha J, Sakthivadivel V. Dengue: A Neglected Disease of Concern. Cureus. 2021;13(10):4–11. 75. Lessa CLS, Hodel KVS, Gonçalves M de S, Machado BAS. Dengue as a Disease Threatening Global Health: A Narrative Review Focusing on Latin America and Brazil. Trop Med Infect Dis. 2023;8(5). 76. Colón-González FJ, Gibb R, Khan K, Watts A, Lowe R, Brady OJ. Projecting the future incidence and burden of dengue in Southeast Asia. Nat Commun. 2023;14(1). 77. Wang Y, Zhao S, Wei Y, Li K, Jiang X, Li C, et al. Impact of climate change on dengue fever epidemics in South and Southeast Asian settings: A modelling study. Infect Dis Model [Internet]. 2023;8(3):645–55. Available from: https://doi.org/10.1016/j.idm.2023.05.008 78. Amelia-Yap ZH, Chen CD, Sofian-Azirun M, Low VL. Pyrethroid resistance in the dengue vector Aedes aegypti in Southeast Asia: Present situation and prospects for management. Parasites and Vectors. 2018;11(1):1–17. 79. Turner HC. Cost-effectiveness of a Wolbachia-based replacement strategy for dengue control in Brazil. Lancet Reg Heal - Am [Internet]. 2024;35(May):100789. Available from: https://doi.org/10.1016/j.lana.2024.100789 80. Moreno RD, Valera L, Borgoño C, Castilla JC, Riveros JL. Gene drives, mosquitoes, and ecosystems: an interdisciplinary approach to emerging ethical concerns. Front Environ Sci. 2023;11(January):1–13. 81. Silva JP, Fernandez-Sesma A. Challenges on the development of a dengue vaccine: a comprehensive review of the state of the art. J Gen Virol. 2023;104(3):1–12. 82. Gaspar-Castillo C, Rodríguez MH, Ortiz-Navarrete V, Alpuche-Aranda CM, Martinez-Barnetche J. Structural and immunological basis of cross-reactivity between dengue and Zika infections: Implications in serosurveillance in endemic regions. Front Microbiol. 2023;14(March). 83. Salgado BB, Maués FC de J, Jordão M, Pereira RL, Toledo-Teixeira DA, Parise PL, et al. Antibody cross-reactivity and evidence of susceptibility to emerging Flaviviruses in the dengue-endemic Brazilian Amazon. Int J Infect Dis [Internet]. 2023;129:142–51. Available from: https://doi.org/10.1016/j.ijid.2023.01.033 84. Freedman DO. A new dengue vaccine (TAK-003) now WHO recommended in endemic areas; what about travellers? J Travel Med. 2023;30(7):1–3. 85. Yu VG, Lasco G, David CC. Fear, mistrust, and vaccine hesitancy: Narratives of the dengue vaccine controversy in the Philippines. Vaccine [Internet]. 2021;39(35):4964–72. Available from: https://doi.org/10.1016/j.vaccine.2021.07.051 86. Dapari R, Muniandy K, Azman AZF, Bakar SA, Desa MNM, Hwa LC, et al. Effectiveness of the Integrated Dengue Education and Learning (iDEAL) module in improving the knowledge, attitude, practice, environmental cleanliness index, and dengue index among schoolchildren: A randomised controlled trial protocol. PLoS One [Internet]. 2024;19(4 April):1–14. Available from: http://dx.doi.org/10.1371/journal.pone.0302736 87. Islam A, Deeba F, Tarai B, Gupta E, Naqvi IH, Abdullah M, et al. Global and local evolutionary dynamics of Dengue virus serotypes 1, 3, and 4. Epidemiol Infect. 2023;151. 88. Yesmin F, Nasim R, Anjum R, Dewan SMR. Epidemiological challenges in Dengue outbreak: DENV-5 emergence and public health strategies. Int J Surg Open. 2024;62(1):70–1. 89. Katzelnick LC, Fonville JM, Gromowski GD, Bustos Arriaga J, Green A, James SL, Lau L, Montoya M, Wang C, VanBlargan LA, Russell CA, Thu HM, Pierson TC, Buchy P, Aaskov JG, Muñoz-Jordán JL, Vasilakis N, Gibbons RV, Tesh RB, Osterhaus AD, Fouchier RA, Durbi SD. Dengue viruses cluster antigenically but not as discrete serotype. Science (80- ). 2015;349(6254):1338–43. 90. Dowd KA, DeMaso CR, Pierson TC. Genotypic differences in dengue virus neutralization are explained by a single amino acid mutation that modulates virus breathing. MBio. 2015;6(6). 91. Tamura T, Zhang J, Madan V, Biswas A, Schwoerer MP, Cafiero TR, et al. Generation and characterization of genetically and antigenically diverse infectious clones of dengue virus serotypes 1–4. Emerg Microbes Infect [Internet]. 2022;11(1):227–39. Available from: https://doi.org/10.1080/22221751.2021.2021808 92. Bos S, Graber AL, Cardona-Ospina JA, Duarte EM, Zambrana JV, Ruíz Salinas JA, et al. Protection against symptomatic dengue infection by neutralizing antibodies varies by infection history and infecting serotype. Nat Commun. 2024;15(1). 93. Senaratne UTN, Senaratne UTN, Murugananthan K, Murugananthan K, Sirisena PDNN, Carr JM, et al. Dengue virus co-infections with multiple serotypes do not result in a different clinical outcome compared to mono-infections. Epidemiol Infect. 2020;0–8. 94. Suppiah J, Ching SM, Amin-Nordin S, Mat-Nor LA, Ahmad-Najimudin NA, Low GKK, et al. Clinical manifestations of dengue in relation to dengue serotype and genotype in Malaysia: A retrospective observational study. PLoS Negl Trop Dis. 2018;12(9):1–20. 95. Morgan RN, Ismail NSM, Alshahrani MY, Aboshanab KM. Multi-epitope peptide vaccines targeting dengue virus serotype 2 created via immunoinformatic analysis. Sci Rep [Internet]. 2024;14(1):1–22. Available from: https://doi.org/10.1038/s41598-024-67553-1 96. Gupta A, Rijhwani P, Pahadia MR, Kalia A, Choudhary S, Bansal DP, et al. Prevalence of Dengue Serotypes and Its Correlation With the Laboratory Profile at a Tertiary Care Hospital in Northwestern India. Cureus. 2021;13(5):1–8. 97. Tsai JJ, Chang K, Chen CH, Liao CL, Chen LJ, Tsai YY, et al. Dengue virus serotype did not contribute to clinical severity or mortality in Taiwan’s largest dengue outbreak in 2015. Eur J Med Res [Internet]. 2023;28(1):1–15. Available from: https://doi.org/10.1186/s40001-023-01454-3 98. Golding MAJ, Noble SAA, Khouri NK, Layne-Yarde RNA, Ali I, Sandiford SL. Natural vertical transmission of dengue virus in Latin America and the Caribbean: highlighting its detection limitations and potential significance. Parasites and Vectors [Internet]. 2023;16(1):1–13. Available from: https://doi.org/10.1186/s13071-023-06043-1 99. Mendez JA, Usme-Ciro JA, Domingo C, Rey GJ, Sanchez JA, Tenorio A, et al. Phylogenetic history demonstrates two different lineages of dengue type 1 virus in Colombia. Virol J. 2010;7:1–12. 100. Ramos-Castañeda J, Barreto dos Santos F, Martínez-Vega R, Galvão de Araujo JM, Joint G, Sarti E. Dengue in Latin America: Systematic Review of Molecular Epidemiological Trends. PLoS Negl Trop Dis. 2017;11(1):1–24. 101. Gutierrez-Barbosa H, Medina-Moreno S, Zapata JC, Chua J V. Dengue infections in Colombia: Epidemiological trends of a hyperendemic country. Trop Med Infect Dis. 2020;5(4). 102. Grubaugh ND, Torres-hernández D, Murillo-ortiz MA, Dávalos DM. 2023-24 dengue outbreak in Valle del Cauca , Colombia caused by multiple virus serotypes and lineages. 2024;0–7. 103. Instituto Nacional de Salud. Protocolo de vigilancia en Salud publica: Dengue. 2024. 104. Instituto Nacional de Salud. Boletín epidemiológico semanal 52 de 2023. Boletín epidemiológico Sem. 2023;18–21. 105. Ajlan BA, Alafif MM, Alawi MM, Akbar NA, Aldigs EK, Madani TA. Assessment of the new World Health Organization’s dengue classification for predicting severity of illness and level of healthcare required. PLoS Negl Trop Dis. 2019;13(8):1–16. 106. Cattarino L, Rodriguez-Barraquer I, Imai N, Cummings DAT, Ferguson NM. Mapping global variation in dengue transmission intensity. Sci Transl Med. 2020;12(528):1–10. 107. Schaefer TJ, Panda PK WR. StatPearls [Internet]. 2024. Dengue Fever. Available from: https://www.ncbi.nlm.nih.gov/books/NBK430732/ 108. Bandara SMR, Herath HMMTB. Corticosteroid actions on dengue immune pathology; A review article. Clin Epidemiol Glob Heal [Internet]. 2020;8(2):486–94. Available from: https://doi.org/10.1016/j.cegh.2019.11.001 109. Ishak SH, Yaacob LH, Ishak A. Severe dengue with hemophagocytosis syndrome. Malaysian Fam Physician. 2020;15(1):47–9. 110. Medin CL, Rothman AL. Cell type-specific mechanisms of interleukin-8 induction by dengue virus and differential response to drug treatment. J Infect Dis. 2006;193(8):1070–7. 111. Bhat CS, Shetty R, Sundaram B, Ramanan A V. Immunomodulatory therapy in dengue: Need for clinical trials and evidence base. Arch Dis Child. 2022;0(0):1–2. 112. Palanichamy Kala M, St. John AL, Rathore APS. Dengue: Update on Clinically Relevant Therapeutic Strategies and Vaccines. Curr Treat Options Infect Dis [Internet]. 2023;15(2):27–52. Available from: https://doi.org/10.1007/s40506-023-00263-w 113. Masri MF Bin, Rathore APS, St. John AL. Therapeutics for Dengue. Curr Treat Options Infect Dis. 2019;11(3):199–214. 114. Martinez DR, Metz SW, Baric RS. Dengue Vaccines: The Promise and Pitfalls of Antibody-Mediated Protection. Cell Host Microbe [Internet]. 2021;29(1):13–22. Available from: https://doi.org/10.1016/j.chom.2020.12.011 115. Salje H, Alera MT, Chua MN, Hunsawong T, Ellison D, Srikiatkhachorn A, et al. Evaluation of the extended efficacy of the Dengvaxia vaccine against symptomatic and subclinical dengue infection. Nat Med. 2021;27(8):1395–400. 116. Thomas SJ. Is new dengue vaccine efficacy data a relief or cause for concern? npj Vaccines. 2023;8(1). 117. Sabchareon A, Wallace D, Sirivichayakul C, Limkittikul K, Chanthavanich P, Suvannadabba S, et al. Protective efficacy of the recombinant, live-attenuated, CYD tetravalent dengue vaccine in Thai schoolchildren: A randomised, controlled phase 2b trial. Lancet [Internet]. 2012;380(9853):1559–67. Available from: http://dx.doi.org/10.1016/S0140-6736(12)61428-7 118. Sridhar S, Luedtke A, Langevin E, Zhu M, Bonaparte M, Machabert T, et al. Effect of Dengue Serostatus on Dengue Vaccine Safety and Efficacy. N Engl J Med. 2018;379(4):327–40. 119. Huang CYH, Kinney RM, Livengood JA, Bolling B, Arguello JJ, Luy BE, et al. Genetic and Phenotypic Characterization of Manufacturing Seeds for a Tetravalent Dengue Vaccine (DENVax). PLoS Negl Trop Dis. 2013;7(5). 120. Tricou V, Yu D, Reynales H, Biswal S, Saez-Llorens X, Sirivichayakul C, et al. Long-term efficacy and safety of a tetravalent dengue vaccine (TAK-003): 4·5-year results from a phase 3, randomised, double-blind, placebo-controlled trial. Lancet Glob Heal Effic Saf a tetravalent dengue vaccine 4·5-year results from a phase 3, randomised, double-blind, placebo-controlled trial [Internet]. 2024;12(2):e257–70. Available from: http://dx.doi.org/10.1016/S2214-109X(23)00522-3 121. Kirkpatrick BD, Durbin AP, Pierce KK, Carmolli MP, Tibery CM, Grier PL, et al. Robust and balanced immune responses to all 4 dengue virus serotypes following administration of a single dose of a live attenuated tetravalent dengue vaccine to healthy, flavivirus-naive adults. J Infect Dis. 2015;212(5):702–10. 122. Whitehead SS, Blaney JE, Durbin AP, Murphy BR. Prospects for a dengue virus vaccine. Nat Rev Microbiol. 2007;5(7):518–28. 123. Whitehead SS. Development of TV003/TV005, a single dose, highly immunogenic live attenuated dengue vaccine; What makes this vaccine different from the Sanofi-Pasteur CYDTM vaccine? Expert Rev Vaccines [Internet]. 2016;15(4):509–17. Available from: http://dx.doi.org/10.1586/14760584.2016.1115727 124. Walsh MCR, Alam MS, Pierce KK, Carmolli M, Alam M, Dickson DM, et al. Safety and durable immunogenicity of the TV005 tetravalent dengue vaccine, across serotypes and age groups, in dengue-endemic Bangladesh: a randomised, controlled trial. Lancet Infect Dis. 2024;24(2):150–60. 125. Wilder-Smith A. Controlled human infection study underpins efficacy of the tetravalent live-attenuated dengue vaccine TV005. J Clin Invest. 2024;134(3):1–11. 126. Rather IA, Parray HA, Lone JB, Paek WK, Lim J, Bajpai VK, et al. Prevention and control strategies to counter dengue virus infection. Front Cell Infect Microbiol. 2017;7(JUL):1–8. 127. Withanage GP, Gunawardana M, Viswakula SD, Samaraweera K, Gunawardena NS, Hapugoda MD. Multivariate spatio-temporal approach to identify vulnerable localities in dengue risk areas using Geographic Information System (GIS). Sci Rep [Internet]. 2021;11(1):1–11. Available from: https://doi.org/10.1038/s41598-021-83204-1 128. Andreo V, Porcasi X, Guzman C, Lopez L, Scavuzzo CM. Spatial distribution of aedes aegypti oviposition temporal patterns and their relationship with environment and dengue incidence. Insects. 2021;12(10). 129. Diaz-Quijano FA, Martínez-Vega RA, Rodriguez-Morales AJ, Rojas-Calero RA, Luna-González ML, Díaz-Quijano RG. Association between the level of education and knowledge, attitudes and practices regarding dengue in the Caribbean region of Colombia. BMC Public Health. 2018;18(1):1–10. 130. Procopio AC, Colletta S, Laratta E, Mellace M, Tilocca B, Ceniti C, et al. Integrated One Health strategies in Dengue. One Heal [Internet]. 2024;18(January):100684. Available from: https://doi.org/10.1016/j.onehlt.2024.100684 131. Rahman RU, Souza B, Uddin I, Carrara L, Brito LP, Costa MM, et al. Insecticide resistance and underlying targets-site and metabolic mechanisms in Aedes aegypti and Aedes albopictus from Lahore, Pakistan. Sci Rep [Internet]. 2021;11(1):1–15. Available from: https://doi.org/10.1038/s41598-021-83465-w 132. Mulatier M, Boullis A, Vega-Rúa A. Semiochemical oviposition cues to control Aedes aegypti gravid females: state of the art and proposed framework for their validation. Parasites and Vectors [Internet]. 2022;15(1):1–14. Available from: https://doi.org/10.1186/s13071-022-05337-0 133. Huang YJS, Higgs S, Vanlandingham DL. Biological control strategies for mosquito vectors of arboviruses. Insects. 2017;8(1):1–25. 134. Reid WR, Olson KE, Franz AWE. Current Effector and Gene-Drive Developments to Engineer Arbovirus-Resistant Aedes aegypti (Diptera: Culicidae) for a Sustainable Population Replacement Strategy in the Field. J Med Entomol. 2021;58(5):1987–96. 135. Anderson MAE, Gonzalez E, Edgington MP, Ang JXD, Purusothaman DK, Shackleford L, et al. A multiplexed, confinable CRISPR/Cas9 gene drive can propagate in caged Aedes aegypti populations. Nat Commun. 2024;15(1). 136. Ogunlade ST, Meehan MT, Adekunle AI, Rojas DP, Adegboye OA, McBryde ES. A review: Aedes-borne arboviral infections, controls and wolbachia-based strategies. Vaccines. 2021;9(1):1–23. 137. Liang X, Liu J, Bian G, Xi Z. Wolbachia Inter-Strain Competition and Inhibition of Expression of Cytoplasmic Incompatibility in Mosquito. Front Microbiol. 2020;11(July). 138. Wilke ABB, Marrelli MT. Paratransgenesis: A promising new strategy for mosquito vector control. Parasites and Vectors [Internet]. 2015;8(1):1–9. Available from: http://dx.doi.org/10.1186/s13071-015-0959-2 139. Postler TS, Beer M, Blitvich BJ, Bukh J, de Lamballerie X, Drexler JF, et al. Renaming of the genus Flavivirus to Orthoflavivirus and extension of binomial species names within the family Flaviviridae. Arch Virol [Internet]. 2023;168(9):1–7. Available from: https://doi.org/10.1007/s00705-023-05835-1 140. Bermudez-Santana CI, Gallego-Gómez JC. Toward a Categorization of Virus-ncRNA Interactions in the World of RNA to Disentangle the Tiny Secrets of Dengue Virus. Viruses. 2024;16(5):1–25. 141. Norazharuddin H, Lai NS. Roles and prospects of dengue virus nonstructural proteins as antiviral targets: An easy digest. Malaysian J Med Sci. 2018;25(5):6–15. 142. Puerta-Guardo H, Glasner D, Espinosa D, Biering S, Patana M, Ratnasiri K, et al. Flavivirus NS1 Triggers Tissue-Specific Vascular Endothelial Dysfunction Reflecting Disease Tropism. Cell Rep. 2019;25(6):1598–613. 143. Begum F, Das S, Mukherjee D, Mal S, Ray U. Insight into the tropism of dengue virus in humans. Viruses. 2019;11(12). 144. Diamond MS, Pierson TC. Molecular Insight into Dengue Virus Pathogenesis and Its Implications for Disease Control. Cell [Internet]. 2015;162(3):488–92. Available from: http://dx.doi.org/10.1016/j.cell.2015.07.005 145. Miller JL, DeWet BJM, Martinez-Pomares L, Radcliffe CM, Dwek RA, Rudd PM, et al. The mannose receptor mediates dengue virus infection of macrophages. PLoS Pathog. 2008;4(2). 146. Hwang EH, Hur GH, Koo BS, Oh H, Kim G, Jung H, et al. Monocytes as suitable carriers for dissemination of dengue viral infection. Heliyon [Internet]. 2022;8(10):e11212. Available from: https://doi.org/10.1016/j.heliyon.2022.e11212 147. Martı́nez-Barragán J de J, del Angel RM. Identification of a Putative Coreceptor on Vero Cells That Participates in Dengue 4 Virus Infection. J Virol. 2001;75(17):7818–27. 148. Chen Y, Maguire T, Hileman R, Fromm J, Esko J, Linhardt R, et al. Dengue virus infectivity depends on envelope protein binding to target cell heparan sulfate. Nat Med [Internet]. 1997;3(8):866–71. Available from: http://www.ncbi.nlm.nih.gov/pubmed/9585240 149. Cruz-Oliveira C, Freire JM, Conceição TM, Higa LM, Castanho MARB, Da Poian AT. Receptors and routes of dengue virus entry into the host cells. FEMS Microbiol Rev. 2015;39(2):155–70. 150. Xie S, Zhang H, Liang Z, Yang X, Cao R. AXL, an Important Host Factor for DENV and ZIKV Replication. Front Cell Infect Microbiol. 2021;11(March):1–13. 151. Gabriela DX, X FMLDX, Dx S, Mariana DX, Siqueira M. Soluble isoforms of the DC-SIGN receptor can increase the dengue virus infection in immature dendritic cells Hor a do Carmo Alves D4X a Lara dos Santos D16X a. 2024;2(xx). 152. Hu T, Wu Z, Wu S, Chen S, Cheng A. The key amino acids of E protein involved in early flavivirus infection: viral entry. Virol J [Internet]. 2021;18(1):1–12. Available from: https://doi.org/10.1186/s12985-021-01611-2 153. Izmirly AM, Alturki SO, Alturki SO, Connors J, Haddad EK. Challenges in Dengue Vaccines Development: Pre-existing Infections and Cross-Reactivity. Front Immunol. 2020;11(June):1–15. 154. Kraivong R, Punyadee N, Liszewski MK, Atkinson JP, Avirutnan P. Dengue and the lectin pathway of the complement system. Viruses. 2021;13(7). 155. Dalrymple NA, Cimica V, Mackow ER. Dengue virus NS proteins inhibit RIG-I/MAVS signaling by blocking TBK1/IRF3 phosphorylation: Dengue virus serotype 1 NS4A is a unique interferon-regulating virulence determinant. MBio. 2015;6(3):1–12. 156. Kakumani PK, Ponia SS, S RK, Sood V, Chinnappan M, Banerjea AC, et al. Role of RNA Interference (RNAi) in Dengue Virus Replication and Identification of NS4B as an RNAi Suppressor. J Virol. 2013;87(16):8870–83. 157. Ashour J, Laurent-Rolle M, Shi PY, García-Sastre A. NS5 of Dengue Virus Mediates STAT2 Binding and Degradation. J Virol. 2009;83(11):5408–18. 158. Guzman MG, Harris E. Dengue. Lancet. 2015;385(9966):453–65. 159. Kularatne SA, Dalugama C. Dengue infection: Global importance, immunopathology and management. Clin Med J R Coll Physicians London. 2022;22(1):9–13. 160. Chia PY, Teo A, Yeo TW. Overview of the Assessment of Endothelial Function in Humans. Front Med. 2020;7(October):1–15. 161. Bazzoni G, Dejana E. Endothelial cell-to-cell junctions: Molecular organization and role in vascular homeostasis. Physiol Rev. 2004;84(3):869–901. 162. Adil MS, Narayanan SP, Somanath PR. Cell-cell junctions: structure and regulation in physiology and pathology. Tissue Barriers [Internet]. 2021;9(1):1–18. Available from: https://doi.org/10.1080/21688370.2020.1848212 163. Al-Nuaimi DA, Rütsche D, Abukar A, Hiebert P, Zanetti D, Cesarovic N, et al. Hydrostatic pressure drives sprouting angiogenesis via adherens junction remodelling and YAP signalling. Commun Biol [Internet]. 2024;7(1):1–17. Available from: http://dx.doi.org/10.1038/s42003-024-06604-9 164. Villalba N, Baby S, Yuan SY. The Endothelial Glycocalyx as a Double-Edged Sword in Microvascular Homeostasis and Pathogenesis. Front Cell Dev Biol. 2021;9(July). 165. Foote C, Soares R, Ramirez-Perez F, Ghiarone T, Aroor A, Manrique-Acevedo C, et al. Endothelial Glycocalyx. Compr Physiol. 2023;12(4):3781–811. 166. Bok K, Castagnaro N, Borsa A, Nates S, Espul C, Fay O, et al. Plasma concentrations of sVCAM-1 and severity of dengue infections. J Med Virol. 2001;65(1):97–104. 167. Yeh TM, Liu SH, Lin KC, Kuo C, Kuo SY, Huang TY, et al. Dengue Virus Enhances Thrombomodulin and ICAM-1 Expression through the Macrophage Migration Inhibitory Factor Induction of the MAPK and PI3K Signaling Pathways. PLoS One. 2013;8(1). 168. Kelley JF, Kaufusi P, Nerurkar V. Dengue hemorrhagic fever-associated immunomediators induced via maturation of dengue virus nonstructural 4B protein in monocytes modulate endothelial cell adhesion molecules and human microvascular endothelial cells permeability. Virology [Internet]. 2012;422 2:326–37. Available from: https://www.semanticscholar.org/paper/861412a0fc7472125b7071cf724ecf511f4461d6 169. Puerta-Guardo H, Glasner DR, Harris E. Dengue Virus NS1 Disrupts the Endothelial Glycocalyx, Leading to Hyperpermeability. PLoS Pathog [Internet]. 2016;12. Available from: https://www.semanticscholar.org/paper/80c561d2fa14a2f9f47b5900be5a25461e355a9c 170. Carvalho DM, Garcia FG, Terra APS, Lopes Tosta AC, Silva LDA, Castellano LR, et al. Elevated dengue virus nonstructural protein 1 serum levels and altered toll-like receptor 4 expression, nitric oxide, and tumor necrosis factor alpha production in dengue hemorrhagic fever patients. J Trop Med. 2014;2014. 171. Niranjan R, Kishor S, Kumar A. Matrix metalloproteinases in the pathogenesis of dengue viral disease: Involvement of immune system and newer therapeutic strategies. J Med Virol. 2021;93(8):4629–37. 172. Pan P, Li G, Shen M, Yu Z, Ge W, Lao Z, et al. DENV NS1 and MMP-9 cooperate to induce vascular leakage by altering endothelial cell adhesion and tight junction. PLoS Pathog [Internet]. 2021;17(7):1–30. Available from: http://dx.doi.org/10.1371/journal.ppat.1008603 173. Garishah FM, Rother N, Riswari SF, Alisjahbana B, Overheul GJ, van Rij RP, et al. Neutrophil Extracellular Traps in Dengue Are Mainly Generated NOX-Independently. Front Immunol. 2021;12(May):1–10. 174. Jeewandara C, Gomes L, Udari S, Paranavitane SA, Shyamali NLA, Ogg GS, et al. Secretory phospholipase A2 in the pathogenesis of acute dengue infection: Immunity, Inflamm Dis. 2017;5(1):7–15. 175. St. John AL. Influence of Mast Cells on Dengue Protective Immunity and Immune Pathology. PLoS Pathog. 2013;9(12):1–4. 176. Liu SF, Malik AB. NF-κB activation as a pathological mechanism of septic shock and inflammation. Am J Physiol - Lung Cell Mol Physiol. 2006;290(4):622–45. 177. Zhang Y yu, Ning B tao. Signaling pathways and intervention therapies in sepsis. Signal Transduct Target Ther. 2021;6(1). 178. Malavige GN, Ogg GS. Pathogenesis of vascular leak in dengue virus infection. Immunology. 2017;151(3):261–9. 179. Lemieux C, Maliba R, Favier J, Théorêt JF, Merhi Y, Sirois MG. Angiopoietins can directly activate endothelial cells and neutrophils to promote proinflammatory responses. Blood. 2005;105(4):1523–30. 180. Dejnirattisai W, Supasa P, Wongwiwat W, Rouvinski A, Barba-Spaeth G, Duangchinda T, et al. Dengue virus sero-cross-reactivity drives antibody-dependent enhancement of infection with zika virus. Nat Immunol. 2016;17(9):1102–8. 181. Slon Campos JL, Mongkolsapaya J, Screaton GR. The immune response against flaviviruses. Nat Immunol [Internet]. 2018;19(11):1189–98. Available from: http://dx.doi.org/10.1038/s41590-018-0210-3 182. Teo A, Tan HD, Loy T, Chia PY, Chua CLL. Understanding antibody-dependent enhancement in dengue: Are afucosylated IgG1s a concern? PLoS Pathog [Internet]. 2023;19(3):1–8. Available from: http://dx.doi.org/10.1371/journal.ppat.1011223 183. Roy SK, Bhattacharjee S. Dengue virus: Epidemiology, biology, and disease aetiology. Can J Microbiol. 2021;67(10):687–702. 184. Rothman AL. Immunity to dengue virus: A tale of original antigenic sin and tropical cytokine storms. Nat Rev Immunol. 2011;11(8):532–43. 185. Chao CH, Wu WC, Lai YC, Tsai PJ, Perng GC, Lin YS, et al. Dengue virus nonstructural protein 1 activates platelets via Toll-like receptor 4, leading to thrombocytopenia and hemorrhage. PLoS Pathog. 2019;15(4):1–26. 186. Hottz ED, Oliveira MF, Nunes PCG, Nogueira RMR, Valls-de-Souza R, Da Poian AT, et al. Dengue induces platelet activation, mitochondrial dysfunction and cell death through mechanisms that involve DC-SIGN and caspases. J Thromb Haemost [Internet]. 2013;11(5):951–62. Available from: https://doi.org/10.1111/jth.12178 187. Quirino-Teixeira AC, Rozini SV, Barbosa-Lima G, Coelho DR, Carneiro PH, Mohana-Borges R, et al. Inflammatory signaling in dengue-infected platelets requires translation and secretion of nonstructural protein 1. Blood Adv. 2020;4(9):2018–31. 188. Singh A, Bisht P, Bhattacharya S, Guchhait P. Role of Platelet Cytokines in Dengue Virus Infection. Front Cell Infect Microbiol. 2020;10(September):1–9. 189. Matsuura C, Moraes TL, Barbosa JB, Moss MB, Siqueira MAS, Mann GE, et al. Nitric oxide activity in platelets of dengue haemorrhagic fever patients: The apparent paradoxical role of ADMA and l-NMMA. Trans R Soc Trop Med Hyg [Internet]. 2012;106(3):174–9. Available from: http://dx.doi.org/10.1016/j.trstmh.2011.10.009 190. Fiestas Solórzano V, Rodrigues da Costa Faria, Fernandes dos Santos C, Corrêa G, Cipitelli M, Dornelas Ribeiro M, Souza L, et al. Different profiles of cytokines, chemokines and coagulation mediators associated with severity in brazilian patients infected with dengue virus. Viruses. 2021;13(9). 191. Fiestas Solórzano VE, de Lima RC, de Azeredo EL. The Role of Growth Factors in the Pathogenesis of Dengue: A Scoping Review. Pathogens. 2022;11(10). 192. Chacón-Duque JC, Adhikari K, Avendaño E, Campo O, Ramirez R, Rojas W, et al. African genetic ancestry is associated with a protective effect on Dengue severity in colombian populations. Infect Genet Evol. 2014;27:89–95. 193. Cook AC, Thibaut D, Pettersen T. Major Histocompatibility Complex Class I and Dengue Hemorrhagic Fever: A Meta-Analysis of Human Leukocyte Antigens A*24 and B*44. Cureus. 2022;14(11):1–8. 194. Calderón-Peláez MA, Coronel-Ruiz C, Castellanos JE, Velandia-Romero ML. Endothelial Dysfunction, HMGB1, and Dengue: An Enigma to Solve. Viruses. 2022;14(8):1–22. 195. Oliveira ERA, Póvoa TF, Nuovo GJ, Allonso D, Salomaõ NG, Basílio-De-Oliveira CA, et al. Dengue fatal cases present virus-specific HMGB1 response in peripheral organs. Sci Rep. 2017;7(1):1–14. 196. Allonso D, Belgrano FS, Calzada N, Guzmán MG, Vázquez S, Mohana-Borges R. Elevated serum levels of high mobility group box 1 (HMGB1) protein in dengue-infected patients are associated with disease symptoms and secondary infection. J Clin Virol [Internet]. 2012;55(3):214–9. Available from: http://dx.doi.org/10.1016/j.jcv.2012.07.010 197. Paraná VC, Feitosa CA, da Silva GCS, Gois LL, Santos LA. Risk factors associated with severe dengue in Latin America: A systematic review and meta-analysis. Trop Med Int Heal. 2024;29(3):173–91. 198. Chen CY, Chiu YY, Chen YC, Huang CH, Wang WH, Chen YH, et al. Obesity as a clinical predictor for severe manifestation of dengue: a systematic review and meta-analysis. BMC Infect Dis. 2023;23(1):1–13. 199. Bischoff J. Endothelial to Mesenchymal Transition – Purposeful versus Maladaptive Differentiation. Circ Res. 2019;124(8):1163–5. 200. Ribatti D, Ribatti D. Epithelial-endothelial transition and endothelial-mesenchymal transition. 2022;316:311–6. 201. Ciszewski WM, Wawro ME, Sacewicz‐hofman I, Sobierajska K. Cytoskeleton reorganization in endmt—the role in cancer and fibrotic diseases. Int J Mol Sci. 2021;22(21). 202. Singh A, Bhatt KS, Nguyen HC, Frisbee JC, Singh KK. Endothelial-to-Mesenchymal Transition in Cardiovascular Pathophysiology. Int J Mol Sci. 2024;25(11). 203. Sabbineni H, Verma A, Somanath PR. Isoform-specific effects of transforming growth factor β on endothelial-to-mesenchymal transition. J Cell Physiol. 2018;233(11):8418–28. 204. Pinto MT, Covas DT, Kashima S, Rodrigues CO. Endothelial Mesenchymal Transition: Comparative Analysis of Different Induction Methods. Biol Proced Online [Internet]. 2016;18(1):1–8. Available from: http://dx.doi.org/10.1186/s12575-016-0040-3 205. Ma J, van der Zon G, Gonçalves MAFV, van Dinther M, Thorikay M, Sanchez-Duffhues G, et al. TGF-β-Induced Endothelial to Mesenchymal Transition Is Determined by a Balance Between SNAIL and ID Factors. Front Cell Dev Biol. 2021;9(February):1–20. 206. Wu Q, Du X, Cheng J, Qi X, Liu H, Lv X, et al. PECAM-1 drives β-catenin-mediated EndMT via internalization in colon cancer with diabetes mellitus. Cell Commun Signal [Internet]. 2023;21(1):1–14. Available from: https://doi.org/10.1186/s12964-023-01193-2 207. Zhang ZY, Zhai C, Yang XY, Li HB, Wu LL, Li L. Knockdown of CD146 promotes endothelialto- mesenchymal transition via Wnt/β-catenin pathway. PLoS One [Internet]. 2022;17(8 August):1–18. Available from: http://dx.doi.org/10.1371/journal.pone.0273542 208. Zhang J, Chen S, Xiang H, Xiao J, Zhao S, Shu Z, et al. S1PR2/Wnt3a/RhoA/ROCK1/β-catenin signaling pathway promotes diabetic nephropathy by inducting endothelial mesenchymal transition and impairing endothelial barrier function. Life Sci. 2023;328(April). 209. Ciszewski WM, Sobierajska K, Wawro ME, Klopocka W, Chefczyńska N, Muzyczuk A, et al. The ILK-MMP9-MRTF axis is crucial for EndMT differentiation of endothelial cells in a tumor microenvironment. Biochim Biophys Acta - Mol Cell Res. 2017;1864(12):2283–96. 210. Hong L, Li F, Tang C, Li L, Sun L, Li X, et al. Semaphorin 7A promotes endothelial to mesenchymal transition through ATF3 mediated TGF-β2/Smad signaling. Cell Death Dis [Internet]. 2020;11(8). Available from: http://dx.doi.org/10.1038/s41419-020-02818-x 211. He J, Hou L, Liu Q, Zhou R. Irisin links Claudin-5 preservation and Mfn2-mediated mitochondrial dynamics to resist doxorubicin-induced cardiac endothelial damage. Biochem Biophys Res Commun [Internet]. 2024;696(January):149501. Available from: https://doi.org/10.1016/j.bbrc.2024.149501 212. Jiang S, Xing X, Hong M, Zhang X, Xu F, Zhang GH. Hsa_circ_0081065 exacerbates IH-induced EndMT via regulating miR-665/HIF-1α signal axis and HIF-1α nuclear translocation. Sci Rep [Internet]. 2024;14(1):904. Available from: https://doi.org/10.1038/s41598-024-51471-3 213. Mao J, Liu J, Zhou M, Wang G, Xiong X, Deng Y. Hypoxia-induced interstitial transformation of microvascular endothelial cells by mediating HIF-1α/VEGF signaling in systemic sclerosis. PLoS One [Internet]. 2022;17(3 March):1–16. Available from: http://dx.doi.org/10.1371/journal.pone.0263369 214. Wang E, Wang H, Chakrabarti S. Endothelial-to-mesenchymal transition: An underappreciated mediator of diabetic complications. Front Endocrinol (Lausanne). 2023;14(January):1–12. 215. Tsai PS, Chiu CY, Sheu ML, Yang CY, Lan KC, Liu SH. Advanced glycation end products activated endothelial-to-mesenchymal transition in pancreatic islet endothelial cells and triggered islet fibrosis in diabetic mice. Chem Biol Interact [Internet]. 2021;345(June):109562. Available from: https://doi.org/10.1016/j.cbi.2021.109562 216. Song BW, Kim S, Kim R, Jeong S, Moon H, Kim H, et al. Regulation of Inflammation-Mediated Endothelial to Mesenchymal Transition with Echinochrome a for Improving Myocardial Dysfunction. Mar Drugs. 2022;20(12). 217. Yoshimatsu Y, Watabe T. Emerging roles of inflammation-mediated endothelial–mesenchymal transition in health and disease. Inflamm Regen. 2022;42(1). 218. Li AfF, Tan LL, Zhang SL, Tao J, Wang Z, Wei D. Low shear stress-induced endothelial mesenchymal transformation via the down-regulation of TET2. Biochem Biophys Res Commun [Internet]. 2021;545:20–6. Available from: https://doi.org/10.1016/j.bbrc.2021.01.062 219. Shinohara T, Moonen JR, Chun YH, Lee-Yow YC, Okamura K, Szafron JM, et al. High Shear Stress Reduces ERG Causing Endothelial-Mesenchymal Transition and Pulmonary Arterial Hypertension. bioRxiv [Internet]. 2024; Available from: https://www.embase.com/search/results?subaction=viewrecord&id=L2030894905&from=export%0Ahttp://dx.doi.org/10.1101/2024.02.02.578526 220. Islam S, Boström KI, Di Carlo D, Simmons CA, Tintut Y, Yao Y, et al. The Mechanobiology of Endothelial-to-Mesenchymal Transition in Cardiovascular Disease. Front Physiol. 2021;12(September). 221. Wesseling M, Sakkers TR, de Jager SCA, Pasterkamp G, Goumans MJ. The morphological and molecular mechanisms of epithelial/endothelial-to-mesenchymal transition and its involvement in atherosclerosis. Vascul Pharmacol [Internet]. 2018;106:1–8. Available from: http://dx.doi.org/10.1016/j.vph.2018.02.006 222. Gurevich DB, David DT, Sundararaman A, Patel J. Endothelial heterogeneity in development and wound healing. Cells. 2021;10(9):1–15. 223. Guo L, Mi J wei, Zhang H cai, Gao J, Zhang S, Li L xi, et al. Endothelial–mesenchymal transition as a novel mechanism for generating myofibroblasts during wound healing and scarring. J Cosmet Dermatol. 2023;22(2):661–8. 224. Dejana E, Hirschi KK, Simons M. The molecular basis of endothelial cell plasticity. Nat Commun. 2017;8. 225. Xu Y, Kovacic JC. Endothelial to Mesenchymal Transition in Health and Disease. Annu Rev Physiol. 2023;85:245–67. 226. Zhang J, Green CR, Mugisho OO. Cell transdifferentiation in ocular disease: Potential role for connexin channels. Exp Cell Res [Internet]. 2021;407(2):112823. Available from: https://doi.org/10.1016/j.yexcr.2021.112823 227. Peng Q, Shan D, Cui K, Li K, Zhu B, Wu H, et al. The Role of Endothelial-to-Mesenchymal Transition in Cardiovascular Disease. Cells. 2022;11:1834. 228. Nijim W, Moustafa M, Humble J, Al-Shabrawey M. Endothelial to mesenchymal cell transition in diabetic retinopathy: targets and therapeutics. Front Ophthalmol. 2023;3(September):1–9. 229. Yin Z, Wang L. Endothelial-to-mesenchymal transition in tumour progression and its potential roles in tumour therapy. Ann Med [Internet]. 2023;55(1):1058–69. Available from: https://doi.org/10.1080/07853890.2023.2180155 230. Testai L, Brancaleone V, Flori L, Montanaro R, Calderone V. Modulation of endmt by hydrogen sulfide in the prevention of cardiovascular fibrosis. Antioxidants. 2021;10(6):1–23. 231. Huang X, Pan L, Pu H, Wang Y, Zhang X, Li C, et al. Loss of caveolin-1 promotes endothelial-mesenchymal transition during sepsis: A membrane proteomic study. Int J Mol Med. 2013;32(3):585–92. 232. Stasi A, Intini A, Divella C, Franzin R, Montemurno E, Grandaliano G, et al. Emerging role of Lipopolysaccharide binding protein in sepsis-induced acute kidney injury. Nephrol Dial Transplant. 2017;32(1):24–31. 233. Feng J, Li K, Xie F, Han L, Wu Y. IL-35 ameliorates lipopolysaccharide-induced endothelial dysfunction by inhibiting endothelial-to-mesenchymal transition. Int Immunopharmacol [Internet]. 2024;129(1):111567. Available from: https://doi.org/10.1016/j.intimp.2024.111567 234. Maleszewska M, Moonen JRAJ, Huijkman N, van de Sluis B, Krenning G, Harmsen MC. IL-1β and TGFβ2 synergistically induce endothelial to mesenchymal transition in an NFκB-dependent manner. Immunobiology. 2013;218(4):443–54. 235. Roa Linares VC, Gallego Gómez JC. La pérdida de función de la quinasa dependiente de ciclina 5 (CDK5) altera el citoesqueleto y reduce la infección in vitro por el virus del dengue 2. Acta Biológica Colomb. 2019;24(3):474–85. 236. Bosch I, Xhaja K, Estevez L, Raines G, Melichar H, Warke R V., et al. Increased Production of Interleukin-8 in Primary Human Monocytes and in Human Epithelial and Endothelial Cell Lines after Dengue Virus Challenge. J Virol. 2002;76(11):5588–97. 237. Hall IF, Kishta F, Xu Y, Baker AH, Kovacic JC. Endothelial to mesenchymal transition: at the axis of cardiovascular health and disease. Cardiovasc Res. 2024;120(3):223–36. 238. Wei M, Zhang Y, Zhang H, Huang Z, Miao H, Zhang T, et al. HMGB1 induced endothelial to mesenchymal transition in liver fibrosis: The key regulation of early growth response factor 1. Biochim Biophys Acta - Gen Subj [Internet]. 2022;1866(10):130202. Available from: https://doi.org/10.1016/j.bbagen.2022.130202 239. Touret F, Baronti C, Goethals O, Van Loock M, de Lamballerie X, Querat G. Phylogenetically based establishment of a dengue virus panel, representing all available genotypes, as a tool in dengue drug discovery. Antiviral Res [Internet]. 2019;168(March):109–13. Available from: https://doi.org/10.1016/j.antiviral.2019.05.005 240. Vedagiri D, Gupta D, Mishra A, Krishna G, Bhaskar M, Sah V, et al. Retinoic Acid-Inducible Gene I-Like Receptors Activate Snail To Limit RNA Viral Infections. J Virol. 2021;95(21):01216–21. 241. Alfaro-García JP, Orozco-Castaño CA, Sánchez-Rendón JA, Casanova-Yépes HF, Vicente-Manzanares M, Gallego-Gómez JC. Characterization of the Temporal Dynamics of the Endothelial – Mesenchymal-like Transition Induced by Soluble Factors from Dengue Virus Infection in Microvascular Endothelial Cells. Int J Mol Sci. 2025;26(5):1–19. 242. Takaoka Y, Uchinomiya S, Kobayashi D, Endo M, Hayashi T, Fukuyama Y, et al. Endogenous Membrane Receptor Labeling by Reactive Cytokines and Growth Factors to Chase Their Dynamics in Live Cells. Chem [Internet]. 2018;4(6):1451–64. Available from: https://doi.org/10.1016/j.chempr.2018.03.021 243. Kryczka J, Przygodzka P, Bogusz H, Boncela J. HMEC-1 adopt the mixed amoeboid-mesenchymal migration type during EndMT. Eur J Cell Biol [Internet]. 2017;96(4):289–300. Available from: http://dx.doi.org/10.1016/j.ejcb.2017.04.002 244. Stasiak M, Gawryś K, Popielarski M, Bednarek R, Studzian M et al. Differential Quantitative Proteomics of Human Microvascular Endothelial Cells 1 by iTRAQ Reveals Palladin to be a New Biomarker During TGF-β1 Induced Endothelial Mesenchymal Transition. J Proteomics Bioinform. 2017;10:236–45. 245. Mimouni M, Lajoix AD, Desmetz C. Experimental Models to Study Endothelial to Mesenchymal Transition in Myocardial Fibrosis and Cardiovascular Diseases. Int J Mol Sci. 2024;25(1). 246. Van Meeteren LA, Ten Dijke P. Regulation of endothelial cell plasticity by TGF-β. Cell Tissue Res. 2012;347(1):177–86. 247. Zhao P, Yao Q, Zhang PJ, The E, Zhai Y, Ao L, et al. Single-cell RNA-seq reveals a critical role of novel pro-inflammatory EndMT in mediating adverse remodeling in coronary artery-on-a-chip. Sci Adv. 2021;7(34):1–13. 248. Wu KQ, Muratore CS, So EY, Sun C, Dubielecka PM, Reginato AM, et al. M1 Macrophage–Induced Endothelial-to-Mesenchymal Transition Promotes Infantile Hemangioma Regression. Am J Pathol [Internet]. 2017;187(9):2102–11. Available from: http://dx.doi.org/10.1016/j.ajpath.2017.05.014 249. Millar JK, Salmon M, Nasser E, Malik S, Kolli P, Lu G, et al. Endothelial to mesenchymal transition in the interleukin-1 pathway during aortic aneurysm formation. J Thorac Cardiovasc Surg [Internet]. 2024;167(5):e146–58. Available from: https://www.sciencedirect.com/science/article/pii/S0022522323010772 250. Takagaki Y, Lee SM, Dongqing Z, Kitada M, Kanasaki K, Koya D. Endothelial autophagy deficiency induces IL6 - dependent endothelial mesenchymal transition and organ fibrosis. Autophagy [Internet]. 2020;16(10):1905–14. Available from: https://doi.org/10.1080/15548627.2020.1713641 251. Bronson R, Lyu J, Xiong J. Transcriptome analysis reveals molecular signature and cell-type difference of Homo sapiens endothelial-to-mesenchymal transition. G3 Genes, Genomes, Genet [Internet]. 2023;13(12):1–13. Available from: https://doi.org/10.1093/g3journal/jkad243 252. Youssef KK, Narwade N, Arcas A, Marquez-Galera A, Jiménez-Castaño R, Lopez-Blau C, et al. Two distinct epithelial-to-mesenchymal transition programs control invasion and inflammation in segregated tumor cell populations. Nat Cancer. 2024;5(11):1660–80. 253. Youssef KK, Nieto MA. Epithelial–mesenchymal transition in tissue repair and degeneration. Nat Rev Mol Cell Biol [Internet]. 2024;25(9):720–39. Available from: http://dx.doi.org/10.1038/s41580-024-00733-z 254. Yan J, Bao H, Fan YJ, Jiang ZL, Qi YX, Han Y. Platelet-derived microvesicles promote endothelial progenitor cell proliferation in intimal injury by delivering TGF-β1. FEBS J. 2020;287(23):5196–217. 255. Wylie BJ, Singh MP, Coull BA, Quinn A, Yeboah- K, Sabin L, et al. Epithelial to Mesenchymal Transition induces cell cycle arrest and parenchymal damage in renal fibrosis. Nat Med. 2015;34(3):355–68. 256. Meng ZZ, Liu W, Xia Y, Yin HM, Zhang CY, Su D, et al. The pro-inflammatory signalling regulator Stat4 promotes vasculogenesis of great vessels derived from endothelial precursors. Nat Commun [Internet]. 2017;8:1–12. Available from: http://dx.doi.org/10.1038/ncomms14640 257. Xu H, Pumiglia K, LaFlamme SE. Laminin-511 and α6 integrins regulate the expression of CXCR4 to promote endothelial morphogenesis. J Cell Sci. 2020;133(11). 258. Béguin EP, Janssen EFJ, Hoogenboezem M, Meijer AB, Hoogendijk AJ, van den Biggelaar M. Flow-induced Reorganization of Laminin-integrin Networks Within the Endothelial Basement Membrane Uncovered by Proteomics. Mol Cell Proteomics. 2020;19(7):1179–92. 259. Qi Y, Qadir MMF, Hastreiter AA, Fock RA, Machi JF, Morales AA, et al. Endothelial c-Myc knockout enhances diet-induced liver inflammation and fibrosis. FASEB J. 2022;36(1):1–25. 260. Li Z, Jimenez SA. Protein kinase Cδ and c-Abl kinase are required for transforming growth factor β induction of endothelial-mesenchymal transition in vitro. Arthritis Rheum. 2011;63(8):2473–83. 261. Liu C, Ma Y, Zhao J, Nussinov R, Zhang YC, Cheng F, et al. Computational network biology: Data, models, and applications. Phys Rep [Internet]. 2020;846:1–66. Available from: https://doi.org/10.1016/j.physrep.2019.12.004 262. Chislock EM, Ring C, Pendergast AM. Abl kinases are required for vascular function, Tie2 expression, and angiopoietin-1-mediated survival. Proc Natl Acad Sci U S A. 2013;110(30):12432–7. 263. Wang X, Bleher R, Wang L, Garcia JGN, Dudek SM, Shekhawat GS, et al. Imatinib Alters Agonists-mediated Cytoskeletal Biomechanics in Lung Endothelium. Sci Rep. 2017;7(1):1–14. 264. Deville SS, Cordes N. The Extracellular, Cellular, and Nuclear Stiffness, a Trinity in the Cancer Resistome—A Review. Front Oncol. 2019;9(December):1–14. 265. DeWane G, Salvi AM, DeMali KA. Fueling the cytoskeleton-links between cell metabolism and actin remodeling. J Cell Sci. 2021;134(3). 266. Danielsson F, Peterson MK, Araújo HC, Lautenschläger F, Gad AKB. Vimentin diversity in health and disease. Cells. 2018;7(10):1–38. 267. Kechagia JZ, Ivaska J, Roca-Cusachs P. Integrins as biomechanical sensors of the microenvironment. Nat Rev Mol Cell Biol [Internet]. 2019;20(8):457–73. Available from: http://dx.doi.org/10.1038/s41580-019-0134-2 268. Wang W, Wang Z, Tian D, Zeng X, Liu Y, Fu Q, et al. Integrin β3 mediates the endothelial-to-mesenchymal transition via the notch pathway. Cell Physiol Biochem. 2018;49(3):985–97. 269. Subauste MC, Pertz O, Adamson ED, Turner CE, Junger S, Hahn KM. Vinculin modulation of paxillin-FAK interactions regulates ERK to control survival and motility. J Cell Biol. 2004;165(3):371–81. 270. Tsubouchi A, Sakakura J, Yagi R, Mazaki Y, Schaefer E, Yano H, et al. Localized suppression of RhoA activity by Tyr31/118-phosphorylated paxillin in cell adhesion and migration. J Cell Biol. 2002;159(4):673–83. 271. Barry AK, Wang N, Leckband DE. Local VE-cadherin mechanotransduction triggers long-ranged remodeling of endothelial monolayers. J Cell Sci. 2015;128(7):1341–51. 272. Parsons SA, Sharma R, Roccamatisi DL, Zhang H, Petri B, Kubes P, et al. Endothelial paxillin and focal adhesion kinase (FAK) play a critical role in neutrophil transmigration. Eur J Immunol. 2012;42(2):436–46. 273. Martino F, Perestrelo AR, Vinarský V, Pagliari S, Forte G. Cellular mechanotransduction: From tension to function. Front Physiol. 2018;9(JUL):1–21. 274. Ma X, Geng Z, Wang S, Yu Z, Liu T, Guan S, et al. The driving mechanism and targeting value of mimicry between vascular endothelial cells and tumor cells in tumor progression. Biomed Pharmacother [Internet]. 2023;165(June):115029. Available from: https://doi.org/10.1016/j.biopha.2023.115029 275. Mahmoud MM, Kim HR, Xing R, Hsiao S, Mammoto A, Chen J, et al. TWIST1 integrates endothelial responses to flow in vascular dysfunction and atherosclerosis. Circ Res. 2016;119(3):450–62. 276. Amemiya T, Gromiha MM, Horimoto K, Fukui K. Drug repositioning for dengue haemorrhagic fever by integrating multiple omics analyses. Sci Rep [Internet]. 2019;9(1):1–13. Available from: http://dx.doi.org/10.1038/s41598-018-36636-1 277. Gladilin E, Ohse S, Boerries M, Busch H, Xu C, Schneider M, et al. TGFβ-induced cytoskeletal remodeling mediates elevation of cell stiffness and invasiveness in NSCLC. Sci Rep. 2019;9(1):1–12. 278. Lee CH, Hong CH, Chen YT, Chen YC, Shen MR. TGF-beta1 increases cell rigidity by enhancing expression of smooth muscle actin: Keloid-derived fibroblasts as a model for cellular mechanics. J Dermatol Sci [Internet]. 2012;67(3):173–80. Available from: http://dx.doi.org/10.1016/j.jdermsci.2012.06.004 279. Good RB, Gilbane AJ, Trinder SL, Denton CP, Coghlan G, Abraham DJ, et al. Endothelial to Mesenchymal Transition Contributes to Endothelial Dysfunction in Pulmonary Arterial Hypertension. Am J Pathol [Internet]. 2015;185(7):1850–8. Available from: http://dx.doi.org/10.1016/j.ajpath.2015.03.019 280. Immanuel J, Yun S. Vascular Inflammatory Diseases and Endothelial Phenotypes. Cells. 2023;12(12). 281. Potenta S, Zeisberg E, Kalluri R. The role of endothelial-to-mesenchymal transition in cancer progression. Br J Cancer. 2008;99(9):1375–9. 282. Huang RB, Eniola-Adefeso O. Shear stress modulation of IL-1β-induced E-selectin expression in human endothelial cells. PLoS One. 2012;7(2):1–9. 283. Sheikh S, Rainger GE, Gale Z, Rahman M, Nash GB. Exposure to fluid shear stress modulates the ability of endothelial cells to recruit neutrophils in response to tumor necrosis factor-α: A basis for local variations in vascular sensitivity to inflammation. Blood [Internet]. 2003;102(8):2828–34. Available from: http://dx.doi.org/10.1182/blood-2003-01-0080 284. Raj Kumar Patro A, Mohanty S, Prusty BK, Singh DK, Gaikwad S, Saswat T, et al. Cytokine signature associated with disease severity in dengue. Viruses. 2019;11(1):1–12. 285. Yuya W, Yuansong Y, Susu L, Chen L, Yong W, Yining W, et al. Progress and challenges in development of animal models for dengue virus infection. Emerg Microbes Infect [Internet]. 2024;13(1):2404159. Available from: https://doi.org/10.1080/22221751.2024.2404159 286. Schwab JD, Kühlwein SD, Ikonomi N, Kühl M, Kestler HA. Concepts in Boolean network modeling: What do they all mean? Comput Struct Biotechnol J [Internet]. 2020;18(2020):571–82. Available from: https://doi.org/10.1016/j.csbj.2020.03.001 287. Pussell BA, Peake PW, Brown MA, Charlesworth JA. Human fibronectin metabolism. J Clin Invest. 1985;76(1):143–8. 288. Li Y, Zhao J, Yin Y, Li K, Zhang C, Zheng Y. The Role of IL-6 in Fibrotic Diseases: Molecular and Cellular Mechanisms. Int J Biol Sci. 2022;18(14):5405–14. 289. See KC. Dengue-Associated Hemophagocytic Lymphohistiocytosis: A Narrative Review of Its Identification and Treatment. Pathogens. 2024;13(4). 290. Chaudhuri K, Chatterjee AB, Pal P. Use of Anakinra in a Case of Severe Dengue with Refractory Secondary Hemophagocytic Lymphohistiocytosis. Indian Pediatr Case Reports. 2024;4(1):45–7. 291. Cavalli G, Colafrancesco S, Emmi G, Imazio M, Lopalco G, Maggio MC, et al. Interleukin 1α: a comprehensive review on the role of IL-1α in the pathogenesis and treatment of autoimmune and inflammatory diseases. Autoimmun Rev [Internet]. 2021;20(3):102763. Available from: https://doi.org/10.1016/j.autrev.2021.102763 292. Sangkaew S, Ming D, Boonyasiri A, Honeyford K, Kalayanarooj S, Yacoub S, et al. Risk predictors of progression to severe disease during the febrile phase of dengue: a systematic review and meta-analysis. Lancet Infect Dis [Internet]. 2021;21(7):1014–26. Available from: http://dx.doi.org/10.1016/S1473-3099(20)30601-0 293. Vuong NL, Quyen NTH, Tien NTH, Tuan NM, Kien DTH, Lam PK, et al. Higher Plasma Viremia in the Febrile Phase Is Associated with Adverse Dengue Outcomes Irrespective of Infecting Serotype or Host Immune Status: An Analysis of 5642 Vietnamese Cases. Clin Infect Dis. 2021;72(12):E1074–83. 294. Dayarathna S, Kuruppu H, Silva T, Gomes L, Shyamali NLA, Jeewandara C, et al. Are viral loads in the febrile phase a predictive factor of dengue disease severity? medRxiv [Internet]. 2023;2023.07.31.23293412. Available from: https://www.medrxiv.org/content/10.1101/2023.07.31.23293412v1%0Ahttps://www.medrxiv.org/content/10.1101/2023.07.31.23293412v1.abstract |
| dc.rights.uri.none.fl_str_mv |
http://creativecommons.org/licenses/by-nc-sa/4.0/ |
| dc.rights.accessrights.none.fl_str_mv |
info:eu-repo/semantics/embargoedAccess |
| dc.rights.license.en.fl_str_mv |
Attribution-NonCommercial-ShareAlike 4.0 International |
| dc.rights.coar.none.fl_str_mv |
http://purl.org/coar/access_right/c_f1cf |
| rights_invalid_str_mv |
http://creativecommons.org/licenses/by-nc-sa/4.0/ Attribution-NonCommercial-ShareAlike 4.0 International http://purl.org/coar/access_right/c_f1cf |
| eu_rights_str_mv |
embargoedAccess |
| dc.format.extent.none.fl_str_mv |
86 páginas |
| dc.format.mimetype.none.fl_str_mv |
application/pdf |
| dc.publisher.none.fl_str_mv |
Universidad de Antioquia |
| dc.publisher.program.none.fl_str_mv |
Doctorado en Ciencias Básicas Biomédicas |
| dc.publisher.place.none.fl_str_mv |
Medellín, Colombia |
| dc.publisher.faculty.none.fl_str_mv |
Corporación Académica Ciencias Básicas Biomédicas |
| dc.publisher.branch.none.fl_str_mv |
Campus en el Área de la salud |
| publisher.none.fl_str_mv |
Universidad de Antioquia |
| institution |
Universidad de Antioquia |
| bitstream.url.fl_str_mv |
https://bibliotecadigital.udea.edu.co/bitstreams/cdf15c43-3600-43fe-8c3b-a35849b49e37/download https://bibliotecadigital.udea.edu.co/bitstreams/b302b11f-9a78-4a25-982e-9e1bf027d6f7/download https://bibliotecadigital.udea.edu.co/bitstreams/08c92967-336b-48cf-86cd-ec9b87fb19b9/download https://bibliotecadigital.udea.edu.co/bitstreams/a7c049a8-e551-489f-896b-2ace997e4c15/download https://bibliotecadigital.udea.edu.co/bitstreams/a9219d81-70f9-4649-bbe9-4ae74360b5fc/download https://bibliotecadigital.udea.edu.co/bitstreams/9e310cf6-a4e8-4767-8323-a631a7759474/download https://bibliotecadigital.udea.edu.co/bitstreams/1dd60d89-020c-4d5a-8e30-08a497149b18/download |
| bitstream.checksum.fl_str_mv |
b76e7a76e24cf2f94b3ce0ae5ed275d0 d870b36433bbc4f2d6859be1d83ea79f 5643bfd9bcf29d560eeec56d584edaa9 501019fe7c105024742d3aed32d857e4 501019fe7c105024742d3aed32d857e4 6bd99ba287ce9d7d172d1e64204b04ce 6bd99ba287ce9d7d172d1e64204b04ce |
| bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 MD5 MD5 MD5 MD5 MD5 |
| repository.name.fl_str_mv |
Repositorio Institucional de la Universidad de Antioquia |
| repository.mail.fl_str_mv |
aplicacionbibliotecadigitalbiblioteca@udea.edu.co |
| _version_ |
1851052580447191040 |
| spelling |
Gallego Goméz, Juan CarlosOrozco Castaño, Carlos AlbertoAlfaro García, Jenny PaolaGrupo Medicina Molecular y de TranslaciónRojas Lopéz, MauricioNieto Toledano, María ÁngelaNúñez de Cáceres, Rosa María del Ángel2025-09-30T19:07:57Z2027-09-302025Alfaro García J.P. Changing Cellular Phenotypes Induced by soluble factors from Dengue Virus infection. Doctoral thesis. Medellín, Colombia. University of Antioquia; 2025.https://hdl.handle.net/10495/47470Dengue is a viral disease and a global public health problem. It can be presented as complicated (Severe Dengue, SD), characterized by endothelial dysfunction, for which there is only palliative treatment. It has been considered that soluble factors in conditioned media from Dengue virus infection (CMDV) can induce a cellular plasticity event, such as the endothelial-mesenchymal transition (EndMT), and influence the dysfunction. The objectives of this work are to determine if CMDV induces cellular phenotypical changes and if it promotes endothelial permeability. Endothelial microvasculature cells were exposed to CMDV for 48 to 120 hours, and alterations in endothelial permeability (TEER), morphology (confocal laser microscopy and atomic force microscopy), and the expression of markers associated with EndMT (In-cell western and RNA-seq bulk) were evaluated. CMDV was found to have a biphasic effect on cells: in the acute phase, they induce temporary alterations of the ECM and cytoskeleton, generating a migratory phenotype, increasing the expression of mesenchymal proteins (SNAIL, TWIST1, N-Cad), and inducing a temporary proinflammatory response followed by an endothelial repair response phase. This dynamic behavior can be model in an asynchronous Boolean network that allows elucidating the mechanisms associated with both cellular responses caused by CMDV and it highlights possible therapeutic targets such as IL-6 and FN1, which can be tested to prevent endothelial dysfunction. The results show that soluble CMDV factors induce a transient EndMT-like state and influence endothelial dysfunction, which can be modeled to detail the mechanisms involved in it and to identify potential therapeutic targets.Dengue es una enfermedad viral y un problema global de salud pública. Puede complicarse a Dengue Severo (SD), caracterizado por una disfunción del endotelio, para la cual solo hay tratamiento paliativo. Se ha considerado que los factores solubles provenientes del medio condicionado de la infección (CMDV) pueden inducir un evento de plasticidad celular, como la transición endotelio-mesénquima (EndMT) e influir en la disfunción. Los objetivos de este trabajo son determinar si el CMDV induce cambios fenotípicos y si causan permeabilidad endotelial. Células de microvasculatura endotelial fueron expuestas durante 48 a 120h al CMDV y se evaluaron alteraciones en la permeabilidad endotelial (TEER), morfológicas (microscopía confocal láser y microscopía de fuerza atómica) y en la expresión de marcadores asociados a EndMT (In-cell western y RNAseqBulk). Se encontró que el CMDV tiene un efecto bifásico sobre las células: en la fase aguda inducen alteraciones temporales del ECM y citoesqueleto, generando un fenotipo migratorio, aumentando la expresión de proteínas mesenquimales (SNAIL, TWIST1, N-Cad) e induciendo una respuesta proinflamatoria temporal seguida por una fase de reparación endotelial. Este comportamiento dinámico puede modelarse en una red booleana asincrónica que permite dilucidar los mecanismos asociados en ambas respuestas celulares causadas por el CMDV y destaca posibles objetivos terapéuticos como IL-6 y FN1, que pueden ser testados para prevenir la disfunción endotelial. Los resultados muestran que los factores solubles del CMDV inducen un estado transitorio similar a EndMT e influyen en la disfunción endotelial, lo que puede modelarse para detallar sus mecanismos e identificar posibles objetivos terapéuticos.COL0140139DoctoradoDoctor en Ciencias Básicas Biomédicas86 páginasapplication/pdfengUniversidad de AntioquiaDoctorado en Ciencias Básicas BiomédicasMedellín, ColombiaCorporación Académica Ciencias Básicas BiomédicasCampus en el Área de la saludhttp://creativecommons.org/licenses/by-nc-sa/4.0/info:eu-repo/semantics/embargoedAccessAttribution-NonCommercial-ShareAlike 4.0 Internationalhttp://purl.org/coar/access_right/c_f1cfChanging Cellular Phenotypes Induced by Soluble Factors from Dengue Virus InfectionTrabajo de grado - Doctoradohttp://purl.org/coar/resource_type/c_db06Texthttp://purl.org/coar/version/c_b1a7d7d4d402bcceinfo:eu-repo/semantics/doctoralThesisinfo:eu-repo/semantics/draft1. Brady OJ, Gething PW, Bhatt S, Messina JP, Brownstein JS, Hoen AG, et al. Refining the Global Spatial Limits of Dengue Virus Transmission by Evidence-Based Consensus. PLoS Negl Trop Dis. 2012;6(8).2. Akinsulie OC, Idris I. Global re-emergence of dengue fever: The need for a rapid response and surveillance. The Microbe [Internet]. 2024;4(January):100107. Available from: https://doi.org/10.1016/j.microb.2024.1001073. Pan American Health Organization (PAHO), World Health Organization (WHO). Dengue Situation Report Region of the Americas. 2023;2019(1). Available from: www.paho.org4. Rodríguez RC, Carrasquilla G, Porras A, Galera-Gelvez K, Yescas JGL, Rueda-Gallardo JA. The burden of dengue and the financial cost to Colombia, 2010-2012. Am J Trop Med Hyg. 2016;94(5):1065–72.5. Rocklöv J, Tozan Y. Climate change and the rising infectiousness of dengue. Emerg Top Life Sci. 2019;3(2):133–42.6. World Health Organization. Regional Office for the Americas of the World Health Organization. 2019. Modified dengue severity classification. Available from: https://www.paho.org/en/documents/modified-dengue-severity-classification7. Tayal A, Kabra SK, Lodha R. Management of Dengue: An Updated Review. Indian J Pediatr. 2023;90(2):168–77.8. Tejo AM, Hamasaki DT, Menezes LM, Ho YL. Severe dengue in the intensive care unit. J Intensive Med. 2024;4(1):16–33.9. Teo A, Chua CLL, Chia PY, Yeo TW. Insights into potential causes of vascular hyperpermeability in dengue. PLoS Pathog [Internet]. 2021;17(12):1–7. Available from: http://dx.doi.org/10.1371/journal.ppat.101006510. Aguilar-Briseño JA, Moser J, Rodenhuis-Zybert IA. Understanding immunopathology of severe dengue: lessons learnt from sepsis. Curr Opin Virol. 2020;43:41–9.11. Bhatt P, Sabeena SP, Varma M, Arunkumar G. Current Understanding of the Pathogenesis of Dengue Virus Infection. Curr Microbiol [Internet]. 2021;78(1):17–32. Available from: https://doi.org/10.1007/s00284-020-02284-w12. Mishra R, Lata S, Ali A, Banerjea AC. Dengue haemorrhagic fever: a job done via exosomes? Emerg Microbes Infect. 2019;8(1):1626–35.13. Khanam A, Gutiérrez-Barbosa H, Lyke KE, Chua J V. Immune-Mediated Pathogenesis in Dengue Virus Infection. Viruses. 2022;14(11):1–19.14. Martina B, Koraka P, Osterhaus A. Dengue Virus Pathogenesis: an Integrated View. Clin Microbiol Rev [Internet]. 2009;22:564–81. Available from: https://www.semanticscholar.org/paper/4d2d1e48e13ed1616c9af149bb39c4e7b4c155d915. Guzman MG, Gubler DJ, Izquierdo A, Martinez E, Halstead SB. Dengue infection. Nat Rev Dis Prim [Internet]. 2016;2:1–26. Available from: http://dx.doi.org/10.1038/nrdp.2016.5516. Ospina-bedoya M, Campillo-pedroza N, Franco-salazar JP, Gallego-gómez JC. Bioinformatics and Biology Insights their Cellular Targets. JT Efird, Assoc Ed. 2014;169–76.17. Cuartas-López AM, Hernández-Cuellar CE, Gallego-Gómez JC. Disentangling the role of PI3K/Akt, Rho GTPase and the actin cytoskeleton on dengue virus infection. Virus Res [Internet]. 2018;256:153–65. Available from: https://doi.org/10.1016/j.virusres.2018.08.01318. Álvarez-Díaz DA, Gutiérrez-Díaz AA, Orozco-García E, Puerta-González A, Bermúdez-Santana CI, Gallego-Gómez JC. Dengue virus potentially promotes migratory responses on endothelial cells by enhancing pro-migratory soluble factors and miRNAs. Virus Res [Internet]. 2019;259(September 2018):68–76. Available from: https://doi.org/10.1016/j.virusres.2018.10.01819. Escudero-Flórez M, Torres-Hoyos D, Miranda-Brand Y, Boudreau RL, Gallego-Gómez JC, Vicente-Manzanares M. Dengue Virus Infection Alters Inter-Endothelial Junctions and Promotes Endothelial–Mesenchymal-Transition-like Changes in Human Microvascular Endothelial Cells (Viruses, (2023), 15, 7, (1437), 10.3390/v15071437). Viruses. 2023;15(11).20. Spatz LB, Jin RU, Mills JC. Cellular plasticity at the nexus of development and disease. Dev. 2021;148(3):1–6.21. Shen S, Clairambault J. Cell plasticity in cancer cell populations. F1000Research 2020 [Internet]. 2020;9(F1000 Faculty Rev):635. Available from: https://f1000research.com/articles/9-63522. Yao Y, Wang C. Dedifferentiation: inspiration for devising engineering strategies for regenerative medicine. npj Regen Med [Internet]. 2020;5(1). Available from: http://dx.doi.org/10.1038/s41536-020-00099-823. Yanjie GUO, Weini WU, Yang X, Xiaobing FU. Dedifferentiation and in vivo reprogramming of committed cells in wound repair (Review). Mol Med Rep. 2022;26(6):1–12.24. Graf T. Historical origins of transdifferentiation and reprogramming. Cell Stem Cell [Internet]. 2011;9(6):504–16. Available from: http://dx.doi.org/10.1016/j.stem.2011.11.01225. Rezaei-Lotfi S, Vujovic F, Simonian M, Hunter N, Farahani RM. Programmed genomic instability regulates neural transdifferentiation of human brain microvascular pericytes. Genome Biol. 2021;22(1):1–27.26. Ng N, Newbery M, Maksour S, Dottori M, Sluyter R, Ooi L. Transgene and Chemical Transdifferentiation of Somatic Cells for Rapid and Efficient Neurological Disease Cell Models. Front Cell Neurosci. 2022;16(May):1–9.27. Pesaresi M, Sebastian-Perez R, Cosma MP. Dedifferentiation, transdifferentiation and cell fusion: in vivo reprogramming strategies for regenerative medicine. FEBS J. 2019;286(6):1074–93.28. Takahashi K, Yamanaka S. Induction of Pluripotent Stem Cells from Mouse Embryonic and Adult Fibroblast Cultures by Defined Factors. Cell. 2006;126(4):663–76.29. Nieto MA, Huang RYYJ, Jackson RAA, Thiery JPP. Emt: 2016. Cell. 2016;166(1):21–45.30. Lambert AW, Weinberg RA. Linking EMT programmes to normal and neoplastic epithelial stem cells. Nat Rev Cancer [Internet]. 2021;21(5):325–38. Available from: http://dx.doi.org/10.1038/s41568-021-00332-631. Canciello A, Cerveró-Varona A, Peserico A, Mauro A, Russo V, Morrione A, et al. “In medio stat virtus”: Insights into hybrid E/M phenotype attitudes. Front Cell Dev Biol. 2022;10(November):1–21.32. Trapnell C, Cacchiarelli D, Grimsby J, Pokharel P, Li S, Morse M, et al. The dynamics and regulators of cell fate decisions are revealed by pseudotemporal ordering of single cells. Nat Biotechnol [Internet]. 2014;32(4):381–6. Available from: http://dx.doi.org/10.1038/nbt.285933. Jiménez S, Schreiber V, Mercier R, Gradwohl G, Molina N. Characterization of cell-fate decision landscapes by estimating transcription factor dynamics. Cell Reports Methods. 2023;3(7).34. Lee J, Kim N, Cho KH. Decoding the principle of cell-fate determination for its reverse control. npj Syst Biol Appl. 2024;10(1):1–11.35. Simons M. Endothelial-to-mesenchymal transition: advances and controversies. Curr Opin Physiol. 2023;34:1–5.36. Hong L, Du X, Li W, Mao Y, Sun L, Li X. EndMT: A promising and controversial field. Eur J Cell Biol. 2018;97(7):493–500.37. Takahashi K. Cellular reprogramming - lowering gravity on Waddington’s epigenetic landscape. J Cell Sci. 2012;125(11):2553–60.38. Piera-Velazquez S, Jimenez SA. Endothelial to mesenchymal transition: Role in physiology and in the pathogenesis of human diseases. Physiol Rev. 2019;99(2):1281–324.39. Alfaro-García JP, Granados-Alzate MC, Vicente-Manzanares M, Gallego-Gómez JC. An integrated view of virus-triggered cellular plasticity using boolean networks. Cells. 2021;10(11):1–15.40. Saito A. EMT and EndMT: regulated in similar ways? J Biochem. 2013;153(6):493–5.41. Shu DY, Butcher E, Saint-Geniez M. EMT and ENDMT: Emerging roles in age-related macular degeneration. Int J Mol Sci. 2020;21(12):1–26.42. Naipauer J, Mesri EA. The Kaposi’s sarcoma progenitor enigma: KSHV-induced MEndT–EndMT axis. Trends Mol Med [Internet]. 2023;29(3):188–200. Available from: https://doi.org/10.1016/j.molmed.2022.12.00343. Ciszewski WM, Woźniak LA, Sobierajska K. Diverse roles of SARS-CoV-2 Spike and Nucleocapsid proteins in EndMT stimulation through the TGF-β-MRTF axis inhibited by aspirin. Cell Commun Signal. 2024;1–23.44. Póvoa TF, Alves AMB, Oliveira CAB, Nuovo GJ, Chagas VLA, Paes M V. The pathology of severe dengue in multiple organs of human fatal cases: Histopathology, ultrastructure and virus replication. PLoS One. 2014;9(4).45. Vásquez Ochoa M, García Cordero J, Gutiérrez Castañeda B, Santos Argumedo L, Villegas Sepúlveda N, Cedillo Barrón L. A clinical isolate of dengue virus and its proteins induce apoptosis in HMEC-1 cells: A possible implication in pathogenesis. Arch Virol. 2009;154(6):919–28.46. Vervaeke P, Vermeire K, Liekens S. Endothelial dysfunction in dengue virus pathology. Rev Med Virol [Internet]. 2015;25:50–67. Available from: https://www.semanticscholar.org/paper/907f641b51834ee991542c47015393ac7f8c262747. Rivera JA, Rengifo AC, Parra EA, Castellanos JE, Caldas ML. Histopatología ilustrada de casos fatales de dengue en Colombia. Biomedica. 2020;40(3):438–47.48. Rathi KR, Arora MM, Sahai K, Tripathi S, Singh SP, Raman DK, et al. Autopsy findings in fatal dengue haemorrhagic fever - 06 cases. Med J Armed Forces India [Internet]. 2013;69(3):254–9. Available from: http://dx.doi.org/10.1016/j.mjafi.2012.08.02149. Irurzun-Arana I, Pastor JM, Trocóniz IF, Gómez-Mantilla JD. Advanced Boolean modeling of biological networks applied to systems pharmacology. Bioinformatics. 2017;33(7):1040–8.50. Weerasinghe HN, Burrage PM, Burrage K, Nicolau D V. Mathematical Models of Cancer Cell Plasticity. J Oncol. 2019;2019.51. Weinstein N, Mendoza L, Álvarez-Buylla ER. A Computational Model of the Endothelial to Mesenchymal Transition. Front Genet. 2020;11(March).52. Ma Y, Yang Q, Zhong Z, Liang W, Zhang L, Yang Y, et al. Role of c-Abl and nephrin in podocyte cytoskeletal remodeling induced by angiotensin II. Cell Death Dis [Internet]. 2018;9(2). Available from: http://dx.doi.org/10.1038/s41419-017-0225-y53. Cleary RA, Wang R, Waqar O, Singer HA, Tang DD. Role of c-Abl tyrosine kinase in smooth muscle cell migration. Am J Physiol - Cell Physiol. 2014;306(8):753–61.54. Luttman JH, Colemon A, Mayro B, Pendergast AM. Role of the ABL tyrosine kinases in the epithelial–mesenchymal transition and the metastatic cascade. Cell Commun Signal [Internet]. 2021;19(1):1–16. Available from: https://doi.org/10.1186/s12964-021-00739-655. Choi KJ, Nam JK, Kim JH, Choi SH, Lee YJ. Endothelial-to-mesenchymal transition in anticancer therapy and normal tissue damage. Exp Mol Med [Internet]. 2020;52(5):781–92. Available from: http://dx.doi.org/10.1038/s12276-020-0439-456. Song S, Zhang M, Yi Z, Zhang H, Shen T, Yu X, et al. The role of PDGF-B/TGF-β1/neprilysin network in regulating endothelial-to-mesenchymal transition in pulmonary artery remodeling. Cell Signal [Internet]. 2016;28(10):1489–501. Available from: http://dx.doi.org/10.1016/j.cellsig.2016.06.02257. Schermuly RT, Dony E, Ghofrani HA, Pullamsetti S, Savai R, Roth M, et al. Reversal of experimental pulmonary hypertension by PDGF inhibition. J Clin Invest. 2005;115(10):2811–21.58. Chislock EM, Pendergast AM. Abl Family Kinases Regulate Endothelial Barrier Function In Vitro and in Mice. PLoS One. 2013;8(12):1–17.59. Clark MJ, Miduturu C, Schmidt AG, Jang J, Chu H, Gray NS, et al. GNF-2 Inhibits Dengue Virus by Targeting Abl Kinases and the Viral E Protein Article GNF-2 Inhibits Dengue Virus by Targeting Abl Kinases and the Viral E Protein. Cell Chem Biol [Internet]. 2016;23(4):443–52. Available from: http://dx.doi.org/10.1016/j.chembiol.2016.03.01060. Nanaware N, Banerjee A, Bagchi SM, Bagchi P, Mukherjee A. Dengue virus infection: A tale of viral exploitations and host responses. Viruses. 2021;13(10).61. Stanaway JD, Shepard DS, Undurraga EA, Halasa YA, Coffeng LE, Brady OJ, et al. The global burden of dengue: an analysis from the Global Burden of Disease Study 2013. Lancet Infect Dis. 2016;16(6):712–23.62. Organization WH. Disease Outbreak News. 2023 [cited 2024 Sep 24]. Dengue – the Region of the Americas. Available from: https://www.who.int/emergencies/disease-outbreak-news/item/2023-DON47563. Ebi KL, Nealon J. Dengue in a changing climate. Environ Res [Internet]. 2016;151:115–23. Available from: http://dx.doi.org/10.1016/j.envres.2016.07.02664. World Health Organization & UNICEF/UNDP/World Bank/WHO Special Programme for Research and Training in Tropical Diseases. DENGUE Guidelines for Diagnosis, Treatment, Prevention and Control. 2009. 11 p.65. The Lancet. Dengue: the threat to health now and in the future. Lancet [Internet]. 2024;404(10450):311. Available from: http://dx.doi.org/10.1016/S0140-6736(24)01542-366. Messina JP, Brady OJ, Golding N, Kraemer MUG, Wint GRW, Ray SE, et al. The current and future global distribution and population at risk of dengue. Nat Microbiol [Internet]. 2019;4(9):1508–15. Available from: http://dx.doi.org/10.1038/s41564-019-0476-867. Dick OB, San Martín JL, Montoya RH, Del Diego J, Zambrano B, Dayan GH. Review: The history of dengue outbreaks in the Americas. Am J Trop Med Hyg. 2012;87(4):584–93.68. Dominguez, N., & Nerissa MA. Current DF/DHF Prevention and Control Programme in the Philippines. Dengue Bull. 1997;21:41–7.69. Brem J, Elankeswaran B, Erne D, Hedrich N, Lovey T, Marzetta V, et al. Dengue “homegrown” in Europe (2022 to 2023). New Microbes New Infect. 2024;56(November 2023):2023–5.70. Buchs A, Conde A, Frank A, Gottet C, Hedrich N, Lovey T, et al. The threat of dengue in Europe. New Microbes New Infect [Internet]. 2022;49–50:101061. Available from: https://doi.org/10.1016/j.nmni.2022.10106171. Chen LH, Marti C, Perez CD, Jackson BM, Simon AM, Lu M. Epidemiology and burden of dengue fever in the United States: a systematic review. J Travel Med. 2023;30(7):1–17.72. Ryff KR, Rivera A, Rodriguez DM, Santiago GA, Medina FA, Ellis EM, et al. Epidemiologic Trends of Dengue in U.S. Territories, 2010–2020. MMWR Surveill Summ. 2023;72(4):2010–20.73. Horstick O, Tozan Y, Wilder-Smith A. Reviewing Dengue: Still a Neglected Tropical Disease? PLoS Negl Trop Dis. 2015;9(4):1–18.74. Jisamerin J, Mohamedkalifa A, Gaur A, Geetha J, Sakthivadivel V. Dengue: A Neglected Disease of Concern. Cureus. 2021;13(10):4–11.75. Lessa CLS, Hodel KVS, Gonçalves M de S, Machado BAS. Dengue as a Disease Threatening Global Health: A Narrative Review Focusing on Latin America and Brazil. Trop Med Infect Dis. 2023;8(5).76. Colón-González FJ, Gibb R, Khan K, Watts A, Lowe R, Brady OJ. Projecting the future incidence and burden of dengue in Southeast Asia. Nat Commun. 2023;14(1).77. Wang Y, Zhao S, Wei Y, Li K, Jiang X, Li C, et al. Impact of climate change on dengue fever epidemics in South and Southeast Asian settings: A modelling study. Infect Dis Model [Internet]. 2023;8(3):645–55. Available from: https://doi.org/10.1016/j.idm.2023.05.00878. Amelia-Yap ZH, Chen CD, Sofian-Azirun M, Low VL. Pyrethroid resistance in the dengue vector Aedes aegypti in Southeast Asia: Present situation and prospects for management. Parasites and Vectors. 2018;11(1):1–17.79. Turner HC. Cost-effectiveness of a Wolbachia-based replacement strategy for dengue control in Brazil. Lancet Reg Heal - Am [Internet]. 2024;35(May):100789. Available from: https://doi.org/10.1016/j.lana.2024.10078980. Moreno RD, Valera L, Borgoño C, Castilla JC, Riveros JL. Gene drives, mosquitoes, and ecosystems: an interdisciplinary approach to emerging ethical concerns. Front Environ Sci. 2023;11(January):1–13.81. Silva JP, Fernandez-Sesma A. Challenges on the development of a dengue vaccine: a comprehensive review of the state of the art. J Gen Virol. 2023;104(3):1–12.82. Gaspar-Castillo C, Rodríguez MH, Ortiz-Navarrete V, Alpuche-Aranda CM, Martinez-Barnetche J. Structural and immunological basis of cross-reactivity between dengue and Zika infections: Implications in serosurveillance in endemic regions. Front Microbiol. 2023;14(March).83. Salgado BB, Maués FC de J, Jordão M, Pereira RL, Toledo-Teixeira DA, Parise PL, et al. Antibody cross-reactivity and evidence of susceptibility to emerging Flaviviruses in the dengue-endemic Brazilian Amazon. Int J Infect Dis [Internet]. 2023;129:142–51. Available from: https://doi.org/10.1016/j.ijid.2023.01.03384. Freedman DO. A new dengue vaccine (TAK-003) now WHO recommended in endemic areas; what about travellers? J Travel Med. 2023;30(7):1–3.85. Yu VG, Lasco G, David CC. Fear, mistrust, and vaccine hesitancy: Narratives of the dengue vaccine controversy in the Philippines. Vaccine [Internet]. 2021;39(35):4964–72. Available from: https://doi.org/10.1016/j.vaccine.2021.07.05186. Dapari R, Muniandy K, Azman AZF, Bakar SA, Desa MNM, Hwa LC, et al. Effectiveness of the Integrated Dengue Education and Learning (iDEAL) module in improving the knowledge, attitude, practice, environmental cleanliness index, and dengue index among schoolchildren: A randomised controlled trial protocol. PLoS One [Internet]. 2024;19(4 April):1–14. Available from: http://dx.doi.org/10.1371/journal.pone.030273687. Islam A, Deeba F, Tarai B, Gupta E, Naqvi IH, Abdullah M, et al. Global and local evolutionary dynamics of Dengue virus serotypes 1, 3, and 4. Epidemiol Infect. 2023;151.88. Yesmin F, Nasim R, Anjum R, Dewan SMR. Epidemiological challenges in Dengue outbreak: DENV-5 emergence and public health strategies. Int J Surg Open. 2024;62(1):70–1.89. Katzelnick LC, Fonville JM, Gromowski GD, Bustos Arriaga J, Green A, James SL, Lau L, Montoya M, Wang C, VanBlargan LA, Russell CA, Thu HM, Pierson TC, Buchy P, Aaskov JG, Muñoz-Jordán JL, Vasilakis N, Gibbons RV, Tesh RB, Osterhaus AD, Fouchier RA, Durbi SD. Dengue viruses cluster antigenically but not as discrete serotype. Science (80- ). 2015;349(6254):1338–43.90. Dowd KA, DeMaso CR, Pierson TC. Genotypic differences in dengue virus neutralization are explained by a single amino acid mutation that modulates virus breathing. MBio. 2015;6(6).91. Tamura T, Zhang J, Madan V, Biswas A, Schwoerer MP, Cafiero TR, et al. Generation and characterization of genetically and antigenically diverse infectious clones of dengue virus serotypes 1–4. Emerg Microbes Infect [Internet]. 2022;11(1):227–39. Available from: https://doi.org/10.1080/22221751.2021.202180892. Bos S, Graber AL, Cardona-Ospina JA, Duarte EM, Zambrana JV, Ruíz Salinas JA, et al. Protection against symptomatic dengue infection by neutralizing antibodies varies by infection history and infecting serotype. Nat Commun. 2024;15(1).93. Senaratne UTN, Senaratne UTN, Murugananthan K, Murugananthan K, Sirisena PDNN, Carr JM, et al. Dengue virus co-infections with multiple serotypes do not result in a different clinical outcome compared to mono-infections. Epidemiol Infect. 2020;0–8.94. Suppiah J, Ching SM, Amin-Nordin S, Mat-Nor LA, Ahmad-Najimudin NA, Low GKK, et al. Clinical manifestations of dengue in relation to dengue serotype and genotype in Malaysia: A retrospective observational study. PLoS Negl Trop Dis. 2018;12(9):1–20.95. Morgan RN, Ismail NSM, Alshahrani MY, Aboshanab KM. Multi-epitope peptide vaccines targeting dengue virus serotype 2 created via immunoinformatic analysis. Sci Rep [Internet]. 2024;14(1):1–22. Available from: https://doi.org/10.1038/s41598-024-67553-196. Gupta A, Rijhwani P, Pahadia MR, Kalia A, Choudhary S, Bansal DP, et al. Prevalence of Dengue Serotypes and Its Correlation With the Laboratory Profile at a Tertiary Care Hospital in Northwestern India. Cureus. 2021;13(5):1–8.97. Tsai JJ, Chang K, Chen CH, Liao CL, Chen LJ, Tsai YY, et al. Dengue virus serotype did not contribute to clinical severity or mortality in Taiwan’s largest dengue outbreak in 2015. Eur J Med Res [Internet]. 2023;28(1):1–15. Available from: https://doi.org/10.1186/s40001-023-01454-398. Golding MAJ, Noble SAA, Khouri NK, Layne-Yarde RNA, Ali I, Sandiford SL. Natural vertical transmission of dengue virus in Latin America and the Caribbean: highlighting its detection limitations and potential significance. Parasites and Vectors [Internet]. 2023;16(1):1–13. Available from: https://doi.org/10.1186/s13071-023-06043-199. Mendez JA, Usme-Ciro JA, Domingo C, Rey GJ, Sanchez JA, Tenorio A, et al. Phylogenetic history demonstrates two different lineages of dengue type 1 virus in Colombia. Virol J. 2010;7:1–12.100. Ramos-Castañeda J, Barreto dos Santos F, Martínez-Vega R, Galvão de Araujo JM, Joint G, Sarti E. Dengue in Latin America: Systematic Review of Molecular Epidemiological Trends. PLoS Negl Trop Dis. 2017;11(1):1–24.101. Gutierrez-Barbosa H, Medina-Moreno S, Zapata JC, Chua J V. Dengue infections in Colombia: Epidemiological trends of a hyperendemic country. Trop Med Infect Dis. 2020;5(4).102. Grubaugh ND, Torres-hernández D, Murillo-ortiz MA, Dávalos DM. 2023-24 dengue outbreak in Valle del Cauca , Colombia caused by multiple virus serotypes and lineages. 2024;0–7.103. Instituto Nacional de Salud. Protocolo de vigilancia en Salud publica: Dengue. 2024.104. Instituto Nacional de Salud. Boletín epidemiológico semanal 52 de 2023. Boletín epidemiológico Sem. 2023;18–21.105. Ajlan BA, Alafif MM, Alawi MM, Akbar NA, Aldigs EK, Madani TA. Assessment of the new World Health Organization’s dengue classification for predicting severity of illness and level of healthcare required. PLoS Negl Trop Dis. 2019;13(8):1–16.106. Cattarino L, Rodriguez-Barraquer I, Imai N, Cummings DAT, Ferguson NM. Mapping global variation in dengue transmission intensity. Sci Transl Med. 2020;12(528):1–10.107. Schaefer TJ, Panda PK WR. StatPearls [Internet]. 2024. Dengue Fever. Available from: https://www.ncbi.nlm.nih.gov/books/NBK430732/108. Bandara SMR, Herath HMMTB. Corticosteroid actions on dengue immune pathology; A review article. Clin Epidemiol Glob Heal [Internet]. 2020;8(2):486–94. Available from: https://doi.org/10.1016/j.cegh.2019.11.001109. Ishak SH, Yaacob LH, Ishak A. Severe dengue with hemophagocytosis syndrome. Malaysian Fam Physician. 2020;15(1):47–9.110. Medin CL, Rothman AL. Cell type-specific mechanisms of interleukin-8 induction by dengue virus and differential response to drug treatment. J Infect Dis. 2006;193(8):1070–7.111. Bhat CS, Shetty R, Sundaram B, Ramanan A V. Immunomodulatory therapy in dengue: Need for clinical trials and evidence base. Arch Dis Child. 2022;0(0):1–2.112. Palanichamy Kala M, St. John AL, Rathore APS. Dengue: Update on Clinically Relevant Therapeutic Strategies and Vaccines. Curr Treat Options Infect Dis [Internet]. 2023;15(2):27–52. Available from: https://doi.org/10.1007/s40506-023-00263-w113. Masri MF Bin, Rathore APS, St. John AL. Therapeutics for Dengue. Curr Treat Options Infect Dis. 2019;11(3):199–214.114. Martinez DR, Metz SW, Baric RS. Dengue Vaccines: The Promise and Pitfalls of Antibody-Mediated Protection. Cell Host Microbe [Internet]. 2021;29(1):13–22. Available from: https://doi.org/10.1016/j.chom.2020.12.011115. Salje H, Alera MT, Chua MN, Hunsawong T, Ellison D, Srikiatkhachorn A, et al. Evaluation of the extended efficacy of the Dengvaxia vaccine against symptomatic and subclinical dengue infection. Nat Med. 2021;27(8):1395–400.116. Thomas SJ. Is new dengue vaccine efficacy data a relief or cause for concern? npj Vaccines. 2023;8(1).117. Sabchareon A, Wallace D, Sirivichayakul C, Limkittikul K, Chanthavanich P, Suvannadabba S, et al. Protective efficacy of the recombinant, live-attenuated, CYD tetravalent dengue vaccine in Thai schoolchildren: A randomised, controlled phase 2b trial. Lancet [Internet]. 2012;380(9853):1559–67. Available from: http://dx.doi.org/10.1016/S0140-6736(12)61428-7118. Sridhar S, Luedtke A, Langevin E, Zhu M, Bonaparte M, Machabert T, et al. Effect of Dengue Serostatus on Dengue Vaccine Safety and Efficacy. N Engl J Med. 2018;379(4):327–40.119. Huang CYH, Kinney RM, Livengood JA, Bolling B, Arguello JJ, Luy BE, et al. Genetic and Phenotypic Characterization of Manufacturing Seeds for a Tetravalent Dengue Vaccine (DENVax). PLoS Negl Trop Dis. 2013;7(5).120. Tricou V, Yu D, Reynales H, Biswal S, Saez-Llorens X, Sirivichayakul C, et al. Long-term efficacy and safety of a tetravalent dengue vaccine (TAK-003): 4·5-year results from a phase 3, randomised, double-blind, placebo-controlled trial. Lancet Glob Heal Effic Saf a tetravalent dengue vaccine 4·5-year results from a phase 3, randomised, double-blind, placebo-controlled trial [Internet]. 2024;12(2):e257–70. Available from: http://dx.doi.org/10.1016/S2214-109X(23)00522-3121. Kirkpatrick BD, Durbin AP, Pierce KK, Carmolli MP, Tibery CM, Grier PL, et al. Robust and balanced immune responses to all 4 dengue virus serotypes following administration of a single dose of a live attenuated tetravalent dengue vaccine to healthy, flavivirus-naive adults. J Infect Dis. 2015;212(5):702–10.122. Whitehead SS, Blaney JE, Durbin AP, Murphy BR. Prospects for a dengue virus vaccine. Nat Rev Microbiol. 2007;5(7):518–28.123. Whitehead SS. Development of TV003/TV005, a single dose, highly immunogenic live attenuated dengue vaccine; What makes this vaccine different from the Sanofi-Pasteur CYDTM vaccine? Expert Rev Vaccines [Internet]. 2016;15(4):509–17. Available from: http://dx.doi.org/10.1586/14760584.2016.1115727124. Walsh MCR, Alam MS, Pierce KK, Carmolli M, Alam M, Dickson DM, et al. Safety and durable immunogenicity of the TV005 tetravalent dengue vaccine, across serotypes and age groups, in dengue-endemic Bangladesh: a randomised, controlled trial. Lancet Infect Dis. 2024;24(2):150–60.125. Wilder-Smith A. Controlled human infection study underpins efficacy of the tetravalent live-attenuated dengue vaccine TV005. J Clin Invest. 2024;134(3):1–11.126. Rather IA, Parray HA, Lone JB, Paek WK, Lim J, Bajpai VK, et al. Prevention and control strategies to counter dengue virus infection. Front Cell Infect Microbiol. 2017;7(JUL):1–8.127. Withanage GP, Gunawardana M, Viswakula SD, Samaraweera K, Gunawardena NS, Hapugoda MD. Multivariate spatio-temporal approach to identify vulnerable localities in dengue risk areas using Geographic Information System (GIS). Sci Rep [Internet]. 2021;11(1):1–11. Available from: https://doi.org/10.1038/s41598-021-83204-1128. Andreo V, Porcasi X, Guzman C, Lopez L, Scavuzzo CM. Spatial distribution of aedes aegypti oviposition temporal patterns and their relationship with environment and dengue incidence. Insects. 2021;12(10).129. Diaz-Quijano FA, Martínez-Vega RA, Rodriguez-Morales AJ, Rojas-Calero RA, Luna-González ML, Díaz-Quijano RG. Association between the level of education and knowledge, attitudes and practices regarding dengue in the Caribbean region of Colombia. BMC Public Health. 2018;18(1):1–10.130. Procopio AC, Colletta S, Laratta E, Mellace M, Tilocca B, Ceniti C, et al. Integrated One Health strategies in Dengue. One Heal [Internet]. 2024;18(January):100684. Available from: https://doi.org/10.1016/j.onehlt.2024.100684131. Rahman RU, Souza B, Uddin I, Carrara L, Brito LP, Costa MM, et al. Insecticide resistance and underlying targets-site and metabolic mechanisms in Aedes aegypti and Aedes albopictus from Lahore, Pakistan. Sci Rep [Internet]. 2021;11(1):1–15. Available from: https://doi.org/10.1038/s41598-021-83465-w132. Mulatier M, Boullis A, Vega-Rúa A. Semiochemical oviposition cues to control Aedes aegypti gravid females: state of the art and proposed framework for their validation. Parasites and Vectors [Internet]. 2022;15(1):1–14. Available from: https://doi.org/10.1186/s13071-022-05337-0133. Huang YJS, Higgs S, Vanlandingham DL. Biological control strategies for mosquito vectors of arboviruses. Insects. 2017;8(1):1–25.134. Reid WR, Olson KE, Franz AWE. Current Effector and Gene-Drive Developments to Engineer Arbovirus-Resistant Aedes aegypti (Diptera: Culicidae) for a Sustainable Population Replacement Strategy in the Field. J Med Entomol. 2021;58(5):1987–96.135. Anderson MAE, Gonzalez E, Edgington MP, Ang JXD, Purusothaman DK, Shackleford L, et al. A multiplexed, confinable CRISPR/Cas9 gene drive can propagate in caged Aedes aegypti populations. Nat Commun. 2024;15(1).136. Ogunlade ST, Meehan MT, Adekunle AI, Rojas DP, Adegboye OA, McBryde ES. A review: Aedes-borne arboviral infections, controls and wolbachia-based strategies. Vaccines. 2021;9(1):1–23.137. Liang X, Liu J, Bian G, Xi Z. Wolbachia Inter-Strain Competition and Inhibition of Expression of Cytoplasmic Incompatibility in Mosquito. Front Microbiol. 2020;11(July).138. Wilke ABB, Marrelli MT. Paratransgenesis: A promising new strategy for mosquito vector control. Parasites and Vectors [Internet]. 2015;8(1):1–9. Available from: http://dx.doi.org/10.1186/s13071-015-0959-2139. Postler TS, Beer M, Blitvich BJ, Bukh J, de Lamballerie X, Drexler JF, et al. Renaming of the genus Flavivirus to Orthoflavivirus and extension of binomial species names within the family Flaviviridae. Arch Virol [Internet]. 2023;168(9):1–7. Available from: https://doi.org/10.1007/s00705-023-05835-1140. Bermudez-Santana CI, Gallego-Gómez JC. Toward a Categorization of Virus-ncRNA Interactions in the World of RNA to Disentangle the Tiny Secrets of Dengue Virus. Viruses. 2024;16(5):1–25.141. Norazharuddin H, Lai NS. Roles and prospects of dengue virus nonstructural proteins as antiviral targets: An easy digest. Malaysian J Med Sci. 2018;25(5):6–15.142. Puerta-Guardo H, Glasner D, Espinosa D, Biering S, Patana M, Ratnasiri K, et al. Flavivirus NS1 Triggers Tissue-Specific Vascular Endothelial Dysfunction Reflecting Disease Tropism. Cell Rep. 2019;25(6):1598–613.143. Begum F, Das S, Mukherjee D, Mal S, Ray U. Insight into the tropism of dengue virus in humans. Viruses. 2019;11(12).144. Diamond MS, Pierson TC. Molecular Insight into Dengue Virus Pathogenesis and Its Implications for Disease Control. Cell [Internet]. 2015;162(3):488–92. Available from: http://dx.doi.org/10.1016/j.cell.2015.07.005145. Miller JL, DeWet BJM, Martinez-Pomares L, Radcliffe CM, Dwek RA, Rudd PM, et al. The mannose receptor mediates dengue virus infection of macrophages. PLoS Pathog. 2008;4(2).146. Hwang EH, Hur GH, Koo BS, Oh H, Kim G, Jung H, et al. Monocytes as suitable carriers for dissemination of dengue viral infection. Heliyon [Internet]. 2022;8(10):e11212. Available from: https://doi.org/10.1016/j.heliyon.2022.e11212147. Martı́nez-Barragán J de J, del Angel RM. Identification of a Putative Coreceptor on Vero Cells That Participates in Dengue 4 Virus Infection. J Virol. 2001;75(17):7818–27.148. Chen Y, Maguire T, Hileman R, Fromm J, Esko J, Linhardt R, et al. Dengue virus infectivity depends on envelope protein binding to target cell heparan sulfate. Nat Med [Internet]. 1997;3(8):866–71. Available from: http://www.ncbi.nlm.nih.gov/pubmed/9585240149. Cruz-Oliveira C, Freire JM, Conceição TM, Higa LM, Castanho MARB, Da Poian AT. Receptors and routes of dengue virus entry into the host cells. FEMS Microbiol Rev. 2015;39(2):155–70.150. Xie S, Zhang H, Liang Z, Yang X, Cao R. AXL, an Important Host Factor for DENV and ZIKV Replication. Front Cell Infect Microbiol. 2021;11(March):1–13.151. Gabriela DX, X FMLDX, Dx S, Mariana DX, Siqueira M. Soluble isoforms of the DC-SIGN receptor can increase the dengue virus infection in immature dendritic cells Hor a do Carmo Alves D4X a Lara dos Santos D16X a. 2024;2(xx).152. Hu T, Wu Z, Wu S, Chen S, Cheng A. The key amino acids of E protein involved in early flavivirus infection: viral entry. Virol J [Internet]. 2021;18(1):1–12. Available from: https://doi.org/10.1186/s12985-021-01611-2153. Izmirly AM, Alturki SO, Alturki SO, Connors J, Haddad EK. Challenges in Dengue Vaccines Development: Pre-existing Infections and Cross-Reactivity. Front Immunol. 2020;11(June):1–15.154. Kraivong R, Punyadee N, Liszewski MK, Atkinson JP, Avirutnan P. Dengue and the lectin pathway of the complement system. Viruses. 2021;13(7).155. Dalrymple NA, Cimica V, Mackow ER. Dengue virus NS proteins inhibit RIG-I/MAVS signaling by blocking TBK1/IRF3 phosphorylation: Dengue virus serotype 1 NS4A is a unique interferon-regulating virulence determinant. MBio. 2015;6(3):1–12.156. Kakumani PK, Ponia SS, S RK, Sood V, Chinnappan M, Banerjea AC, et al. Role of RNA Interference (RNAi) in Dengue Virus Replication and Identification of NS4B as an RNAi Suppressor. J Virol. 2013;87(16):8870–83.157. Ashour J, Laurent-Rolle M, Shi PY, García-Sastre A. NS5 of Dengue Virus Mediates STAT2 Binding and Degradation. J Virol. 2009;83(11):5408–18.158. Guzman MG, Harris E. Dengue. Lancet. 2015;385(9966):453–65.159. Kularatne SA, Dalugama C. Dengue infection: Global importance, immunopathology and management. Clin Med J R Coll Physicians London. 2022;22(1):9–13.160. Chia PY, Teo A, Yeo TW. Overview of the Assessment of Endothelial Function in Humans. Front Med. 2020;7(October):1–15.161. Bazzoni G, Dejana E. Endothelial cell-to-cell junctions: Molecular organization and role in vascular homeostasis. Physiol Rev. 2004;84(3):869–901.162. Adil MS, Narayanan SP, Somanath PR. Cell-cell junctions: structure and regulation in physiology and pathology. Tissue Barriers [Internet]. 2021;9(1):1–18. Available from: https://doi.org/10.1080/21688370.2020.1848212163. Al-Nuaimi DA, Rütsche D, Abukar A, Hiebert P, Zanetti D, Cesarovic N, et al. Hydrostatic pressure drives sprouting angiogenesis via adherens junction remodelling and YAP signalling. Commun Biol [Internet]. 2024;7(1):1–17. Available from: http://dx.doi.org/10.1038/s42003-024-06604-9164. Villalba N, Baby S, Yuan SY. The Endothelial Glycocalyx as a Double-Edged Sword in Microvascular Homeostasis and Pathogenesis. Front Cell Dev Biol. 2021;9(July).165. Foote C, Soares R, Ramirez-Perez F, Ghiarone T, Aroor A, Manrique-Acevedo C, et al. Endothelial Glycocalyx. Compr Physiol. 2023;12(4):3781–811.166. Bok K, Castagnaro N, Borsa A, Nates S, Espul C, Fay O, et al. Plasma concentrations of sVCAM-1 and severity of dengue infections. J Med Virol. 2001;65(1):97–104.167. Yeh TM, Liu SH, Lin KC, Kuo C, Kuo SY, Huang TY, et al. Dengue Virus Enhances Thrombomodulin and ICAM-1 Expression through the Macrophage Migration Inhibitory Factor Induction of the MAPK and PI3K Signaling Pathways. PLoS One. 2013;8(1).168. Kelley JF, Kaufusi P, Nerurkar V. Dengue hemorrhagic fever-associated immunomediators induced via maturation of dengue virus nonstructural 4B protein in monocytes modulate endothelial cell adhesion molecules and human microvascular endothelial cells permeability. Virology [Internet]. 2012;422 2:326–37. Available from: https://www.semanticscholar.org/paper/861412a0fc7472125b7071cf724ecf511f4461d6169. Puerta-Guardo H, Glasner DR, Harris E. Dengue Virus NS1 Disrupts the Endothelial Glycocalyx, Leading to Hyperpermeability. PLoS Pathog [Internet]. 2016;12. Available from: https://www.semanticscholar.org/paper/80c561d2fa14a2f9f47b5900be5a25461e355a9c170. Carvalho DM, Garcia FG, Terra APS, Lopes Tosta AC, Silva LDA, Castellano LR, et al. Elevated dengue virus nonstructural protein 1 serum levels and altered toll-like receptor 4 expression, nitric oxide, and tumor necrosis factor alpha production in dengue hemorrhagic fever patients. J Trop Med. 2014;2014.171. Niranjan R, Kishor S, Kumar A. Matrix metalloproteinases in the pathogenesis of dengue viral disease: Involvement of immune system and newer therapeutic strategies. J Med Virol. 2021;93(8):4629–37.172. Pan P, Li G, Shen M, Yu Z, Ge W, Lao Z, et al. DENV NS1 and MMP-9 cooperate to induce vascular leakage by altering endothelial cell adhesion and tight junction. PLoS Pathog [Internet]. 2021;17(7):1–30. Available from: http://dx.doi.org/10.1371/journal.ppat.1008603173. Garishah FM, Rother N, Riswari SF, Alisjahbana B, Overheul GJ, van Rij RP, et al. Neutrophil Extracellular Traps in Dengue Are Mainly Generated NOX-Independently. Front Immunol. 2021;12(May):1–10.174. Jeewandara C, Gomes L, Udari S, Paranavitane SA, Shyamali NLA, Ogg GS, et al. Secretory phospholipase A2 in the pathogenesis of acute dengue infection: Immunity, Inflamm Dis. 2017;5(1):7–15.175. St. John AL. Influence of Mast Cells on Dengue Protective Immunity and Immune Pathology. PLoS Pathog. 2013;9(12):1–4.176. Liu SF, Malik AB. NF-κB activation as a pathological mechanism of septic shock and inflammation. Am J Physiol - Lung Cell Mol Physiol. 2006;290(4):622–45.177. Zhang Y yu, Ning B tao. Signaling pathways and intervention therapies in sepsis. Signal Transduct Target Ther. 2021;6(1).178. Malavige GN, Ogg GS. Pathogenesis of vascular leak in dengue virus infection. Immunology. 2017;151(3):261–9.179. Lemieux C, Maliba R, Favier J, Théorêt JF, Merhi Y, Sirois MG. Angiopoietins can directly activate endothelial cells and neutrophils to promote proinflammatory responses. Blood. 2005;105(4):1523–30.180. Dejnirattisai W, Supasa P, Wongwiwat W, Rouvinski A, Barba-Spaeth G, Duangchinda T, et al. Dengue virus sero-cross-reactivity drives antibody-dependent enhancement of infection with zika virus. Nat Immunol. 2016;17(9):1102–8.181. Slon Campos JL, Mongkolsapaya J, Screaton GR. The immune response against flaviviruses. Nat Immunol [Internet]. 2018;19(11):1189–98. Available from: http://dx.doi.org/10.1038/s41590-018-0210-3182. Teo A, Tan HD, Loy T, Chia PY, Chua CLL. Understanding antibody-dependent enhancement in dengue: Are afucosylated IgG1s a concern? PLoS Pathog [Internet]. 2023;19(3):1–8. Available from: http://dx.doi.org/10.1371/journal.ppat.1011223183. Roy SK, Bhattacharjee S. Dengue virus: Epidemiology, biology, and disease aetiology. Can J Microbiol. 2021;67(10):687–702.184. Rothman AL. Immunity to dengue virus: A tale of original antigenic sin and tropical cytokine storms. Nat Rev Immunol. 2011;11(8):532–43.185. Chao CH, Wu WC, Lai YC, Tsai PJ, Perng GC, Lin YS, et al. Dengue virus nonstructural protein 1 activates platelets via Toll-like receptor 4, leading to thrombocytopenia and hemorrhage. PLoS Pathog. 2019;15(4):1–26.186. Hottz ED, Oliveira MF, Nunes PCG, Nogueira RMR, Valls-de-Souza R, Da Poian AT, et al. Dengue induces platelet activation, mitochondrial dysfunction and cell death through mechanisms that involve DC-SIGN and caspases. J Thromb Haemost [Internet]. 2013;11(5):951–62. Available from: https://doi.org/10.1111/jth.12178187. Quirino-Teixeira AC, Rozini SV, Barbosa-Lima G, Coelho DR, Carneiro PH, Mohana-Borges R, et al. Inflammatory signaling in dengue-infected platelets requires translation and secretion of nonstructural protein 1. Blood Adv. 2020;4(9):2018–31.188. Singh A, Bisht P, Bhattacharya S, Guchhait P. Role of Platelet Cytokines in Dengue Virus Infection. Front Cell Infect Microbiol. 2020;10(September):1–9.189. Matsuura C, Moraes TL, Barbosa JB, Moss MB, Siqueira MAS, Mann GE, et al. Nitric oxide activity in platelets of dengue haemorrhagic fever patients: The apparent paradoxical role of ADMA and l-NMMA. Trans R Soc Trop Med Hyg [Internet]. 2012;106(3):174–9. Available from: http://dx.doi.org/10.1016/j.trstmh.2011.10.009190. Fiestas Solórzano V, Rodrigues da Costa Faria, Fernandes dos Santos C, Corrêa G, Cipitelli M, Dornelas Ribeiro M, Souza L, et al. Different profiles of cytokines, chemokines and coagulation mediators associated with severity in brazilian patients infected with dengue virus. Viruses. 2021;13(9).191. Fiestas Solórzano VE, de Lima RC, de Azeredo EL. The Role of Growth Factors in the Pathogenesis of Dengue: A Scoping Review. Pathogens. 2022;11(10).192. Chacón-Duque JC, Adhikari K, Avendaño E, Campo O, Ramirez R, Rojas W, et al. African genetic ancestry is associated with a protective effect on Dengue severity in colombian populations. Infect Genet Evol. 2014;27:89–95.193. Cook AC, Thibaut D, Pettersen T. Major Histocompatibility Complex Class I and Dengue Hemorrhagic Fever: A Meta-Analysis of Human Leukocyte Antigens A*24 and B*44. Cureus. 2022;14(11):1–8.194. Calderón-Peláez MA, Coronel-Ruiz C, Castellanos JE, Velandia-Romero ML. Endothelial Dysfunction, HMGB1, and Dengue: An Enigma to Solve. Viruses. 2022;14(8):1–22.195. Oliveira ERA, Póvoa TF, Nuovo GJ, Allonso D, Salomaõ NG, Basílio-De-Oliveira CA, et al. Dengue fatal cases present virus-specific HMGB1 response in peripheral organs. Sci Rep. 2017;7(1):1–14.196. Allonso D, Belgrano FS, Calzada N, Guzmán MG, Vázquez S, Mohana-Borges R. Elevated serum levels of high mobility group box 1 (HMGB1) protein in dengue-infected patients are associated with disease symptoms and secondary infection. J Clin Virol [Internet]. 2012;55(3):214–9. Available from: http://dx.doi.org/10.1016/j.jcv.2012.07.010197. Paraná VC, Feitosa CA, da Silva GCS, Gois LL, Santos LA. Risk factors associated with severe dengue in Latin America: A systematic review and meta-analysis. Trop Med Int Heal. 2024;29(3):173–91.198. Chen CY, Chiu YY, Chen YC, Huang CH, Wang WH, Chen YH, et al. Obesity as a clinical predictor for severe manifestation of dengue: a systematic review and meta-analysis. BMC Infect Dis. 2023;23(1):1–13.199. Bischoff J. Endothelial to Mesenchymal Transition – Purposeful versus Maladaptive Differentiation. Circ Res. 2019;124(8):1163–5.200. Ribatti D, Ribatti D. Epithelial-endothelial transition and endothelial-mesenchymal transition. 2022;316:311–6.201. Ciszewski WM, Wawro ME, Sacewicz‐hofman I, Sobierajska K. Cytoskeleton reorganization in endmt—the role in cancer and fibrotic diseases. Int J Mol Sci. 2021;22(21).202. Singh A, Bhatt KS, Nguyen HC, Frisbee JC, Singh KK. Endothelial-to-Mesenchymal Transition in Cardiovascular Pathophysiology. Int J Mol Sci. 2024;25(11).203. Sabbineni H, Verma A, Somanath PR. Isoform-specific effects of transforming growth factor β on endothelial-to-mesenchymal transition. J Cell Physiol. 2018;233(11):8418–28.204. Pinto MT, Covas DT, Kashima S, Rodrigues CO. Endothelial Mesenchymal Transition: Comparative Analysis of Different Induction Methods. Biol Proced Online [Internet]. 2016;18(1):1–8. Available from: http://dx.doi.org/10.1186/s12575-016-0040-3205. Ma J, van der Zon G, Gonçalves MAFV, van Dinther M, Thorikay M, Sanchez-Duffhues G, et al. TGF-β-Induced Endothelial to Mesenchymal Transition Is Determined by a Balance Between SNAIL and ID Factors. Front Cell Dev Biol. 2021;9(February):1–20.206. Wu Q, Du X, Cheng J, Qi X, Liu H, Lv X, et al. PECAM-1 drives β-catenin-mediated EndMT via internalization in colon cancer with diabetes mellitus. Cell Commun Signal [Internet]. 2023;21(1):1–14. Available from: https://doi.org/10.1186/s12964-023-01193-2207. Zhang ZY, Zhai C, Yang XY, Li HB, Wu LL, Li L. Knockdown of CD146 promotes endothelialto- mesenchymal transition via Wnt/β-catenin pathway. PLoS One [Internet]. 2022;17(8 August):1–18. Available from: http://dx.doi.org/10.1371/journal.pone.0273542208. Zhang J, Chen S, Xiang H, Xiao J, Zhao S, Shu Z, et al. S1PR2/Wnt3a/RhoA/ROCK1/β-catenin signaling pathway promotes diabetic nephropathy by inducting endothelial mesenchymal transition and impairing endothelial barrier function. Life Sci. 2023;328(April).209. Ciszewski WM, Sobierajska K, Wawro ME, Klopocka W, Chefczyńska N, Muzyczuk A, et al. The ILK-MMP9-MRTF axis is crucial for EndMT differentiation of endothelial cells in a tumor microenvironment. Biochim Biophys Acta - Mol Cell Res. 2017;1864(12):2283–96.210. Hong L, Li F, Tang C, Li L, Sun L, Li X, et al. Semaphorin 7A promotes endothelial to mesenchymal transition through ATF3 mediated TGF-β2/Smad signaling. Cell Death Dis [Internet]. 2020;11(8). Available from: http://dx.doi.org/10.1038/s41419-020-02818-x211. He J, Hou L, Liu Q, Zhou R. Irisin links Claudin-5 preservation and Mfn2-mediated mitochondrial dynamics to resist doxorubicin-induced cardiac endothelial damage. Biochem Biophys Res Commun [Internet]. 2024;696(January):149501. Available from: https://doi.org/10.1016/j.bbrc.2024.149501212. Jiang S, Xing X, Hong M, Zhang X, Xu F, Zhang GH. Hsa_circ_0081065 exacerbates IH-induced EndMT via regulating miR-665/HIF-1α signal axis and HIF-1α nuclear translocation. Sci Rep [Internet]. 2024;14(1):904. Available from: https://doi.org/10.1038/s41598-024-51471-3213. Mao J, Liu J, Zhou M, Wang G, Xiong X, Deng Y. Hypoxia-induced interstitial transformation of microvascular endothelial cells by mediating HIF-1α/VEGF signaling in systemic sclerosis. PLoS One [Internet]. 2022;17(3 March):1–16. Available from: http://dx.doi.org/10.1371/journal.pone.0263369214. Wang E, Wang H, Chakrabarti S. Endothelial-to-mesenchymal transition: An underappreciated mediator of diabetic complications. Front Endocrinol (Lausanne). 2023;14(January):1–12.215. Tsai PS, Chiu CY, Sheu ML, Yang CY, Lan KC, Liu SH. Advanced glycation end products activated endothelial-to-mesenchymal transition in pancreatic islet endothelial cells and triggered islet fibrosis in diabetic mice. Chem Biol Interact [Internet]. 2021;345(June):109562. Available from: https://doi.org/10.1016/j.cbi.2021.109562216. Song BW, Kim S, Kim R, Jeong S, Moon H, Kim H, et al. Regulation of Inflammation-Mediated Endothelial to Mesenchymal Transition with Echinochrome a for Improving Myocardial Dysfunction. Mar Drugs. 2022;20(12).217. Yoshimatsu Y, Watabe T. Emerging roles of inflammation-mediated endothelial–mesenchymal transition in health and disease. Inflamm Regen. 2022;42(1).218. Li AfF, Tan LL, Zhang SL, Tao J, Wang Z, Wei D. Low shear stress-induced endothelial mesenchymal transformation via the down-regulation of TET2. Biochem Biophys Res Commun [Internet]. 2021;545:20–6. Available from: https://doi.org/10.1016/j.bbrc.2021.01.062219. Shinohara T, Moonen JR, Chun YH, Lee-Yow YC, Okamura K, Szafron JM, et al. High Shear Stress Reduces ERG Causing Endothelial-Mesenchymal Transition and Pulmonary Arterial Hypertension. bioRxiv [Internet]. 2024; Available from: https://www.embase.com/search/results?subaction=viewrecord&id=L2030894905&from=export%0Ahttp://dx.doi.org/10.1101/2024.02.02.578526220. Islam S, Boström KI, Di Carlo D, Simmons CA, Tintut Y, Yao Y, et al. The Mechanobiology of Endothelial-to-Mesenchymal Transition in Cardiovascular Disease. Front Physiol. 2021;12(September).221. Wesseling M, Sakkers TR, de Jager SCA, Pasterkamp G, Goumans MJ. The morphological and molecular mechanisms of epithelial/endothelial-to-mesenchymal transition and its involvement in atherosclerosis. Vascul Pharmacol [Internet]. 2018;106:1–8. Available from: http://dx.doi.org/10.1016/j.vph.2018.02.006222. Gurevich DB, David DT, Sundararaman A, Patel J. Endothelial heterogeneity in development and wound healing. Cells. 2021;10(9):1–15.223. Guo L, Mi J wei, Zhang H cai, Gao J, Zhang S, Li L xi, et al. Endothelial–mesenchymal transition as a novel mechanism for generating myofibroblasts during wound healing and scarring. J Cosmet Dermatol. 2023;22(2):661–8.224. Dejana E, Hirschi KK, Simons M. The molecular basis of endothelial cell plasticity. Nat Commun. 2017;8.225. Xu Y, Kovacic JC. Endothelial to Mesenchymal Transition in Health and Disease. Annu Rev Physiol. 2023;85:245–67.226. Zhang J, Green CR, Mugisho OO. Cell transdifferentiation in ocular disease: Potential role for connexin channels. Exp Cell Res [Internet]. 2021;407(2):112823. Available from: https://doi.org/10.1016/j.yexcr.2021.112823227. Peng Q, Shan D, Cui K, Li K, Zhu B, Wu H, et al. The Role of Endothelial-to-Mesenchymal Transition in Cardiovascular Disease. Cells. 2022;11:1834.228. Nijim W, Moustafa M, Humble J, Al-Shabrawey M. Endothelial to mesenchymal cell transition in diabetic retinopathy: targets and therapeutics. Front Ophthalmol. 2023;3(September):1–9.229. Yin Z, Wang L. Endothelial-to-mesenchymal transition in tumour progression and its potential roles in tumour therapy. Ann Med [Internet]. 2023;55(1):1058–69. Available from: https://doi.org/10.1080/07853890.2023.2180155230. Testai L, Brancaleone V, Flori L, Montanaro R, Calderone V. Modulation of endmt by hydrogen sulfide in the prevention of cardiovascular fibrosis. Antioxidants. 2021;10(6):1–23.231. Huang X, Pan L, Pu H, Wang Y, Zhang X, Li C, et al. Loss of caveolin-1 promotes endothelial-mesenchymal transition during sepsis: A membrane proteomic study. Int J Mol Med. 2013;32(3):585–92.232. Stasi A, Intini A, Divella C, Franzin R, Montemurno E, Grandaliano G, et al. Emerging role of Lipopolysaccharide binding protein in sepsis-induced acute kidney injury. Nephrol Dial Transplant. 2017;32(1):24–31.233. Feng J, Li K, Xie F, Han L, Wu Y. IL-35 ameliorates lipopolysaccharide-induced endothelial dysfunction by inhibiting endothelial-to-mesenchymal transition. Int Immunopharmacol [Internet]. 2024;129(1):111567. Available from: https://doi.org/10.1016/j.intimp.2024.111567234. Maleszewska M, Moonen JRAJ, Huijkman N, van de Sluis B, Krenning G, Harmsen MC. IL-1β and TGFβ2 synergistically induce endothelial to mesenchymal transition in an NFκB-dependent manner. Immunobiology. 2013;218(4):443–54.235. Roa Linares VC, Gallego Gómez JC. La pérdida de función de la quinasa dependiente de ciclina 5 (CDK5) altera el citoesqueleto y reduce la infección in vitro por el virus del dengue 2. Acta Biológica Colomb. 2019;24(3):474–85.236. Bosch I, Xhaja K, Estevez L, Raines G, Melichar H, Warke R V., et al. Increased Production of Interleukin-8 in Primary Human Monocytes and in Human Epithelial and Endothelial Cell Lines after Dengue Virus Challenge. J Virol. 2002;76(11):5588–97.237. Hall IF, Kishta F, Xu Y, Baker AH, Kovacic JC. Endothelial to mesenchymal transition: at the axis of cardiovascular health and disease. Cardiovasc Res. 2024;120(3):223–36.238. Wei M, Zhang Y, Zhang H, Huang Z, Miao H, Zhang T, et al. HMGB1 induced endothelial to mesenchymal transition in liver fibrosis: The key regulation of early growth response factor 1. Biochim Biophys Acta - Gen Subj [Internet]. 2022;1866(10):130202. Available from: https://doi.org/10.1016/j.bbagen.2022.130202239. Touret F, Baronti C, Goethals O, Van Loock M, de Lamballerie X, Querat G. Phylogenetically based establishment of a dengue virus panel, representing all available genotypes, as a tool in dengue drug discovery. Antiviral Res [Internet]. 2019;168(March):109–13. Available from: https://doi.org/10.1016/j.antiviral.2019.05.005240. Vedagiri D, Gupta D, Mishra A, Krishna G, Bhaskar M, Sah V, et al. Retinoic Acid-Inducible Gene I-Like Receptors Activate Snail To Limit RNA Viral Infections. J Virol. 2021;95(21):01216–21.241. Alfaro-García JP, Orozco-Castaño CA, Sánchez-Rendón JA, Casanova-Yépes HF, Vicente-Manzanares M, Gallego-Gómez JC. Characterization of the Temporal Dynamics of the Endothelial – Mesenchymal-like Transition Induced by Soluble Factors from Dengue Virus Infection in Microvascular Endothelial Cells. Int J Mol Sci. 2025;26(5):1–19.242. Takaoka Y, Uchinomiya S, Kobayashi D, Endo M, Hayashi T, Fukuyama Y, et al. Endogenous Membrane Receptor Labeling by Reactive Cytokines and Growth Factors to Chase Their Dynamics in Live Cells. Chem [Internet]. 2018;4(6):1451–64. Available from: https://doi.org/10.1016/j.chempr.2018.03.021243. Kryczka J, Przygodzka P, Bogusz H, Boncela J. HMEC-1 adopt the mixed amoeboid-mesenchymal migration type during EndMT. Eur J Cell Biol [Internet]. 2017;96(4):289–300. Available from: http://dx.doi.org/10.1016/j.ejcb.2017.04.002244. Stasiak M, Gawryś K, Popielarski M, Bednarek R, Studzian M et al. Differential Quantitative Proteomics of Human Microvascular Endothelial Cells 1 by iTRAQ Reveals Palladin to be a New Biomarker During TGF-β1 Induced Endothelial Mesenchymal Transition. J Proteomics Bioinform. 2017;10:236–45.245. Mimouni M, Lajoix AD, Desmetz C. Experimental Models to Study Endothelial to Mesenchymal Transition in Myocardial Fibrosis and Cardiovascular Diseases. Int J Mol Sci. 2024;25(1).246. Van Meeteren LA, Ten Dijke P. Regulation of endothelial cell plasticity by TGF-β. Cell Tissue Res. 2012;347(1):177–86.247. Zhao P, Yao Q, Zhang PJ, The E, Zhai Y, Ao L, et al. Single-cell RNA-seq reveals a critical role of novel pro-inflammatory EndMT in mediating adverse remodeling in coronary artery-on-a-chip. Sci Adv. 2021;7(34):1–13.248. Wu KQ, Muratore CS, So EY, Sun C, Dubielecka PM, Reginato AM, et al. M1 Macrophage–Induced Endothelial-to-Mesenchymal Transition Promotes Infantile Hemangioma Regression. Am J Pathol [Internet]. 2017;187(9):2102–11. Available from: http://dx.doi.org/10.1016/j.ajpath.2017.05.014249. Millar JK, Salmon M, Nasser E, Malik S, Kolli P, Lu G, et al. Endothelial to mesenchymal transition in the interleukin-1 pathway during aortic aneurysm formation. J Thorac Cardiovasc Surg [Internet]. 2024;167(5):e146–58. Available from: https://www.sciencedirect.com/science/article/pii/S0022522323010772250. Takagaki Y, Lee SM, Dongqing Z, Kitada M, Kanasaki K, Koya D. Endothelial autophagy deficiency induces IL6 - dependent endothelial mesenchymal transition and organ fibrosis. Autophagy [Internet]. 2020;16(10):1905–14. Available from: https://doi.org/10.1080/15548627.2020.1713641251. Bronson R, Lyu J, Xiong J. Transcriptome analysis reveals molecular signature and cell-type difference of Homo sapiens endothelial-to-mesenchymal transition. G3 Genes, Genomes, Genet [Internet]. 2023;13(12):1–13. Available from: https://doi.org/10.1093/g3journal/jkad243252. Youssef KK, Narwade N, Arcas A, Marquez-Galera A, Jiménez-Castaño R, Lopez-Blau C, et al. Two distinct epithelial-to-mesenchymal transition programs control invasion and inflammation in segregated tumor cell populations. Nat Cancer. 2024;5(11):1660–80.253. Youssef KK, Nieto MA. Epithelial–mesenchymal transition in tissue repair and degeneration. Nat Rev Mol Cell Biol [Internet]. 2024;25(9):720–39. Available from: http://dx.doi.org/10.1038/s41580-024-00733-z254. Yan J, Bao H, Fan YJ, Jiang ZL, Qi YX, Han Y. Platelet-derived microvesicles promote endothelial progenitor cell proliferation in intimal injury by delivering TGF-β1. FEBS J. 2020;287(23):5196–217.255. Wylie BJ, Singh MP, Coull BA, Quinn A, Yeboah- K, Sabin L, et al. Epithelial to Mesenchymal Transition induces cell cycle arrest and parenchymal damage in renal fibrosis. Nat Med. 2015;34(3):355–68.256. Meng ZZ, Liu W, Xia Y, Yin HM, Zhang CY, Su D, et al. The pro-inflammatory signalling regulator Stat4 promotes vasculogenesis of great vessels derived from endothelial precursors. Nat Commun [Internet]. 2017;8:1–12. Available from: http://dx.doi.org/10.1038/ncomms14640257. Xu H, Pumiglia K, LaFlamme SE. Laminin-511 and α6 integrins regulate the expression of CXCR4 to promote endothelial morphogenesis. J Cell Sci. 2020;133(11).258. Béguin EP, Janssen EFJ, Hoogenboezem M, Meijer AB, Hoogendijk AJ, van den Biggelaar M. Flow-induced Reorganization of Laminin-integrin Networks Within the Endothelial Basement Membrane Uncovered by Proteomics. Mol Cell Proteomics. 2020;19(7):1179–92.259. Qi Y, Qadir MMF, Hastreiter AA, Fock RA, Machi JF, Morales AA, et al. Endothelial c-Myc knockout enhances diet-induced liver inflammation and fibrosis. FASEB J. 2022;36(1):1–25.260. Li Z, Jimenez SA. Protein kinase Cδ and c-Abl kinase are required for transforming growth factor β induction of endothelial-mesenchymal transition in vitro. Arthritis Rheum. 2011;63(8):2473–83.261. Liu C, Ma Y, Zhao J, Nussinov R, Zhang YC, Cheng F, et al. Computational network biology: Data, models, and applications. Phys Rep [Internet]. 2020;846:1–66. Available from: https://doi.org/10.1016/j.physrep.2019.12.004262. Chislock EM, Ring C, Pendergast AM. Abl kinases are required for vascular function, Tie2 expression, and angiopoietin-1-mediated survival. Proc Natl Acad Sci U S A. 2013;110(30):12432–7.263. Wang X, Bleher R, Wang L, Garcia JGN, Dudek SM, Shekhawat GS, et al. Imatinib Alters Agonists-mediated Cytoskeletal Biomechanics in Lung Endothelium. Sci Rep. 2017;7(1):1–14.264. Deville SS, Cordes N. The Extracellular, Cellular, and Nuclear Stiffness, a Trinity in the Cancer Resistome—A Review. Front Oncol. 2019;9(December):1–14.265. DeWane G, Salvi AM, DeMali KA. Fueling the cytoskeleton-links between cell metabolism and actin remodeling. J Cell Sci. 2021;134(3).266. Danielsson F, Peterson MK, Araújo HC, Lautenschläger F, Gad AKB. Vimentin diversity in health and disease. Cells. 2018;7(10):1–38.267. Kechagia JZ, Ivaska J, Roca-Cusachs P. Integrins as biomechanical sensors of the microenvironment. Nat Rev Mol Cell Biol [Internet]. 2019;20(8):457–73. Available from: http://dx.doi.org/10.1038/s41580-019-0134-2268. Wang W, Wang Z, Tian D, Zeng X, Liu Y, Fu Q, et al. Integrin β3 mediates the endothelial-to-mesenchymal transition via the notch pathway. Cell Physiol Biochem. 2018;49(3):985–97.269. Subauste MC, Pertz O, Adamson ED, Turner CE, Junger S, Hahn KM. Vinculin modulation of paxillin-FAK interactions regulates ERK to control survival and motility. J Cell Biol. 2004;165(3):371–81.270. Tsubouchi A, Sakakura J, Yagi R, Mazaki Y, Schaefer E, Yano H, et al. Localized suppression of RhoA activity by Tyr31/118-phosphorylated paxillin in cell adhesion and migration. J Cell Biol. 2002;159(4):673–83.271. Barry AK, Wang N, Leckband DE. Local VE-cadherin mechanotransduction triggers long-ranged remodeling of endothelial monolayers. J Cell Sci. 2015;128(7):1341–51.272. Parsons SA, Sharma R, Roccamatisi DL, Zhang H, Petri B, Kubes P, et al. Endothelial paxillin and focal adhesion kinase (FAK) play a critical role in neutrophil transmigration. Eur J Immunol. 2012;42(2):436–46.273. Martino F, Perestrelo AR, Vinarský V, Pagliari S, Forte G. Cellular mechanotransduction: From tension to function. Front Physiol. 2018;9(JUL):1–21.274. Ma X, Geng Z, Wang S, Yu Z, Liu T, Guan S, et al. The driving mechanism and targeting value of mimicry between vascular endothelial cells and tumor cells in tumor progression. Biomed Pharmacother [Internet]. 2023;165(June):115029. Available from: https://doi.org/10.1016/j.biopha.2023.115029275. Mahmoud MM, Kim HR, Xing R, Hsiao S, Mammoto A, Chen J, et al. TWIST1 integrates endothelial responses to flow in vascular dysfunction and atherosclerosis. Circ Res. 2016;119(3):450–62.276. Amemiya T, Gromiha MM, Horimoto K, Fukui K. Drug repositioning for dengue haemorrhagic fever by integrating multiple omics analyses. Sci Rep [Internet]. 2019;9(1):1–13. Available from: http://dx.doi.org/10.1038/s41598-018-36636-1277. Gladilin E, Ohse S, Boerries M, Busch H, Xu C, Schneider M, et al. TGFβ-induced cytoskeletal remodeling mediates elevation of cell stiffness and invasiveness in NSCLC. Sci Rep. 2019;9(1):1–12.278. Lee CH, Hong CH, Chen YT, Chen YC, Shen MR. TGF-beta1 increases cell rigidity by enhancing expression of smooth muscle actin: Keloid-derived fibroblasts as a model for cellular mechanics. J Dermatol Sci [Internet]. 2012;67(3):173–80. Available from: http://dx.doi.org/10.1016/j.jdermsci.2012.06.004279. Good RB, Gilbane AJ, Trinder SL, Denton CP, Coghlan G, Abraham DJ, et al. Endothelial to Mesenchymal Transition Contributes to Endothelial Dysfunction in Pulmonary Arterial Hypertension. Am J Pathol [Internet]. 2015;185(7):1850–8. Available from: http://dx.doi.org/10.1016/j.ajpath.2015.03.019280. Immanuel J, Yun S. Vascular Inflammatory Diseases and Endothelial Phenotypes. Cells. 2023;12(12).281. Potenta S, Zeisberg E, Kalluri R. The role of endothelial-to-mesenchymal transition in cancer progression. Br J Cancer. 2008;99(9):1375–9.282. Huang RB, Eniola-Adefeso O. Shear stress modulation of IL-1β-induced E-selectin expression in human endothelial cells. PLoS One. 2012;7(2):1–9.283. Sheikh S, Rainger GE, Gale Z, Rahman M, Nash GB. Exposure to fluid shear stress modulates the ability of endothelial cells to recruit neutrophils in response to tumor necrosis factor-α: A basis for local variations in vascular sensitivity to inflammation. Blood [Internet]. 2003;102(8):2828–34. Available from: http://dx.doi.org/10.1182/blood-2003-01-0080284. Raj Kumar Patro A, Mohanty S, Prusty BK, Singh DK, Gaikwad S, Saswat T, et al. Cytokine signature associated with disease severity in dengue. Viruses. 2019;11(1):1–12.285. Yuya W, Yuansong Y, Susu L, Chen L, Yong W, Yining W, et al. Progress and challenges in development of animal models for dengue virus infection. Emerg Microbes Infect [Internet]. 2024;13(1):2404159. Available from: https://doi.org/10.1080/22221751.2024.2404159286. Schwab JD, Kühlwein SD, Ikonomi N, Kühl M, Kestler HA. Concepts in Boolean network modeling: What do they all mean? Comput Struct Biotechnol J [Internet]. 2020;18(2020):571–82. Available from: https://doi.org/10.1016/j.csbj.2020.03.001287. Pussell BA, Peake PW, Brown MA, Charlesworth JA. Human fibronectin metabolism. J Clin Invest. 1985;76(1):143–8.288. Li Y, Zhao J, Yin Y, Li K, Zhang C, Zheng Y. The Role of IL-6 in Fibrotic Diseases: Molecular and Cellular Mechanisms. Int J Biol Sci. 2022;18(14):5405–14.289. See KC. Dengue-Associated Hemophagocytic Lymphohistiocytosis: A Narrative Review of Its Identification and Treatment. Pathogens. 2024;13(4).290. Chaudhuri K, Chatterjee AB, Pal P. Use of Anakinra in a Case of Severe Dengue with Refractory Secondary Hemophagocytic Lymphohistiocytosis. Indian Pediatr Case Reports. 2024;4(1):45–7.291. Cavalli G, Colafrancesco S, Emmi G, Imazio M, Lopalco G, Maggio MC, et al. Interleukin 1α: a comprehensive review on the role of IL-1α in the pathogenesis and treatment of autoimmune and inflammatory diseases. Autoimmun Rev [Internet]. 2021;20(3):102763. Available from: https://doi.org/10.1016/j.autrev.2021.102763292. Sangkaew S, Ming D, Boonyasiri A, Honeyford K, Kalayanarooj S, Yacoub S, et al. Risk predictors of progression to severe disease during the febrile phase of dengue: a systematic review and meta-analysis. Lancet Infect Dis [Internet]. 2021;21(7):1014–26. Available from: http://dx.doi.org/10.1016/S1473-3099(20)30601-0293. Vuong NL, Quyen NTH, Tien NTH, Tuan NM, Kien DTH, Lam PK, et al. Higher Plasma Viremia in the Febrile Phase Is Associated with Adverse Dengue Outcomes Irrespective of Infecting Serotype or Host Immune Status: An Analysis of 5642 Vietnamese Cases. Clin Infect Dis. 2021;72(12):E1074–83.294. Dayarathna S, Kuruppu H, Silva T, Gomes L, Shyamali NLA, Jeewandara C, et al. Are viral loads in the febrile phase a predictive factor of dengue disease severity? medRxiv [Internet]. 2023;2023.07.31.23293412. Available from: https://www.medrxiv.org/content/10.1101/2023.07.31.23293412v1%0Ahttps://www.medrxiv.org/content/10.1101/2023.07.31.23293412v1.abstractCell plasticityPlasticidad de la célulaDengueEndothelial cellsCélulas endotelialesEndothelial-mesenchymal transitionTransición endotelial-mesenquimatosaEndothelial dysfunctionSoluble factorshttps://id.nlm.nih.gov/mesh/D000066670https://id.nlm.nih.gov/mesh/D003715https://id.nlm.nih.gov/mesh/D042783https://id.nlm.nih.gov/mesh/D000096382ODS 3: Salud y bienestar. Garantizar una vida sana y promover el bienestar de todos a todas las edadesPublicationLICENSElicense.txtlicense.txttext/plain; charset=utf-814837https://bibliotecadigital.udea.edu.co/bitstreams/cdf15c43-3600-43fe-8c3b-a35849b49e37/downloadb76e7a76e24cf2f94b3ce0ae5ed275d0MD53falseAnonymousREADORIGINALAlfaroJenny_2025_Cellular_Phenotypes_Dengue.pdfAlfaroJenny_2025_Cellular_Phenotypes_Dengue.pdfapplication/pdf1550240https://bibliotecadigital.udea.edu.co/bitstreams/b302b11f-9a78-4a25-982e-9e1bf027d6f7/downloadd870b36433bbc4f2d6859be1d83ea79fMD55trueAnonymousREAD2027-09-30CC-LICENSElicense_rdflicense_rdfapplication/rdf+xml; charset=utf-81160https://bibliotecadigital.udea.edu.co/bitstreams/08c92967-336b-48cf-86cd-ec9b87fb19b9/download5643bfd9bcf29d560eeec56d584edaa9MD56falseAnonymousREADTEXTAlfaroJenny_2025_CellularPhenotypesDengue.pdf.txtAlfaroJenny_2025_CellularPhenotypesDengue.pdf.txtExtracted texttext/plain100541https://bibliotecadigital.udea.edu.co/bitstreams/a7c049a8-e551-489f-896b-2ace997e4c15/download501019fe7c105024742d3aed32d857e4MD57falseAnonymousREAD2027-09-30AlfaroJenny_2025_Cellular_Phenotypes_Dengue.pdf.txtAlfaroJenny_2025_Cellular_Phenotypes_Dengue.pdf.txtExtracted texttext/plain100541https://bibliotecadigital.udea.edu.co/bitstreams/a9219d81-70f9-4649-bbe9-4ae74360b5fc/download501019fe7c105024742d3aed32d857e4MD59falseAnonymousREAD2027-09-30THUMBNAILAlfaroJenny_2025_CellularPhenotypesDengue.pdf.jpgAlfaroJenny_2025_CellularPhenotypesDengue.pdf.jpgGenerated Thumbnailimage/jpeg7802https://bibliotecadigital.udea.edu.co/bitstreams/9e310cf6-a4e8-4767-8323-a631a7759474/download6bd99ba287ce9d7d172d1e64204b04ceMD58falseAnonymousREAD2027-09-30AlfaroJenny_2025_Cellular_Phenotypes_Dengue.pdf.jpgAlfaroJenny_2025_Cellular_Phenotypes_Dengue.pdf.jpgGenerated Thumbnailimage/jpeg7802https://bibliotecadigital.udea.edu.co/bitstreams/1dd60d89-020c-4d5a-8e30-08a497149b18/download6bd99ba287ce9d7d172d1e64204b04ceMD510falseAnonymousREAD2027-09-3010495/47470oai:bibliotecadigital.udea.edu.co:10495/474702025-10-02 04:09:11.177http://creativecommons.org/licenses/by-nc-sa/4.0/Attribution-NonCommercial-ShareAlike 4.0 Internationalembargo2027-09-30https://bibliotecadigital.udea.edu.coRepositorio Institucional de la Universidad de Antioquiaaplicacionbibliotecadigitalbiblioteca@udea.edu.coTEEgT0JSQSAoVEFMIFkgQ09NTyBTRSBERUZJTkUgTcOBUyBBREVMQU5URSkgU0UgT1RPUkdBIEJBSk8gTE9TIFRFUk1JTk9TIERFIEVTVEEgTElDRU5DSUEgUMOaQkxJQ0EgREUgQ1JFQVRJVkUgQ09NTU9OUyAo4oCcTFBDQ+KAnSBPIOKAnExJQ0VOQ0lB4oCdKS4gTEEgT0JSQSBFU1TDgSBQUk9URUdJREEgUE9SIERFUkVDSE9TIERFIEFVVE9SIFkvVSBPVFJBUyBMRVlFUyBBUExJQ0FCTEVTLiBRVUVEQSBQUk9ISUJJRE8gQ1VBTFFVSUVSIFVTTyBRVUUgU0UgSEFHQSBERSBMQSBPQlJBIFFVRSBOTyBDVUVOVEUgQ09OIExBIEFVVE9SSVpBQ0nDk04gUEVSVElORU5URSBERSBDT05GT1JNSURBRCBDT04gTE9TIFTDiVJNSU5PUyBERSBFU1RBIExJQ0VOQ0lBIFkgREUgTEEgTEVZIERFIERFUkVDSE8gREUgQVVUT1IuCgpNRURJQU5URSBFTCBFSkVSQ0lDSU8gREUgQ1VBTFFVSUVSQSBERSBMT1MgREVSRUNIT1MgUVVFIFNFIE9UT1JHQU4gRU4gRVNUQSBMSUNFTkNJQSwgVVNURUQgQUNFUFRBIFkgQUNVRVJEQSBRVUVEQVIgT0JMSUdBRE8gRU4gTE9TIFRFUk1JTk9TIFFVRSBTRSBTRcORQUxBTiBFTiBFTExBLiBFTCBMSUNFTkNJQU5URSBDT05DRURFIEEgVVNURUQgTE9TIERFUkVDSE9TIENPTlRFTklET1MgRU4gRVNUQSBMSUNFTkNJQSBDT05ESUNJT05BRE9TIEEgTEEgQUNFUFRBQ0nDk04gREUgU1VTIFRFUk1JTk9TIFkgQ09ORElDSU9ORVMuIAoKMS4gRGVmaW5pY2lvbmVzCmEuIE9icmEgQ29sZWN0aXZhIGVzIHVuYSBvYnJhLCB0YWwgY29tbyB1bmEgcHVibGljYWNpw7NuIHBlcmnDs2RpY2EsIHVuYSBhbnRvbG9nw61hLCBvIHVuYSBlbmNpY2xvcGVkaWEsIGVuIGxhIHF1ZSBsYSBvYnJhIGVuIHN1IHRvdGFsaWRhZCwgc2luIG1vZGlmaWNhY2nDs24gYWxndW5hLCBqdW50byBjb24gdW4gZ3J1cG8gZGUgb3RyYXMgY29udHJpYnVjaW9uZXMgcXVlIGNvbnN0aXR1eWVuIG9icmFzIHNlcGFyYWRhcyBlIGluZGVwZW5kaWVudGVzIGVuIHPDrSBtaXNtYXMsIHNlIGludGVncmFuIGVuIHVuIHRvZG8gY29sZWN0aXZvLiBVbmEgT2JyYSBxdWUgY29uc3RpdHV5ZSB1bmEgb2JyYSBjb2xlY3RpdmEgbm8gc2UgY29uc2lkZXJhcsOhIHVuYSBPYnJhIERlcml2YWRhIChjb21vIHNlIGRlZmluZSBhYmFqbykgcGFyYSBsb3MgcHJvcMOzc2l0b3MgZGUgZXN0YSBsaWNlbmNpYS4gYXF1ZWxsYSBwcm9kdWNpZGEgcG9yIHVuIGdydXBvIGRlIGF1dG9yZXMsIGVuIHF1ZSBsYSBPYnJhIHNlIGVuY3VlbnRyYSBzaW4gbW9kaWZpY2FjaW9uZXMsIGp1bnRvIGNvbiB1bmEgY2llcnRhIGNhbnRpZGFkIGRlIG90cmFzIGNvbnRyaWJ1Y2lvbmVzLCBxdWUgY29uc3RpdHV5ZW4gZW4gc8OtIG1pc21vcyB0cmFiYWpvcyBzZXBhcmFkb3MgZSBpbmRlcGVuZGllbnRlcywgcXVlIHNvbiBpbnRlZ3JhZG9zIGFsIHRvZG8gY29sZWN0aXZvLCB0YWxlcyBjb21vIHB1YmxpY2FjaW9uZXMgcGVyacOzZGljYXMsIGFudG9sb2fDrWFzIG8gZW5jaWNsb3BlZGlhcy4KYi4gT2JyYSBEZXJpdmFkYSBzaWduaWZpY2EgdW5hIG9icmEgYmFzYWRhIGVuIGxhIG9icmEgb2JqZXRvIGRlIGVzdGEgbGljZW5jaWEgbyBlbiDDqXN0YSB5IG90cmFzIG9icmFzIHByZWV4aXN0ZW50ZXMsIHRhbGVzIGNvbW8gdHJhZHVjY2lvbmVzLCBhcnJlZ2xvcyBtdXNpY2FsZXMsIGRyYW1hdGl6YWNpb25lcywg4oCcZmljY2lvbmFsaXphY2lvbmVz4oCdLCB2ZXJzaW9uZXMgcGFyYSBjaW5lLCDigJxncmFiYWNpb25lcyBkZSBzb25pZG/igJ0sIHJlcHJvZHVjY2lvbmVzIGRlIGFydGUsIHJlc8O6bWVuZXMsIGNvbmRlbnNhY2lvbmVzLCBvIGN1YWxxdWllciBvdHJhIGVuIGxhIHF1ZSBsYSBvYnJhIHB1ZWRhIHNlciB0cmFuc2Zvcm1hZGEsIGNhbWJpYWRhIG8gYWRhcHRhZGEsIGV4Y2VwdG8gYXF1ZWxsYXMgcXVlIGNvbnN0aXR1eWFuIHVuYSBvYnJhIGNvbGVjdGl2YSwgbGFzIHF1ZSBubyBzZXLDoW4gY29uc2lkZXJhZGFzIHVuYSBvYnJhIGRlcml2YWRhIHBhcmEgZWZlY3RvcyBkZSBlc3RhIGxpY2VuY2lhLiAoUGFyYSBldml0YXIgZHVkYXMsIGVuIGVsIGNhc28gZGUgcXVlIGxhIE9icmEgc2VhIHVuYSBjb21wb3NpY2nDs24gbXVzaWNhbCBvIHVuYSBncmFiYWNpw7NuIHNvbm9yYSwgcGFyYSBsb3MgZWZlY3RvcyBkZSBlc3RhIExpY2VuY2lhIGxhIHNpbmNyb25pemFjacOzbiB0ZW1wb3JhbCBkZSBsYSBPYnJhIGNvbiB1bmEgaW1hZ2VuIGVuIG1vdmltaWVudG8gc2UgY29uc2lkZXJhcsOhIHVuYSBPYnJhIERlcml2YWRhIHBhcmEgbG9zIGZpbmVzIGRlIGVzdGEgbGljZW5jaWEpLgpjLiBMaWNlbmNpYW50ZSwgZXMgZWwgaW5kaXZpZHVvIG8gbGEgZW50aWRhZCB0aXR1bGFyIGRlIGxvcyBkZXJlY2hvcyBkZSBhdXRvciBxdWUgb2ZyZWNlIGxhIE9icmEgZW4gY29uZm9ybWlkYWQgY29uIGxhcyBjb25kaWNpb25lcyBkZSBlc3RhIExpY2VuY2lhLgpkLiBBdXRvciBvcmlnaW5hbCwgZXMgZWwgaW5kaXZpZHVvIHF1ZSBjcmXDsyBsYSBPYnJhLgplLiBPYnJhLCBlcyBhcXVlbGxhIG9icmEgc3VzY2VwdGlibGUgZGUgcHJvdGVjY2nDs24gcG9yIGVsIHLDqWdpbWVuIGRlIERlcmVjaG8gZGUgQXV0b3IgeSBxdWUgZXMgb2ZyZWNpZGEgZW4gbG9zIHTDqXJtaW5vcyBkZSBlc3RhIGxpY2VuY2lhCmYuIFVzdGVkLCBlcyBlbCBpbmRpdmlkdW8gbyBsYSBlbnRpZGFkIHF1ZSBlamVyY2l0YSBsb3MgZGVyZWNob3Mgb3RvcmdhZG9zIGFsIGFtcGFybyBkZSBlc3RhIExpY2VuY2lhIHkgcXVlIGNvbiBhbnRlcmlvcmlkYWQgbm8gaGEgdmlvbGFkbyBsYXMgY29uZGljaW9uZXMgZGUgbGEgbWlzbWEgcmVzcGVjdG8gYSBsYSBPYnJhLCBvIHF1ZSBoYXlhIG9idGVuaWRvIGF1dG9yaXphY2nDs24gZXhwcmVzYSBwb3IgcGFydGUgZGVsIExpY2VuY2lhbnRlIHBhcmEgZWplcmNlciBsb3MgZGVyZWNob3MgYWwgYW1wYXJvIGRlIGVzdGEgTGljZW5jaWEgcGVzZSBhIHVuYSB2aW9sYWNpw7NuIGFudGVyaW9yLgoJICAKMi4gRGVyZWNob3MgZGUgVXNvcyBIb25yYWRvcyB5IGV4Y2VwY2lvbmVzIExlZ2FsZXMuCk5hZGEgZW4gZXN0YSBMaWNlbmNpYSBwb2Ryw6Egc2VyIGludGVycHJldGFkbyBjb21vIHVuYSBkaXNtaW51Y2nDs24sIGxpbWl0YWNpw7NuIG8gcmVzdHJpY2Npw7NuIGRlIGxvcyBkZXJlY2hvcyBkZXJpdmFkb3MgZGVsIHVzbyBob25yYWRvIHkgb3RyYXMgbGltaXRhY2lvbmVzIG8gZXhjZXBjaW9uZXMgYSBsb3MgZGVyZWNob3MgZGVsIGF1dG9yIGJham8gZWwgcsOpZ2ltZW4gbGVnYWwgdmlnZW50ZSBvIGRlcml2YWRvIGRlIGN1YWxxdWllciBvdHJhIG5vcm1hIHF1ZSBzZSBsZSBhcGxpcXVlLgogIAozLiBDb25jZXNpw7NuIGRlIGxhIExpY2VuY2lhLgpCYWpvIGxvcyB0w6lybWlub3MgeSBjb25kaWNpb25lcyBkZSBlc3RhIExpY2VuY2lhLCBlbCBMaWNlbmNpYW50ZSBvdG9yZ2EgYSBVc3RlZCB1bmEgbGljZW5jaWEgbXVuZGlhbCwgbGlicmUgZGUgcmVnYWzDrWFzLCBubyBleGNsdXNpdmEgeSBwZXJwZXR1YSAoZHVyYW50ZSB0b2RvIGVsIHBlcsOtb2RvIGRlIHZpZ2VuY2lhIGRlIGxvcyBkZXJlY2hvcyBkZSBhdXRvcikgcGFyYSBlamVyY2VyIGVzdG9zIGRlcmVjaG9zIHNvYnJlIGxhIE9icmEgdGFsIHkgY29tbyBzZSBpbmRpY2EgYSBjb250aW51YWNpw7NuOgphLiBSZXByb2R1Y2lyIGxhIE9icmEsIGluY29ycG9yYXIgbGEgT2JyYSBlbiB1bmEgbyBtw6FzIE9icmFzIENvbGVjdGl2YXMsIHkgcmVwcm9kdWNpciBsYSBPYnJhIGluY29ycG9yYWRhIGVuIGxhcyBPYnJhcyBDb2xlY3RpdmFzLgpiLiBEaXN0cmlidWlyIGNvcGlhcyBvIGZvbm9ncmFtYXMgZGUgbGFzIE9icmFzLCBleGhpYmlybGFzIHDDumJsaWNhbWVudGUsIGVqZWN1dGFybGFzIHDDumJsaWNhbWVudGUgeS9vIHBvbmVybGFzIGEgZGlzcG9zaWNpw7NuIHDDumJsaWNhLCBpbmNsdXnDqW5kb2xhcyBjb21vIGluY29ycG9yYWRhcyBlbiBPYnJhcyBDb2xlY3RpdmFzLCBzZWfDum4gY29ycmVzcG9uZGEuCmMuIERpc3RyaWJ1aXIgY29waWFzIGRlIGxhcyBPYnJhcyBEZXJpdmFkYXMgcXVlIHNlIGdlbmVyZW4sIGV4aGliaXJsYXMgcMO6YmxpY2FtZW50ZSwgZWplY3V0YXJsYXMgcMO6YmxpY2FtZW50ZSB5L28gcG9uZXJsYXMgYSBkaXNwb3NpY2nDs24gcMO6YmxpY2EuCgpMb3MgZGVyZWNob3MgbWVuY2lvbmFkb3MgYW50ZXJpb3JtZW50ZSBwdWVkZW4gc2VyIGVqZXJjaWRvcyBlbiB0b2RvcyBsb3MgbWVkaW9zIHkgZm9ybWF0b3MsIGFjdHVhbG1lbnRlIGNvbm9jaWRvcyBvIHF1ZSBzZSBpbnZlbnRlbiBlbiBlbCBmdXR1cm8uIExvcyBkZXJlY2hvcyBhbnRlcyBtZW5jaW9uYWRvcyBpbmNsdXllbiBlbCBkZXJlY2hvIGEgcmVhbGl6YXIgZGljaGFzIG1vZGlmaWNhY2lvbmVzIGVuIGxhIG1lZGlkYSBxdWUgc2VhbiB0w6ljbmljYW1lbnRlIG5lY2VzYXJpYXMgcGFyYSBlamVyY2VyIGxvcyBkZXJlY2hvcyBlbiBvdHJvIG1lZGlvIG8gZm9ybWF0b3MsIHBlcm8gZGUgb3RyYSBtYW5lcmEgdXN0ZWQgbm8gZXN0w6EgYXV0b3JpemFkbyBwYXJhIHJlYWxpemFyIG9icmFzIGRlcml2YWRhcy4gVG9kb3MgbG9zIGRlcmVjaG9zIG5vIG90b3JnYWRvcyBleHByZXNhbWVudGUgcG9yIGVsIExpY2VuY2lhbnRlIHF1ZWRhbiBwb3IgZXN0ZSBtZWRpbyByZXNlcnZhZG9zLCBpbmNsdXllbmRvIHBlcm8gc2luIGxpbWl0YXJzZSBhIGFxdWVsbG9zIHF1ZSBzZSBtZW5jaW9uYW4gZW4gbGFzIHNlY2Npb25lcyA0KGQpIHkgNChlKS4KICAgIAo0LiBSZXN0cmljY2lvbmVzLgpMYSBsaWNlbmNpYSBvdG9yZ2FkYSBlbiBsYSBhbnRlcmlvciBTZWNjacOzbiAzIGVzdMOhIGV4cHJlc2FtZW50ZSBzdWpldGEgeSBsaW1pdGFkYSBwb3IgbGFzIHNpZ3VpZW50ZXMgcmVzdHJpY2Npb25lczoKYS4gVXN0ZWQgcHVlZGUgZGlzdHJpYnVpciwgZXhoaWJpciBww7pibGljYW1lbnRlLCBlamVjdXRhciBww7pibGljYW1lbnRlLCBvIHBvbmVyIGEgZGlzcG9zaWNpw7NuIHDDumJsaWNhIGxhIE9icmEgc8OzbG8gYmFqbyBsYXMgY29uZGljaW9uZXMgZGUgZXN0YSBMaWNlbmNpYSwgeSBVc3RlZCBkZWJlIGluY2x1aXIgdW5hIGNvcGlhIGRlIGVzdGEgbGljZW5jaWEgbyBkZWwgSWRlbnRpZmljYWRvciBVbml2ZXJzYWwgZGUgUmVjdXJzb3MgZGUgbGEgbWlzbWEgY29uIGNhZGEgY29waWEgZGUgbGEgT2JyYSBxdWUgZGlzdHJpYnV5YSwgZXhoaWJhIHDDumJsaWNhbWVudGUsIGVqZWN1dGUgcMO6YmxpY2FtZW50ZSBvIHBvbmdhIGEgZGlzcG9zaWNpw7NuIHDDumJsaWNhLiBObyBlcyBwb3NpYmxlIG9mcmVjZXIgbyBpbXBvbmVyIG5pbmd1bmEgY29uZGljacOzbiBzb2JyZSBsYSBPYnJhIHF1ZSBhbHRlcmUgbyBsaW1pdGUgbGFzIGNvbmRpY2lvbmVzIGRlIGVzdGEgTGljZW5jaWEgbyBlbCBlamVyY2ljaW8gZGUgbG9zIGRlcmVjaG9zIGRlIGxvcyBkZXN0aW5hdGFyaW9zIG90b3JnYWRvcyBlbiBlc3RlIGRvY3VtZW50by4gTm8gZXMgcG9zaWJsZSBzdWJsaWNlbmNpYXIgbGEgT2JyYS4gVXN0ZWQgZGViZSBtYW50ZW5lciBpbnRhY3RvcyB0b2RvcyBsb3MgYXZpc29zIHF1ZSBoYWdhbiByZWZlcmVuY2lhIGEgZXN0YSBMaWNlbmNpYSB5IGEgbGEgY2zDoXVzdWxhIGRlIGxpbWl0YWNpw7NuIGRlIGdhcmFudMOtYXMuIFVzdGVkIG5vIHB1ZWRlIGRpc3RyaWJ1aXIsIGV4aGliaXIgcMO6YmxpY2FtZW50ZSwgZWplY3V0YXIgcMO6YmxpY2FtZW50ZSwgbyBwb25lciBhIGRpc3Bvc2ljacOzbiBww7pibGljYSBsYSBPYnJhIGNvbiBhbGd1bmEgbWVkaWRhIHRlY25vbMOzZ2ljYSBxdWUgY29udHJvbGUgZWwgYWNjZXNvIG8gbGEgdXRpbGl6YWNpw7NuIGRlIGVsbGEgZGUgdW5hIGZvcm1hIHF1ZSBzZWEgaW5jb25zaXN0ZW50ZSBjb24gbGFzIGNvbmRpY2lvbmVzIGRlIGVzdGEgTGljZW5jaWEuIExvIGFudGVyaW9yIHNlIGFwbGljYSBhIGxhIE9icmEgaW5jb3Jwb3JhZGEgYSB1bmEgT2JyYSBDb2xlY3RpdmEsIHBlcm8gZXN0byBubyBleGlnZSBxdWUgbGEgT2JyYSBDb2xlY3RpdmEgYXBhcnRlIGRlIGxhIG9icmEgbWlzbWEgcXVlZGUgc3VqZXRhIGEgbGFzIGNvbmRpY2lvbmVzIGRlIGVzdGEgTGljZW5jaWEuIFNpIFVzdGVkIGNyZWEgdW5hIE9icmEgQ29sZWN0aXZhLCBwcmV2aW8gYXZpc28gZGUgY3VhbHF1aWVyIExpY2VuY2lhbnRlIGRlYmUsIGVuIGxhIG1lZGlkYSBkZSBsbyBwb3NpYmxlLCBlbGltaW5hciBkZSBsYSBPYnJhIENvbGVjdGl2YSBjdWFscXVpZXIgcmVmZXJlbmNpYSBhIGRpY2hvIExpY2VuY2lhbnRlIG8gYWwgQXV0b3IgT3JpZ2luYWwsIHNlZ8O6biBsbyBzb2xpY2l0YWRvIHBvciBlbCBMaWNlbmNpYW50ZSB5IGNvbmZvcm1lIGxvIGV4aWdlIGxhIGNsw6F1c3VsYSA0KGMpLgpiLiBVc3RlZCBubyBwdWVkZSBlamVyY2VyIG5pbmd1bm8gZGUgbG9zIGRlcmVjaG9zIHF1ZSBsZSBoYW4gc2lkbyBvdG9yZ2Fkb3MgZW4gbGEgU2VjY2nDs24gMyBwcmVjZWRlbnRlIGRlIG1vZG8gcXVlIGVzdMOpbiBwcmluY2lwYWxtZW50ZSBkZXN0aW5hZG9zIG8gZGlyZWN0YW1lbnRlIGRpcmlnaWRvcyBhIGNvbnNlZ3VpciB1biBwcm92ZWNobyBjb21lcmNpYWwgbyB1bmEgY29tcGVuc2FjacOzbiBtb25ldGFyaWEgcHJpdmFkYS4gRWwgaW50ZXJjYW1iaW8gZGUgbGEgT2JyYSBwb3Igb3RyYXMgb2JyYXMgcHJvdGVnaWRhcyBwb3IgZGVyZWNob3MgZGUgYXV0b3IsIHlhIHNlYSBhIHRyYXbDqXMgZGUgdW4gc2lzdGVtYSBwYXJhIGNvbXBhcnRpciBhcmNoaXZvcyBkaWdpdGFsZXMgKGRpZ2l0YWwgZmlsZS1zaGFyaW5nKSBvIGRlIGN1YWxxdWllciBvdHJhIG1hbmVyYSBubyBzZXLDoSBjb25zaWRlcmFkbyBjb21vIGVzdGFyIGRlc3RpbmFkbyBwcmluY2lwYWxtZW50ZSBvIGRpcmlnaWRvIGRpcmVjdGFtZW50ZSBhIGNvbnNlZ3VpciB1biBwcm92ZWNobyBjb21lcmNpYWwgbyB1bmEgY29tcGVuc2FjacOzbiBtb25ldGFyaWEgcHJpdmFkYSwgc2llbXByZSBxdWUgbm8gc2UgcmVhbGljZSB1biBwYWdvIG1lZGlhbnRlIHVuYSBjb21wZW5zYWNpw7NuIG1vbmV0YXJpYSBlbiByZWxhY2nDs24gY29uIGVsIGludGVyY2FtYmlvIGRlIG9icmFzIHByb3RlZ2lkYXMgcG9yIGVsIGRlcmVjaG8gZGUgYXV0b3IuCmMuIFNpIHVzdGVkIGRpc3RyaWJ1eWUsIGV4aGliZSBww7pibGljYW1lbnRlLCBlamVjdXRhIHDDumJsaWNhbWVudGUgbyBlamVjdXRhIHDDumJsaWNhbWVudGUgZW4gZm9ybWEgZGlnaXRhbCBsYSBPYnJhIG8gY3VhbHF1aWVyIE9icmEgRGVyaXZhZGEgdSBPYnJhIENvbGVjdGl2YSwgVXN0ZWQgZGViZSBtYW50ZW5lciBpbnRhY3RhIHRvZGEgbGEgaW5mb3JtYWNpw7NuIGRlIGRlcmVjaG8gZGUgYXV0b3IgZGUgbGEgT2JyYSB5IHByb3BvcmNpb25hciwgZGUgZm9ybWEgcmF6b25hYmxlIHNlZ8O6biBlbCBtZWRpbyBvIG1hbmVyYSBxdWUgVXN0ZWQgZXN0w6kgdXRpbGl6YW5kbzogKGkpIGVsIG5vbWJyZSBkZWwgQXV0b3IgT3JpZ2luYWwgc2kgZXN0w6EgcHJvdmlzdG8gKG8gc2V1ZMOzbmltbywgc2kgZnVlcmUgYXBsaWNhYmxlKSwgeS9vIChpaSkgZWwgbm9tYnJlIGRlIGxhIHBhcnRlIG8gbGFzIHBhcnRlcyBxdWUgZWwgQXV0b3IgT3JpZ2luYWwgeS9vIGVsIExpY2VuY2lhbnRlIGh1YmllcmVuIGRlc2lnbmFkbyBwYXJhIGxhIGF0cmlidWNpw7NuICh2LmcuLCB1biBpbnN0aXR1dG8gcGF0cm9jaW5hZG9yLCBlZGl0b3JpYWwsIHB1YmxpY2FjacOzbikgZW4gbGEgaW5mb3JtYWNpw7NuIGRlIGxvcyBkZXJlY2hvcyBkZSBhdXRvciBkZWwgTGljZW5jaWFudGUsIHTDqXJtaW5vcyBkZSBzZXJ2aWNpb3MgbyBkZSBvdHJhcyBmb3JtYXMgcmF6b25hYmxlczsgZWwgdMOtdHVsbyBkZSBsYSBPYnJhIHNpIGVzdMOhIHByb3Zpc3RvOyBlbiBsYSBtZWRpZGEgZGUgbG8gcmF6b25hYmxlbWVudGUgZmFjdGlibGUgeSwgc2kgZXN0w6EgcHJvdmlzdG8sIGVsIElkZW50aWZpY2Fkb3IgVW5pZm9ybWUgZGUgUmVjdXJzb3MgKFVuaWZvcm0gUmVzb3VyY2UgSWRlbnRpZmllcikgcXVlIGVsIExpY2VuY2lhbnRlIGVzcGVjaWZpY2EgcGFyYSBzZXIgYXNvY2lhZG8gY29uIGxhIE9icmEsIHNhbHZvIHF1ZSB0YWwgVVJJIG5vIHNlIHJlZmllcmEgYSBsYSBub3RhIHNvYnJlIGxvcyBkZXJlY2hvcyBkZSBhdXRvciBvIGEgbGEgaW5mb3JtYWNpw7NuIHNvYnJlIGVsIGxpY2VuY2lhbWllbnRvIGRlIGxhIE9icmE7IHkgZW4gZWwgY2FzbyBkZSB1bmEgT2JyYSBEZXJpdmFkYSwgYXRyaWJ1aXIgZWwgY3LDqWRpdG8gaWRlbnRpZmljYW5kbyBlbCB1c28gZGUgbGEgT2JyYSBlbiBsYSBPYnJhIERlcml2YWRhICh2LmcuLCAiVHJhZHVjY2nDs24gRnJhbmNlc2EgZGUgbGEgT2JyYSBkZWwgQXV0b3IgT3JpZ2luYWwsIiBvICJHdWnDs24gQ2luZW1hdG9ncsOhZmljbyBiYXNhZG8gZW4gbGEgT2JyYSBvcmlnaW5hbCBkZWwgQXV0b3IgT3JpZ2luYWwiKS4gVGFsIGNyw6lkaXRvIHB1ZWRlIHNlciBpbXBsZW1lbnRhZG8gZGUgY3VhbHF1aWVyIGZvcm1hIHJhem9uYWJsZTsgZW4gZWwgY2Fzbywgc2luIGVtYmFyZ28sIGRlIE9icmFzIERlcml2YWRhcyB1IE9icmFzIENvbGVjdGl2YXMsIHRhbCBjcsOpZGl0byBhcGFyZWNlcsOhLCBjb21vIG3DrW5pbW8sIGRvbmRlIGFwYXJlY2UgZWwgY3LDqWRpdG8gZGUgY3VhbHF1aWVyIG90cm8gYXV0b3IgY29tcGFyYWJsZSB5IGRlIHVuYSBtYW5lcmEsIGFsIG1lbm9zLCB0YW4gZGVzdGFjYWRhIGNvbW8gZWwgY3LDqWRpdG8gZGUgb3RybyBhdXRvciBjb21wYXJhYmxlLiAgCmQuIFBhcmEgZXZpdGFyIHRvZGEgY29uZnVzacOzbiwgZWwgTGljZW5jaWFudGUgYWNsYXJhIHF1ZSwgY3VhbmRvIGxhIG9icmEgZXMgdW5hIGNvbXBvc2ljacOzbiBtdXNpY2FsOgoKaS4gUmVnYWzDrWFzIHBvciBpbnRlcnByZXRhY2nDs24geSBlamVjdWNpw7NuIGJham8gbGljZW5jaWFzIGdlbmVyYWxlcy4gRWwgTGljZW5jaWFudGUgc2UgcmVzZXJ2YSBlbCBkZXJlY2hvIGV4Y2x1c2l2byBkZSBhdXRvcml6YXIgbGEgZWplY3VjacOzbiBww7pibGljYSBvIGxhIGVqZWN1Y2nDs24gcMO6YmxpY2EgZGlnaXRhbCBkZSBsYSBvYnJhIHkgZGUgcmVjb2xlY3Rhciwgc2VhIGluZGl2aWR1YWxtZW50ZSBvIGEgdHJhdsOpcyBkZSB1bmEgc29jaWVkYWQgZGUgZ2VzdGnDs24gY29sZWN0aXZhIGRlIGRlcmVjaG9zIGRlIGF1dG9yIHkgZGVyZWNob3MgY29uZXhvcyAocG9yIGVqZW1wbG8sIFNBWUNPKSwgbGFzIHJlZ2Fsw61hcyBwb3IgbGEgZWplY3VjacOzbiBww7pibGljYSBvIHBvciBsYSBlamVjdWNpw7NuIHDDumJsaWNhIGRpZ2l0YWwgZGUgbGEgb2JyYSAocG9yIGVqZW1wbG8gV2ViY2FzdCkgbGljZW5jaWFkYSBiYWpvIGxpY2VuY2lhcyBnZW5lcmFsZXMsIHNpIGxhIGludGVycHJldGFjacOzbiBvIGVqZWN1Y2nDs24gZGUgbGEgb2JyYSBlc3TDoSBwcmltb3JkaWFsbWVudGUgb3JpZW50YWRhIHBvciBvIGRpcmlnaWRhIGEgbGEgb2J0ZW5jacOzbiBkZSB1bmEgdmVudGFqYSBjb21lcmNpYWwgbyB1bmEgY29tcGVuc2FjacOzbiBtb25ldGFyaWEgcHJpdmFkYS4KaWkuIFJlZ2Fsw61hcyBwb3IgRm9ub2dyYW1hcy4gRWwgTGljZW5jaWFudGUgc2UgcmVzZXJ2YSBlbCBkZXJlY2hvIGV4Y2x1c2l2byBkZSByZWNvbGVjdGFyLCBpbmRpdmlkdWFsbWVudGUgbyBhIHRyYXbDqXMgZGUgdW5hIHNvY2llZGFkIGRlIGdlc3Rpw7NuIGNvbGVjdGl2YSBkZSBkZXJlY2hvcyBkZSBhdXRvciB5IGRlcmVjaG9zIGNvbmV4b3MgKHBvciBlamVtcGxvLCBsb3MgY29uc2FncmFkb3MgcG9yIGxhIFNBWUNPKSwgdW5hIGFnZW5jaWEgZGUgZGVyZWNob3MgbXVzaWNhbGVzIG8gYWxnw7puIGFnZW50ZSBkZXNpZ25hZG8sIGxhcyByZWdhbMOtYXMgcG9yIGN1YWxxdWllciBmb25vZ3JhbWEgcXVlIFVzdGVkIGNyZWUgYSBwYXJ0aXIgZGUgbGEgb2JyYSAo4oCcdmVyc2nDs24gY292ZXLigJ0pIHkgZGlzdHJpYnV5YSwgZW4gbG9zIHTDqXJtaW5vcyBkZWwgcsOpZ2ltZW4gZGUgZGVyZWNob3MgZGUgYXV0b3IsIHNpIGxhIGNyZWFjacOzbiBvIGRpc3RyaWJ1Y2nDs24gZGUgZXNhIHZlcnNpw7NuIGNvdmVyIGVzdMOhIHByaW1vcmRpYWxtZW50ZSBkZXN0aW5hZGEgbyBkaXJpZ2lkYSBhIG9idGVuZXIgdW5hIHZlbnRhamEgY29tZXJjaWFsIG8gdW5hIGNvbXBlbnNhY2nDs24gbW9uZXRhcmlhIHByaXZhZGEuCiAgICAgIAplLiBHZXN0acOzbiBkZSBEZXJlY2hvcyBkZSBBdXRvciBzb2JyZSBJbnRlcnByZXRhY2lvbmVzIHkgRWplY3VjaW9uZXMgRGlnaXRhbGVzIChXZWJDYXN0aW5nKS4gUGFyYSBldml0YXIgdG9kYSBjb25mdXNpw7NuLCBlbCBMaWNlbmNpYW50ZSBhY2xhcmEgcXVlLCBjdWFuZG8gbGEgb2JyYSBzZWEgdW4gZm9ub2dyYW1hLCBlbCBMaWNlbmNpYW50ZSBzZSByZXNlcnZhIGVsIGRlcmVjaG8gZXhjbHVzaXZvIGRlIGF1dG9yaXphciBsYSBlamVjdWNpw7NuIHDDumJsaWNhIGRpZ2l0YWwgZGUgbGEgb2JyYSAocG9yIGVqZW1wbG8sIHdlYmNhc3QpIHkgZGUgcmVjb2xlY3RhciwgaW5kaXZpZHVhbG1lbnRlIG8gYSB0cmF2w6lzIGRlIHVuYSBzb2NpZWRhZCBkZSBnZXN0acOzbiBjb2xlY3RpdmEgZGUgZGVyZWNob3MgZGUgYXV0b3IgeSBkZXJlY2hvcyBjb25leG9zIChwb3IgZWplbXBsbywgQUNJTlBSTyksIGxhcyByZWdhbMOtYXMgcG9yIGxhIGVqZWN1Y2nDs24gcMO6YmxpY2EgZGlnaXRhbCBkZSBsYSBvYnJhIChwb3IgZWplbXBsbywgd2ViY2FzdCksIHN1amV0YSBhIGxhcyBkaXNwb3NpY2lvbmVzIGFwbGljYWJsZXMgZGVsIHLDqWdpbWVuIGRlIERlcmVjaG8gZGUgQXV0b3IsIHNpIGVzdGEgZWplY3VjacOzbiBww7pibGljYSBkaWdpdGFsIGVzdMOhIHByaW1vcmRpYWxtZW50ZSBkaXJpZ2lkYSBhIG9idGVuZXIgdW5hIHZlbnRhamEgY29tZXJjaWFsIG8gdW5hIGNvbXBlbnNhY2nDs24gbW9uZXRhcmlhIHByaXZhZGEuCiAgCjUuIFJlcHJlc2VudGFjaW9uZXMsIEdhcmFudMOtYXMgeSBMaW1pdGFjaW9uZXMgZGUgUmVzcG9uc2FiaWxpZGFkLgpBIE1FTk9TIFFVRSBMQVMgUEFSVEVTIExPIEFDT1JEQVJBTiBERSBPVFJBIEZPUk1BIFBPUiBFU0NSSVRPLCBFTCBMSUNFTkNJQU5URSBPRlJFQ0UgTEEgT0JSQSAoRU4gRUwgRVNUQURPIEVOIEVMIFFVRSBTRSBFTkNVRU5UUkEpIOKAnFRBTCBDVUFM4oCdLCBTSU4gQlJJTkRBUiBHQVJBTlTDjUFTIERFIENMQVNFIEFMR1VOQSBSRVNQRUNUTyBERSBMQSBPQlJBLCBZQSBTRUEgRVhQUkVTQSwgSU1QTMONQ0lUQSwgTEVHQUwgTyBDVUFMUVVJRVJBIE9UUkEsIElOQ0xVWUVORE8sIFNJTiBMSU1JVEFSU0UgQSBFTExBUywgR0FSQU5Uw41BUyBERSBUSVRVTEFSSURBRCwgQ09NRVJDSUFCSUxJREFELCBBREFQVEFCSUxJREFEIE8gQURFQ1VBQ0nDk04gQSBQUk9Qw5NTSVRPIERFVEVSTUlOQURPLCBBVVNFTkNJQSBERSBJTkZSQUNDScOTTiwgREUgQVVTRU5DSUEgREUgREVGRUNUT1MgTEFURU5URVMgTyBERSBPVFJPIFRJUE8sIE8gTEEgUFJFU0VOQ0lBIE8gQVVTRU5DSUEgREUgRVJST1JFUywgU0VBTiBPIE5PIERFU0NVQlJJQkxFUyAoUFVFREFOIE8gTk8gU0VSIEVTVE9TIERFU0NVQklFUlRPUykuIEFMR1VOQVMgSlVSSVNESUNDSU9ORVMgTk8gUEVSTUlURU4gTEEgRVhDTFVTScOTTiBERSBHQVJBTlTDjUFTIElNUEzDjUNJVEFTLCBFTiBDVVlPIENBU08gRVNUQSBFWENMVVNJw5NOIFBVRURFIE5PIEFQTElDQVJTRSBBIFVTVEVELgogIAo2LiBMaW1pdGFjacOzbiBkZSByZXNwb25zYWJpbGlkYWQuCkEgTUVOT1MgUVVFIExPIEVYSUpBIEVYUFJFU0FNRU5URSBMQSBMRVkgQVBMSUNBQkxFLCBFTCBMSUNFTkNJQU5URSBOTyBTRVLDgSBSRVNQT05TQUJMRSBBTlRFIFVTVEVEIFBPUiBEQcORTyBBTEdVTk8sIFNFQSBQT1IgUkVTUE9OU0FCSUxJREFEIEVYVFJBQ09OVFJBQ1RVQUwsIFBSRUNPTlRSQUNUVUFMIE8gQ09OVFJBQ1RVQUwsIE9CSkVUSVZBIE8gU1VCSkVUSVZBLCBTRSBUUkFURSBERSBEQcORT1MgTU9SQUxFUyBPIFBBVFJJTU9OSUFMRVMsIERJUkVDVE9TIE8gSU5ESVJFQ1RPUywgUFJFVklTVE9TIE8gSU1QUkVWSVNUT1MgUFJPRFVDSURPUyBQT1IgRUwgVVNPIERFIEVTVEEgTElDRU5DSUEgTyBERSBMQSBPQlJBLCBBVU4gQ1VBTkRPIEVMIExJQ0VOQ0lBTlRFIEhBWUEgU0lETyBBRFZFUlRJRE8gREUgTEEgUE9TSUJJTElEQUQgREUgRElDSE9TIERBw5FPUy4gQUxHVU5BUyBMRVlFUyBOTyBQRVJNSVRFTiBMQSBFWENMVVNJw5NOIERFIENJRVJUQSBSRVNQT05TQUJJTElEQUQsIEVOIENVWU8gQ0FTTyBFU1RBIEVYQ0xVU0nDk04gUFVFREUgTk8gQVBMSUNBUlNFIEEgVVNURUQuCiAgCjcuIFTDqXJtaW5vLgkKYS4gRXN0YSBMaWNlbmNpYSB5IGxvcyBkZXJlY2hvcyBvdG9yZ2Fkb3MgZW4gdmlydHVkIGRlIGVsbGEgdGVybWluYXLDoW4gYXV0b23DoXRpY2FtZW50ZSBzaSBVc3RlZCBpbmZyaW5nZSBhbGd1bmEgY29uZGljacOzbiBlc3RhYmxlY2lkYSBlbiBlbGxhLiBTaW4gZW1iYXJnbywgbG9zIGluZGl2aWR1b3MgbyBlbnRpZGFkZXMgcXVlIGhhbiByZWNpYmlkbyBPYnJhcyBEZXJpdmFkYXMgbyBDb2xlY3RpdmFzIGRlIFVzdGVkIGRlIGNvbmZvcm1pZGFkIGNvbiBlc3RhIExpY2VuY2lhLCBubyB2ZXLDoW4gdGVybWluYWRhcyBzdXMgbGljZW5jaWFzLCBzaWVtcHJlIHF1ZSBlc3RvcyBpbmRpdmlkdW9zIG8gZW50aWRhZGVzIHNpZ2FuIGN1bXBsaWVuZG8gw61udGVncmFtZW50ZSBsYXMgY29uZGljaW9uZXMgZGUgZXN0YXMgbGljZW5jaWFzLiBMYXMgU2VjY2lvbmVzIDEsIDIsIDUsIDYsIDcsIHkgOCBzdWJzaXN0aXLDoW4gYSBjdWFscXVpZXIgdGVybWluYWNpw7NuIGRlIGVzdGEgTGljZW5jaWEuCmIuIFN1amV0YSBhIGxhcyBjb25kaWNpb25lcyB5IHTDqXJtaW5vcyBhbnRlcmlvcmVzLCBsYSBsaWNlbmNpYSBvdG9yZ2FkYSBhcXXDrSBlcyBwZXJwZXR1YSAoZHVyYW50ZSBlbCBwZXLDrW9kbyBkZSB2aWdlbmNpYSBkZSBsb3MgZGVyZWNob3MgZGUgYXV0b3IgZGUgbGEgb2JyYSkuIE5vIG9ic3RhbnRlIGxvIGFudGVyaW9yLCBlbCBMaWNlbmNpYW50ZSBzZSByZXNlcnZhIGVsIGRlcmVjaG8gYSBwdWJsaWNhciB5L28gZXN0cmVuYXIgbGEgT2JyYSBiYWpvIGNvbmRpY2lvbmVzIGRlIGxpY2VuY2lhIGRpZmVyZW50ZXMgbyBhIGRlamFyIGRlIGRpc3RyaWJ1aXJsYSBlbiBsb3MgdMOpcm1pbm9zIGRlIGVzdGEgTGljZW5jaWEgZW4gY3VhbHF1aWVyIG1vbWVudG87IGVuIGVsIGVudGVuZGlkbywgc2luIGVtYmFyZ28sIHF1ZSBlc2EgZWxlY2Npw7NuIG5vIHNlcnZpcsOhIHBhcmEgcmV2b2NhciBlc3RhIGxpY2VuY2lhIG8gcXVlIGRlYmEgc2VyIG90b3JnYWRhICwgYmFqbyBsb3MgdMOpcm1pbm9zIGRlIGVzdGEgbGljZW5jaWEpLCB5IGVzdGEgbGljZW5jaWEgY29udGludWFyw6EgZW4gcGxlbm8gdmlnb3IgeSBlZmVjdG8gYSBtZW5vcyBxdWUgc2VhIHRlcm1pbmFkYSBjb21vIHNlIGV4cHJlc2EgYXRyw6FzLiBMYSBMaWNlbmNpYSByZXZvY2FkYSBjb250aW51YXLDoSBzaWVuZG8gcGxlbmFtZW50ZSB2aWdlbnRlIHkgZWZlY3RpdmEgc2kgbm8gc2UgbGUgZGEgdMOpcm1pbm8gZW4gbGFzIGNvbmRpY2lvbmVzIGluZGljYWRhcyBhbnRlcmlvcm1lbnRlLgogIAo4LiBWYXJpb3MuCmEuIENhZGEgdmV6IHF1ZSBVc3RlZCBkaXN0cmlidXlhIG8gcG9uZ2EgYSBkaXNwb3NpY2nDs24gcMO6YmxpY2EgbGEgT2JyYSBvIHVuYSBPYnJhIENvbGVjdGl2YSwgZWwgTGljZW5jaWFudGUgb2ZyZWNlcsOhIGFsIGRlc3RpbmF0YXJpbyB1bmEgbGljZW5jaWEgZW4gbG9zIG1pc21vcyB0w6lybWlub3MgeSBjb25kaWNpb25lcyBxdWUgbGEgbGljZW5jaWEgb3RvcmdhZGEgYSBVc3RlZCBiYWpvIGVzdGEgTGljZW5jaWEuCmIuIFNpIGFsZ3VuYSBkaXNwb3NpY2nDs24gZGUgZXN0YSBMaWNlbmNpYSByZXN1bHRhIGludmFsaWRhZGEgbyBubyBleGlnaWJsZSwgc2Vnw7puIGxhIGxlZ2lzbGFjacOzbiB2aWdlbnRlLCBlc3RvIG5vIGFmZWN0YXLDoSBuaSBsYSB2YWxpZGV6IG5pIGxhIGFwbGljYWJpbGlkYWQgZGVsIHJlc3RvIGRlIGNvbmRpY2lvbmVzIGRlIGVzdGEgTGljZW5jaWEgeSwgc2luIGFjY2nDs24gYWRpY2lvbmFsIHBvciBwYXJ0ZSBkZSBsb3Mgc3VqZXRvcyBkZSBlc3RlIGFjdWVyZG8sIGFxdcOpbGxhIHNlIGVudGVuZGVyw6EgcmVmb3JtYWRhIGxvIG3DrW5pbW8gbmVjZXNhcmlvIHBhcmEgaGFjZXIgcXVlIGRpY2hhIGRpc3Bvc2ljacOzbiBzZWEgdsOhbGlkYSB5IGV4aWdpYmxlLgpjLiBOaW5nw7puIHTDqXJtaW5vIG8gZGlzcG9zaWNpw7NuIGRlIGVzdGEgTGljZW5jaWEgc2UgZXN0aW1hcsOhIHJlbnVuY2lhZGEgeSBuaW5ndW5hIHZpb2xhY2nDs24gZGUgZWxsYSBzZXLDoSBjb25zZW50aWRhIGEgbWVub3MgcXVlIGVzYSByZW51bmNpYSBvIGNvbnNlbnRpbWllbnRvIHNlYSBvdG9yZ2FkbyBwb3IgZXNjcml0byB5IGZpcm1hZG8gcG9yIGxhIHBhcnRlIHF1ZSByZW51bmNpZSBvIGNvbnNpZW50YS4KZC4gRXN0YSBMaWNlbmNpYSByZWZsZWphIGVsIGFjdWVyZG8gcGxlbm8gZW50cmUgbGFzIHBhcnRlcyByZXNwZWN0byBhIGxhIE9icmEgYXF1w60gbGljZW5jaWFkYS4gTm8gaGF5IGFycmVnbG9zLCBhY3VlcmRvcyBvIGRlY2xhcmFjaW9uZXMgcmVzcGVjdG8gYSBsYSBPYnJhIHF1ZSBubyBlc3TDqW4gZXNwZWNpZmljYWRvcyBlbiBlc3RlIGRvY3VtZW50by4gRWwgTGljZW5jaWFudGUgbm8gc2UgdmVyw6EgbGltaXRhZG8gcG9yIG5pbmd1bmEgZGlzcG9zaWNpw7NuIGFkaWNpb25hbCBxdWUgcHVlZGEgc3VyZ2lyIGVuIGFsZ3VuYSBjb211bmljYWNpw7NuIGVtYW5hZGEgZGUgVXN0ZWQuIEVzdGEgTGljZW5jaWEgbm8gcHVlZGUgc2VyIG1vZGlmaWNhZGEgc2luIGVsIGNvbnNlbnRpbWllbnRvIG11dHVvIHBvciBlc2NyaXRvIGRlbCBMaWNlbmNpYW50ZSB5IFVzdGVkLgo= |
