Ultimate boundedness results for solutions of certain third order nonlinear matrix differential equations

ABSTRACT: We present in this paper ultimate boundedness results for a third order nonlinear matrix differential equations of the form ...X +AX¨ + BX˙ + H(X) = P(t, X, X, ˙ X¨), where A, B are constant symmetric n × n matrices, X, H(X) and P(t, X, X, ˙ X¨) are real n×n matrices continuous in their re...

Full description

Autores:
Afuwape Afuwape, Anthony
Omeike, Mathew Omonigho
Tipo de recurso:
Article of investigation
Fecha de publicación:
2010
Institución:
Universidad de Antioquia
Repositorio:
Repositorio UdeA
Idioma:
eng
OAI Identifier:
oai:bibliotecadigital.udea.edu.co:10495/25462
Acceso en línea:
http://hdl.handle.net/10495/25462
Palabra clave:
Ecuaciones diferenciales no lineales
Differential equations, nonlinear
Boundedness
Rights
openAccess
License
http://creativecommons.org/licenses/by-nc-nd/2.5/co/
id UDEA2_1d877a900ded0cdb0fb4f4c13049f5f1
oai_identifier_str oai:bibliotecadigital.udea.edu.co:10495/25462
network_acronym_str UDEA2
network_name_str Repositorio UdeA
repository_id_str
dc.title.spa.fl_str_mv Ultimate boundedness results for solutions of certain third order nonlinear matrix differential equations
title Ultimate boundedness results for solutions of certain third order nonlinear matrix differential equations
spellingShingle Ultimate boundedness results for solutions of certain third order nonlinear matrix differential equations
Ecuaciones diferenciales no lineales
Differential equations, nonlinear
Boundedness
title_short Ultimate boundedness results for solutions of certain third order nonlinear matrix differential equations
title_full Ultimate boundedness results for solutions of certain third order nonlinear matrix differential equations
title_fullStr Ultimate boundedness results for solutions of certain third order nonlinear matrix differential equations
title_full_unstemmed Ultimate boundedness results for solutions of certain third order nonlinear matrix differential equations
title_sort Ultimate boundedness results for solutions of certain third order nonlinear matrix differential equations
dc.creator.fl_str_mv Afuwape Afuwape, Anthony
Omeike, Mathew Omonigho
dc.contributor.author.none.fl_str_mv Afuwape Afuwape, Anthony
Omeike, Mathew Omonigho
dc.contributor.researchgroup.spa.fl_str_mv Modelación con Ecuaciones Diferenciales
dc.subject.lemb.none.fl_str_mv Ecuaciones diferenciales no lineales
Differential equations, nonlinear
topic Ecuaciones diferenciales no lineales
Differential equations, nonlinear
Boundedness
dc.subject.proposal.spa.fl_str_mv Boundedness
description ABSTRACT: We present in this paper ultimate boundedness results for a third order nonlinear matrix differential equations of the form ...X +AX¨ + BX˙ + H(X) = P(t, X, X, ˙ X¨), where A, B are constant symmetric n × n matrices, X, H(X) and P(t, X, X, ˙ X¨) are real n×n matrices continuous in their respective arguments. Our results give a matrix analogue of earlier results of Afuwape [1] and Meng [4], and extend other earlier results for the case in which we do not necessarily require that H(X) be differentiable.
publishDate 2010
dc.date.issued.none.fl_str_mv 2010
dc.date.accessioned.none.fl_str_mv 2022-01-21T18:06:08Z
dc.date.available.none.fl_str_mv 2022-01-21T18:06:08Z
dc.type.spa.fl_str_mv Artículo de investigación
dc.type.coar.spa.fl_str_mv http://purl.org/coar/resource_type/c_2df8fbb1
dc.type.redcol.spa.fl_str_mv https://purl.org/redcol/resource_type/ART
dc.type.coarversion.spa.fl_str_mv http://purl.org/coar/version/c_970fb48d4fbd8a85
dc.type.driver.spa.fl_str_mv info:eu-repo/semantics/article
dc.type.version.spa.fl_str_mv info:eu-repo/semantics/publishedVersion
format http://purl.org/coar/resource_type/c_2df8fbb1
status_str publishedVersion
dc.identifier.issn.none.fl_str_mv 1450-9628
dc.identifier.uri.none.fl_str_mv http://hdl.handle.net/10495/25462
dc.identifier.eissn.none.fl_str_mv 2406-3045
identifier_str_mv 1450-9628
2406-3045
url http://hdl.handle.net/10495/25462
dc.language.iso.spa.fl_str_mv eng
language eng
dc.relation.ispartofjournalabbrev.spa.fl_str_mv Kragujev. J. Math.
dc.relation.citationendpage.spa.fl_str_mv 94
dc.relation.citationissue.spa.fl_str_mv 33
dc.relation.citationstartpage.spa.fl_str_mv 83
dc.relation.ispartofjournal.spa.fl_str_mv Kragujevac Journal of Mathematics
dc.rights.uri.*.fl_str_mv http://creativecommons.org/licenses/by-nc-nd/2.5/co/
dc.rights.uri.spa.fl_str_mv https://creativecommons.org/licenses/by-nc-nd/4.0/
dc.rights.accessrights.spa.fl_str_mv info:eu-repo/semantics/openAccess
dc.rights.coar.spa.fl_str_mv http://purl.org/coar/access_right/c_abf2
rights_invalid_str_mv http://creativecommons.org/licenses/by-nc-nd/2.5/co/
https://creativecommons.org/licenses/by-nc-nd/4.0/
http://purl.org/coar/access_right/c_abf2
eu_rights_str_mv openAccess
dc.format.extent.spa.fl_str_mv 12
dc.format.mimetype.spa.fl_str_mv application/pdf
dc.publisher.spa.fl_str_mv Universidad de Kragujevac, Facultad de Ciencias
dc.publisher.place.spa.fl_str_mv Kragujevac, Serbia
institution Universidad de Antioquia
bitstream.url.fl_str_mv https://bibliotecadigital.udea.edu.co/bitstreams/5cb2601d-f0d5-4051-9a29-97fb252fd95c/download
https://bibliotecadigital.udea.edu.co/bitstreams/b60928a4-4b4b-464c-bfcc-2af1f2b653bb/download
https://bibliotecadigital.udea.edu.co/bitstreams/fe57aa74-6c7c-4c93-87f3-71016257148d/download
https://bibliotecadigital.udea.edu.co/bitstreams/1916909b-3594-4986-aca6-6198dc5a0709/download
https://bibliotecadigital.udea.edu.co/bitstreams/8352dde8-dd93-459a-b62e-4b82c0a8a8d1/download
bitstream.checksum.fl_str_mv 237af474db00caa4614bae7d073873a7
8a4605be74aa9ea9d79846c1fba20a33
b88b088d9957e670ce3b3fbe2eedbc13
cb27bec156dfd7cc448f2f198a7de90e
a888b1c49d9bac7a53158369dd033f87
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
MD5
MD5
repository.name.fl_str_mv Repositorio Institucional de la Universidad de Antioquia
repository.mail.fl_str_mv aplicacionbibliotecadigitalbiblioteca@udea.edu.co
_version_ 1851052438532915200
spelling Afuwape Afuwape, AnthonyOmeike, Mathew OmonighoModelación con Ecuaciones Diferenciales2022-01-21T18:06:08Z2022-01-21T18:06:08Z20101450-9628http://hdl.handle.net/10495/254622406-3045ABSTRACT: We present in this paper ultimate boundedness results for a third order nonlinear matrix differential equations of the form ...X +AX¨ + BX˙ + H(X) = P(t, X, X, ˙ X¨), where A, B are constant symmetric n × n matrices, X, H(X) and P(t, X, X, ˙ X¨) are real n×n matrices continuous in their respective arguments. Our results give a matrix analogue of earlier results of Afuwape [1] and Meng [4], and extend other earlier results for the case in which we do not necessarily require that H(X) be differentiable.COL002436512application/pdfengUniversidad de Kragujevac, Facultad de CienciasKragujevac, Serbiahttp://creativecommons.org/licenses/by-nc-nd/2.5/co/https://creativecommons.org/licenses/by-nc-nd/4.0/info:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2Ultimate boundedness results for solutions of certain third order nonlinear matrix differential equationsArtículo de investigaciónhttp://purl.org/coar/resource_type/c_2df8fbb1https://purl.org/redcol/resource_type/ARThttp://purl.org/coar/version/c_970fb48d4fbd8a85info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionEcuaciones diferenciales no linealesDifferential equations, nonlinearBoundednessKragujev. J. Math.943383Kragujevac Journal of MathematicsPublicationORIGINALAfuwapeAnthony_2010_UltimateBoundednessResults .pdfAfuwapeAnthony_2010_UltimateBoundednessResults .pdfArtículo de investigaciónapplication/pdf141454https://bibliotecadigital.udea.edu.co/bitstreams/5cb2601d-f0d5-4051-9a29-97fb252fd95c/download237af474db00caa4614bae7d073873a7MD51trueAnonymousREADLICENSElicense.txtlicense.txttext/plain; charset=utf-81748https://bibliotecadigital.udea.edu.co/bitstreams/b60928a4-4b4b-464c-bfcc-2af1f2b653bb/download8a4605be74aa9ea9d79846c1fba20a33MD53falseAnonymousREADCC-LICENSElicense_rdflicense_rdfapplication/rdf+xml; charset=utf-8823https://bibliotecadigital.udea.edu.co/bitstreams/fe57aa74-6c7c-4c93-87f3-71016257148d/downloadb88b088d9957e670ce3b3fbe2eedbc13MD52falseAnonymousREADTEXTAfuwapeAnthony_2010_UltimateBoundednessResults .pdf.txtAfuwapeAnthony_2010_UltimateBoundednessResults .pdf.txtExtracted texttext/plain16683https://bibliotecadigital.udea.edu.co/bitstreams/1916909b-3594-4986-aca6-6198dc5a0709/downloadcb27bec156dfd7cc448f2f198a7de90eMD54falseAnonymousREADTHUMBNAILAfuwapeAnthony_2010_UltimateBoundednessResults .pdf.jpgAfuwapeAnthony_2010_UltimateBoundednessResults .pdf.jpgGenerated Thumbnailimage/jpeg8699https://bibliotecadigital.udea.edu.co/bitstreams/8352dde8-dd93-459a-b62e-4b82c0a8a8d1/downloada888b1c49d9bac7a53158369dd033f87MD55falseAnonymousREAD10495/25462oai:bibliotecadigital.udea.edu.co:10495/254622025-03-26 22:21:02.687http://creativecommons.org/licenses/by-nc-nd/2.5/co/open.accesshttps://bibliotecadigital.udea.edu.coRepositorio Institucional de la Universidad de Antioquiaaplicacionbibliotecadigitalbiblioteca@udea.edu.coTk9URTogUExBQ0UgWU9VUiBPV04gTElDRU5TRSBIRVJFClRoaXMgc2FtcGxlIGxpY2Vuc2UgaXMgcHJvdmlkZWQgZm9yIGluZm9ybWF0aW9uYWwgcHVycG9zZXMgb25seS4KCk5PTi1FWENMVVNJVkUgRElTVFJJQlVUSU9OIExJQ0VOU0UKCkJ5IHNpZ25pbmcgYW5kIHN1Ym1pdHRpbmcgdGhpcyBsaWNlbnNlLCB5b3UgKHRoZSBhdXRob3Iocykgb3IgY29weXJpZ2h0Cm93bmVyKSBncmFudHMgdG8gRFNwYWNlIFVuaXZlcnNpdHkgKERTVSkgdGhlIG5vbi1leGNsdXNpdmUgcmlnaHQgdG8gcmVwcm9kdWNlLAp0cmFuc2xhdGUgKGFzIGRlZmluZWQgYmVsb3cpLCBhbmQvb3IgZGlzdHJpYnV0ZSB5b3VyIHN1Ym1pc3Npb24gKGluY2x1ZGluZwp0aGUgYWJzdHJhY3QpIHdvcmxkd2lkZSBpbiBwcmludCBhbmQgZWxlY3Ryb25pYyBmb3JtYXQgYW5kIGluIGFueSBtZWRpdW0sCmluY2x1ZGluZyBidXQgbm90IGxpbWl0ZWQgdG8gYXVkaW8gb3IgdmlkZW8uCgpZb3UgYWdyZWUgdGhhdCBEU1UgbWF5LCB3aXRob3V0IGNoYW5naW5nIHRoZSBjb250ZW50LCB0cmFuc2xhdGUgdGhlCnN1Ym1pc3Npb24gdG8gYW55IG1lZGl1bSBvciBmb3JtYXQgZm9yIHRoZSBwdXJwb3NlIG9mIHByZXNlcnZhdGlvbi4KCllvdSBhbHNvIGFncmVlIHRoYXQgRFNVIG1heSBrZWVwIG1vcmUgdGhhbiBvbmUgY29weSBvZiB0aGlzIHN1Ym1pc3Npb24gZm9yCnB1cnBvc2VzIG9mIHNlY3VyaXR5LCBiYWNrLXVwIGFuZCBwcmVzZXJ2YXRpb24uCgpZb3UgcmVwcmVzZW50IHRoYXQgdGhlIHN1Ym1pc3Npb24gaXMgeW91ciBvcmlnaW5hbCB3b3JrLCBhbmQgdGhhdCB5b3UgaGF2ZQp0aGUgcmlnaHQgdG8gZ3JhbnQgdGhlIHJpZ2h0cyBjb250YWluZWQgaW4gdGhpcyBsaWNlbnNlLiBZb3UgYWxzbyByZXByZXNlbnQKdGhhdCB5b3VyIHN1Ym1pc3Npb24gZG9lcyBub3QsIHRvIHRoZSBiZXN0IG9mIHlvdXIga25vd2xlZGdlLCBpbmZyaW5nZSB1cG9uCmFueW9uZSdzIGNvcHlyaWdodC4KCklmIHRoZSBzdWJtaXNzaW9uIGNvbnRhaW5zIG1hdGVyaWFsIGZvciB3aGljaCB5b3UgZG8gbm90IGhvbGQgY29weXJpZ2h0LAp5b3UgcmVwcmVzZW50IHRoYXQgeW91IGhhdmUgb2J0YWluZWQgdGhlIHVucmVzdHJpY3RlZCBwZXJtaXNzaW9uIG9mIHRoZQpjb3B5cmlnaHQgb3duZXIgdG8gZ3JhbnQgRFNVIHRoZSByaWdodHMgcmVxdWlyZWQgYnkgdGhpcyBsaWNlbnNlLCBhbmQgdGhhdApzdWNoIHRoaXJkLXBhcnR5IG93bmVkIG1hdGVyaWFsIGlzIGNsZWFybHkgaWRlbnRpZmllZCBhbmQgYWNrbm93bGVkZ2VkCndpdGhpbiB0aGUgdGV4dCBvciBjb250ZW50IG9mIHRoZSBzdWJtaXNzaW9uLgoKSUYgVEhFIFNVQk1JU1NJT04gSVMgQkFTRUQgVVBPTiBXT1JLIFRIQVQgSEFTIEJFRU4gU1BPTlNPUkVEIE9SIFNVUFBPUlRFRApCWSBBTiBBR0VOQ1kgT1IgT1JHQU5JWkFUSU9OIE9USEVSIFRIQU4gRFNVLCBZT1UgUkVQUkVTRU5UIFRIQVQgWU9VIEhBVkUKRlVMRklMTEVEIEFOWSBSSUdIVCBPRiBSRVZJRVcgT1IgT1RIRVIgT0JMSUdBVElPTlMgUkVRVUlSRUQgQlkgU1VDSApDT05UUkFDVCBPUiBBR1JFRU1FTlQuCgpEU1Ugd2lsbCBjbGVhcmx5IGlkZW50aWZ5IHlvdXIgbmFtZShzKSBhcyB0aGUgYXV0aG9yKHMpIG9yIG93bmVyKHMpIG9mIHRoZQpzdWJtaXNzaW9uLCBhbmQgd2lsbCBub3QgbWFrZSBhbnkgYWx0ZXJhdGlvbiwgb3RoZXIgdGhhbiBhcyBhbGxvd2VkIGJ5IHRoaXMKbGljZW5zZSwgdG8geW91ciBzdWJtaXNzaW9uLgo=