Study of the Distribution of Interstellar Dust in the Milky Way Using Gaia DR3
Accurately characterizing interstellar dust in the Milky Way is key to correcting distortions in astronomical observations and to understanding galaxy formation and evolution. This work presents a new three-dimensional map of dust extinction in the disk and adjacent regions of our Galaxy, constructe...
- Autores:
-
Escobar Restrepo, Víctor Manuel
- Tipo de recurso:
- Trabajo de grado de pregrado
- Fecha de publicación:
- 2025
- Institución:
- Universidad de Antioquia
- Repositorio:
- Repositorio UdeA
- Idioma:
- eng
- OAI Identifier:
- oai:bibliotecadigital.udea.edu.co:10495/47409
- Acceso en línea:
- https://hdl.handle.net/10495/47409
- Palabra clave:
- Materia interestelar
Interstellar matter
Vía láctea
Milky way
Polvo cósmico
Cosmic dust
Interstellar dust
Dust structure
Galactic astrophysics
Stellar distribution
Extinction
Disperse
Milky Way Topology
- Rights
- openAccess
- License
- http://creativecommons.org/licenses/by-nc-nd/4.0/
| id |
UDEA2_1c32dbefc8ee443fd85dabc6aeec2327 |
|---|---|
| oai_identifier_str |
oai:bibliotecadigital.udea.edu.co:10495/47409 |
| network_acronym_str |
UDEA2 |
| network_name_str |
Repositorio UdeA |
| repository_id_str |
|
| dc.title.eng.fl_str_mv |
Study of the Distribution of Interstellar Dust in the Milky Way Using Gaia DR3 |
| dc.title.translated.none.fl_str_mv |
Estudio de la distribución del polvo interestelar en la Vía Láctea mediante Gaia DR3 |
| title |
Study of the Distribution of Interstellar Dust in the Milky Way Using Gaia DR3 |
| spellingShingle |
Study of the Distribution of Interstellar Dust in the Milky Way Using Gaia DR3 Materia interestelar Interstellar matter Vía láctea Milky way Polvo cósmico Cosmic dust Interstellar dust Dust structure Galactic astrophysics Stellar distribution Extinction Disperse Milky Way Topology |
| title_short |
Study of the Distribution of Interstellar Dust in the Milky Way Using Gaia DR3 |
| title_full |
Study of the Distribution of Interstellar Dust in the Milky Way Using Gaia DR3 |
| title_fullStr |
Study of the Distribution of Interstellar Dust in the Milky Way Using Gaia DR3 |
| title_full_unstemmed |
Study of the Distribution of Interstellar Dust in the Milky Way Using Gaia DR3 |
| title_sort |
Study of the Distribution of Interstellar Dust in the Milky Way Using Gaia DR3 |
| dc.creator.fl_str_mv |
Escobar Restrepo, Víctor Manuel |
| dc.contributor.advisor.none.fl_str_mv |
Muñoz Cuartas, Juan Carlos |
| dc.contributor.author.none.fl_str_mv |
Escobar Restrepo, Víctor Manuel |
| dc.subject.lemb.none.fl_str_mv |
Materia interestelar Interstellar matter Vía láctea Milky way Polvo cósmico Cosmic dust |
| topic |
Materia interestelar Interstellar matter Vía láctea Milky way Polvo cósmico Cosmic dust Interstellar dust Dust structure Galactic astrophysics Stellar distribution Extinction Disperse Milky Way Topology |
| dc.subject.proposal.eng.fl_str_mv |
Interstellar dust Dust structure Galactic astrophysics Stellar distribution Extinction Disperse Milky Way Topology |
| description |
Accurately characterizing interstellar dust in the Milky Way is key to correcting distortions in astronomical observations and to understanding galaxy formation and evolution. This work presents a new three-dimensional map of dust extinction in the disk and adjacent regions of our Galaxy, constructed from measurements in the third Gaia data release (GDR3). We perform a detailed analysis of the distribution of stars, extinction, and reddening across a radial range of 10 kpc and a vertical extent of ±2 kpc (upper and lower regions). From the data analysis, we select sources with reliable distance estimates, thus providing a robust basis for characterizing the dust distribution. Using height (z) binning and robust statistics (median and extinction contrast), we analyse a large stellar sample to reveal the vertical and radial behaviour of the dust. Our results confirm known components such as the thin and thick disks and show that the stellar distribution follows the expected exponentially decaying profile; the stellar disk, when considered without type-dependent biases, is approximately symmetric. By contrast, the dust disk (traced by extinction A)exhibits a marked asymmetry: the vertical structure in the northern Galactic hemisphere differs from that in the southern hemisphere at all radii. We compute various profiles of stellar density and extinction across different z layers to identify regions where stellar and dust structures coexist. Finally, we produced maps of stellar and dust structures with DisPerSE and analysed their correlations, identifying features such as the Perseus and Centaurus arms and several star clusters. Our results are consistent with prior work and provide a calibrated, reliable map of dust in the Milky Way. |
| publishDate |
2025 |
| dc.date.accessioned.none.fl_str_mv |
2025-09-22T20:02:27Z |
| dc.date.issued.none.fl_str_mv |
2025 |
| dc.type.none.fl_str_mv |
Trabajo de grado - Pregrado |
| dc.type.coar.none.fl_str_mv |
http://purl.org/coar/resource_type/c_7a1f |
| dc.type.content.none.fl_str_mv |
Text |
| dc.type.coarversion.none.fl_str_mv |
http://purl.org/coar/version/c_b1a7d7d4d402bcce |
| dc.type.driver.none.fl_str_mv |
info:eu-repo/semantics/bachelorThesis |
| dc.type.version.none.fl_str_mv |
info:eu-repo/semantics/draft |
| format |
http://purl.org/coar/resource_type/c_7a1f |
| status_str |
draft |
| dc.identifier.uri.none.fl_str_mv |
https://hdl.handle.net/10495/47409 |
| url |
https://hdl.handle.net/10495/47409 |
| dc.language.iso.none.fl_str_mv |
eng |
| language |
eng |
| dc.relation.references.none.fl_str_mv |
Astropy Collaboration. (2025). Description of the Galactocentric Coordinate Frame. Astropy Documentation (version: 7.2.dev480+g6f876ae54). https://docs.astropy.org/en/latest/coordinates/galactocentric.html Bailer-Jones, C. A. L., Rybizki, J., Fouesneau, M., Demleitner, M., & Andrae, R. (2021). Estimating distances from parallaxes. V. Geometric and photogeometric distances to 1.47 billion stars in Gaia Early Data Release 3. The Astronomical Journal, 161(3), 147. https://doi.org/10.3847/1538-3881/abd806 Baumgardt, H. (2025a). NGC 6352. University of Queensland. https://people.smp.uq.edu.au/HolgerBaumgardt/globular/fits/ngc6352.html Baumgardt, H. (2025b). NGC 6397. University of Queensland. https://people.smp.uq.edu.au/HolgerBaumgardt/globular/fits/ngc6397.html Baumgardt, H. (2025c). NGC 6569. University of Queensland. https://people.smp.uq.edu.au/HolgerBaumgardt/globular/fits/ngc6569.html Baumgardt, H. (2025d). NGC 6638. University of Queensland. https://people.smp.uq.edu.au/HolgerBaumgardt/globular/fits/ngc6638.html Baumgardt, H. (2025e). NGC 6652. University of Queensland. https://people.smp.uq.edu.au/HolgerBaumgardt/globular/newdata/fits/ngc6652.html Baumgardt, H. (2025f). NGC 6760. University of Queensland. https://people.smp.uq.edu.au/HolgerBaumgardt/globular/fits/ngc6760.html Binney, J., & Tremaine, S. (1987). Galactic dynamics. Princeton University Press. Carramiñana, A. (2020). Transferencia radiativa. INAOE. https://www.inaoep.mx/~alberto/cursos/radiacion/cap2.pdf Costantini, E., & Corrales, L. (2023). Interstellar absorption and dust scattering. In Handbook of X-ray and Gamma-ray Astrophysics (pp. 1–39). Springer Nature. https://doi.org/10.1007/978-981-16-4544-0_93-1 Dame, T. M., Hartmann, D., & Thaddeus, P. (2001). The Milky Way in molecular clouds: A new complete CO survey. The Astrophysical Journal, 547(2), 792–813. https://doi.org/10.1086/318388 Deras, D., Arellano Ferro, A., Lázaro, C., Bustos Fierro, I. H., Calderón, J. H., Muneer, S., & Giridhar, S. (2019). A new study of the variable star population in the Hercules globular cluster (M13; NGC 6205). Monthly Notices of the Royal Astronomical Society, 486(2), 2791–2808. https://doi.org/10.1093/mnras/stz642 Dharmawardena, T. E., Bailer-Jones, C. A. L., Fouesneau, M., Foreman-Mackey, D., Coronica, P., Colnaghi, T., Müller, T., & Wilson, A. G. (2024). All-sky three-dimensional dust density and extinction maps of the Milky Way out to 2.8 kpc. Monthly Notices of the Royal Astronomical Society, 532(3), 3480–3498. https://doi.org/10.1093/mnras/stae1474 Dobbs, C., & Baba, J. (2014). Dawes Review 4: Spiral structures in disc galaxies. Publications of the Astronomical Society of Australia, 31, e035. https://doi.org/10.1017/pasa.2014.31 Dullemond, C. P. (2012). Chapter 6: Scattering of light off dust particles. University of Heidelberg. https://www.ita.uni-heidelberg.de/~dullemond/lectures/radtrans_2012/Chapter_6.pdf European Space Agency. (n.d.-a). Instruments. https://www.cosmos.esa.int/web/gaia/instruments European Space Agency. (n.d.-b). Gaia data release 3. https://gea.esac.esa.int/archive/documentation/GDR3/ European Space Agency. (n.d.-c). Gaia users – archive: Extract data. Retrieved June 18, 2025, from https://www.cosmos.esa.int/web/gaia-users/archive/extract-data European Space Agency (ESA). (2022). GaiaSource. Accessed August 18, 2025. Everall, A., Belokurov, V., Evans, N. W., Boubert, D., & Grand, R. J. J. (2022). The photo-astrometric vertical tracer density of the Milky Way – II. Results from Gaia. Monthly Notices of the Royal Astronomical Society, 511(3), 3863–3880. https://doi.org/10.1093/mnras/stac305 Gaia Collaboration, R. Drimmel, M. Romero-Gomez, L. Chemin, P. Ramos, E. Poggio, ´ V. Ripepi, R. Andrae, R. Blomme, T. Cantat-Gaudin, A. Castro-Ginard, G. Clementini, F. Figueras, M. Fouesneau, Y. Fremat, K. Jardine, S. Khanna, A. Lobel, D. J. Marshall, ´ T. Muraveva, A. G. A. Brown, A. Vallenari, T. Prusti, J. H. J. de Bruijne, F. Arenou, C. Babusiaux, M. Biermann, O. L. Creevey, C. Ducourant, D. W. Evans, L. Eyer, R. Guerra, A. Hutton, C. Jordi, S. A. Klioner, U. L. Lammers, L. Lindegren, X. Luri, F. Mignard, C. Panem, D. Pourbaix, S. Randich, P. Sartoretti, C. Soubiran, P. Tanga, N. A. Walton, C. A. L. Bailer-Jones, U. Bastian, F. Jansen, D. Katz, M. G. Lattanzi, F. van Leeuwen, J. Bakker, C. Cacciari, J. Castaneda, F. De Angeli, C. Fabricius, L. Galluccio, A. Guerrier, ˜ U. Heiter, E. Masana, R. Messineo, N. Mowlavi, C. Nicolas, K. Nienartowicz, F. Pailler, P. Panuzzo, F. Riclet, W. Roux, G. M. Seabroke, R. Sordo, F. Thevenin, G. Gracia-Abril, ´ J. Portell, D. Teyssier, M. Altmann, M. Audard, I. Bellas-Velidis, K. Benson, J. Berthier, P. W. Burgess, D. Busonero, G. Busso, H. Canovas, B. Carry, A. Cellino, N. Cheek, Y. Damerdji, ´ M. Davidson, P. de Teodoro, M. Nunez Campos, L. Delchambre, A. Dell’Oro, P. Esquej, ˜ J. Fernandez-Hern ´ andez, E. Fraile, D. Garabato, P. Garc ´ ´ıa-Lario, E. Gosset, R. Haigron, J. L. Halbwachs, N. C. Hambly, D. L. Harrison, J. Hernandez, D. Hestroffer, S. T. Hodgkin, ´ B. Holl, K. Janßen, G. Jevardat de Fombelle, S. Jordan, A. Krone-Martins, A. C. Lanzafame, W. Loffler, O. Marchal, P. M. Marrese, A. Moitinho, K. Muinonen, P. Osborne, E. Pancino, ¨ T. Pauwels, A. Recio-Blanco, C. Reyle, M. Riello, L. Rimoldini, T. Roegiers, J. Rybizki, L. M. ´ Sarro, C. Siopis, M. Smith, A. Sozzetti, E. Utrilla, M. van Leeuwen, U. Abbas, P. Abrah ´ am, ´ A. Abreu Aramburu, C. Aerts, J. J. Aguado, M. Ajaj, F. Aldea-Montero, G. Altavilla, M. A. Alvarez, J. Alves, F. Anders, R. I. Anderson, E. Anglada Varela, T. Antoja, D. Baines, S. G. ´ Baker, L. Balaguer-N´unez, E. Balbinot, Z. Balog, C. Barache, D. Barbato, M. Barros, M. A. ˜ Barstow, S. Bartolome, J. L. Bassilana, N. Bauchet, U. Becciani, M. Bellazzini, A. Berihuete, ´ M. Bernet, S. Bertone, L. Bianchi, A. Binnenfeld, S. Blanco-Cuaresma, T. Boch, A. Bombrun, D. Bossini, S. Bouquillon, A. Bragaglia, L. Bramante, E. Breedt, A. Bressan, N. Brouillet, E. Brugaletta, B. Bucciarelli, A. Burlacu, A. G. Butkevich, R. Buzzi, E. Caffau, R. Cancelliere, R. Carballo, T. Carlucci, M. I. Carnerero, J. M. Carrasco, L. Casamiquela, M. Castellani, L. Chaoul, P. Charlot, V. Chiaramida, A. Chiavassa, N. Chornay, G. Comoretto, G. Contursi, W. J. Cooper, T. Cornez, S. Cowell, F. Crifo, and M. Cropper. Gaia Data Release 3. Mapping the asymmetric disc of the Milky Way. , 674:A37, June 2023. 10.1051/0004- 6361/202243797. Giannini, J. (2023). Feasibility of unified all-scale potential to yield flat rotation curves without dark matter. Preprint en ResearchGate. https://www.researchgate.net/publication/369089233 Glatzle, M., Graziani, L., & Ciardi, B. (2022). Radiative transfer of ionizing radiation through gas and dust: Grain charging in star-forming regions. Monthly Notices of the Royal Astronomical Society, 510(1), 1068–1082. https://doi.org/10.1093/mnras/stab3459 Górski, K. M., Hivon, E., Banday, A. J., Wandelt, B. D., Hansen, F. K., Reinecke, M., & Bartelmann, M. (2005). HEALPix: A framework for high-resolution discretization and fast analysis of data distributed on the sphere. The Astrophysical Journal, 622(2), 759–771. https://doi.org/10.1086/427976 Graham, A. W., & Driver, S. P. (2005). A concise reference to (Sérsic) galaxy profiles. Publications of the Astronomical Society of Australia, 22(2), 118–127. https://doi.org/10.1071/AS05022 Green, G., Schlafly, E., & Finkbeiner, D. P. (2014). A 3D dust reddening map from Pan-STARRS1. arXiv:1401.5919. https://arxiv.org/abs/1401.5919 Green, G. M., Schlafly, E. F., Finkbeiner, D. P., Rix, H.-W., Martin, N., Burgett, W., Draper, P. W., Flewelling, H., Hodapp, K., Kaiser, N., Kudritzki, R. P., Magnier, E., Metcalfe, N., Price, P., Tonry, J., & Wainscoat, R. (2015). A three-dimensional map of Milky Way dust. The Astrophysical Journal, 810(1), 25. https://doi.org/10.1088/0004-637X/810/1/25 Green, G. M., Schlafly, E., Zucker, C., Speagle, J. S., & Finkbeiner, D. (2019). A 3D dust map based on Gaia, Pan-STARRS 1, and 2MASS. The Astrophysical Journal, 887(1), 93. https://doi.org/10.3847/1538-4357/ab5362 Haworth, T. J., Glover, S. C. O., Koepferl, C. M., Bisbas, T. G., & Dale, J. E. (2018). Synthetic observations of star formation and the interstellar medium. New Astronomy Reviews, 82, 1–58. https://doi.org/10.1016/j.newar.2018.06.001 Hayakawa, S. (1970). Scattering of cosmic X-rays by interstellar dust grains. Progress of Theoretical Physics, 43(5), 1224–1230. https://doi.org/10.1143/PTP.43.1224 Huré, J. M., Pierens, A., & Hersant, F. (2009). Self-gravity at the scale of the polar cell. Astronomy & Astrophysics, 500(2), 617–620. https://doi.org/10.1051/0004-6361/200911806 Kemppinen, O., Nousiainen, T., & Jeong, G. Y. (2015). Effects of dust particle internal structure on light scattering. Atmospheric Chemistry and Physics, 15(20), 12011–12027. https://doi.org/10.5194/acp-15-12011-2015 Khoperskov, S., Gerhard, O., Di Matteo, P., Haywood, M., Katz, D., Khrapov, S., Khoperskov, A., & Arnaboldi, M. (2020). Hic sunt dracones: Cartography of the Milky Way spiral arms and bar resonances with Gaia Data Release 2. Astronomy & Astrophysics, 634, L8. https://doi.org/10.1051/0004-6361/201936645 Kormendy, J., & Kennicutt, R. C. (2004). Secular evolution and the formation of pseudobulges in disk galaxies. Annual Review of Astronomy and Astrophysics, 42, 603–683. https://doi.org/10.1146/annurev.astro.42.053102.134024 Lallement, R., Babusiaux, C., Vergely, J. L., Katz, D., Arenou, F., Valette, B., Hottier, C., & Capitanio, L. (2019). Gaia-2MASS 3D maps of Galactic interstellar dust within 3 kpc. Astronomy & Astrophysics, 625, A135. https://doi.org/10.1051/0004-6361/201834695 Lallement, R., Vergely, J. L., Babusiaux, C., & Cox, N. L. J. (2022). Updated Gaia-2MASS 3D maps of Galactic interstellar dust. Astronomy & Astrophysics, 661, A147. https://doi.org/10.1051/0004-6361/202142846 Marshall, D. J., Robin, A. C., Reylé, C., Schultheis, M., & Picaud, S. (2006). Modelling the Galactic interstellar extinction distribution in three dimensions. Astronomy & Astrophysics, 453(2), 635–651. https://doi.org/10.1051/0004-6361:20053842 Mathis, J. S., Rumpl, W., & Nordsieck, K. H. (1977). The size distribution of interstellar grains. The Astrophysical Journal, 217, 425–433. https://doi.org/10.1086/155591 Mo, H., van den Bosch, F. C., & White, S. (2010). Galaxy formation and evolution. Cambridge University Press. https://doi.org/10.1017/CBO9780511807244 Nersesian, A., Verstocken, S., Viaene, S., Baes, M., Xilouris, E. M., Bianchi, S., Casasola, V., Clark, C. J. R., Davies, J. I., De Looze, I., De Vis, P., Dobbels, W., Fritz, J., Galametz, M., Galliano, F., Jones, A. P., Madden, S. C., Mosenkov, A. V., Trčka, A., & Ysard, N. (2020). High-resolution, 3D radiative transfer modelling. III. The DustPedia barred galaxies. Astronomy & Astrophysics, 637, A25. https://doi.org/10.1051/0004-6361/201936176 Owocki, S. P. (2021). Fundamentals of astrophysics. Lecture notes. https://www.bartol.udel.edu/~owocki/phys133/FoA/FoA-latex-EngC-v1/FoA-EngC.pdf Poggio, E., Drimmel, R., Cantat-Gaudin, T., Ramos, P., Ripepi, V., Zari, E., Andrae, R., Blomme, R., Chemin, L., Clementini, G., Figueras, F., Fouesneau, M., Frémat, Y., Lobel, A., Marshall, D. J., Muraveva, T., & Romero-Gómez, M. (2021). Galactic spiral structure revealed by Gaia EDR3. Astronomy & Astrophysics, 651, A104. https://doi.org/10.1051/0004-6361/202140687 Poggio, E., Recio-Blanco, A., Palicio, P. A., Re Fiorentin, P., de Laverny, P., Drimmel, R., Kordopatis, G., Lattanzi, M. G., Schultheis, M., Spagna, A., & Spitoni, E. (2022). The chemical signature of the Galactic spiral arms revealed by Gaia DR3. Astronomy & Astrophysics, 666, L4. https://doi.org/10.1051/0004-6361/202244361 Roberts, W. W. (1969). Large-scale shock formation in spiral galaxies and its implications on star formation. The Astrophysical Journal, 158, 123. https://doi.org/10.1086/150177 Shen, J., & Zheng, X.-W. (2020). The bar and spiral arms in the Milky Way: Structure and kinematics. Research in Astronomy and Astrophysics, 20(10), 159. https://doi.org/10.1088/1674-4527/20/10/159 Sousbie, T. (2011). The persistent cosmic web and its filamentary structure – I. Theory and implementation. Monthly Notices of the Royal Astronomical Society, 414(1), 350–383. https://doi.org/10.1111/j.1365-2966.2011.18394.x Sousbie, T. (2013). DisPerSE: Robust structure identification in 2D and 3D. arXiv e-prints, arXiv:1302.6221. https://doi.org/10.48550/arXiv.1302.6221 Whittet, D. C. B. (2003). Dust in the galactic environment (2nd ed.). PDF. http://lnfm1.sai.msu.ru/~milkyway/Books/Whittet-Dust%20in%20the%20galaxic%20environment.pdf Zhang, X., & Green, G. M. (2025). Three-dimensional maps of the interstellar dust extinction curve within the Milky Way galaxy. Science, 387(6739), 1209–1214. https://doi.org/10.1126/science.ado9787 |
| dc.rights.uri.none.fl_str_mv |
http://creativecommons.org/licenses/by-nc-nd/4.0/ |
| dc.rights.accessrights.none.fl_str_mv |
info:eu-repo/semantics/openAccess |
| dc.rights.license.en.fl_str_mv |
Attribution-NonCommercial-NoDerivatives 4.0 International |
| dc.rights.coar.none.fl_str_mv |
http://purl.org/coar/access_right/c_abf2 |
| rights_invalid_str_mv |
http://creativecommons.org/licenses/by-nc-nd/4.0/ Attribution-NonCommercial-NoDerivatives 4.0 International http://purl.org/coar/access_right/c_abf2 |
| eu_rights_str_mv |
openAccess |
| dc.format.extent.none.fl_str_mv |
120 páginas |
| dc.format.mimetype.none.fl_str_mv |
application/pdf |
| dc.publisher.none.fl_str_mv |
Universidad de Antioquia |
| dc.publisher.program.none.fl_str_mv |
Astronomía |
| dc.publisher.place.none.fl_str_mv |
Medellín, Colombia |
| dc.publisher.faculty.none.fl_str_mv |
Facultad de Ciencias Exactas y Naturales |
| dc.publisher.branch.none.fl_str_mv |
Campus Medellín - Ciudad Universitaria |
| publisher.none.fl_str_mv |
Universidad de Antioquia |
| institution |
Universidad de Antioquia |
| bitstream.url.fl_str_mv |
https://bibliotecadigital.udea.edu.co/bitstreams/72a651fa-5c8e-4747-b411-31e8d45bb637/download https://bibliotecadigital.udea.edu.co/bitstreams/64f68d4c-cfa5-4ed4-bb24-f33da786c246/download https://bibliotecadigital.udea.edu.co/bitstreams/c44a7895-41dd-49d8-887e-c36895e264e7/download https://bibliotecadigital.udea.edu.co/bitstreams/4bee37c0-90f6-49b9-a3cf-00d8ccd7808b/download |
| bitstream.checksum.fl_str_mv |
06903c789203aa76f7acce0683ff9e27 b76e7a76e24cf2f94b3ce0ae5ed275d0 3b6ce8e9e36c89875e8cf39962fe8920 16cbd82e34d0d5b5c535b8fd36c97f50 |
| bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 MD5 MD5 |
| repository.name.fl_str_mv |
Repositorio Institucional de la Universidad de Antioquia |
| repository.mail.fl_str_mv |
aplicacionbibliotecadigitalbiblioteca@udea.edu.co |
| _version_ |
1851052532774731776 |
| spelling |
Muñoz Cuartas, Juan CarlosEscobar Restrepo, Víctor Manuel2025-09-22T20:02:27Z2025https://hdl.handle.net/10495/47409Accurately characterizing interstellar dust in the Milky Way is key to correcting distortions in astronomical observations and to understanding galaxy formation and evolution. This work presents a new three-dimensional map of dust extinction in the disk and adjacent regions of our Galaxy, constructed from measurements in the third Gaia data release (GDR3). We perform a detailed analysis of the distribution of stars, extinction, and reddening across a radial range of 10 kpc and a vertical extent of ±2 kpc (upper and lower regions). From the data analysis, we select sources with reliable distance estimates, thus providing a robust basis for characterizing the dust distribution. Using height (z) binning and robust statistics (median and extinction contrast), we analyse a large stellar sample to reveal the vertical and radial behaviour of the dust. Our results confirm known components such as the thin and thick disks and show that the stellar distribution follows the expected exponentially decaying profile; the stellar disk, when considered without type-dependent biases, is approximately symmetric. By contrast, the dust disk (traced by extinction A)exhibits a marked asymmetry: the vertical structure in the northern Galactic hemisphere differs from that in the southern hemisphere at all radii. We compute various profiles of stellar density and extinction across different z layers to identify regions where stellar and dust structures coexist. Finally, we produced maps of stellar and dust structures with DisPerSE and analysed their correlations, identifying features such as the Perseus and Centaurus arms and several star clusters. Our results are consistent with prior work and provide a calibrated, reliable map of dust in the Milky Way.PregradoAstrónomo120 páginasapplication/pdfengUniversidad de AntioquiaAstronomíaMedellín, ColombiaFacultad de Ciencias Exactas y NaturalesCampus Medellín - Ciudad Universitariahttp://creativecommons.org/licenses/by-nc-nd/4.0/info:eu-repo/semantics/openAccessAttribution-NonCommercial-NoDerivatives 4.0 Internationalhttp://purl.org/coar/access_right/c_abf2Study of the Distribution of Interstellar Dust in the Milky Way Using Gaia DR3Estudio de la distribución del polvo interestelar en la Vía Láctea mediante Gaia DR3Trabajo de grado - Pregradohttp://purl.org/coar/resource_type/c_7a1fTexthttp://purl.org/coar/version/c_b1a7d7d4d402bcceinfo:eu-repo/semantics/bachelorThesisinfo:eu-repo/semantics/draftAstropy Collaboration. (2025). Description of the Galactocentric Coordinate Frame. Astropy Documentation (version: 7.2.dev480+g6f876ae54). https://docs.astropy.org/en/latest/coordinates/galactocentric.htmlBailer-Jones, C. A. L., Rybizki, J., Fouesneau, M., Demleitner, M., & Andrae, R. (2021). Estimating distances from parallaxes. V. Geometric and photogeometric distances to 1.47 billion stars in Gaia Early Data Release 3. The Astronomical Journal, 161(3), 147. https://doi.org/10.3847/1538-3881/abd806Baumgardt, H. (2025a). NGC 6352. University of Queensland. https://people.smp.uq.edu.au/HolgerBaumgardt/globular/fits/ngc6352.htmlBaumgardt, H. (2025b). NGC 6397. University of Queensland. https://people.smp.uq.edu.au/HolgerBaumgardt/globular/fits/ngc6397.htmlBaumgardt, H. (2025c). NGC 6569. University of Queensland. https://people.smp.uq.edu.au/HolgerBaumgardt/globular/fits/ngc6569.htmlBaumgardt, H. (2025d). NGC 6638. University of Queensland. https://people.smp.uq.edu.au/HolgerBaumgardt/globular/fits/ngc6638.htmlBaumgardt, H. (2025e). NGC 6652. University of Queensland. https://people.smp.uq.edu.au/HolgerBaumgardt/globular/newdata/fits/ngc6652.htmlBaumgardt, H. (2025f). NGC 6760. University of Queensland. https://people.smp.uq.edu.au/HolgerBaumgardt/globular/fits/ngc6760.htmlBinney, J., & Tremaine, S. (1987). Galactic dynamics. Princeton University Press.Carramiñana, A. (2020). Transferencia radiativa. INAOE. https://www.inaoep.mx/~alberto/cursos/radiacion/cap2.pdfCostantini, E., & Corrales, L. (2023). Interstellar absorption and dust scattering. In Handbook of X-ray and Gamma-ray Astrophysics (pp. 1–39). Springer Nature. https://doi.org/10.1007/978-981-16-4544-0_93-1Dame, T. M., Hartmann, D., & Thaddeus, P. (2001). The Milky Way in molecular clouds: A new complete CO survey. The Astrophysical Journal, 547(2), 792–813. https://doi.org/10.1086/318388Deras, D., Arellano Ferro, A., Lázaro, C., Bustos Fierro, I. H., Calderón, J. H., Muneer, S., & Giridhar, S. (2019). A new study of the variable star population in the Hercules globular cluster (M13; NGC 6205). Monthly Notices of the Royal Astronomical Society, 486(2), 2791–2808. https://doi.org/10.1093/mnras/stz642Dharmawardena, T. E., Bailer-Jones, C. A. L., Fouesneau, M., Foreman-Mackey, D., Coronica, P., Colnaghi, T., Müller, T., & Wilson, A. G. (2024). All-sky three-dimensional dust density and extinction maps of the Milky Way out to 2.8 kpc. Monthly Notices of the Royal Astronomical Society, 532(3), 3480–3498. https://doi.org/10.1093/mnras/stae1474Dobbs, C., & Baba, J. (2014). Dawes Review 4: Spiral structures in disc galaxies. Publications of the Astronomical Society of Australia, 31, e035. https://doi.org/10.1017/pasa.2014.31Dullemond, C. P. (2012). Chapter 6: Scattering of light off dust particles. University of Heidelberg. https://www.ita.uni-heidelberg.de/~dullemond/lectures/radtrans_2012/Chapter_6.pdfEuropean Space Agency. (n.d.-a). Instruments. https://www.cosmos.esa.int/web/gaia/instrumentsEuropean Space Agency. (n.d.-b). Gaia data release 3. https://gea.esac.esa.int/archive/documentation/GDR3/European Space Agency. (n.d.-c). Gaia users – archive: Extract data. Retrieved June 18, 2025, from https://www.cosmos.esa.int/web/gaia-users/archive/extract-dataEuropean Space Agency (ESA). (2022). GaiaSource. Accessed August 18, 2025.Everall, A., Belokurov, V., Evans, N. W., Boubert, D., & Grand, R. J. J. (2022). The photo-astrometric vertical tracer density of the Milky Way – II. Results from Gaia. Monthly Notices of the Royal Astronomical Society, 511(3), 3863–3880. https://doi.org/10.1093/mnras/stac305Gaia Collaboration, R. Drimmel, M. Romero-Gomez, L. Chemin, P. Ramos, E. Poggio, ´ V. Ripepi, R. Andrae, R. Blomme, T. Cantat-Gaudin, A. Castro-Ginard, G. Clementini, F. Figueras, M. Fouesneau, Y. Fremat, K. Jardine, S. Khanna, A. Lobel, D. J. Marshall, ´ T. Muraveva, A. G. A. Brown, A. Vallenari, T. Prusti, J. H. J. de Bruijne, F. Arenou, C. Babusiaux, M. Biermann, O. L. Creevey, C. Ducourant, D. W. Evans, L. Eyer, R. Guerra, A. Hutton, C. Jordi, S. A. Klioner, U. L. Lammers, L. Lindegren, X. Luri, F. Mignard, C. Panem, D. Pourbaix, S. Randich, P. Sartoretti, C. Soubiran, P. Tanga, N. A. Walton, C. A. L. Bailer-Jones, U. Bastian, F. Jansen, D. Katz, M. G. Lattanzi, F. van Leeuwen, J. Bakker, C. Cacciari, J. Castaneda, F. De Angeli, C. Fabricius, L. Galluccio, A. Guerrier, ˜ U. Heiter, E. Masana, R. Messineo, N. Mowlavi, C. Nicolas, K. Nienartowicz, F. Pailler, P. Panuzzo, F. Riclet, W. Roux, G. M. Seabroke, R. Sordo, F. Thevenin, G. Gracia-Abril, ´ J. Portell, D. Teyssier, M. Altmann, M. Audard, I. Bellas-Velidis, K. Benson, J. Berthier, P. W. Burgess, D. Busonero, G. Busso, H. Canovas, B. Carry, A. Cellino, N. Cheek, Y. Damerdji, ´ M. Davidson, P. de Teodoro, M. Nunez Campos, L. Delchambre, A. Dell’Oro, P. Esquej, ˜ J. Fernandez-Hern ´ andez, E. Fraile, D. Garabato, P. Garc ´ ´ıa-Lario, E. Gosset, R. Haigron, J. L. Halbwachs, N. C. Hambly, D. L. Harrison, J. Hernandez, D. Hestroffer, S. T. Hodgkin, ´ B. Holl, K. Janßen, G. Jevardat de Fombelle, S. Jordan, A. Krone-Martins, A. C. Lanzafame, W. Loffler, O. Marchal, P. M. Marrese, A. Moitinho, K. Muinonen, P. Osborne, E. Pancino, ¨ T. Pauwels, A. Recio-Blanco, C. Reyle, M. Riello, L. Rimoldini, T. Roegiers, J. Rybizki, L. M. ´ Sarro, C. Siopis, M. Smith, A. Sozzetti, E. Utrilla, M. van Leeuwen, U. Abbas, P. Abrah ´ am, ´ A. Abreu Aramburu, C. Aerts, J. J. Aguado, M. Ajaj, F. Aldea-Montero, G. Altavilla, M. A. Alvarez, J. Alves, F. Anders, R. I. Anderson, E. Anglada Varela, T. Antoja, D. Baines, S. G. ´ Baker, L. Balaguer-N´unez, E. Balbinot, Z. Balog, C. Barache, D. Barbato, M. Barros, M. A. ˜ Barstow, S. Bartolome, J. L. Bassilana, N. Bauchet, U. Becciani, M. Bellazzini, A. Berihuete, ´ M. Bernet, S. Bertone, L. Bianchi, A. Binnenfeld, S. Blanco-Cuaresma, T. Boch, A. Bombrun, D. Bossini, S. Bouquillon, A. Bragaglia, L. Bramante, E. Breedt, A. Bressan, N. Brouillet, E. Brugaletta, B. Bucciarelli, A. Burlacu, A. G. Butkevich, R. Buzzi, E. Caffau, R. Cancelliere, R. Carballo, T. Carlucci, M. I. Carnerero, J. M. Carrasco, L. Casamiquela, M. Castellani, L. Chaoul, P. Charlot, V. Chiaramida, A. Chiavassa, N. Chornay, G. Comoretto, G. Contursi, W. J. Cooper, T. Cornez, S. Cowell, F. Crifo, and M. Cropper. Gaia Data Release 3. Mapping the asymmetric disc of the Milky Way. , 674:A37, June 2023. 10.1051/0004- 6361/202243797.Giannini, J. (2023). Feasibility of unified all-scale potential to yield flat rotation curves without dark matter. Preprint en ResearchGate. https://www.researchgate.net/publication/369089233Glatzle, M., Graziani, L., & Ciardi, B. (2022). Radiative transfer of ionizing radiation through gas and dust: Grain charging in star-forming regions. Monthly Notices of the Royal Astronomical Society, 510(1), 1068–1082. https://doi.org/10.1093/mnras/stab3459Górski, K. M., Hivon, E., Banday, A. J., Wandelt, B. D., Hansen, F. K., Reinecke, M., & Bartelmann, M. (2005). HEALPix: A framework for high-resolution discretization and fast analysis of data distributed on the sphere. The Astrophysical Journal, 622(2), 759–771. https://doi.org/10.1086/427976Graham, A. W., & Driver, S. P. (2005). A concise reference to (Sérsic) galaxy profiles. Publications of the Astronomical Society of Australia, 22(2), 118–127. https://doi.org/10.1071/AS05022Green, G., Schlafly, E., & Finkbeiner, D. P. (2014). A 3D dust reddening map from Pan-STARRS1. arXiv:1401.5919. https://arxiv.org/abs/1401.5919Green, G. M., Schlafly, E. F., Finkbeiner, D. P., Rix, H.-W., Martin, N., Burgett, W., Draper, P. W., Flewelling, H., Hodapp, K., Kaiser, N., Kudritzki, R. P., Magnier, E., Metcalfe, N., Price, P., Tonry, J., & Wainscoat, R. (2015). A three-dimensional map of Milky Way dust. The Astrophysical Journal, 810(1), 25. https://doi.org/10.1088/0004-637X/810/1/25Green, G. M., Schlafly, E., Zucker, C., Speagle, J. S., & Finkbeiner, D. (2019). A 3D dust map based on Gaia, Pan-STARRS 1, and 2MASS. The Astrophysical Journal, 887(1), 93. https://doi.org/10.3847/1538-4357/ab5362Haworth, T. J., Glover, S. C. O., Koepferl, C. M., Bisbas, T. G., & Dale, J. E. (2018). Synthetic observations of star formation and the interstellar medium. New Astronomy Reviews, 82, 1–58. https://doi.org/10.1016/j.newar.2018.06.001Hayakawa, S. (1970). Scattering of cosmic X-rays by interstellar dust grains. Progress of Theoretical Physics, 43(5), 1224–1230. https://doi.org/10.1143/PTP.43.1224Huré, J. M., Pierens, A., & Hersant, F. (2009). Self-gravity at the scale of the polar cell. Astronomy & Astrophysics, 500(2), 617–620. https://doi.org/10.1051/0004-6361/200911806Kemppinen, O., Nousiainen, T., & Jeong, G. Y. (2015). Effects of dust particle internal structure on light scattering. Atmospheric Chemistry and Physics, 15(20), 12011–12027. https://doi.org/10.5194/acp-15-12011-2015Khoperskov, S., Gerhard, O., Di Matteo, P., Haywood, M., Katz, D., Khrapov, S., Khoperskov, A., & Arnaboldi, M. (2020). Hic sunt dracones: Cartography of the Milky Way spiral arms and bar resonances with Gaia Data Release 2. Astronomy & Astrophysics, 634, L8. https://doi.org/10.1051/0004-6361/201936645Kormendy, J., & Kennicutt, R. C. (2004). Secular evolution and the formation of pseudobulges in disk galaxies. Annual Review of Astronomy and Astrophysics, 42, 603–683. https://doi.org/10.1146/annurev.astro.42.053102.134024Lallement, R., Babusiaux, C., Vergely, J. L., Katz, D., Arenou, F., Valette, B., Hottier, C., & Capitanio, L. (2019). Gaia-2MASS 3D maps of Galactic interstellar dust within 3 kpc. Astronomy & Astrophysics, 625, A135. https://doi.org/10.1051/0004-6361/201834695Lallement, R., Vergely, J. L., Babusiaux, C., & Cox, N. L. J. (2022). Updated Gaia-2MASS 3D maps of Galactic interstellar dust. Astronomy & Astrophysics, 661, A147. https://doi.org/10.1051/0004-6361/202142846Marshall, D. J., Robin, A. C., Reylé, C., Schultheis, M., & Picaud, S. (2006). Modelling the Galactic interstellar extinction distribution in three dimensions. Astronomy & Astrophysics, 453(2), 635–651. https://doi.org/10.1051/0004-6361:20053842Mathis, J. S., Rumpl, W., & Nordsieck, K. H. (1977). The size distribution of interstellar grains. The Astrophysical Journal, 217, 425–433. https://doi.org/10.1086/155591Mo, H., van den Bosch, F. C., & White, S. (2010). Galaxy formation and evolution. Cambridge University Press. https://doi.org/10.1017/CBO9780511807244Nersesian, A., Verstocken, S., Viaene, S., Baes, M., Xilouris, E. M., Bianchi, S., Casasola, V., Clark, C. J. R., Davies, J. I., De Looze, I., De Vis, P., Dobbels, W., Fritz, J., Galametz, M., Galliano, F., Jones, A. P., Madden, S. C., Mosenkov, A. V., Trčka, A., & Ysard, N. (2020). High-resolution, 3D radiative transfer modelling. III. The DustPedia barred galaxies. Astronomy & Astrophysics, 637, A25. https://doi.org/10.1051/0004-6361/201936176Owocki, S. P. (2021). Fundamentals of astrophysics. Lecture notes. https://www.bartol.udel.edu/~owocki/phys133/FoA/FoA-latex-EngC-v1/FoA-EngC.pdfPoggio, E., Drimmel, R., Cantat-Gaudin, T., Ramos, P., Ripepi, V., Zari, E., Andrae, R., Blomme, R., Chemin, L., Clementini, G., Figueras, F., Fouesneau, M., Frémat, Y., Lobel, A., Marshall, D. J., Muraveva, T., & Romero-Gómez, M. (2021). Galactic spiral structure revealed by Gaia EDR3. Astronomy & Astrophysics, 651, A104. https://doi.org/10.1051/0004-6361/202140687Poggio, E., Recio-Blanco, A., Palicio, P. A., Re Fiorentin, P., de Laverny, P., Drimmel, R., Kordopatis, G., Lattanzi, M. G., Schultheis, M., Spagna, A., & Spitoni, E. (2022). The chemical signature of the Galactic spiral arms revealed by Gaia DR3. Astronomy & Astrophysics, 666, L4. https://doi.org/10.1051/0004-6361/202244361Roberts, W. W. (1969). Large-scale shock formation in spiral galaxies and its implications on star formation. The Astrophysical Journal, 158, 123. https://doi.org/10.1086/150177Shen, J., & Zheng, X.-W. (2020). The bar and spiral arms in the Milky Way: Structure and kinematics. Research in Astronomy and Astrophysics, 20(10), 159. https://doi.org/10.1088/1674-4527/20/10/159Sousbie, T. (2011). The persistent cosmic web and its filamentary structure – I. Theory and implementation. Monthly Notices of the Royal Astronomical Society, 414(1), 350–383. https://doi.org/10.1111/j.1365-2966.2011.18394.xSousbie, T. (2013). DisPerSE: Robust structure identification in 2D and 3D. arXiv e-prints, arXiv:1302.6221. https://doi.org/10.48550/arXiv.1302.6221Whittet, D. C. B. (2003). Dust in the galactic environment (2nd ed.). PDF. http://lnfm1.sai.msu.ru/~milkyway/Books/Whittet-Dust%20in%20the%20galaxic%20environment.pdfZhang, X., & Green, G. M. (2025). Three-dimensional maps of the interstellar dust extinction curve within the Milky Way galaxy. Science, 387(6739), 1209–1214. https://doi.org/10.1126/science.ado9787Materia interestelarInterstellar matterVía lácteaMilky wayPolvo cósmicoCosmic dustInterstellar dustDust structureGalactic astrophysicsStellar distributionExtinctionDisperseMilky Way TopologyORIGINALEscobarVictor_2025_Study_Distribution_Interstellar.pdfEscobarVictor_2025_Study_Distribution_Interstellar.pdfapplication/pdf20154460https://bibliotecadigital.udea.edu.co/bitstreams/72a651fa-5c8e-4747-b411-31e8d45bb637/download06903c789203aa76f7acce0683ff9e27MD55trueAnonymousREADLICENSElicense.txtlicense.txttext/plain; charset=utf-814837https://bibliotecadigital.udea.edu.co/bitstreams/64f68d4c-cfa5-4ed4-bb24-f33da786c246/downloadb76e7a76e24cf2f94b3ce0ae5ed275d0MD53falseAnonymousREADCC-LICENSElicense_rdflicense_rdfapplication/rdf+xml; charset=utf-8899https://bibliotecadigital.udea.edu.co/bitstreams/c44a7895-41dd-49d8-887e-c36895e264e7/download3b6ce8e9e36c89875e8cf39962fe8920MD54falseAnonymousREADTEXTEscobarVictor_2025_Study_Distribution_Interstellar.pdf.txtEscobarVictor_2025_Study_Distribution_Interstellar.pdf.txtExtracted texttext/plain102221https://bibliotecadigital.udea.edu.co/bitstreams/4bee37c0-90f6-49b9-a3cf-00d8ccd7808b/download16cbd82e34d0d5b5c535b8fd36c97f50MD56falseAnonymousREAD10495/47409oai:bibliotecadigital.udea.edu.co:10495/474092025-09-23 04:08:55.928http://creativecommons.org/licenses/by-nc-nd/4.0/Attribution-NonCommercial-NoDerivatives 4.0 Internationalopen.accesshttps://bibliotecadigital.udea.edu.coRepositorio Institucional de la Universidad de Antioquiaaplicacionbibliotecadigitalbiblioteca@udea.edu.coTEEgT0JSQSAoVEFMIFkgQ09NTyBTRSBERUZJTkUgTcOBUyBBREVMQU5URSkgU0UgT1RPUkdBIEJBSk8gTE9TIFRFUk1JTk9TIERFIEVTVEEgTElDRU5DSUEgUMOaQkxJQ0EgREUgQ1JFQVRJVkUgQ09NTU9OUyAo4oCcTFBDQ+KAnSBPIOKAnExJQ0VOQ0lB4oCdKS4gTEEgT0JSQSBFU1TDgSBQUk9URUdJREEgUE9SIERFUkVDSE9TIERFIEFVVE9SIFkvVSBPVFJBUyBMRVlFUyBBUExJQ0FCTEVTLiBRVUVEQSBQUk9ISUJJRE8gQ1VBTFFVSUVSIFVTTyBRVUUgU0UgSEFHQSBERSBMQSBPQlJBIFFVRSBOTyBDVUVOVEUgQ09OIExBIEFVVE9SSVpBQ0nDk04gUEVSVElORU5URSBERSBDT05GT1JNSURBRCBDT04gTE9TIFTDiVJNSU5PUyBERSBFU1RBIExJQ0VOQ0lBIFkgREUgTEEgTEVZIERFIERFUkVDSE8gREUgQVVUT1IuCgpNRURJQU5URSBFTCBFSkVSQ0lDSU8gREUgQ1VBTFFVSUVSQSBERSBMT1MgREVSRUNIT1MgUVVFIFNFIE9UT1JHQU4gRU4gRVNUQSBMSUNFTkNJQSwgVVNURUQgQUNFUFRBIFkgQUNVRVJEQSBRVUVEQVIgT0JMSUdBRE8gRU4gTE9TIFRFUk1JTk9TIFFVRSBTRSBTRcORQUxBTiBFTiBFTExBLiBFTCBMSUNFTkNJQU5URSBDT05DRURFIEEgVVNURUQgTE9TIERFUkVDSE9TIENPTlRFTklET1MgRU4gRVNUQSBMSUNFTkNJQSBDT05ESUNJT05BRE9TIEEgTEEgQUNFUFRBQ0nDk04gREUgU1VTIFRFUk1JTk9TIFkgQ09ORElDSU9ORVMuIAoKMS4gRGVmaW5pY2lvbmVzCmEuIE9icmEgQ29sZWN0aXZhIGVzIHVuYSBvYnJhLCB0YWwgY29tbyB1bmEgcHVibGljYWNpw7NuIHBlcmnDs2RpY2EsIHVuYSBhbnRvbG9nw61hLCBvIHVuYSBlbmNpY2xvcGVkaWEsIGVuIGxhIHF1ZSBsYSBvYnJhIGVuIHN1IHRvdGFsaWRhZCwgc2luIG1vZGlmaWNhY2nDs24gYWxndW5hLCBqdW50byBjb24gdW4gZ3J1cG8gZGUgb3RyYXMgY29udHJpYnVjaW9uZXMgcXVlIGNvbnN0aXR1eWVuIG9icmFzIHNlcGFyYWRhcyBlIGluZGVwZW5kaWVudGVzIGVuIHPDrSBtaXNtYXMsIHNlIGludGVncmFuIGVuIHVuIHRvZG8gY29sZWN0aXZvLiBVbmEgT2JyYSBxdWUgY29uc3RpdHV5ZSB1bmEgb2JyYSBjb2xlY3RpdmEgbm8gc2UgY29uc2lkZXJhcsOhIHVuYSBPYnJhIERlcml2YWRhIChjb21vIHNlIGRlZmluZSBhYmFqbykgcGFyYSBsb3MgcHJvcMOzc2l0b3MgZGUgZXN0YSBsaWNlbmNpYS4gYXF1ZWxsYSBwcm9kdWNpZGEgcG9yIHVuIGdydXBvIGRlIGF1dG9yZXMsIGVuIHF1ZSBsYSBPYnJhIHNlIGVuY3VlbnRyYSBzaW4gbW9kaWZpY2FjaW9uZXMsIGp1bnRvIGNvbiB1bmEgY2llcnRhIGNhbnRpZGFkIGRlIG90cmFzIGNvbnRyaWJ1Y2lvbmVzLCBxdWUgY29uc3RpdHV5ZW4gZW4gc8OtIG1pc21vcyB0cmFiYWpvcyBzZXBhcmFkb3MgZSBpbmRlcGVuZGllbnRlcywgcXVlIHNvbiBpbnRlZ3JhZG9zIGFsIHRvZG8gY29sZWN0aXZvLCB0YWxlcyBjb21vIHB1YmxpY2FjaW9uZXMgcGVyacOzZGljYXMsIGFudG9sb2fDrWFzIG8gZW5jaWNsb3BlZGlhcy4KYi4gT2JyYSBEZXJpdmFkYSBzaWduaWZpY2EgdW5hIG9icmEgYmFzYWRhIGVuIGxhIG9icmEgb2JqZXRvIGRlIGVzdGEgbGljZW5jaWEgbyBlbiDDqXN0YSB5IG90cmFzIG9icmFzIHByZWV4aXN0ZW50ZXMsIHRhbGVzIGNvbW8gdHJhZHVjY2lvbmVzLCBhcnJlZ2xvcyBtdXNpY2FsZXMsIGRyYW1hdGl6YWNpb25lcywg4oCcZmljY2lvbmFsaXphY2lvbmVz4oCdLCB2ZXJzaW9uZXMgcGFyYSBjaW5lLCDigJxncmFiYWNpb25lcyBkZSBzb25pZG/igJ0sIHJlcHJvZHVjY2lvbmVzIGRlIGFydGUsIHJlc8O6bWVuZXMsIGNvbmRlbnNhY2lvbmVzLCBvIGN1YWxxdWllciBvdHJhIGVuIGxhIHF1ZSBsYSBvYnJhIHB1ZWRhIHNlciB0cmFuc2Zvcm1hZGEsIGNhbWJpYWRhIG8gYWRhcHRhZGEsIGV4Y2VwdG8gYXF1ZWxsYXMgcXVlIGNvbnN0aXR1eWFuIHVuYSBvYnJhIGNvbGVjdGl2YSwgbGFzIHF1ZSBubyBzZXLDoW4gY29uc2lkZXJhZGFzIHVuYSBvYnJhIGRlcml2YWRhIHBhcmEgZWZlY3RvcyBkZSBlc3RhIGxpY2VuY2lhLiAoUGFyYSBldml0YXIgZHVkYXMsIGVuIGVsIGNhc28gZGUgcXVlIGxhIE9icmEgc2VhIHVuYSBjb21wb3NpY2nDs24gbXVzaWNhbCBvIHVuYSBncmFiYWNpw7NuIHNvbm9yYSwgcGFyYSBsb3MgZWZlY3RvcyBkZSBlc3RhIExpY2VuY2lhIGxhIHNpbmNyb25pemFjacOzbiB0ZW1wb3JhbCBkZSBsYSBPYnJhIGNvbiB1bmEgaW1hZ2VuIGVuIG1vdmltaWVudG8gc2UgY29uc2lkZXJhcsOhIHVuYSBPYnJhIERlcml2YWRhIHBhcmEgbG9zIGZpbmVzIGRlIGVzdGEgbGljZW5jaWEpLgpjLiBMaWNlbmNpYW50ZSwgZXMgZWwgaW5kaXZpZHVvIG8gbGEgZW50aWRhZCB0aXR1bGFyIGRlIGxvcyBkZXJlY2hvcyBkZSBhdXRvciBxdWUgb2ZyZWNlIGxhIE9icmEgZW4gY29uZm9ybWlkYWQgY29uIGxhcyBjb25kaWNpb25lcyBkZSBlc3RhIExpY2VuY2lhLgpkLiBBdXRvciBvcmlnaW5hbCwgZXMgZWwgaW5kaXZpZHVvIHF1ZSBjcmXDsyBsYSBPYnJhLgplLiBPYnJhLCBlcyBhcXVlbGxhIG9icmEgc3VzY2VwdGlibGUgZGUgcHJvdGVjY2nDs24gcG9yIGVsIHLDqWdpbWVuIGRlIERlcmVjaG8gZGUgQXV0b3IgeSBxdWUgZXMgb2ZyZWNpZGEgZW4gbG9zIHTDqXJtaW5vcyBkZSBlc3RhIGxpY2VuY2lhCmYuIFVzdGVkLCBlcyBlbCBpbmRpdmlkdW8gbyBsYSBlbnRpZGFkIHF1ZSBlamVyY2l0YSBsb3MgZGVyZWNob3Mgb3RvcmdhZG9zIGFsIGFtcGFybyBkZSBlc3RhIExpY2VuY2lhIHkgcXVlIGNvbiBhbnRlcmlvcmlkYWQgbm8gaGEgdmlvbGFkbyBsYXMgY29uZGljaW9uZXMgZGUgbGEgbWlzbWEgcmVzcGVjdG8gYSBsYSBPYnJhLCBvIHF1ZSBoYXlhIG9idGVuaWRvIGF1dG9yaXphY2nDs24gZXhwcmVzYSBwb3IgcGFydGUgZGVsIExpY2VuY2lhbnRlIHBhcmEgZWplcmNlciBsb3MgZGVyZWNob3MgYWwgYW1wYXJvIGRlIGVzdGEgTGljZW5jaWEgcGVzZSBhIHVuYSB2aW9sYWNpw7NuIGFudGVyaW9yLgoJICAKMi4gRGVyZWNob3MgZGUgVXNvcyBIb25yYWRvcyB5IGV4Y2VwY2lvbmVzIExlZ2FsZXMuCk5hZGEgZW4gZXN0YSBMaWNlbmNpYSBwb2Ryw6Egc2VyIGludGVycHJldGFkbyBjb21vIHVuYSBkaXNtaW51Y2nDs24sIGxpbWl0YWNpw7NuIG8gcmVzdHJpY2Npw7NuIGRlIGxvcyBkZXJlY2hvcyBkZXJpdmFkb3MgZGVsIHVzbyBob25yYWRvIHkgb3RyYXMgbGltaXRhY2lvbmVzIG8gZXhjZXBjaW9uZXMgYSBsb3MgZGVyZWNob3MgZGVsIGF1dG9yIGJham8gZWwgcsOpZ2ltZW4gbGVnYWwgdmlnZW50ZSBvIGRlcml2YWRvIGRlIGN1YWxxdWllciBvdHJhIG5vcm1hIHF1ZSBzZSBsZSBhcGxpcXVlLgogIAozLiBDb25jZXNpw7NuIGRlIGxhIExpY2VuY2lhLgpCYWpvIGxvcyB0w6lybWlub3MgeSBjb25kaWNpb25lcyBkZSBlc3RhIExpY2VuY2lhLCBlbCBMaWNlbmNpYW50ZSBvdG9yZ2EgYSBVc3RlZCB1bmEgbGljZW5jaWEgbXVuZGlhbCwgbGlicmUgZGUgcmVnYWzDrWFzLCBubyBleGNsdXNpdmEgeSBwZXJwZXR1YSAoZHVyYW50ZSB0b2RvIGVsIHBlcsOtb2RvIGRlIHZpZ2VuY2lhIGRlIGxvcyBkZXJlY2hvcyBkZSBhdXRvcikgcGFyYSBlamVyY2VyIGVzdG9zIGRlcmVjaG9zIHNvYnJlIGxhIE9icmEgdGFsIHkgY29tbyBzZSBpbmRpY2EgYSBjb250aW51YWNpw7NuOgphLiBSZXByb2R1Y2lyIGxhIE9icmEsIGluY29ycG9yYXIgbGEgT2JyYSBlbiB1bmEgbyBtw6FzIE9icmFzIENvbGVjdGl2YXMsIHkgcmVwcm9kdWNpciBsYSBPYnJhIGluY29ycG9yYWRhIGVuIGxhcyBPYnJhcyBDb2xlY3RpdmFzLgpiLiBEaXN0cmlidWlyIGNvcGlhcyBvIGZvbm9ncmFtYXMgZGUgbGFzIE9icmFzLCBleGhpYmlybGFzIHDDumJsaWNhbWVudGUsIGVqZWN1dGFybGFzIHDDumJsaWNhbWVudGUgeS9vIHBvbmVybGFzIGEgZGlzcG9zaWNpw7NuIHDDumJsaWNhLCBpbmNsdXnDqW5kb2xhcyBjb21vIGluY29ycG9yYWRhcyBlbiBPYnJhcyBDb2xlY3RpdmFzLCBzZWfDum4gY29ycmVzcG9uZGEuCmMuIERpc3RyaWJ1aXIgY29waWFzIGRlIGxhcyBPYnJhcyBEZXJpdmFkYXMgcXVlIHNlIGdlbmVyZW4sIGV4aGliaXJsYXMgcMO6YmxpY2FtZW50ZSwgZWplY3V0YXJsYXMgcMO6YmxpY2FtZW50ZSB5L28gcG9uZXJsYXMgYSBkaXNwb3NpY2nDs24gcMO6YmxpY2EuCgpMb3MgZGVyZWNob3MgbWVuY2lvbmFkb3MgYW50ZXJpb3JtZW50ZSBwdWVkZW4gc2VyIGVqZXJjaWRvcyBlbiB0b2RvcyBsb3MgbWVkaW9zIHkgZm9ybWF0b3MsIGFjdHVhbG1lbnRlIGNvbm9jaWRvcyBvIHF1ZSBzZSBpbnZlbnRlbiBlbiBlbCBmdXR1cm8uIExvcyBkZXJlY2hvcyBhbnRlcyBtZW5jaW9uYWRvcyBpbmNsdXllbiBlbCBkZXJlY2hvIGEgcmVhbGl6YXIgZGljaGFzIG1vZGlmaWNhY2lvbmVzIGVuIGxhIG1lZGlkYSBxdWUgc2VhbiB0w6ljbmljYW1lbnRlIG5lY2VzYXJpYXMgcGFyYSBlamVyY2VyIGxvcyBkZXJlY2hvcyBlbiBvdHJvIG1lZGlvIG8gZm9ybWF0b3MsIHBlcm8gZGUgb3RyYSBtYW5lcmEgdXN0ZWQgbm8gZXN0w6EgYXV0b3JpemFkbyBwYXJhIHJlYWxpemFyIG9icmFzIGRlcml2YWRhcy4gVG9kb3MgbG9zIGRlcmVjaG9zIG5vIG90b3JnYWRvcyBleHByZXNhbWVudGUgcG9yIGVsIExpY2VuY2lhbnRlIHF1ZWRhbiBwb3IgZXN0ZSBtZWRpbyByZXNlcnZhZG9zLCBpbmNsdXllbmRvIHBlcm8gc2luIGxpbWl0YXJzZSBhIGFxdWVsbG9zIHF1ZSBzZSBtZW5jaW9uYW4gZW4gbGFzIHNlY2Npb25lcyA0KGQpIHkgNChlKS4KICAgIAo0LiBSZXN0cmljY2lvbmVzLgpMYSBsaWNlbmNpYSBvdG9yZ2FkYSBlbiBsYSBhbnRlcmlvciBTZWNjacOzbiAzIGVzdMOhIGV4cHJlc2FtZW50ZSBzdWpldGEgeSBsaW1pdGFkYSBwb3IgbGFzIHNpZ3VpZW50ZXMgcmVzdHJpY2Npb25lczoKYS4gVXN0ZWQgcHVlZGUgZGlzdHJpYnVpciwgZXhoaWJpciBww7pibGljYW1lbnRlLCBlamVjdXRhciBww7pibGljYW1lbnRlLCBvIHBvbmVyIGEgZGlzcG9zaWNpw7NuIHDDumJsaWNhIGxhIE9icmEgc8OzbG8gYmFqbyBsYXMgY29uZGljaW9uZXMgZGUgZXN0YSBMaWNlbmNpYSwgeSBVc3RlZCBkZWJlIGluY2x1aXIgdW5hIGNvcGlhIGRlIGVzdGEgbGljZW5jaWEgbyBkZWwgSWRlbnRpZmljYWRvciBVbml2ZXJzYWwgZGUgUmVjdXJzb3MgZGUgbGEgbWlzbWEgY29uIGNhZGEgY29waWEgZGUgbGEgT2JyYSBxdWUgZGlzdHJpYnV5YSwgZXhoaWJhIHDDumJsaWNhbWVudGUsIGVqZWN1dGUgcMO6YmxpY2FtZW50ZSBvIHBvbmdhIGEgZGlzcG9zaWNpw7NuIHDDumJsaWNhLiBObyBlcyBwb3NpYmxlIG9mcmVjZXIgbyBpbXBvbmVyIG5pbmd1bmEgY29uZGljacOzbiBzb2JyZSBsYSBPYnJhIHF1ZSBhbHRlcmUgbyBsaW1pdGUgbGFzIGNvbmRpY2lvbmVzIGRlIGVzdGEgTGljZW5jaWEgbyBlbCBlamVyY2ljaW8gZGUgbG9zIGRlcmVjaG9zIGRlIGxvcyBkZXN0aW5hdGFyaW9zIG90b3JnYWRvcyBlbiBlc3RlIGRvY3VtZW50by4gTm8gZXMgcG9zaWJsZSBzdWJsaWNlbmNpYXIgbGEgT2JyYS4gVXN0ZWQgZGViZSBtYW50ZW5lciBpbnRhY3RvcyB0b2RvcyBsb3MgYXZpc29zIHF1ZSBoYWdhbiByZWZlcmVuY2lhIGEgZXN0YSBMaWNlbmNpYSB5IGEgbGEgY2zDoXVzdWxhIGRlIGxpbWl0YWNpw7NuIGRlIGdhcmFudMOtYXMuIFVzdGVkIG5vIHB1ZWRlIGRpc3RyaWJ1aXIsIGV4aGliaXIgcMO6YmxpY2FtZW50ZSwgZWplY3V0YXIgcMO6YmxpY2FtZW50ZSwgbyBwb25lciBhIGRpc3Bvc2ljacOzbiBww7pibGljYSBsYSBPYnJhIGNvbiBhbGd1bmEgbWVkaWRhIHRlY25vbMOzZ2ljYSBxdWUgY29udHJvbGUgZWwgYWNjZXNvIG8gbGEgdXRpbGl6YWNpw7NuIGRlIGVsbGEgZGUgdW5hIGZvcm1hIHF1ZSBzZWEgaW5jb25zaXN0ZW50ZSBjb24gbGFzIGNvbmRpY2lvbmVzIGRlIGVzdGEgTGljZW5jaWEuIExvIGFudGVyaW9yIHNlIGFwbGljYSBhIGxhIE9icmEgaW5jb3Jwb3JhZGEgYSB1bmEgT2JyYSBDb2xlY3RpdmEsIHBlcm8gZXN0byBubyBleGlnZSBxdWUgbGEgT2JyYSBDb2xlY3RpdmEgYXBhcnRlIGRlIGxhIG9icmEgbWlzbWEgcXVlZGUgc3VqZXRhIGEgbGFzIGNvbmRpY2lvbmVzIGRlIGVzdGEgTGljZW5jaWEuIFNpIFVzdGVkIGNyZWEgdW5hIE9icmEgQ29sZWN0aXZhLCBwcmV2aW8gYXZpc28gZGUgY3VhbHF1aWVyIExpY2VuY2lhbnRlIGRlYmUsIGVuIGxhIG1lZGlkYSBkZSBsbyBwb3NpYmxlLCBlbGltaW5hciBkZSBsYSBPYnJhIENvbGVjdGl2YSBjdWFscXVpZXIgcmVmZXJlbmNpYSBhIGRpY2hvIExpY2VuY2lhbnRlIG8gYWwgQXV0b3IgT3JpZ2luYWwsIHNlZ8O6biBsbyBzb2xpY2l0YWRvIHBvciBlbCBMaWNlbmNpYW50ZSB5IGNvbmZvcm1lIGxvIGV4aWdlIGxhIGNsw6F1c3VsYSA0KGMpLgpiLiBVc3RlZCBubyBwdWVkZSBlamVyY2VyIG5pbmd1bm8gZGUgbG9zIGRlcmVjaG9zIHF1ZSBsZSBoYW4gc2lkbyBvdG9yZ2Fkb3MgZW4gbGEgU2VjY2nDs24gMyBwcmVjZWRlbnRlIGRlIG1vZG8gcXVlIGVzdMOpbiBwcmluY2lwYWxtZW50ZSBkZXN0aW5hZG9zIG8gZGlyZWN0YW1lbnRlIGRpcmlnaWRvcyBhIGNvbnNlZ3VpciB1biBwcm92ZWNobyBjb21lcmNpYWwgbyB1bmEgY29tcGVuc2FjacOzbiBtb25ldGFyaWEgcHJpdmFkYS4gRWwgaW50ZXJjYW1iaW8gZGUgbGEgT2JyYSBwb3Igb3RyYXMgb2JyYXMgcHJvdGVnaWRhcyBwb3IgZGVyZWNob3MgZGUgYXV0b3IsIHlhIHNlYSBhIHRyYXbDqXMgZGUgdW4gc2lzdGVtYSBwYXJhIGNvbXBhcnRpciBhcmNoaXZvcyBkaWdpdGFsZXMgKGRpZ2l0YWwgZmlsZS1zaGFyaW5nKSBvIGRlIGN1YWxxdWllciBvdHJhIG1hbmVyYSBubyBzZXLDoSBjb25zaWRlcmFkbyBjb21vIGVzdGFyIGRlc3RpbmFkbyBwcmluY2lwYWxtZW50ZSBvIGRpcmlnaWRvIGRpcmVjdGFtZW50ZSBhIGNvbnNlZ3VpciB1biBwcm92ZWNobyBjb21lcmNpYWwgbyB1bmEgY29tcGVuc2FjacOzbiBtb25ldGFyaWEgcHJpdmFkYSwgc2llbXByZSBxdWUgbm8gc2UgcmVhbGljZSB1biBwYWdvIG1lZGlhbnRlIHVuYSBjb21wZW5zYWNpw7NuIG1vbmV0YXJpYSBlbiByZWxhY2nDs24gY29uIGVsIGludGVyY2FtYmlvIGRlIG9icmFzIHByb3RlZ2lkYXMgcG9yIGVsIGRlcmVjaG8gZGUgYXV0b3IuCmMuIFNpIHVzdGVkIGRpc3RyaWJ1eWUsIGV4aGliZSBww7pibGljYW1lbnRlLCBlamVjdXRhIHDDumJsaWNhbWVudGUgbyBlamVjdXRhIHDDumJsaWNhbWVudGUgZW4gZm9ybWEgZGlnaXRhbCBsYSBPYnJhIG8gY3VhbHF1aWVyIE9icmEgRGVyaXZhZGEgdSBPYnJhIENvbGVjdGl2YSwgVXN0ZWQgZGViZSBtYW50ZW5lciBpbnRhY3RhIHRvZGEgbGEgaW5mb3JtYWNpw7NuIGRlIGRlcmVjaG8gZGUgYXV0b3IgZGUgbGEgT2JyYSB5IHByb3BvcmNpb25hciwgZGUgZm9ybWEgcmF6b25hYmxlIHNlZ8O6biBlbCBtZWRpbyBvIG1hbmVyYSBxdWUgVXN0ZWQgZXN0w6kgdXRpbGl6YW5kbzogKGkpIGVsIG5vbWJyZSBkZWwgQXV0b3IgT3JpZ2luYWwgc2kgZXN0w6EgcHJvdmlzdG8gKG8gc2V1ZMOzbmltbywgc2kgZnVlcmUgYXBsaWNhYmxlKSwgeS9vIChpaSkgZWwgbm9tYnJlIGRlIGxhIHBhcnRlIG8gbGFzIHBhcnRlcyBxdWUgZWwgQXV0b3IgT3JpZ2luYWwgeS9vIGVsIExpY2VuY2lhbnRlIGh1YmllcmVuIGRlc2lnbmFkbyBwYXJhIGxhIGF0cmlidWNpw7NuICh2LmcuLCB1biBpbnN0aXR1dG8gcGF0cm9jaW5hZG9yLCBlZGl0b3JpYWwsIHB1YmxpY2FjacOzbikgZW4gbGEgaW5mb3JtYWNpw7NuIGRlIGxvcyBkZXJlY2hvcyBkZSBhdXRvciBkZWwgTGljZW5jaWFudGUsIHTDqXJtaW5vcyBkZSBzZXJ2aWNpb3MgbyBkZSBvdHJhcyBmb3JtYXMgcmF6b25hYmxlczsgZWwgdMOtdHVsbyBkZSBsYSBPYnJhIHNpIGVzdMOhIHByb3Zpc3RvOyBlbiBsYSBtZWRpZGEgZGUgbG8gcmF6b25hYmxlbWVudGUgZmFjdGlibGUgeSwgc2kgZXN0w6EgcHJvdmlzdG8sIGVsIElkZW50aWZpY2Fkb3IgVW5pZm9ybWUgZGUgUmVjdXJzb3MgKFVuaWZvcm0gUmVzb3VyY2UgSWRlbnRpZmllcikgcXVlIGVsIExpY2VuY2lhbnRlIGVzcGVjaWZpY2EgcGFyYSBzZXIgYXNvY2lhZG8gY29uIGxhIE9icmEsIHNhbHZvIHF1ZSB0YWwgVVJJIG5vIHNlIHJlZmllcmEgYSBsYSBub3RhIHNvYnJlIGxvcyBkZXJlY2hvcyBkZSBhdXRvciBvIGEgbGEgaW5mb3JtYWNpw7NuIHNvYnJlIGVsIGxpY2VuY2lhbWllbnRvIGRlIGxhIE9icmE7IHkgZW4gZWwgY2FzbyBkZSB1bmEgT2JyYSBEZXJpdmFkYSwgYXRyaWJ1aXIgZWwgY3LDqWRpdG8gaWRlbnRpZmljYW5kbyBlbCB1c28gZGUgbGEgT2JyYSBlbiBsYSBPYnJhIERlcml2YWRhICh2LmcuLCAiVHJhZHVjY2nDs24gRnJhbmNlc2EgZGUgbGEgT2JyYSBkZWwgQXV0b3IgT3JpZ2luYWwsIiBvICJHdWnDs24gQ2luZW1hdG9ncsOhZmljbyBiYXNhZG8gZW4gbGEgT2JyYSBvcmlnaW5hbCBkZWwgQXV0b3IgT3JpZ2luYWwiKS4gVGFsIGNyw6lkaXRvIHB1ZWRlIHNlciBpbXBsZW1lbnRhZG8gZGUgY3VhbHF1aWVyIGZvcm1hIHJhem9uYWJsZTsgZW4gZWwgY2Fzbywgc2luIGVtYmFyZ28sIGRlIE9icmFzIERlcml2YWRhcyB1IE9icmFzIENvbGVjdGl2YXMsIHRhbCBjcsOpZGl0byBhcGFyZWNlcsOhLCBjb21vIG3DrW5pbW8sIGRvbmRlIGFwYXJlY2UgZWwgY3LDqWRpdG8gZGUgY3VhbHF1aWVyIG90cm8gYXV0b3IgY29tcGFyYWJsZSB5IGRlIHVuYSBtYW5lcmEsIGFsIG1lbm9zLCB0YW4gZGVzdGFjYWRhIGNvbW8gZWwgY3LDqWRpdG8gZGUgb3RybyBhdXRvciBjb21wYXJhYmxlLiAgCmQuIFBhcmEgZXZpdGFyIHRvZGEgY29uZnVzacOzbiwgZWwgTGljZW5jaWFudGUgYWNsYXJhIHF1ZSwgY3VhbmRvIGxhIG9icmEgZXMgdW5hIGNvbXBvc2ljacOzbiBtdXNpY2FsOgoKaS4gUmVnYWzDrWFzIHBvciBpbnRlcnByZXRhY2nDs24geSBlamVjdWNpw7NuIGJham8gbGljZW5jaWFzIGdlbmVyYWxlcy4gRWwgTGljZW5jaWFudGUgc2UgcmVzZXJ2YSBlbCBkZXJlY2hvIGV4Y2x1c2l2byBkZSBhdXRvcml6YXIgbGEgZWplY3VjacOzbiBww7pibGljYSBvIGxhIGVqZWN1Y2nDs24gcMO6YmxpY2EgZGlnaXRhbCBkZSBsYSBvYnJhIHkgZGUgcmVjb2xlY3Rhciwgc2VhIGluZGl2aWR1YWxtZW50ZSBvIGEgdHJhdsOpcyBkZSB1bmEgc29jaWVkYWQgZGUgZ2VzdGnDs24gY29sZWN0aXZhIGRlIGRlcmVjaG9zIGRlIGF1dG9yIHkgZGVyZWNob3MgY29uZXhvcyAocG9yIGVqZW1wbG8sIFNBWUNPKSwgbGFzIHJlZ2Fsw61hcyBwb3IgbGEgZWplY3VjacOzbiBww7pibGljYSBvIHBvciBsYSBlamVjdWNpw7NuIHDDumJsaWNhIGRpZ2l0YWwgZGUgbGEgb2JyYSAocG9yIGVqZW1wbG8gV2ViY2FzdCkgbGljZW5jaWFkYSBiYWpvIGxpY2VuY2lhcyBnZW5lcmFsZXMsIHNpIGxhIGludGVycHJldGFjacOzbiBvIGVqZWN1Y2nDs24gZGUgbGEgb2JyYSBlc3TDoSBwcmltb3JkaWFsbWVudGUgb3JpZW50YWRhIHBvciBvIGRpcmlnaWRhIGEgbGEgb2J0ZW5jacOzbiBkZSB1bmEgdmVudGFqYSBjb21lcmNpYWwgbyB1bmEgY29tcGVuc2FjacOzbiBtb25ldGFyaWEgcHJpdmFkYS4KaWkuIFJlZ2Fsw61hcyBwb3IgRm9ub2dyYW1hcy4gRWwgTGljZW5jaWFudGUgc2UgcmVzZXJ2YSBlbCBkZXJlY2hvIGV4Y2x1c2l2byBkZSByZWNvbGVjdGFyLCBpbmRpdmlkdWFsbWVudGUgbyBhIHRyYXbDqXMgZGUgdW5hIHNvY2llZGFkIGRlIGdlc3Rpw7NuIGNvbGVjdGl2YSBkZSBkZXJlY2hvcyBkZSBhdXRvciB5IGRlcmVjaG9zIGNvbmV4b3MgKHBvciBlamVtcGxvLCBsb3MgY29uc2FncmFkb3MgcG9yIGxhIFNBWUNPKSwgdW5hIGFnZW5jaWEgZGUgZGVyZWNob3MgbXVzaWNhbGVzIG8gYWxnw7puIGFnZW50ZSBkZXNpZ25hZG8sIGxhcyByZWdhbMOtYXMgcG9yIGN1YWxxdWllciBmb25vZ3JhbWEgcXVlIFVzdGVkIGNyZWUgYSBwYXJ0aXIgZGUgbGEgb2JyYSAo4oCcdmVyc2nDs24gY292ZXLigJ0pIHkgZGlzdHJpYnV5YSwgZW4gbG9zIHTDqXJtaW5vcyBkZWwgcsOpZ2ltZW4gZGUgZGVyZWNob3MgZGUgYXV0b3IsIHNpIGxhIGNyZWFjacOzbiBvIGRpc3RyaWJ1Y2nDs24gZGUgZXNhIHZlcnNpw7NuIGNvdmVyIGVzdMOhIHByaW1vcmRpYWxtZW50ZSBkZXN0aW5hZGEgbyBkaXJpZ2lkYSBhIG9idGVuZXIgdW5hIHZlbnRhamEgY29tZXJjaWFsIG8gdW5hIGNvbXBlbnNhY2nDs24gbW9uZXRhcmlhIHByaXZhZGEuCiAgICAgIAplLiBHZXN0acOzbiBkZSBEZXJlY2hvcyBkZSBBdXRvciBzb2JyZSBJbnRlcnByZXRhY2lvbmVzIHkgRWplY3VjaW9uZXMgRGlnaXRhbGVzIChXZWJDYXN0aW5nKS4gUGFyYSBldml0YXIgdG9kYSBjb25mdXNpw7NuLCBlbCBMaWNlbmNpYW50ZSBhY2xhcmEgcXVlLCBjdWFuZG8gbGEgb2JyYSBzZWEgdW4gZm9ub2dyYW1hLCBlbCBMaWNlbmNpYW50ZSBzZSByZXNlcnZhIGVsIGRlcmVjaG8gZXhjbHVzaXZvIGRlIGF1dG9yaXphciBsYSBlamVjdWNpw7NuIHDDumJsaWNhIGRpZ2l0YWwgZGUgbGEgb2JyYSAocG9yIGVqZW1wbG8sIHdlYmNhc3QpIHkgZGUgcmVjb2xlY3RhciwgaW5kaXZpZHVhbG1lbnRlIG8gYSB0cmF2w6lzIGRlIHVuYSBzb2NpZWRhZCBkZSBnZXN0acOzbiBjb2xlY3RpdmEgZGUgZGVyZWNob3MgZGUgYXV0b3IgeSBkZXJlY2hvcyBjb25leG9zIChwb3IgZWplbXBsbywgQUNJTlBSTyksIGxhcyByZWdhbMOtYXMgcG9yIGxhIGVqZWN1Y2nDs24gcMO6YmxpY2EgZGlnaXRhbCBkZSBsYSBvYnJhIChwb3IgZWplbXBsbywgd2ViY2FzdCksIHN1amV0YSBhIGxhcyBkaXNwb3NpY2lvbmVzIGFwbGljYWJsZXMgZGVsIHLDqWdpbWVuIGRlIERlcmVjaG8gZGUgQXV0b3IsIHNpIGVzdGEgZWplY3VjacOzbiBww7pibGljYSBkaWdpdGFsIGVzdMOhIHByaW1vcmRpYWxtZW50ZSBkaXJpZ2lkYSBhIG9idGVuZXIgdW5hIHZlbnRhamEgY29tZXJjaWFsIG8gdW5hIGNvbXBlbnNhY2nDs24gbW9uZXRhcmlhIHByaXZhZGEuCiAgCjUuIFJlcHJlc2VudGFjaW9uZXMsIEdhcmFudMOtYXMgeSBMaW1pdGFjaW9uZXMgZGUgUmVzcG9uc2FiaWxpZGFkLgpBIE1FTk9TIFFVRSBMQVMgUEFSVEVTIExPIEFDT1JEQVJBTiBERSBPVFJBIEZPUk1BIFBPUiBFU0NSSVRPLCBFTCBMSUNFTkNJQU5URSBPRlJFQ0UgTEEgT0JSQSAoRU4gRUwgRVNUQURPIEVOIEVMIFFVRSBTRSBFTkNVRU5UUkEpIOKAnFRBTCBDVUFM4oCdLCBTSU4gQlJJTkRBUiBHQVJBTlTDjUFTIERFIENMQVNFIEFMR1VOQSBSRVNQRUNUTyBERSBMQSBPQlJBLCBZQSBTRUEgRVhQUkVTQSwgSU1QTMONQ0lUQSwgTEVHQUwgTyBDVUFMUVVJRVJBIE9UUkEsIElOQ0xVWUVORE8sIFNJTiBMSU1JVEFSU0UgQSBFTExBUywgR0FSQU5Uw41BUyBERSBUSVRVTEFSSURBRCwgQ09NRVJDSUFCSUxJREFELCBBREFQVEFCSUxJREFEIE8gQURFQ1VBQ0nDk04gQSBQUk9Qw5NTSVRPIERFVEVSTUlOQURPLCBBVVNFTkNJQSBERSBJTkZSQUNDScOTTiwgREUgQVVTRU5DSUEgREUgREVGRUNUT1MgTEFURU5URVMgTyBERSBPVFJPIFRJUE8sIE8gTEEgUFJFU0VOQ0lBIE8gQVVTRU5DSUEgREUgRVJST1JFUywgU0VBTiBPIE5PIERFU0NVQlJJQkxFUyAoUFVFREFOIE8gTk8gU0VSIEVTVE9TIERFU0NVQklFUlRPUykuIEFMR1VOQVMgSlVSSVNESUNDSU9ORVMgTk8gUEVSTUlURU4gTEEgRVhDTFVTScOTTiBERSBHQVJBTlTDjUFTIElNUEzDjUNJVEFTLCBFTiBDVVlPIENBU08gRVNUQSBFWENMVVNJw5NOIFBVRURFIE5PIEFQTElDQVJTRSBBIFVTVEVELgogIAo2LiBMaW1pdGFjacOzbiBkZSByZXNwb25zYWJpbGlkYWQuCkEgTUVOT1MgUVVFIExPIEVYSUpBIEVYUFJFU0FNRU5URSBMQSBMRVkgQVBMSUNBQkxFLCBFTCBMSUNFTkNJQU5URSBOTyBTRVLDgSBSRVNQT05TQUJMRSBBTlRFIFVTVEVEIFBPUiBEQcORTyBBTEdVTk8sIFNFQSBQT1IgUkVTUE9OU0FCSUxJREFEIEVYVFJBQ09OVFJBQ1RVQUwsIFBSRUNPTlRSQUNUVUFMIE8gQ09OVFJBQ1RVQUwsIE9CSkVUSVZBIE8gU1VCSkVUSVZBLCBTRSBUUkFURSBERSBEQcORT1MgTU9SQUxFUyBPIFBBVFJJTU9OSUFMRVMsIERJUkVDVE9TIE8gSU5ESVJFQ1RPUywgUFJFVklTVE9TIE8gSU1QUkVWSVNUT1MgUFJPRFVDSURPUyBQT1IgRUwgVVNPIERFIEVTVEEgTElDRU5DSUEgTyBERSBMQSBPQlJBLCBBVU4gQ1VBTkRPIEVMIExJQ0VOQ0lBTlRFIEhBWUEgU0lETyBBRFZFUlRJRE8gREUgTEEgUE9TSUJJTElEQUQgREUgRElDSE9TIERBw5FPUy4gQUxHVU5BUyBMRVlFUyBOTyBQRVJNSVRFTiBMQSBFWENMVVNJw5NOIERFIENJRVJUQSBSRVNQT05TQUJJTElEQUQsIEVOIENVWU8gQ0FTTyBFU1RBIEVYQ0xVU0nDk04gUFVFREUgTk8gQVBMSUNBUlNFIEEgVVNURUQuCiAgCjcuIFTDqXJtaW5vLgkKYS4gRXN0YSBMaWNlbmNpYSB5IGxvcyBkZXJlY2hvcyBvdG9yZ2Fkb3MgZW4gdmlydHVkIGRlIGVsbGEgdGVybWluYXLDoW4gYXV0b23DoXRpY2FtZW50ZSBzaSBVc3RlZCBpbmZyaW5nZSBhbGd1bmEgY29uZGljacOzbiBlc3RhYmxlY2lkYSBlbiBlbGxhLiBTaW4gZW1iYXJnbywgbG9zIGluZGl2aWR1b3MgbyBlbnRpZGFkZXMgcXVlIGhhbiByZWNpYmlkbyBPYnJhcyBEZXJpdmFkYXMgbyBDb2xlY3RpdmFzIGRlIFVzdGVkIGRlIGNvbmZvcm1pZGFkIGNvbiBlc3RhIExpY2VuY2lhLCBubyB2ZXLDoW4gdGVybWluYWRhcyBzdXMgbGljZW5jaWFzLCBzaWVtcHJlIHF1ZSBlc3RvcyBpbmRpdmlkdW9zIG8gZW50aWRhZGVzIHNpZ2FuIGN1bXBsaWVuZG8gw61udGVncmFtZW50ZSBsYXMgY29uZGljaW9uZXMgZGUgZXN0YXMgbGljZW5jaWFzLiBMYXMgU2VjY2lvbmVzIDEsIDIsIDUsIDYsIDcsIHkgOCBzdWJzaXN0aXLDoW4gYSBjdWFscXVpZXIgdGVybWluYWNpw7NuIGRlIGVzdGEgTGljZW5jaWEuCmIuIFN1amV0YSBhIGxhcyBjb25kaWNpb25lcyB5IHTDqXJtaW5vcyBhbnRlcmlvcmVzLCBsYSBsaWNlbmNpYSBvdG9yZ2FkYSBhcXXDrSBlcyBwZXJwZXR1YSAoZHVyYW50ZSBlbCBwZXLDrW9kbyBkZSB2aWdlbmNpYSBkZSBsb3MgZGVyZWNob3MgZGUgYXV0b3IgZGUgbGEgb2JyYSkuIE5vIG9ic3RhbnRlIGxvIGFudGVyaW9yLCBlbCBMaWNlbmNpYW50ZSBzZSByZXNlcnZhIGVsIGRlcmVjaG8gYSBwdWJsaWNhciB5L28gZXN0cmVuYXIgbGEgT2JyYSBiYWpvIGNvbmRpY2lvbmVzIGRlIGxpY2VuY2lhIGRpZmVyZW50ZXMgbyBhIGRlamFyIGRlIGRpc3RyaWJ1aXJsYSBlbiBsb3MgdMOpcm1pbm9zIGRlIGVzdGEgTGljZW5jaWEgZW4gY3VhbHF1aWVyIG1vbWVudG87IGVuIGVsIGVudGVuZGlkbywgc2luIGVtYmFyZ28sIHF1ZSBlc2EgZWxlY2Npw7NuIG5vIHNlcnZpcsOhIHBhcmEgcmV2b2NhciBlc3RhIGxpY2VuY2lhIG8gcXVlIGRlYmEgc2VyIG90b3JnYWRhICwgYmFqbyBsb3MgdMOpcm1pbm9zIGRlIGVzdGEgbGljZW5jaWEpLCB5IGVzdGEgbGljZW5jaWEgY29udGludWFyw6EgZW4gcGxlbm8gdmlnb3IgeSBlZmVjdG8gYSBtZW5vcyBxdWUgc2VhIHRlcm1pbmFkYSBjb21vIHNlIGV4cHJlc2EgYXRyw6FzLiBMYSBMaWNlbmNpYSByZXZvY2FkYSBjb250aW51YXLDoSBzaWVuZG8gcGxlbmFtZW50ZSB2aWdlbnRlIHkgZWZlY3RpdmEgc2kgbm8gc2UgbGUgZGEgdMOpcm1pbm8gZW4gbGFzIGNvbmRpY2lvbmVzIGluZGljYWRhcyBhbnRlcmlvcm1lbnRlLgogIAo4LiBWYXJpb3MuCmEuIENhZGEgdmV6IHF1ZSBVc3RlZCBkaXN0cmlidXlhIG8gcG9uZ2EgYSBkaXNwb3NpY2nDs24gcMO6YmxpY2EgbGEgT2JyYSBvIHVuYSBPYnJhIENvbGVjdGl2YSwgZWwgTGljZW5jaWFudGUgb2ZyZWNlcsOhIGFsIGRlc3RpbmF0YXJpbyB1bmEgbGljZW5jaWEgZW4gbG9zIG1pc21vcyB0w6lybWlub3MgeSBjb25kaWNpb25lcyBxdWUgbGEgbGljZW5jaWEgb3RvcmdhZGEgYSBVc3RlZCBiYWpvIGVzdGEgTGljZW5jaWEuCmIuIFNpIGFsZ3VuYSBkaXNwb3NpY2nDs24gZGUgZXN0YSBMaWNlbmNpYSByZXN1bHRhIGludmFsaWRhZGEgbyBubyBleGlnaWJsZSwgc2Vnw7puIGxhIGxlZ2lzbGFjacOzbiB2aWdlbnRlLCBlc3RvIG5vIGFmZWN0YXLDoSBuaSBsYSB2YWxpZGV6IG5pIGxhIGFwbGljYWJpbGlkYWQgZGVsIHJlc3RvIGRlIGNvbmRpY2lvbmVzIGRlIGVzdGEgTGljZW5jaWEgeSwgc2luIGFjY2nDs24gYWRpY2lvbmFsIHBvciBwYXJ0ZSBkZSBsb3Mgc3VqZXRvcyBkZSBlc3RlIGFjdWVyZG8sIGFxdcOpbGxhIHNlIGVudGVuZGVyw6EgcmVmb3JtYWRhIGxvIG3DrW5pbW8gbmVjZXNhcmlvIHBhcmEgaGFjZXIgcXVlIGRpY2hhIGRpc3Bvc2ljacOzbiBzZWEgdsOhbGlkYSB5IGV4aWdpYmxlLgpjLiBOaW5nw7puIHTDqXJtaW5vIG8gZGlzcG9zaWNpw7NuIGRlIGVzdGEgTGljZW5jaWEgc2UgZXN0aW1hcsOhIHJlbnVuY2lhZGEgeSBuaW5ndW5hIHZpb2xhY2nDs24gZGUgZWxsYSBzZXLDoSBjb25zZW50aWRhIGEgbWVub3MgcXVlIGVzYSByZW51bmNpYSBvIGNvbnNlbnRpbWllbnRvIHNlYSBvdG9yZ2FkbyBwb3IgZXNjcml0byB5IGZpcm1hZG8gcG9yIGxhIHBhcnRlIHF1ZSByZW51bmNpZSBvIGNvbnNpZW50YS4KZC4gRXN0YSBMaWNlbmNpYSByZWZsZWphIGVsIGFjdWVyZG8gcGxlbm8gZW50cmUgbGFzIHBhcnRlcyByZXNwZWN0byBhIGxhIE9icmEgYXF1w60gbGljZW5jaWFkYS4gTm8gaGF5IGFycmVnbG9zLCBhY3VlcmRvcyBvIGRlY2xhcmFjaW9uZXMgcmVzcGVjdG8gYSBsYSBPYnJhIHF1ZSBubyBlc3TDqW4gZXNwZWNpZmljYWRvcyBlbiBlc3RlIGRvY3VtZW50by4gRWwgTGljZW5jaWFudGUgbm8gc2UgdmVyw6EgbGltaXRhZG8gcG9yIG5pbmd1bmEgZGlzcG9zaWNpw7NuIGFkaWNpb25hbCBxdWUgcHVlZGEgc3VyZ2lyIGVuIGFsZ3VuYSBjb211bmljYWNpw7NuIGVtYW5hZGEgZGUgVXN0ZWQuIEVzdGEgTGljZW5jaWEgbm8gcHVlZGUgc2VyIG1vZGlmaWNhZGEgc2luIGVsIGNvbnNlbnRpbWllbnRvIG11dHVvIHBvciBlc2NyaXRvIGRlbCBMaWNlbmNpYW50ZSB5IFVzdGVkLgo= |
