Quantifying and Controlling Biases in Estimates of Dark Matter Halo Concentration

ABSTRACT: We use bootstrapping to estimate the bias of concentration estimates on N-body dark matter halos as a function of particle number. We find that algorithms based on the maximum radial velocity and radial particle binning tend to overestimate the concentration by 15% − 20% for halos sampled...

Full description

Autores:
Muñoz Cuartas, Juan Carlos
Poveda Ruiz, Christian Nicanor
Forero Romero, Jaime Ernesto
Tipo de recurso:
Article of investigation
Fecha de publicación:
2016
Institución:
Universidad de Antioquia
Repositorio:
Repositorio UdeA
Idioma:
eng
OAI Identifier:
oai:bibliotecadigital.udea.edu.co:10495/35227
Acceso en línea:
https://hdl.handle.net/10495/35227
Palabra clave:
Materia oscura (Astronomía)
Dark matter (Astronomy)
Galaxias
Galaxies
Halos
http://id.loc.gov/authorities/subjects/sh87007317
Rights
openAccess
License
http://creativecommons.org/licenses/by/2.5/co/
id UDEA2_1bae5f6b7e750e72d343ff4f32df3f12
oai_identifier_str oai:bibliotecadigital.udea.edu.co:10495/35227
network_acronym_str UDEA2
network_name_str Repositorio UdeA
repository_id_str
dc.title.spa.fl_str_mv Quantifying and Controlling Biases in Estimates of Dark Matter Halo Concentration
title Quantifying and Controlling Biases in Estimates of Dark Matter Halo Concentration
spellingShingle Quantifying and Controlling Biases in Estimates of Dark Matter Halo Concentration
Materia oscura (Astronomía)
Dark matter (Astronomy)
Galaxias
Galaxies
Halos
http://id.loc.gov/authorities/subjects/sh87007317
title_short Quantifying and Controlling Biases in Estimates of Dark Matter Halo Concentration
title_full Quantifying and Controlling Biases in Estimates of Dark Matter Halo Concentration
title_fullStr Quantifying and Controlling Biases in Estimates of Dark Matter Halo Concentration
title_full_unstemmed Quantifying and Controlling Biases in Estimates of Dark Matter Halo Concentration
title_sort Quantifying and Controlling Biases in Estimates of Dark Matter Halo Concentration
dc.creator.fl_str_mv Muñoz Cuartas, Juan Carlos
Poveda Ruiz, Christian Nicanor
Forero Romero, Jaime Ernesto
dc.contributor.author.none.fl_str_mv Muñoz Cuartas, Juan Carlos
Poveda Ruiz, Christian Nicanor
Forero Romero, Jaime Ernesto
dc.contributor.researchgroup.spa.fl_str_mv Grupo de Física y Astrofísica Computacional (FACOM)
dc.subject.lcsh.none.fl_str_mv Materia oscura (Astronomía)
Dark matter (Astronomy)
topic Materia oscura (Astronomía)
Dark matter (Astronomy)
Galaxias
Galaxies
Halos
http://id.loc.gov/authorities/subjects/sh87007317
dc.subject.lemb.none.fl_str_mv Galaxias
Galaxies
dc.subject.proposal.spa.fl_str_mv Halos
dc.subject.lcshuri.none.fl_str_mv http://id.loc.gov/authorities/subjects/sh87007317
description ABSTRACT: We use bootstrapping to estimate the bias of concentration estimates on N-body dark matter halos as a function of particle number. We find that algorithms based on the maximum radial velocity and radial particle binning tend to overestimate the concentration by 15% − 20% for halos sampled with 200 particles and by 7%-10% for halos sampled with 500 particles. To control this bias at low particle numbers we propose a new algorithm that estimates halo concentrations based on the integrated mass profile. The method uses the full particle information without any binning, making it reliable in cases when low numerical resolution becomes a limitation for other methods. This method reduces the bias to < 3% for halos sampled with 200-500 particles. The velocity and density methods have to use halos with at least ∼ 4000 particles in order to keep the biases down to the same low level. We also show that the mass-concentration relationship could be shallower than expected once the biases of the different concentration measurements are taken into account. These results show that bootstrapping and the concentration estimates based on the integrated mass profile are valuable tools to probe the internal structure of dark matter halos in numerical simulations.
publishDate 2016
dc.date.issued.none.fl_str_mv 2016
dc.date.accessioned.none.fl_str_mv 2023-06-01T15:11:43Z
dc.date.available.none.fl_str_mv 2023-06-01T15:11:43Z
dc.type.spa.fl_str_mv Artículo de investigación
dc.type.coar.spa.fl_str_mv http://purl.org/coar/resource_type/c_2df8fbb1
dc.type.redcol.spa.fl_str_mv https://purl.org/redcol/resource_type/ART
dc.type.coarversion.spa.fl_str_mv http://purl.org/coar/version/c_970fb48d4fbd8a85
dc.type.driver.spa.fl_str_mv info:eu-repo/semantics/article
dc.type.version.spa.fl_str_mv info:eu-repo/semantics/publishedVersion
format http://purl.org/coar/resource_type/c_2df8fbb1
status_str publishedVersion
dc.identifier.issn.none.fl_str_mv 0004-637X
dc.identifier.uri.none.fl_str_mv https://hdl.handle.net/10495/35227
dc.identifier.doi.none.fl_str_mv 10.48550/arXiv.1609.08179
dc.identifier.eissn.none.fl_str_mv 1538-4357
identifier_str_mv 0004-637X
10.48550/arXiv.1609.08179
1538-4357
url https://hdl.handle.net/10495/35227
dc.language.iso.spa.fl_str_mv eng
language eng
dc.relation.ispartofjournalabbrev.spa.fl_str_mv Astrophys. J.
dc.relation.citationendpage.spa.fl_str_mv 6
dc.relation.citationissue.spa.fl_str_mv 2
dc.relation.citationstartpage.spa.fl_str_mv 1
dc.relation.citationvolume.spa.fl_str_mv 832
dc.relation.ispartofjournal.spa.fl_str_mv Astrophysical Journal
dc.rights.uri.*.fl_str_mv http://creativecommons.org/licenses/by/2.5/co/
dc.rights.uri.spa.fl_str_mv https://creativecommons.org/licenses/by/4.0/
dc.rights.accessrights.spa.fl_str_mv info:eu-repo/semantics/openAccess
dc.rights.coar.spa.fl_str_mv http://purl.org/coar/access_right/c_abf2
rights_invalid_str_mv http://creativecommons.org/licenses/by/2.5/co/
https://creativecommons.org/licenses/by/4.0/
http://purl.org/coar/access_right/c_abf2
eu_rights_str_mv openAccess
dc.format.extent.spa.fl_str_mv 6
dc.format.mimetype.spa.fl_str_mv application/pdf
dc.publisher.spa.fl_str_mv Institute of Physics Publishing (IOP)
American Astronomical Society
dc.publisher.place.spa.fl_str_mv Chicago, Estados Unidos
institution Universidad de Antioquia
bitstream.url.fl_str_mv https://bibliotecadigital.udea.edu.co/bitstreams/9913f3d2-5c28-4c52-93dc-8f037658ecec/download
https://bibliotecadigital.udea.edu.co/bitstreams/b4ab21d8-58e0-4a9a-8248-5ed40ce3a0a2/download
https://bibliotecadigital.udea.edu.co/bitstreams/e8137438-ce3b-46af-8208-fad09a6ef7ee/download
https://bibliotecadigital.udea.edu.co/bitstreams/b59cfcac-6709-48b9-a1c4-e5c2fe04a594/download
https://bibliotecadigital.udea.edu.co/bitstreams/043c192e-6a11-4363-8d6c-833d4ad41f0a/download
bitstream.checksum.fl_str_mv 3716cc918ce53deb906dbd0f066c7c26
1646d1f6b96dbbbc38035efc9239ac9c
8a4605be74aa9ea9d79846c1fba20a33
be4a12a5c93016c5c1cf7f96521329bb
93f62689f446ccc041af6ea1ed8f8cba
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
MD5
MD5
repository.name.fl_str_mv Repositorio Institucional de la Universidad de Antioquia
repository.mail.fl_str_mv aplicacionbibliotecadigitalbiblioteca@udea.edu.co
_version_ 1851052652389990400
spelling Muñoz Cuartas, Juan CarlosPoveda Ruiz, Christian NicanorForero Romero, Jaime ErnestoGrupo de Física y Astrofísica Computacional (FACOM)2023-06-01T15:11:43Z2023-06-01T15:11:43Z20160004-637Xhttps://hdl.handle.net/10495/3522710.48550/arXiv.1609.081791538-4357ABSTRACT: We use bootstrapping to estimate the bias of concentration estimates on N-body dark matter halos as a function of particle number. We find that algorithms based on the maximum radial velocity and radial particle binning tend to overestimate the concentration by 15% − 20% for halos sampled with 200 particles and by 7%-10% for halos sampled with 500 particles. To control this bias at low particle numbers we propose a new algorithm that estimates halo concentrations based on the integrated mass profile. The method uses the full particle information without any binning, making it reliable in cases when low numerical resolution becomes a limitation for other methods. This method reduces the bias to < 3% for halos sampled with 200-500 particles. The velocity and density methods have to use halos with at least ∼ 4000 particles in order to keep the biases down to the same low level. We also show that the mass-concentration relationship could be shallower than expected once the biases of the different concentration measurements are taken into account. These results show that bootstrapping and the concentration estimates based on the integrated mass profile are valuable tools to probe the internal structure of dark matter halos in numerical simulations.COL00382626application/pdfengInstitute of Physics Publishing (IOP)American Astronomical SocietyChicago, Estados Unidoshttp://creativecommons.org/licenses/by/2.5/co/https://creativecommons.org/licenses/by/4.0/info:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2Materia oscura (Astronomía)Dark matter (Astronomy)GalaxiasGalaxiesHaloshttp://id.loc.gov/authorities/subjects/sh87007317Quantifying and Controlling Biases in Estimates of Dark Matter Halo ConcentrationArtículo de investigaciónhttp://purl.org/coar/resource_type/c_2df8fbb1https://purl.org/redcol/resource_type/ARThttp://purl.org/coar/version/c_970fb48d4fbd8a85info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionAstrophys. J.621832Astrophysical JournalPublicationORIGINALCarlosMuñoz_2016_QuantifyingControllingBiases.pdfCarlosMuñoz_2016_QuantifyingControllingBiases.pdfArtículo de investigaciónapplication/pdf925453https://bibliotecadigital.udea.edu.co/bitstreams/9913f3d2-5c28-4c52-93dc-8f037658ecec/download3716cc918ce53deb906dbd0f066c7c26MD51trueAnonymousREADCC-LICENSElicense_rdflicense_rdfapplication/rdf+xml; charset=utf-8927https://bibliotecadigital.udea.edu.co/bitstreams/b4ab21d8-58e0-4a9a-8248-5ed40ce3a0a2/download1646d1f6b96dbbbc38035efc9239ac9cMD52falseAnonymousREADLICENSElicense.txtlicense.txttext/plain; charset=utf-81748https://bibliotecadigital.udea.edu.co/bitstreams/e8137438-ce3b-46af-8208-fad09a6ef7ee/download8a4605be74aa9ea9d79846c1fba20a33MD53falseAnonymousREADTEXTCarlosMuñoz_2016_QuantifyingControllingBiases.pdf.txtCarlosMuñoz_2016_QuantifyingControllingBiases.pdf.txtExtracted texttext/plain27581https://bibliotecadigital.udea.edu.co/bitstreams/b59cfcac-6709-48b9-a1c4-e5c2fe04a594/downloadbe4a12a5c93016c5c1cf7f96521329bbMD54falseAnonymousREADTHUMBNAILCarlosMuñoz_2016_QuantifyingControllingBiases.pdf.jpgCarlosMuñoz_2016_QuantifyingControllingBiases.pdf.jpgGenerated Thumbnailimage/jpeg16207https://bibliotecadigital.udea.edu.co/bitstreams/043c192e-6a11-4363-8d6c-833d4ad41f0a/download93f62689f446ccc041af6ea1ed8f8cbaMD55falseAnonymousREAD10495/35227oai:bibliotecadigital.udea.edu.co:10495/352272025-03-27 01:40:41.555http://creativecommons.org/licenses/by/2.5/co/open.accesshttps://bibliotecadigital.udea.edu.coRepositorio Institucional de la Universidad de Antioquiaaplicacionbibliotecadigitalbiblioteca@udea.edu.coTk9URTogUExBQ0UgWU9VUiBPV04gTElDRU5TRSBIRVJFClRoaXMgc2FtcGxlIGxpY2Vuc2UgaXMgcHJvdmlkZWQgZm9yIGluZm9ybWF0aW9uYWwgcHVycG9zZXMgb25seS4KCk5PTi1FWENMVVNJVkUgRElTVFJJQlVUSU9OIExJQ0VOU0UKCkJ5IHNpZ25pbmcgYW5kIHN1Ym1pdHRpbmcgdGhpcyBsaWNlbnNlLCB5b3UgKHRoZSBhdXRob3Iocykgb3IgY29weXJpZ2h0Cm93bmVyKSBncmFudHMgdG8gRFNwYWNlIFVuaXZlcnNpdHkgKERTVSkgdGhlIG5vbi1leGNsdXNpdmUgcmlnaHQgdG8gcmVwcm9kdWNlLAp0cmFuc2xhdGUgKGFzIGRlZmluZWQgYmVsb3cpLCBhbmQvb3IgZGlzdHJpYnV0ZSB5b3VyIHN1Ym1pc3Npb24gKGluY2x1ZGluZwp0aGUgYWJzdHJhY3QpIHdvcmxkd2lkZSBpbiBwcmludCBhbmQgZWxlY3Ryb25pYyBmb3JtYXQgYW5kIGluIGFueSBtZWRpdW0sCmluY2x1ZGluZyBidXQgbm90IGxpbWl0ZWQgdG8gYXVkaW8gb3IgdmlkZW8uCgpZb3UgYWdyZWUgdGhhdCBEU1UgbWF5LCB3aXRob3V0IGNoYW5naW5nIHRoZSBjb250ZW50LCB0cmFuc2xhdGUgdGhlCnN1Ym1pc3Npb24gdG8gYW55IG1lZGl1bSBvciBmb3JtYXQgZm9yIHRoZSBwdXJwb3NlIG9mIHByZXNlcnZhdGlvbi4KCllvdSBhbHNvIGFncmVlIHRoYXQgRFNVIG1heSBrZWVwIG1vcmUgdGhhbiBvbmUgY29weSBvZiB0aGlzIHN1Ym1pc3Npb24gZm9yCnB1cnBvc2VzIG9mIHNlY3VyaXR5LCBiYWNrLXVwIGFuZCBwcmVzZXJ2YXRpb24uCgpZb3UgcmVwcmVzZW50IHRoYXQgdGhlIHN1Ym1pc3Npb24gaXMgeW91ciBvcmlnaW5hbCB3b3JrLCBhbmQgdGhhdCB5b3UgaGF2ZQp0aGUgcmlnaHQgdG8gZ3JhbnQgdGhlIHJpZ2h0cyBjb250YWluZWQgaW4gdGhpcyBsaWNlbnNlLiBZb3UgYWxzbyByZXByZXNlbnQKdGhhdCB5b3VyIHN1Ym1pc3Npb24gZG9lcyBub3QsIHRvIHRoZSBiZXN0IG9mIHlvdXIga25vd2xlZGdlLCBpbmZyaW5nZSB1cG9uCmFueW9uZSdzIGNvcHlyaWdodC4KCklmIHRoZSBzdWJtaXNzaW9uIGNvbnRhaW5zIG1hdGVyaWFsIGZvciB3aGljaCB5b3UgZG8gbm90IGhvbGQgY29weXJpZ2h0LAp5b3UgcmVwcmVzZW50IHRoYXQgeW91IGhhdmUgb2J0YWluZWQgdGhlIHVucmVzdHJpY3RlZCBwZXJtaXNzaW9uIG9mIHRoZQpjb3B5cmlnaHQgb3duZXIgdG8gZ3JhbnQgRFNVIHRoZSByaWdodHMgcmVxdWlyZWQgYnkgdGhpcyBsaWNlbnNlLCBhbmQgdGhhdApzdWNoIHRoaXJkLXBhcnR5IG93bmVkIG1hdGVyaWFsIGlzIGNsZWFybHkgaWRlbnRpZmllZCBhbmQgYWNrbm93bGVkZ2VkCndpdGhpbiB0aGUgdGV4dCBvciBjb250ZW50IG9mIHRoZSBzdWJtaXNzaW9uLgoKSUYgVEhFIFNVQk1JU1NJT04gSVMgQkFTRUQgVVBPTiBXT1JLIFRIQVQgSEFTIEJFRU4gU1BPTlNPUkVEIE9SIFNVUFBPUlRFRApCWSBBTiBBR0VOQ1kgT1IgT1JHQU5JWkFUSU9OIE9USEVSIFRIQU4gRFNVLCBZT1UgUkVQUkVTRU5UIFRIQVQgWU9VIEhBVkUKRlVMRklMTEVEIEFOWSBSSUdIVCBPRiBSRVZJRVcgT1IgT1RIRVIgT0JMSUdBVElPTlMgUkVRVUlSRUQgQlkgU1VDSApDT05UUkFDVCBPUiBBR1JFRU1FTlQuCgpEU1Ugd2lsbCBjbGVhcmx5IGlkZW50aWZ5IHlvdXIgbmFtZShzKSBhcyB0aGUgYXV0aG9yKHMpIG9yIG93bmVyKHMpIG9mIHRoZQpzdWJtaXNzaW9uLCBhbmQgd2lsbCBub3QgbWFrZSBhbnkgYWx0ZXJhdGlvbiwgb3RoZXIgdGhhbiBhcyBhbGxvd2VkIGJ5IHRoaXMKbGljZW5zZSwgdG8geW91ciBzdWJtaXNzaW9uLgo=