Quantifying and Controlling Biases in Estimates of Dark Matter Halo Concentration
ABSTRACT: We use bootstrapping to estimate the bias of concentration estimates on N-body dark matter halos as a function of particle number. We find that algorithms based on the maximum radial velocity and radial particle binning tend to overestimate the concentration by 15% − 20% for halos sampled...
- Autores:
-
Muñoz Cuartas, Juan Carlos
Poveda Ruiz, Christian Nicanor
Forero Romero, Jaime Ernesto
- Tipo de recurso:
- Article of investigation
- Fecha de publicación:
- 2016
- Institución:
- Universidad de Antioquia
- Repositorio:
- Repositorio UdeA
- Idioma:
- eng
- OAI Identifier:
- oai:bibliotecadigital.udea.edu.co:10495/35227
- Acceso en línea:
- https://hdl.handle.net/10495/35227
- Palabra clave:
- Materia oscura (Astronomía)
Dark matter (Astronomy)
Galaxias
Galaxies
Halos
http://id.loc.gov/authorities/subjects/sh87007317
- Rights
- openAccess
- License
- http://creativecommons.org/licenses/by/2.5/co/
| id |
UDEA2_1bae5f6b7e750e72d343ff4f32df3f12 |
|---|---|
| oai_identifier_str |
oai:bibliotecadigital.udea.edu.co:10495/35227 |
| network_acronym_str |
UDEA2 |
| network_name_str |
Repositorio UdeA |
| repository_id_str |
|
| dc.title.spa.fl_str_mv |
Quantifying and Controlling Biases in Estimates of Dark Matter Halo Concentration |
| title |
Quantifying and Controlling Biases in Estimates of Dark Matter Halo Concentration |
| spellingShingle |
Quantifying and Controlling Biases in Estimates of Dark Matter Halo Concentration Materia oscura (Astronomía) Dark matter (Astronomy) Galaxias Galaxies Halos http://id.loc.gov/authorities/subjects/sh87007317 |
| title_short |
Quantifying and Controlling Biases in Estimates of Dark Matter Halo Concentration |
| title_full |
Quantifying and Controlling Biases in Estimates of Dark Matter Halo Concentration |
| title_fullStr |
Quantifying and Controlling Biases in Estimates of Dark Matter Halo Concentration |
| title_full_unstemmed |
Quantifying and Controlling Biases in Estimates of Dark Matter Halo Concentration |
| title_sort |
Quantifying and Controlling Biases in Estimates of Dark Matter Halo Concentration |
| dc.creator.fl_str_mv |
Muñoz Cuartas, Juan Carlos Poveda Ruiz, Christian Nicanor Forero Romero, Jaime Ernesto |
| dc.contributor.author.none.fl_str_mv |
Muñoz Cuartas, Juan Carlos Poveda Ruiz, Christian Nicanor Forero Romero, Jaime Ernesto |
| dc.contributor.researchgroup.spa.fl_str_mv |
Grupo de Física y Astrofísica Computacional (FACOM) |
| dc.subject.lcsh.none.fl_str_mv |
Materia oscura (Astronomía) Dark matter (Astronomy) |
| topic |
Materia oscura (Astronomía) Dark matter (Astronomy) Galaxias Galaxies Halos http://id.loc.gov/authorities/subjects/sh87007317 |
| dc.subject.lemb.none.fl_str_mv |
Galaxias Galaxies |
| dc.subject.proposal.spa.fl_str_mv |
Halos |
| dc.subject.lcshuri.none.fl_str_mv |
http://id.loc.gov/authorities/subjects/sh87007317 |
| description |
ABSTRACT: We use bootstrapping to estimate the bias of concentration estimates on N-body dark matter halos as a function of particle number. We find that algorithms based on the maximum radial velocity and radial particle binning tend to overestimate the concentration by 15% − 20% for halos sampled with 200 particles and by 7%-10% for halos sampled with 500 particles. To control this bias at low particle numbers we propose a new algorithm that estimates halo concentrations based on the integrated mass profile. The method uses the full particle information without any binning, making it reliable in cases when low numerical resolution becomes a limitation for other methods. This method reduces the bias to < 3% for halos sampled with 200-500 particles. The velocity and density methods have to use halos with at least ∼ 4000 particles in order to keep the biases down to the same low level. We also show that the mass-concentration relationship could be shallower than expected once the biases of the different concentration measurements are taken into account. These results show that bootstrapping and the concentration estimates based on the integrated mass profile are valuable tools to probe the internal structure of dark matter halos in numerical simulations. |
| publishDate |
2016 |
| dc.date.issued.none.fl_str_mv |
2016 |
| dc.date.accessioned.none.fl_str_mv |
2023-06-01T15:11:43Z |
| dc.date.available.none.fl_str_mv |
2023-06-01T15:11:43Z |
| dc.type.spa.fl_str_mv |
Artículo de investigación |
| dc.type.coar.spa.fl_str_mv |
http://purl.org/coar/resource_type/c_2df8fbb1 |
| dc.type.redcol.spa.fl_str_mv |
https://purl.org/redcol/resource_type/ART |
| dc.type.coarversion.spa.fl_str_mv |
http://purl.org/coar/version/c_970fb48d4fbd8a85 |
| dc.type.driver.spa.fl_str_mv |
info:eu-repo/semantics/article |
| dc.type.version.spa.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
| format |
http://purl.org/coar/resource_type/c_2df8fbb1 |
| status_str |
publishedVersion |
| dc.identifier.issn.none.fl_str_mv |
0004-637X |
| dc.identifier.uri.none.fl_str_mv |
https://hdl.handle.net/10495/35227 |
| dc.identifier.doi.none.fl_str_mv |
10.48550/arXiv.1609.08179 |
| dc.identifier.eissn.none.fl_str_mv |
1538-4357 |
| identifier_str_mv |
0004-637X 10.48550/arXiv.1609.08179 1538-4357 |
| url |
https://hdl.handle.net/10495/35227 |
| dc.language.iso.spa.fl_str_mv |
eng |
| language |
eng |
| dc.relation.ispartofjournalabbrev.spa.fl_str_mv |
Astrophys. J. |
| dc.relation.citationendpage.spa.fl_str_mv |
6 |
| dc.relation.citationissue.spa.fl_str_mv |
2 |
| dc.relation.citationstartpage.spa.fl_str_mv |
1 |
| dc.relation.citationvolume.spa.fl_str_mv |
832 |
| dc.relation.ispartofjournal.spa.fl_str_mv |
Astrophysical Journal |
| dc.rights.uri.*.fl_str_mv |
http://creativecommons.org/licenses/by/2.5/co/ |
| dc.rights.uri.spa.fl_str_mv |
https://creativecommons.org/licenses/by/4.0/ |
| dc.rights.accessrights.spa.fl_str_mv |
info:eu-repo/semantics/openAccess |
| dc.rights.coar.spa.fl_str_mv |
http://purl.org/coar/access_right/c_abf2 |
| rights_invalid_str_mv |
http://creativecommons.org/licenses/by/2.5/co/ https://creativecommons.org/licenses/by/4.0/ http://purl.org/coar/access_right/c_abf2 |
| eu_rights_str_mv |
openAccess |
| dc.format.extent.spa.fl_str_mv |
6 |
| dc.format.mimetype.spa.fl_str_mv |
application/pdf |
| dc.publisher.spa.fl_str_mv |
Institute of Physics Publishing (IOP) American Astronomical Society |
| dc.publisher.place.spa.fl_str_mv |
Chicago, Estados Unidos |
| institution |
Universidad de Antioquia |
| bitstream.url.fl_str_mv |
https://bibliotecadigital.udea.edu.co/bitstreams/9913f3d2-5c28-4c52-93dc-8f037658ecec/download https://bibliotecadigital.udea.edu.co/bitstreams/b4ab21d8-58e0-4a9a-8248-5ed40ce3a0a2/download https://bibliotecadigital.udea.edu.co/bitstreams/e8137438-ce3b-46af-8208-fad09a6ef7ee/download https://bibliotecadigital.udea.edu.co/bitstreams/b59cfcac-6709-48b9-a1c4-e5c2fe04a594/download https://bibliotecadigital.udea.edu.co/bitstreams/043c192e-6a11-4363-8d6c-833d4ad41f0a/download |
| bitstream.checksum.fl_str_mv |
3716cc918ce53deb906dbd0f066c7c26 1646d1f6b96dbbbc38035efc9239ac9c 8a4605be74aa9ea9d79846c1fba20a33 be4a12a5c93016c5c1cf7f96521329bb 93f62689f446ccc041af6ea1ed8f8cba |
| bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 MD5 MD5 MD5 |
| repository.name.fl_str_mv |
Repositorio Institucional de la Universidad de Antioquia |
| repository.mail.fl_str_mv |
aplicacionbibliotecadigitalbiblioteca@udea.edu.co |
| _version_ |
1851052652389990400 |
| spelling |
Muñoz Cuartas, Juan CarlosPoveda Ruiz, Christian NicanorForero Romero, Jaime ErnestoGrupo de Física y Astrofísica Computacional (FACOM)2023-06-01T15:11:43Z2023-06-01T15:11:43Z20160004-637Xhttps://hdl.handle.net/10495/3522710.48550/arXiv.1609.081791538-4357ABSTRACT: We use bootstrapping to estimate the bias of concentration estimates on N-body dark matter halos as a function of particle number. We find that algorithms based on the maximum radial velocity and radial particle binning tend to overestimate the concentration by 15% − 20% for halos sampled with 200 particles and by 7%-10% for halos sampled with 500 particles. To control this bias at low particle numbers we propose a new algorithm that estimates halo concentrations based on the integrated mass profile. The method uses the full particle information without any binning, making it reliable in cases when low numerical resolution becomes a limitation for other methods. This method reduces the bias to < 3% for halos sampled with 200-500 particles. The velocity and density methods have to use halos with at least ∼ 4000 particles in order to keep the biases down to the same low level. We also show that the mass-concentration relationship could be shallower than expected once the biases of the different concentration measurements are taken into account. These results show that bootstrapping and the concentration estimates based on the integrated mass profile are valuable tools to probe the internal structure of dark matter halos in numerical simulations.COL00382626application/pdfengInstitute of Physics Publishing (IOP)American Astronomical SocietyChicago, Estados Unidoshttp://creativecommons.org/licenses/by/2.5/co/https://creativecommons.org/licenses/by/4.0/info:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2Materia oscura (Astronomía)Dark matter (Astronomy)GalaxiasGalaxiesHaloshttp://id.loc.gov/authorities/subjects/sh87007317Quantifying and Controlling Biases in Estimates of Dark Matter Halo ConcentrationArtículo de investigaciónhttp://purl.org/coar/resource_type/c_2df8fbb1https://purl.org/redcol/resource_type/ARThttp://purl.org/coar/version/c_970fb48d4fbd8a85info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionAstrophys. J.621832Astrophysical JournalPublicationORIGINALCarlosMuñoz_2016_QuantifyingControllingBiases.pdfCarlosMuñoz_2016_QuantifyingControllingBiases.pdfArtículo de investigaciónapplication/pdf925453https://bibliotecadigital.udea.edu.co/bitstreams/9913f3d2-5c28-4c52-93dc-8f037658ecec/download3716cc918ce53deb906dbd0f066c7c26MD51trueAnonymousREADCC-LICENSElicense_rdflicense_rdfapplication/rdf+xml; charset=utf-8927https://bibliotecadigital.udea.edu.co/bitstreams/b4ab21d8-58e0-4a9a-8248-5ed40ce3a0a2/download1646d1f6b96dbbbc38035efc9239ac9cMD52falseAnonymousREADLICENSElicense.txtlicense.txttext/plain; charset=utf-81748https://bibliotecadigital.udea.edu.co/bitstreams/e8137438-ce3b-46af-8208-fad09a6ef7ee/download8a4605be74aa9ea9d79846c1fba20a33MD53falseAnonymousREADTEXTCarlosMuñoz_2016_QuantifyingControllingBiases.pdf.txtCarlosMuñoz_2016_QuantifyingControllingBiases.pdf.txtExtracted texttext/plain27581https://bibliotecadigital.udea.edu.co/bitstreams/b59cfcac-6709-48b9-a1c4-e5c2fe04a594/downloadbe4a12a5c93016c5c1cf7f96521329bbMD54falseAnonymousREADTHUMBNAILCarlosMuñoz_2016_QuantifyingControllingBiases.pdf.jpgCarlosMuñoz_2016_QuantifyingControllingBiases.pdf.jpgGenerated Thumbnailimage/jpeg16207https://bibliotecadigital.udea.edu.co/bitstreams/043c192e-6a11-4363-8d6c-833d4ad41f0a/download93f62689f446ccc041af6ea1ed8f8cbaMD55falseAnonymousREAD10495/35227oai:bibliotecadigital.udea.edu.co:10495/352272025-03-27 01:40:41.555http://creativecommons.org/licenses/by/2.5/co/open.accesshttps://bibliotecadigital.udea.edu.coRepositorio Institucional de la Universidad de Antioquiaaplicacionbibliotecadigitalbiblioteca@udea.edu.coTk9URTogUExBQ0UgWU9VUiBPV04gTElDRU5TRSBIRVJFClRoaXMgc2FtcGxlIGxpY2Vuc2UgaXMgcHJvdmlkZWQgZm9yIGluZm9ybWF0aW9uYWwgcHVycG9zZXMgb25seS4KCk5PTi1FWENMVVNJVkUgRElTVFJJQlVUSU9OIExJQ0VOU0UKCkJ5IHNpZ25pbmcgYW5kIHN1Ym1pdHRpbmcgdGhpcyBsaWNlbnNlLCB5b3UgKHRoZSBhdXRob3Iocykgb3IgY29weXJpZ2h0Cm93bmVyKSBncmFudHMgdG8gRFNwYWNlIFVuaXZlcnNpdHkgKERTVSkgdGhlIG5vbi1leGNsdXNpdmUgcmlnaHQgdG8gcmVwcm9kdWNlLAp0cmFuc2xhdGUgKGFzIGRlZmluZWQgYmVsb3cpLCBhbmQvb3IgZGlzdHJpYnV0ZSB5b3VyIHN1Ym1pc3Npb24gKGluY2x1ZGluZwp0aGUgYWJzdHJhY3QpIHdvcmxkd2lkZSBpbiBwcmludCBhbmQgZWxlY3Ryb25pYyBmb3JtYXQgYW5kIGluIGFueSBtZWRpdW0sCmluY2x1ZGluZyBidXQgbm90IGxpbWl0ZWQgdG8gYXVkaW8gb3IgdmlkZW8uCgpZb3UgYWdyZWUgdGhhdCBEU1UgbWF5LCB3aXRob3V0IGNoYW5naW5nIHRoZSBjb250ZW50LCB0cmFuc2xhdGUgdGhlCnN1Ym1pc3Npb24gdG8gYW55IG1lZGl1bSBvciBmb3JtYXQgZm9yIHRoZSBwdXJwb3NlIG9mIHByZXNlcnZhdGlvbi4KCllvdSBhbHNvIGFncmVlIHRoYXQgRFNVIG1heSBrZWVwIG1vcmUgdGhhbiBvbmUgY29weSBvZiB0aGlzIHN1Ym1pc3Npb24gZm9yCnB1cnBvc2VzIG9mIHNlY3VyaXR5LCBiYWNrLXVwIGFuZCBwcmVzZXJ2YXRpb24uCgpZb3UgcmVwcmVzZW50IHRoYXQgdGhlIHN1Ym1pc3Npb24gaXMgeW91ciBvcmlnaW5hbCB3b3JrLCBhbmQgdGhhdCB5b3UgaGF2ZQp0aGUgcmlnaHQgdG8gZ3JhbnQgdGhlIHJpZ2h0cyBjb250YWluZWQgaW4gdGhpcyBsaWNlbnNlLiBZb3UgYWxzbyByZXByZXNlbnQKdGhhdCB5b3VyIHN1Ym1pc3Npb24gZG9lcyBub3QsIHRvIHRoZSBiZXN0IG9mIHlvdXIga25vd2xlZGdlLCBpbmZyaW5nZSB1cG9uCmFueW9uZSdzIGNvcHlyaWdodC4KCklmIHRoZSBzdWJtaXNzaW9uIGNvbnRhaW5zIG1hdGVyaWFsIGZvciB3aGljaCB5b3UgZG8gbm90IGhvbGQgY29weXJpZ2h0LAp5b3UgcmVwcmVzZW50IHRoYXQgeW91IGhhdmUgb2J0YWluZWQgdGhlIHVucmVzdHJpY3RlZCBwZXJtaXNzaW9uIG9mIHRoZQpjb3B5cmlnaHQgb3duZXIgdG8gZ3JhbnQgRFNVIHRoZSByaWdodHMgcmVxdWlyZWQgYnkgdGhpcyBsaWNlbnNlLCBhbmQgdGhhdApzdWNoIHRoaXJkLXBhcnR5IG93bmVkIG1hdGVyaWFsIGlzIGNsZWFybHkgaWRlbnRpZmllZCBhbmQgYWNrbm93bGVkZ2VkCndpdGhpbiB0aGUgdGV4dCBvciBjb250ZW50IG9mIHRoZSBzdWJtaXNzaW9uLgoKSUYgVEhFIFNVQk1JU1NJT04gSVMgQkFTRUQgVVBPTiBXT1JLIFRIQVQgSEFTIEJFRU4gU1BPTlNPUkVEIE9SIFNVUFBPUlRFRApCWSBBTiBBR0VOQ1kgT1IgT1JHQU5JWkFUSU9OIE9USEVSIFRIQU4gRFNVLCBZT1UgUkVQUkVTRU5UIFRIQVQgWU9VIEhBVkUKRlVMRklMTEVEIEFOWSBSSUdIVCBPRiBSRVZJRVcgT1IgT1RIRVIgT0JMSUdBVElPTlMgUkVRVUlSRUQgQlkgU1VDSApDT05UUkFDVCBPUiBBR1JFRU1FTlQuCgpEU1Ugd2lsbCBjbGVhcmx5IGlkZW50aWZ5IHlvdXIgbmFtZShzKSBhcyB0aGUgYXV0aG9yKHMpIG9yIG93bmVyKHMpIG9mIHRoZQpzdWJtaXNzaW9uLCBhbmQgd2lsbCBub3QgbWFrZSBhbnkgYWx0ZXJhdGlvbiwgb3RoZXIgdGhhbiBhcyBhbGxvd2VkIGJ5IHRoaXMKbGljZW5zZSwgdG8geW91ciBzdWJtaXNzaW9uLgo= |
