Evaluación del ensilado mixto de botón de oro (Tithonia diversifolia) y afrecho de yuca como sustituto parcial del alimento concentrado en la dieta de vacas lecheras y crías lactantes

El botón de oro (Tithonia diversifolia, TD) es un forraje tropical con alto contenido de proteína y una concentración moderada de metabolitos secundarios, los cuales modulan la fermentación ruminal hacia rutas metabólicas favorables tanto para el desempeño animal como para el medio ambiente. El afre...

Full description

Autores:
Castaño Jiménez, Gastón Adolfo
Tipo de recurso:
Doctoral thesis
Fecha de publicación:
2025
Institución:
Universidad de Antioquia
Repositorio:
Repositorio UdeA
Idioma:
spa
eng
OAI Identifier:
oai:bibliotecadigital.udea.edu.co:10495/48160
Acceso en línea:
https://hdl.handle.net/10495/48160
Palabra clave:
Yuca como alimento para animales
Cassava as feed
Tithonia diversifolia
Subproducto de la molinería
Milling by-products
Aditivo de ensilaje
Silage additives
Conservación de forrajes
Fodder conservation
Fenología
Phenology
Digestibilidad in vitro
In vitro digestibility
Alimentación de rumiantes
Ruminant feeding
Ganado de leche
Dairy cattle
http://aims.fao.org/aos/agrovoc/c_32258
http://aims.fao.org/aos/agrovoc/c_4841
http://aims.fao.org/aos/agrovoc/c_f782f7d9
http://aims.fao.org/aos/agrovoc/c_393bde22
http://aims.fao.org/aos/agrovoc/c_5774
http://aims.fao.org/aos/agrovoc/c_34856
http://aims.fao.org/aos/agrovoc/c_b7dc4fa8
http://aims.fao.org/aos/agrovoc/c_2108
http://id.loc.gov/authorities/subjects/sh85020617
ODS 2: Hambre cero. Poner fin al hambre, lograr la seguridad alimentaria y la mejora de la nutrición y promover la agricultura sostenible
ODS 8: Trabajo decente y crecimiento económico. Promover el crecimiento económico sostenido, inclusivo y sostenible, el empleo pleno y productivo y el trabajo decente para todos
ODS 12: Producción y consumo responsables. Garantizar modalidades de consumo y producción sostenibles
ODS 15: Vida de ecosistemas terrestres. Proteger, restablecer y promover el uso sostenible de los ecosistemas terrestres, gestionar sosteniblemente los bosques, luchar contra la desertificación, detener e invertir la degradación de las tierras y detener la pérdida de biodiversidad
Rights
openAccess
License
http://creativecommons.org/licenses/by-nc-sa/4.0/
id UDEA2_1a82197581c965e6ade6024d17c2a105
oai_identifier_str oai:bibliotecadigital.udea.edu.co:10495/48160
network_acronym_str UDEA2
network_name_str Repositorio UdeA
repository_id_str
dc.title.spa.fl_str_mv Evaluación del ensilado mixto de botón de oro (Tithonia diversifolia) y afrecho de yuca como sustituto parcial del alimento concentrado en la dieta de vacas lecheras y crías lactantes
title Evaluación del ensilado mixto de botón de oro (Tithonia diversifolia) y afrecho de yuca como sustituto parcial del alimento concentrado en la dieta de vacas lecheras y crías lactantes
spellingShingle Evaluación del ensilado mixto de botón de oro (Tithonia diversifolia) y afrecho de yuca como sustituto parcial del alimento concentrado en la dieta de vacas lecheras y crías lactantes
Yuca como alimento para animales
Cassava as feed
Tithonia diversifolia
Subproducto de la molinería
Milling by-products
Aditivo de ensilaje
Silage additives
Conservación de forrajes
Fodder conservation
Fenología
Phenology
Digestibilidad in vitro
In vitro digestibility
Alimentación de rumiantes
Ruminant feeding
Ganado de leche
Dairy cattle
http://aims.fao.org/aos/agrovoc/c_32258
http://aims.fao.org/aos/agrovoc/c_4841
http://aims.fao.org/aos/agrovoc/c_f782f7d9
http://aims.fao.org/aos/agrovoc/c_393bde22
http://aims.fao.org/aos/agrovoc/c_5774
http://aims.fao.org/aos/agrovoc/c_34856
http://aims.fao.org/aos/agrovoc/c_b7dc4fa8
http://aims.fao.org/aos/agrovoc/c_2108
http://id.loc.gov/authorities/subjects/sh85020617
ODS 2: Hambre cero. Poner fin al hambre, lograr la seguridad alimentaria y la mejora de la nutrición y promover la agricultura sostenible
ODS 8: Trabajo decente y crecimiento económico. Promover el crecimiento económico sostenido, inclusivo y sostenible, el empleo pleno y productivo y el trabajo decente para todos
ODS 12: Producción y consumo responsables. Garantizar modalidades de consumo y producción sostenibles
ODS 15: Vida de ecosistemas terrestres. Proteger, restablecer y promover el uso sostenible de los ecosistemas terrestres, gestionar sosteniblemente los bosques, luchar contra la desertificación, detener e invertir la degradación de las tierras y detener la pérdida de biodiversidad
title_short Evaluación del ensilado mixto de botón de oro (Tithonia diversifolia) y afrecho de yuca como sustituto parcial del alimento concentrado en la dieta de vacas lecheras y crías lactantes
title_full Evaluación del ensilado mixto de botón de oro (Tithonia diversifolia) y afrecho de yuca como sustituto parcial del alimento concentrado en la dieta de vacas lecheras y crías lactantes
title_fullStr Evaluación del ensilado mixto de botón de oro (Tithonia diversifolia) y afrecho de yuca como sustituto parcial del alimento concentrado en la dieta de vacas lecheras y crías lactantes
title_full_unstemmed Evaluación del ensilado mixto de botón de oro (Tithonia diversifolia) y afrecho de yuca como sustituto parcial del alimento concentrado en la dieta de vacas lecheras y crías lactantes
title_sort Evaluación del ensilado mixto de botón de oro (Tithonia diversifolia) y afrecho de yuca como sustituto parcial del alimento concentrado en la dieta de vacas lecheras y crías lactantes
dc.creator.fl_str_mv Castaño Jiménez, Gastón Adolfo
dc.contributor.advisor.none.fl_str_mv Agulo Arizala, Joaquín
Mahecha Ledesma, Liliana
Barragán Hernández, Wilson Andrés
dc.contributor.author.none.fl_str_mv Castaño Jiménez, Gastón Adolfo
dc.contributor.researchgroup.none.fl_str_mv Grupo de Investigación en Ciencias Agrarias -GRICA-
dc.contributor.jury.none.fl_str_mv Castro Rincón, Edwin
Molano Torres, Rodrigo Alonso
Vivas Quila, Nelson José
dc.subject.lcsh.none.fl_str_mv Yuca como alimento para animales
Cassava as feed
topic Yuca como alimento para animales
Cassava as feed
Tithonia diversifolia
Subproducto de la molinería
Milling by-products
Aditivo de ensilaje
Silage additives
Conservación de forrajes
Fodder conservation
Fenología
Phenology
Digestibilidad in vitro
In vitro digestibility
Alimentación de rumiantes
Ruminant feeding
Ganado de leche
Dairy cattle
http://aims.fao.org/aos/agrovoc/c_32258
http://aims.fao.org/aos/agrovoc/c_4841
http://aims.fao.org/aos/agrovoc/c_f782f7d9
http://aims.fao.org/aos/agrovoc/c_393bde22
http://aims.fao.org/aos/agrovoc/c_5774
http://aims.fao.org/aos/agrovoc/c_34856
http://aims.fao.org/aos/agrovoc/c_b7dc4fa8
http://aims.fao.org/aos/agrovoc/c_2108
http://id.loc.gov/authorities/subjects/sh85020617
ODS 2: Hambre cero. Poner fin al hambre, lograr la seguridad alimentaria y la mejora de la nutrición y promover la agricultura sostenible
ODS 8: Trabajo decente y crecimiento económico. Promover el crecimiento económico sostenido, inclusivo y sostenible, el empleo pleno y productivo y el trabajo decente para todos
ODS 12: Producción y consumo responsables. Garantizar modalidades de consumo y producción sostenibles
ODS 15: Vida de ecosistemas terrestres. Proteger, restablecer y promover el uso sostenible de los ecosistemas terrestres, gestionar sosteniblemente los bosques, luchar contra la desertificación, detener e invertir la degradación de las tierras y detener la pérdida de biodiversidad
dc.subject.agrovoc.none.fl_str_mv Tithonia diversifolia
Subproducto de la molinería
Milling by-products
Aditivo de ensilaje
Silage additives
Conservación de forrajes
Fodder conservation
Fenología
Phenology
Digestibilidad in vitro
In vitro digestibility
Alimentación de rumiantes
Ruminant feeding
Ganado de leche
Dairy cattle
dc.subject.agrovocuri.none.fl_str_mv http://aims.fao.org/aos/agrovoc/c_32258
http://aims.fao.org/aos/agrovoc/c_4841
http://aims.fao.org/aos/agrovoc/c_f782f7d9
http://aims.fao.org/aos/agrovoc/c_393bde22
http://aims.fao.org/aos/agrovoc/c_5774
http://aims.fao.org/aos/agrovoc/c_34856
http://aims.fao.org/aos/agrovoc/c_b7dc4fa8
http://aims.fao.org/aos/agrovoc/c_2108
dc.subject.lcshuri.none.fl_str_mv http://id.loc.gov/authorities/subjects/sh85020617
dc.subject.ods.none.fl_str_mv ODS 2: Hambre cero. Poner fin al hambre, lograr la seguridad alimentaria y la mejora de la nutrición y promover la agricultura sostenible
ODS 8: Trabajo decente y crecimiento económico. Promover el crecimiento económico sostenido, inclusivo y sostenible, el empleo pleno y productivo y el trabajo decente para todos
ODS 12: Producción y consumo responsables. Garantizar modalidades de consumo y producción sostenibles
ODS 15: Vida de ecosistemas terrestres. Proteger, restablecer y promover el uso sostenible de los ecosistemas terrestres, gestionar sosteniblemente los bosques, luchar contra la desertificación, detener e invertir la degradación de las tierras y detener la pérdida de biodiversidad
description El botón de oro (Tithonia diversifolia, TD) es un forraje tropical con alto contenido de proteína y una concentración moderada de metabolitos secundarios, los cuales modulan la fermentación ruminal hacia rutas metabólicas favorables tanto para el desempeño animal como para el medio ambiente. El afrecho de yuca (AY), un subproducto agroindustrial rico en almidón puede complementar al TD durante el proceso de ensilado, mejorando tanto la calidad fermentativa como el valor nutricional del producto final. En este estudio se llevaron a cabo seis ensayos experimentales diseñados para evaluar el uso de ensilado mixto de TD y AY como sustituto parcial del concentrado en la alimentación de vacas lecheras y crías lactantes. Los ensayos abordaron aspectos clave como el desarrollo fenológico del TD, el uso de aditivos alternativos para la producción de ensilaje, la digestibilidad in vitro y las evaluaciones en modelos animales. Los dos primeros ensayos evaluaron los efectos de la edad de rebrote y la altura de corte sobre las características morfológicas, la composición nutricional y el rendimiento de biomasa del TD en dos zonas tropicales andinas (media y alta montaña). Se encontró que la madurez de la planta influye en la calidad del forraje, observándose valores óptimos a los 40 días de rebrote en la zona de altitud media y a los 80 días en la zona de alta montaña, con una altura de corte de 70 cm. Además, se identificaron variables fenológicas clave que permiten predecir el momento óptimo de cosecha. En un tercer ensayo, se evaluaron los efectos de cinco aditivos sobre el perfil fermentativo y la estabilidad aeróbica de los ensilajes mixtos. Los mejores resultados se obtuvieron con la adición de azúcar disuelta en jugo fermentado de microbiota epífita, lo que mejoró la conservación del ensilaje y su estabilidad aeróbica tras la apertura del silo. En el cuarto ensayo se utilizó la técnica de producción de gas in vitro para evaluar la fermentación ruminal y la digestibilidad de ensilajes con niveles crecientes de AY (0–800 g kg–1 MS). La producción total de gas y la digestibilidad in vitro de la materia seca (DIVMS) aumentaron a partir de 400 g kg–1 MS de AY, junto con interacciones significativas entre el sustrato y el tiempo de incubación para DIVMS, la producción de gas y el factor de partición, lo que sugiere una mayor eficiencia fermentativa. El quinto ensayo fue una evaluación in vivo preliminar del uso del ensilado mixto como reemplazo parcial del concentrado en terneros lactantes. Los resultados indicaron que la sustitución puede realizarse sin comprometer el desempeño productivo. Finalmente, un ensayo in vivo con vacas lecheras en pastoreo evaluó la inclusión del ensilado mixto TD–AY (150 y 300 g kg–1 MS) en la dieta. La sustitución parcial del concentrado no afectó la producción ni la composición de la leche, pero sí redujo los costos de suplementación y los niveles de nitrógeno ureico en leche. En resumen, los resultados respaldan el uso de ensilados mixtos de TD y BY como una estrategia viable para reemplazar parcialmente el concentrado, mejorar el aprovechamiento del forraje, reducir los costos de alimentación y promover la sostenibilidad en los sistemas lecheros tropicales.
publishDate 2025
dc.date.accessioned.none.fl_str_mv 2025-11-07T20:30:35Z
dc.date.issued.none.fl_str_mv 2025
dc.date.available.none.fl_str_mv 2027-11-07
dc.type.none.fl_str_mv Trabajo de grado - Doctorado
dc.type.coar.none.fl_str_mv http://purl.org/coar/resource_type/c_db06
dc.type.redcol.none.fl_str_mv http://purl.org/redcol/resource_type/TD
dc.type.content.none.fl_str_mv Text
dc.type.coarversion.none.fl_str_mv http://purl.org/coar/version/c_b1a7d7d4d402bcce
dc.type.driver.none.fl_str_mv info:eu-repo/semantics/doctoralThesis
dc.type.version.none.fl_str_mv info:eu-repo/semantics/draft
format http://purl.org/coar/resource_type/c_db06
status_str draft
dc.identifier.citation.none.fl_str_mv G.A. Castaño Jiménez; W.A. Barragán Hernández; L. Mahecha Ledesma y J. Angulo Arizala , “Evaluación del ensilado mixto de botón de oro (Tithonia diversifolia) y afrecho de yuca como sustituto parcial del alimento concentrado en la dieta de vacas lecheras y crías lactantes”, Tesis doctoral, Doctorado en Ciencias Animales, Universidad de Antioquia, Medellín, Antioquia, Colombia, 2025.
dc.identifier.uri.none.fl_str_mv https://hdl.handle.net/10495/48160
identifier_str_mv G.A. Castaño Jiménez; W.A. Barragán Hernández; L. Mahecha Ledesma y J. Angulo Arizala , “Evaluación del ensilado mixto de botón de oro (Tithonia diversifolia) y afrecho de yuca como sustituto parcial del alimento concentrado en la dieta de vacas lecheras y crías lactantes”, Tesis doctoral, Doctorado en Ciencias Animales, Universidad de Antioquia, Medellín, Antioquia, Colombia, 2025.
url https://hdl.handle.net/10495/48160
dc.language.iso.none.fl_str_mv spa
eng
language spa
eng
dc.relation.references.none.fl_str_mv Abouelezz, K.F.M.; Wang, S.; Xia, W.G.; Chen, W.; Elokil, A.A.; Zhang, Y.N.; Wang, S.L.; Li, K.C.; Huang, X.B. and Zheng, C.T. 2022. Effects of dietary inclusion of cassava starch-extraction-residue meal on egg production, egg quality, oxidative status, and yolk fatty acid profile in laying ducks. Poultry Science, 101(9):102015. doi:10.1016/j.psj.2022.102015.
Acuña, L.L.; Hurtado, V.L. and Torres, D.M. 2014. Evaluación de la calidad del huevo de codornices (Coturnix coturnix japonica) utilizando algunos alimentos energéticos. Revista Sistemas de Producción Agroecológicos, 5(2):30–43. doi:10.22579/22484817.653.
Addah, W. 2022. Microbial approach to improving aerobic stability of silage. Nigerian Journal fo Animal Science, 24(2):231–244.
Adesogan, A.T.; Krueger, N.; Salawu, M.B.; Dean, D.B. and Staples, C.R. 2004. The influence of treatment with dual purpose bacterial inoculants or soluble carbohydrates on the fermentation and aerobic stability of bermudagrass. Journal of Dairy Science, 87(10):3407–3416. doi:10.3168/jds.S0022-0302(04)73476-1.
Aguerre, M.J.; Duval, B.; Powell, J.M.; Vadas, P.A. and Wattiaux, M.A. 2020. Effects of feeding a quebracho–chestnut tannin extract on lactating cow performance and nitrogen utilization efficiency. Journal of Dairy Science, 103(3):2264–2271. doi:10.3168/jds.2019-17442.
Ahanger, M.A.; Bhat, J.A.; Siddiqui, M.H.; Rinklebe, J. and Ahmad, P. 2020. Integration of silicon and secondary metabolites in plants: a significant association in stress tolerance. Journal of Experimental Botany, 71(21):6758–6774. doi:10.1093/jxb/eraa291.
Amanzougarene, Z. and Fondevila, M. 2020. Fitting of the in vitro gas production technique to the study of high concentrate diets. Animals, 10(10):1935. doi:10.3390/ani10101935.
An, L.V. and Lindberg, J.E. 2004. Ensiling of sweet potato leaves (Ipomoea batatas (L.) Lam) and the nutritive value of sweet potato leaf silage for growing pigs. Asian-Australasian Journal of Animal Sciences, 17(4):497–503. doi:10.5713/ajas.2004.497.
Andueza, D.; Picard, F.; Note, P. and Carrère, P. 2021. Relationship between the chemical composition, nutritive value and the maturity stage of six temperate perennial grasses during their first growth cycle along an altitude gradient. European Journal of Agronomy, 130:126364. doi:10.1016/j.eja.2021.126364.
Angulo, J.; Barragán, W.; Casas, N. and Mahecha, L. 2024. Evaluación agronómica de Tithonia diversifolia (Hemsl.) A. Gray basado en criterio de corte con tiempo térmico. Revista de Investigaciones Veterinarias del Perú, 35(5):e29287. doi:10.15381/rivep.v35i5.29287.
Angulo, J.; Nemocón, A.; Barragán, W.A.; Gallo, J. and Mahecha, L. 2022a. Residuos de la industria alimentaria (snacks) como alimento en una lechería en el trópico alto colombiano. Ciencia & Tecnología Agropecuaria, 23(1). doi:10.21930/rcta.vol23_num1_art:2055.
Angulo, J.; Nemocón, A.M.; Posada, S.L. and Mahecha, L. 2022b. Producción, calidad de leche y análisis económico de vacas holstein suplementadas con ensilaje de botón de oro (Tithonia diversifolia) o ensilaje de maíz. Biotecnología en el Sector Agropecuario y Agroindustrial, 20(1):27–40. doi:10.18684/bsaa.v20.n1.2022.1535.
AOAC. 2010. Official Methods of Analysis of AOAC International. 18th ed. Association of Analytical Communities, ed. AOAC International, Gaithersburg (Maryland).
Araújo, J.A.S.; Almeida, J.C.C.; Reis, R.A.; Carvalho, C.A.B. and Barbero, R.P. 2020. Harvest period and baking industry residue inclusion on production efficiency and chemical composition of tropical grass silage. Journal of Cleaner Production, 266:121953. doi:10.1016/j.jclepro.2020.121953.
Arias, L.M.; Alpízar, A.; Castillo, M.Á.; Camacho, M.I.; Arronis, V. and Padilla, J. 2018. Producción, calidad bromatológica de la leche y los costos de suplementación con Tithonia diversifolia (Hemsl.) A. Gray, en vacas jersey. Pastos y Forrajes, 41(4):266–272.
Arias, L.M.; López, M.; Castillo, M. and Alpízar, A. 2023. Fertilización y edad de rebrote sobre rendimiento y composición bromatológica de Tithonia diversifolia. Agronomía Mesoamericana, 34(3):53172. doi:10.15517/am.2023.53172.
Arief, A.; Rusdimansyah, R.; Sowmen, S.; Pazla, R. and Rizqan, R. 2020. Milk production and quality of Etawa crossbreed dairy goat that given Tithonia diversifolia corn waste and concentrate based palm kernel cake. Biodiversitas Journal of Biological Diversity, 21(9):4004–4009. doi:10.13057/biodiv/d210910.
Arriola, K.G.; Oliveira, A.S.; Jiang, Y.; Kim, D.; Silva, H.M.; Kim, S.C.; Amaro, F.X.; Ogunade, I.M.; Sultana, H.; Pech Cervantes, A.A.; Ferraretto, L.F.; Vyas, D. and Adesogan, A.T. 2021. Meta-analysis of effects of inoculation with Lactobacillus buchneri, with or without other bacteria, on silage fermentation, aerobic stability, and performance of dairy cows. Journal of Dairy Science, 104(7):7653–7670. doi:10.3168/jds.2020-19647.
Arroquy, J.I.; Cornacchione, M.V.; Colombatto, D. and Kunst, C. 2014. Chemical composition and in vitro ruminal degradation of hay and silage from tropical grasses. Canadian Journal of Animal Science, 94(4):705–715. doi:10.4141/cjas-2014-014.
Arzani, H.; Zohdi, M.; Fish, E.; Zahedi Amiri, G.H.; Nikkhah, A. and Wester, D. 2004. Phenological effects on forage quality of five grass species. Journal of Range Management, 57(6):624–629. doi:10.2111/1551-5028(2004)057[0624:peofqo]2.0.co;2.
Asaadi, A.M. and Dadkhah, A.R. 2010. The study of forage quality of Haloxylon aphyllum and Eurotia ceratoides in different phenological stages. Research Journal of Biological Sciences, 5(7):470–475. doi:10.3923/rjbsci.2010.470.475.
Astúa, M.; Campos, C.M. and Rojas, A. 2021. Efecto de la fertilización nitrogenada y la edad de rebrote sobre las características morfológicas y rendimiento agronómico del botón de oro (Tithonia diversifolia) ecotipo INTA-Quepos. Nutrición Animal Tropical, 15(1):1–18. doi:10.15517/nat.v15i1.47521.
Astúa, M.; Rojas, A. and Campos, C.M. 2020. Extracción de nutrientes del botón de oro (Tithonia diversifolia) ecotipo INTA-Quepos a tres edades de rebrote con tres niveles de fertilización nitrogenada. Nutrición Animal Tropical, 14(2):113–130. doi:10.15517/nat.v14i2.44682.
Avellaneda, Y.; Mancipe, E.A. and Vargas, J. de J. 2020. Effect of regrowth period on morphological development and chemical composition of kikuyu grass (Cenchrus clandestinus) in Colombian’s highlands. Revista CES Medicina Veterinaria y Zootecnia, 15(2):23–37. doi:10.21615/cesmvz.15.2.2.
Ayeni, A.O.; Lordbanjou, D.T. and Majek, B.A. 1997. Tithonia diversifolia (Mexican sunflower) in south-western Nigeria: occurrence and growth habit. Weed Research, 37(6):443–449. doi:10.1046/j.1365-3180.1997.d01-72.x.
Barboza, J.; Santos, M.; Paschoaloto, J.R.; Bonfá, C.S. and Silva, A.M.S. 2024. Fermentation and nutritional characteristics of silage composed of proportions of Tithonia diversifolia and Sorghum bicolor. Revista Brasileira de Engenharia Agrícola e Ambiental, 29(10):e284291. doi:10.1590/1807-1929/agriambi.v29n10exxxxxx.
Barreto, O.T.; Henao, J.C.; Ospina, M.A. and Castañeda, R.D. 2024. Effects of Tithonia diversifolia extract as a feed additive on digestibility and performance of hair lambs. Animals, 14(24):3648. doi:10.3390/ani14243648.
Benchaar, C.; McAllister, T.A. and Chouinard, P.Y. 2008. Digestion, ruminal fermentation, ciliate protozoal populations, and milk production from dairy cows fed cinnamaldehyde, quebracho condensed tannin, or Yucca schidigera saponin extracts. Journal of Dairy Science, 91(12):4765–4777. doi:10.3168/jds.2008-1338.
Bernardes, T.F.; Gervásio, J.R.S.; De Morais, G. and Casagrande, D.R. 2019. Technical note: A comparison of methods to determine pH in silages. Journal of Dairy Science, 102(10):9039–9042. doi:10.3168/jds.2019-16553.
Bernardes, T.F.; Gervásio, J.R.S.; De Morais, G. and Casagrande, D.R. 2019. Technical note: A comparison of methods to determine pH in silages. Journal of Dairy Science, 102(10):9039–9042. doi:10.3168/jds.2019-16553.
Bernardon, A.; Miqueloto, T.; Winter, F.L.; de Medeiros Neto, C. and Sbrissia, A.F. 2021. Herbage accumulation dynamics in mixed pastures composed of kikuyugrass and tall fescue as affected by grazing management. Grass and Forage Science, 76(4):508–521. doi:10.1111/gfs.12549.
Betancourt, J.A.; Núñez, L.A. and Castaño, G.A. 2017. Suministro de ensilaje de Tithonia diversifolia sólo o mezclado con afrecho de yuca en la dieta de pollos de engorde. Tropical and Subtropical Agroecosystems, 20(2):203–213. doi:10.56369/tsaes.2213.
Bizzuti, B.E.; de Abreu Faria, L.; da Costa, W.S.; Lima, P. de M.T.; Ovani, V.S.; Krüger, A.M.; Louvandini, H. and Abdalla, A.L. 2021a. Potential use of cassava by-product as ruminant feed. Tropical Animal Health and Production, 53(1):108. doi:10.1007/s11250-021-02555-z.
Bizzuti, B.E.; de Abreu Faria, L.; da Costa, W.S.; Lima, P. de M.T.; Ovani, V.S.; Krüger, A.M.; Louvandini, H. and Abdalla, A.L. 2021b. Potential use of cassava by-product as ruminant feed. Tropical Animal Health and Production, 53(1):108. doi:10.1007/s11250-021-02555-z.
Bizzuti, B.E.; Pérez-Márquez, S.; van Cleef, F. de O.S.; Ovani, V.S.; Costa, W.S.; Lima, P.M.T.; Louvandini, H. and Abdalla, A.L. 2023. In vitro degradability and methane production from by-products fed to ruminants. Agronomy, 13(4):1043. doi:10.3390/agronomy13041043.
Bonilla, J.; Lemus, C.; Montaño, M.; González, V. and Ly, J. 2012. Ruminal fermentation, digestibility and methane production in sheep fed with foru levels of corn stover. Tropical and Subtropical Agroecosystems, 15(3):499–509.
Borreani, G. and Tabacco, E. 2010. The relationship of silage temperature with the microbiological status of the face of corn silage bunkers. Journal of Dairy Science, 93(6):2620–2629. doi:10.3168/jds.2009-2919.
Botero, J.M.; Gómez, A. and Botero, M.A. 2019a. Rendimiento, parámetros agronómicos y calidad nutricional de la Tithonia diversifolia con base en diferentes niveles de fertilización. Revista Mexicana de Ciencias Pecuarias, 10(3):789–800. doi:10.22319/rmcp.v10i3.4667.
Botero, J.M.; Gómez, A. and Botero, M.A. 2019b. Rendimiento, parámetros agronómicos y calidad nutricional de la Tithonia diversifolia con base en diferentes niveles de fertilización. Revista Mexicana de Ciencias Pecuarias, 10(3):789–800. doi:10.22319/rmcp.v10i3.4667.
Buckmaster, D.R. 2009. Technical note: equipment matching for silage harvest. Applied Engineering in Agriculture, 25(1):31–36. doi:10.13031/2013.25423.
Burakowska, K.; Górka, P.; Kent-Dennis, C.; Kowalski, Z.M.; Laarveld, B. and Penner, G.B. 2020. Effect of heat-treated canola meal and glycerol inclusion on performance and gastrointestinal development of holstein calves. Journal of Dairy Science, 103(9):7998–8019. doi:10.3168/jds.2019-18133.
Bureenok, S.; Namihira, T.; Tamaki, M.; Mizumachi, S.; Kawamoto, Y. and Nakada, T. 2005. Fermentative quality of guineagrass silage by using fermented juice of the epiphytic lactic acid bacteria (FJLB) as a silage additive. Asian-Australasian Journal of Animal Sciences, 18(6):807–811. doi:10.5713/ajas.2005.807.
Bureenok, S.; Suksombat, W. and Kawamoto, Y. 2011. Effects of the fermented juice of epiphytic lactic acid bacteria (FJLB) and molasses on digestibility and rumen fermentation characteristics of ruzigrass (Brachiaria ruziziensis) silages. Livestock Science, 138(1–3):266–271. doi:10.1016/j.livsci.2011.01.003.
Burren, A.; Terranova, M.; Kreuzer, M.; Kupper, T. and Probst, S. 2025. The relationship between milk urea nitrogen content and urinary nitrogen excretion as determined in 4 Swiss dairy breeds. Journal of Dairy Science, :In press. doi:10.3168/jds.2024-25915.
Cabanilla, M.G.; Meza, C.J.; Avellaneda, J.H.; Meza, M.T.; Vivas, W. and Meza, G.A. 2021. Desempeño agronómico y valor nutricional en Tithonia diversifolia (Hemsl.) A Gray bajo un sistema de corte. Ciencia y Tecnología, 14(1):71–78. doi:10.18779/cyt.v14i1.450.
Canto, F.M.; Ampuero, G. and Quispe, H.A. 2023. Efecto de la altura de corte sobre los parámetros agronómicos de Tithonia diversifolia. Revista de Investigaciones Altoandinas, 25(2):117–121. doi:10.18271/ria.2023.518.
Cao, L.; Goto, M. and Ohshima, M. 2002. Variations in the fermentation characteristics of alfalfa silage of different harvest times as treated with fermented juice of epiphytic lactic acid aacteria. Japanese Journal of Grassland Science, 47(6):583–587. doi:10.14941/grass.47.583.
Cardona, J.L.; Angulo, J. and Mahecha, L. 2022. Less nitrogen losses to the environment and more efficiency in dairy cows grazing on silvopastoral systems with Tithonia diversifolia supplemented with polyunsaturated fatty acids. Agroforestry Systems, 96(2):343–357. doi:10.1007/s10457-021-00722-7.
Cardona, J.L.; Escobar, L.D.; Guatusmal, C.; Meneses, D.H.; Ríos, L.M. and Castro, E. 2020. Effect of harvest age on the digestibility and energy fractioning of two forage shrubs in Colombia. Pastos y Forrajes, 43(3):254–262.
Cardona, J.L.; Mahecha, L. and Angulo, J. 2017. Efecto sobre la fermentación in vitro de mezclas de Tithonia diversifolia, Cenchrus clandestinum y grasas poliinsaturadas. Agronomía Mesoamericana, 28(2):405–426. doi:10.15517/ma.v28i2.25697.
Cardona, J.L.; Mahecha, L. and Angulo, J. 2019. Estimación de metano en vacas pastoreando sistemas silvopastoriles con Tithonia diversifolia y suplementadas con grasas polinsaturadas. Revista Científica FVC-LUZ, 29(2):107–118.
Carranco, M.E.; Barrita, V.; Fuente, B.; Ávila, E. and Sanginés, L. 2020. Inclusión de harina de Tithonia diversifolia en raciones para gallinas ponedoras de primer ciclo y su efecto sobre la pigmentación de yema de huevo. Revista Mexicana de Ciencias Pecuarias, 11(2):355–368. doi:10.22319/rmcp.v11i2.5090.
Carvalho, J.N. de; Pires, A.J.V.; Silva, F.F. da; Veloso, C.M.; Santos, C.L. dos and Carvalho, G.G.P. de. 2009. Desempenho de ovinos mantidos com dietas com capim-elefante ensilado com diferentes aditivos. Revista Brasileira de Zootecnia, 38(6):994–1000. doi:10.1590/S1516-35982009000600004.
Castaño, G.; Barragán, W.; Mahecha, L. and Angulo, J. 2023. Review of the nutritional quality of wild sunflower and cassava bran for silage production in dairy cattle. Veterinaria México OX, 10:1–23. doi:10.22201/fmvz.24486760e.2023.1201.
Castaño, G. and Cardona, J. 2015. Engorde de conejos alimentados con Tithonia diversifolia, Trichanthera gigantea y Arachis pintoi. Revista U.D.C.A. Actualidad & Divulgación Científica, 18(1):147–154. doi:10.31910/rudca.v18.n1.2015.463.
Castaño, G.A. 2012. Efecto del proceso de ensilaje sobre el valor nutricional de Pennisetum purpureum, Tithonia diversifolia y Trichanthera gigantea. Investigaciones Unisarc, 10(2):22–36.
Castaño, G.A.; Pabón, M.L. and Carulla, J.E. 2014. Concentration of trans-vaccenic and rumenic acids in the milk from grazing cows supplemented with palm oil, rice bran or whole cottonseed. Revista Brasileira de Zootecnia, 43(6):315–326. doi:10.1590/S1516-35982014000600006.
Cerdas, R. 2018. Extracción de nutrientes y productividad del botón de oro (Tithonia diversifolia) con varias dosis de fertilización nitrogenada. InterSedes, 19(39):171–187. doi:10.15517/isucr.v19i39.34076.
Charmley, E. 2001. Towards improved silage quality – A review. Canadian Journal of Animal Science, 81(2):157–168. doi:10.4141/A00-066.
Chiquiza, L.N.; Montoya, O.I.; Restrepo, C. and Orozco, F. 2016. Estudio de la microbiota del proceso de producción de almidón agrio de yuca. Información Tecnológica, 27(5):3–14. doi:10.4067/S0718-07642016000500002.
Chukwuka, K.S.; Ogunyemi, S.; Osho, J.S.A.; Atiri, G.I.; Moughalu, J. and K. S. Chukwuka, S.O.J.S.A.O.G.I.A. 2007. Eco-physiological responses of Tithonia diversifolia (Hemsl) A. Gray in nursery and field conditions. Journal of Biological Sciences, 7(5):771–775. doi:10.3923/jbs.2007.771.775.
Coblentz, W.K.; Akins, M.S.; Kalscheur, K.F.; Brink, G.E. and Cavadini, J.S. 2018. Effects of growth stage and growing degree day accumulations on triticale forages: 2. In vitro disappearance of neutral detergent fiber. Journal of Dairy Science, 101(10):8986–9003. doi:10.3168/jds.2018-14867.
Cook, C.W. 1964. Symposium on nutrition of forages and pastures: collecting forage samples representative of ingested material of grazing animals for nutritional studies. Journal of Animal Science, 23(1):265–270. doi:10.2527/jas1964.231265x.
Daniel, J.L.P.; Bernardes, T.F.; Jobim, C.C.; Schmidt, P. and Nussio, L.G. 2019. Production and utilization of silages in tropical areas with focus on Brazil. Grass and Forage Science, 74(2):188–200. doi:10.1111/gfs.12417.
Diarra, S.S. and Devi, A. 2015. Feeding value of some cassava by-products meal for poultry: a review. Pakistan Journal of Nutrition, 14(10):735–741. doi:10.3923/pjn.2015.735.741.
Díaz, G.; Gutiérrez, R.; Pérez, N.; Vega, S.L.; González, M.; Prado, G.; Urbán, G.; Ramírez, A. and Pinto, M. 2002. Detección de adulteraciones en la grasa de leche pasteurizada mexicana. Revista de Salud Animal, 24:54+.
Dlamini, B.S.; Chen, C.-R.; Shyu, D.J.H. and Chang, C.-I. 2020. Flavonoids from Tithonia diversifolia and their antioxidant and antibacterial activity. Chemistry of Natural Compounds, 56(5):906–908. doi:10.1007/s10600-020-03182-0.
Dong, Z.; Shao, T.; Li, J.; Yang, L. and Yuan, X. 2020. Effect of alfalfa microbiota on fermentation quality and bacterial community succession in fresh or sterile napier grass silages. Journal of Dairy Science, 103(5):4288–4301. doi:10.3168/jds.2019-16961.
Driehuis, F.; Wilkinson, J.M.; Jiang, Y.; Ogunade, I. and Adesogan, A.T. 2018. Silage review: Animal and human health risks from silage. Journal of Dairy Science, 101(5):4093–4110. doi:10.3168/jds.2017-13836.
Du, Z.; Yang, F.; Fang, J.; Yamasaki, S.; Oya, T.; Nguluve, D.; Kumagai, H. and Cai, Y. 2023. Silage preparation and sustainable livestock production of natural woody plant. Frontiers in Plant Science, 14:1253178. doi:10.3389/fpls.2023.1253178.
Dyck, B.L.; Colazo, M.G.; Ambrose, D.J.; Dyck, M.K. and Doepel, L. 2011. Starch source and content in postpartum dairy cow diets: effects on plasma metabolites and reproductive processes. Journal of Dairy Science, 94(9):4636–4646. doi:10.3168/jds.2010-4056.
Edmonson, A.J.; Lean, I.J.; Weaver, L.D.; Farver, T. and Webster, G. 1989. A body condition scoring chart for holstein dairy cows. Journal of Dairy Science, 72(1):68–78. doi:10.3168/jds.S0022-0302(89)79081-0.
Elizondo, J.A. 2021. Calidad nutricional y consumo por cabras de forraje de botón de oro (Tithonia diversifolia). Agronomía Costarricense, 5(2):135–142. doi:10.15517/rac.v45i2.47774.
Enriquez, D.; Cruz, T.; Teixeira, D.L. and Steinfort, U. 2020. Phenological stages of mediterranean forage legumes, based on the BBCH scale. Annals of Applied Biology, 176(3):357–368. doi:10.1111/aab.12578.
Ferreira, A.L.; Lobato, A.B.; Lopes, R.; de Menezes Rabelo, É.; Ferreira, C. and Moreira, S. 2019. Chemical characterization, antioxidanta, citotoxic and microbiological activities of essential oil of leaf of Tihtonia diversifolia A. Gray (Asteraceae). Pharmaceuticals, 12(1):34. doi:10.3390/ph12010034.
Fessenden, S.W.; Ross, D.A.; Block, E. and Van Amburgh, M.E. 2020. Comparison of milk production, intake, and total-tract nutrient digestion in lactating dairy cattle fed diets containing either wheat middlings and urea, commercial fermentation by-product, or rumen-protected soybean meal. Journal of Dairy Science, 103(6):5090–5101. doi:10.3168/jds.2019-17744.
Firkins, J.L. 2021. Invited review: advances in rumen efficiency. Applied Animal Science, 37(4):388–403. doi:10.15232/aas.2021-02163.
Folch, J.; Lees, M. and Stanley, G.H.S. 1957. A simple method for the isolation and purification of total lipides from animal tissues. Journal of Biological Chemistry, 226(1):497–509. doi:10.1016/S0021-9258(18)64849-5.
Fukumori, R.; Oba, M.; Izumi, K.; Otsuka, M.; Suzuki, K.; Gondaira, S.; Higuchi, H. and Oikawa, S. 2020. Effects of butyrate supplementation on blood glucagon-like peptide-2 concentration and gastrointestinal functions of lactating dairy cows fed diets differing in starch content. Journal of Dairy Science, 103(4):3656–3667. doi:10.3168/jds.2019-17677.
Galindo, J.; González, N.; Ruiz, T.; Herrera, M.; Moreira, O.; Capó, A. and Díaz, H. 2022. Effect of three collections of Tithonia diversifolia on the ruminal microbial population of cattle. Cuban Journal of Agricultural Science, 56(1):1–12.
Gallego, L.A.; Machena, L. and Angulo, J. 2014. Potencial forrajero de Tithonia diversifolia Hemsl. A Gray en la producción de vacas lecheras. Agronomía Mesoamericana, 25(2):393–403. doi:10.15517/am.v25i2.15454.
Gallego, L.A.; Mahecha, L. and Angulo, J. 2017a. Calidad nutricional de Tithonia diversifolia Hemsl. A Gray bajo tres sistemas de siembra en el trópico alto. Agronomía Mesoamericana, 28(1):213–222. doi:10.15517/am.v28i1.21671.
Gallego, L.A.; Mahecha, L. and Angulo, J. 2017b. Producción, calidad de leche y beneficio:costo de suplementar vacas holstein con Tithonia diversifolia. Agronomía Mesoamericana, 28(2):357–370. doi:10.15517/ma.v28i2.25945.
Gao, R.; Wang, B.; Jia, T.; Luo, Y. and Yu, Z. 2021. Effects of different carbohydrate sources on alfalfa silage quality at different ensiling days. Agriculture, 11(1):58. doi:10.3390/agriculture11010058.
Garces, R. and Mancha, M. 1993. One-step lipid extraction and fatty acid methyl esters preparation from fresh plant tissues. Analytical Biochemistry, 211(1):139–143. doi:10.1006/abio.1993.1244.
García, C.; Salcedo, J. and Alvis, A. 2018. Condiciones óptimas de la etapa de lixiviación en la extracción de almidón de yuca. Biotecnología en el Sector Agropecuario y Agroindustrial, 16(1):62–67. doi:doi: http://dx.doi.org/10.18684/bsaa.v16n1.1146.
Gómez, L.M.; Posada, S.L.; Olivera, M.; Rosero, R. and Aguirre, P. 2017. Análisis de rentabilidad de la producción de leche de acuerdo con la variación de la fuente de carbohidrato utilizada en el suplemento de vacas holstein. Revista de Medicina Veterinaria, 34(Suplemento):9–22. doi:10.19052/mv.4251.
González, G. and Rodríguez, A.A. 2003. Effect of storage method on fermentation characteristics, aerobic stability, and forage intake of tropical grasses ensiled in round bales. Journal of Dairy Science, 86(3):926–933. doi:10.3168/jds.S0022-0302(03)73675-3.
Górka, P.; Kowalski, Z.M.; Zabielski, R. and Guilloteau, P. 2018. Invited review: use of butyrate to promote gastrointestinal tract development in calves. Journal of Dairy Science, 101(6):4785–4800. doi:10.3168/jds.2017-14086.
Grazziotin, R.C.B.; Halfen, J.; Rosa, F.; Schmitt, E.; Anderson, J.L.; Ballard, V. and Osorio, J.S. 2020. Altered rumen fermentation patterns in lactating dairy cows supplemented with phytochemicals improve milk production and efficiency. Journal of Dairy Science, 103(1):301–312. doi:10.3168/jds.2019-16996.
Guatusmal, C.; Escobar, L.D.; Meneses, D.H.; Cardona, J.L. and Castro, E. 2020. Producción y calidad de Tithonia diversifolia y Sambucus nigra en trópico altoandino colombiano. Agronomía Mesoamericana, 31(1):193–208. doi:10.15517/am.v31i1.36677.
Guo, X.; Xu, D.; Li, F.; Bai, J. and Su, R. 2023. Current approaches on the roles of lactic acid bacteria in crop silage. Microbial Biotechnology, 16(1):67–87. doi:10.1111/1751-7915.14184.
Guyader, J.; Eugène, M.; Doreau, M.; Morgavi, D.P.; Gérard, C. and Martin, C. 2017. Tea saponin reduced methanogenesis in vitro but increased methane yield in lactating dairy cows. Journal of Dairy Science, 100(3):1845–1855. doi:10.3168/jds.2016-11644.
Hanlon, M.E.; Moorby, J.M.; McConochie, H.R. and Foskolos, A. 2020. Effects of addition of nutritionally improved straw in dairy cow diets at 2 starch levels. Journal of Dairy Science, 103(11):10233–10244. doi:10.3168/jds.2020-18360.
Hassan, F.; Arshad, M.A.; Ebeid, H.M.; Rehman, M.S.; Khan, M.S.; Shahid, S. and Yang, C. 2020. Phytogenic additives can modulate rumen microbiome to mediate fermentation kinetics and methanogenesis through exploiting diet–microbe interaction. Frontiers in Veterinary Science, 7:576801. doi:10.3389/fvets.2020.575801.
Hernández, E.; Romero, A.; Corona, L. and Talamtes, J.M. 2024. Rumen fermentation of feed samples incubated in filter bags made from different textiles or dispersed in the medium using an in vitro gas production system. Ciencia Rural, 54(2). doi:10.1590/0103-8478cr20220462.
Herrera, R.S.; Verdecia, M.D. and Ramírez, J.L. 2020. Chemical composition, secondary and primary metabolites of Tithonia diversifolia related to climate. Cuban Journal of Agricultural Science, 54(3):425–433.
Higginbotham, G.E.; Mueller, S.C.; Bolsen, K.K. and DePeters, E.J. 1998. Effects of inoculants containing propionic acid bacteria on fermentation and aerobic stability of corn silage. Journal of Dairy Science, 81(8):2185–2192. doi:10.3168/jds.S0022-0302(98)75797-2.
Holden, L.A.; Muller, L.D. and Fales, S.L. 1994. Estimation of Intake in High Producing Holstein Cows Grazing Grass Pasture. Journal of Dairy Science, 77(8):2332–2340. doi:10.3168/jds.S0022-0302(94)77176-9.
Holdridge, L. 1982. Ecología Basada En Zonas de Vida. 3rd ed. Agrícola,Centro Interamericano de Información y Documentación AmericanoInstituto Interamericano de Cooperación para la Agricultura —IICA, San José, Costa Rica.
Holguín, V.; Cuchillo, M.; Mazabel, J.; Quintero, S.; Martens, S. and Mora, J. 2021. In vitro methane production and fermentative parameters of wild sunflower and elephant grass silage mixtures, either inoculated or not with epiphytic lactic acid bacteria strains. Revista Mexicana de Ciencias Pecuarias, 12(3):789–810. doi:10.22319/rmcp.v12i3.5577.
Holguín, V.A.; Cuchillo, M.; Mazabel, J.; Quintero, S. and Mora, J. 2020. Efecto de la mezcla ensilada de Penisetum purpureum y Tithonia diversifolia sobre la fermentación ruminal in vitro y su emisión de metano en el sistema RUSITEC. Revista Mexicana de Ciencias Pecuarias, 11(1):19–37. doi:10.22319/rmcp.v11i1.4740.
Holguín, V.A.; Ortiz, S.; Díaz, G. and Mora, J. 2019. Estimation of leaf area of Tithonia diversifolia using allometric equations. Tropical and Subtropical Agroecosystems, 22(1):231–238. doi:10.56369/tsaes.2794.
Holtshausen, L.; Chaves, A.V.; Beauchemin, K.A.; McGinn, S.M.; McAllister, T.A.; Odongo, N.E.; Cheeke, P.R. and Benchaar, C. 2009. Feeding saponin-containing Yucca schidigera and Quillaja saponaria to decrease enteric methane production in dairy cows. Journal of Dairy Science, 92(6):2809–2821. doi:10.3168/jds.2008-1843.
Huang, Y.; Schoonmaker, J.P.; Oren, S.L.; Trenkle, A. and Beitz, D.C. 2009. Calcium salts of CLA improve availability of dietary CLA. Livestock Science, 122(1):1–7. doi:10.1016/j.livsci.2008.07.010.
Huertas, M.A.; Mayorga, O.L.; García, Y.M.; Holguín, V.A. and Mora, J. 2021. In vitro methane production from silages based on Cenchrus purpureus mixed with Tithonia diversifolia in different proportions. Acta Scientiarum: Animal Sciences, 43(e51322):1–11. doi:10.4025/actascianimsci.v43i1.51322.
Hurley, W.L.; Warner, G.J. and Grummer, R.R. 1987. Changes in triglyceride fatty acid composition of mammary secretions during involution. Journal of Dairy Science, 70(11):2406–2410. doi:10.3168/jds.S0022-0302(87)80302-8.
Jahani, H.; Baraz, H.; Bagheri, N. and Ghaffari, M.H. 2022. Effects of a mixture of phytobiotic-rich herbal extracts on growth performance, blood metabolites, rumen fermentation, and bacterial population of dairy calves. Journal of Dairy Science, 105(6):5062–5073. doi:10.3168/jds.2021-20687.
Johnson, L.M.; Harrison, J.H.; Davidson, D.; Mahanna, W.C.; Shinners, K. and Linder, D. 2002. Corn silage management: effects of maturity, inoculation, and mechanical processing on pack fensity and serobic dtability. Journal of Dairy Science, 85(2):434–444. doi:10.3168/jds.S0022-0302(02)74092-7.
Juárez, F.I.; Pell, A.; Blake, R.W.; Montero, M. and Pinos, J.M. 2018. In vitro ruminal degradation of neutral detergent fiber insoluble protein from tropical pastures fertilized with nitrogen. Revista Mexicana de Ciencias Pecuarias, 9(3):588–600. doi:10.22319/rmcp.v9i3.4490.
Jurado, P. and Sörensen, P.M. 2020. Characterization of saponin foam from Saponaria officinalis for food applications. Food Hydrocolloids, 101:105541. doi:10.1016/j.foodhyd.2019.105541.
Kaewpila, C.; Khota, W.; Gunun, P.; Kesorn, P. and Cherdthong, A. 2020. Strategic addition of different additives to improve silage fermentation, aerobic stability and in vitro digestibility of napier grasses at late maturity stage. Agriculture, 10(7):262. doi:10.3390/agriculture10070262.
Kammes, K.L. and Allen, M.S. 2012. Rates of particle size reduction and passage are faster for legume compared with cool-season grass, resulting in lower rumen fill and less effective fiber. Journal of Dairy Science, 95(6):3288–3297. doi:10.3168/jds.2011-5022.
Kang, J.; Tang, S.; Zhong, R.; Tan, Z. and Wu, D. 2021. Alfalfa silage treated with sucrose has an improved feed quality and more beneficial bacterial communities. Frontiers in Microbiology, 12. doi:10.3389/fmicb.2021.670165.
Kara, K. 2021. The investigation of fatty acids compositions of Jerusalem artichoke (Helianthus tuberosus) herbage harvested at different phenological stages. Ankara Üniversitesi Veteriner Fakültesi Dergisi, 68(3):259–267. doi:10.33988/auvfd.753067.
Karlsson, J.; Lindberg, M.; Åkerlind, M. and Holtenius, K. 2020. Whole-lactation feed intake, milk yield, and energy balance of holstein and swedish red dairy cows fed grass-clover silage and 2 levels of byproduct-based concentrate. Journal of Dairy Science, 103(10):8922–8937. doi:10.3168/jds.2020-18204.
Kehoe, S.I.; Dill-McFarland, K.A.; Breaker, J.D. and Suen, G. 2019. Effects of corn silage inclusion in preweaning calf diets. Journal of Dairy Science, 102(5):4131–4137. doi:10.3168/jds.2018-15799.
Khan, M.A.; Lee, H.J.; Lee, W.S.; Kim, H.S.; Ki, K.S.; Hur, T.Y.; Suh, G.H.; Kang, S.J. and Choi, Y.J. 2007a. Structural growth, rumen development, and metabolic and immune responses of Holstein male calves fed milk through step-down and conventional methods. Journal of Dairy Science, 90(7):3376–3387. doi:10.3168/jds.2007-0104.
Khan, M.A.; Lee, H.J.; Lee, W.S.; Kim, H.S.; Kim, S.B.; Ki, K.S.; Park, S.J.; Ha, J.K. and Choi, Y.J. 2007b. Starch source evaluation in calf starter: I. Feed consumption, body weight gain, structural growth, and blood metabolites in Holstein calves. Journal of Dairy Science, 90(11):5259–5268. doi:10.3168/jds.2007-0338.
Khan, N.A.; Khan, N.; Tang, S. and Tan, Z. 2023. Optimizing corn silage quality during hot summer conditions of the tropics: investigating the effect of additives on in-silo fermentation characteristics, nutrient profiles, digestibility and post-ensiling stability. Frontiers in Plant Science, 14. doi:10.3389/fpls.2023.1305999.
Khota, W.; Pholsen, S.; Higgs, D. and Cai, Y. 2016. Natural lactic acid bacteria population of tropical grasses and their fermentation factor analysis of silage prepared with cellulase and inoculant. Journal of Dairy Science, 99(12):9768–9781. doi:10.3168/jds.2016-11180.
Kozłowska, M.; Cieślak, A.; Jóźwik, A.; El‐Sherbiny, M.; Stochmal, A.; Oleszek, W.; Kowalczyk, M.; Filipiak, W. and Szumacher‐Strabel, M. 2020. The effect of total and individual alfalfa saponins on rumen methane production. Journal of the Science of Food and Agriculture, 100(5):1922–1930. doi:10.1002/jsfa.10204.
Krüger, A.M.; Lima, P. de M.T.; Ovani, V.; Pérez, S.; Louvandini, H. and Abdalla, A.L. 2024. Ruminant grazing lands in the tropics: silvopastoral systems and Tithonia diversifolia as tools with potential to promote sustainability. Agronomy, 14(7):1386. doi:10.3390/agronomy14071386.
Kung, L.; Shaver, R.D.; Grant, R.J. and Schmidt, R.J. 2018. Silage review: Interpretation of chemical, microbial, and organoleptic components of silages. Journal of Dairy Science, 101(5):4020–4033. doi:10.3168/jds.2017-13909.
Kung, L.; Taylor, C.C.; Lynch, M.P. and Neylon, J.M. 2003. The effect of treating Alfalfa with Lactobacillus buchneri 40788 on silage fermentation, aerobic stability, and nutritive value for lactating dairy cows. Journal of Dairy Science, 86(1):336–343. doi:10.3168/jds.S0022-0302(03)73611-X.
Ladeska, V.; Dewanti, E. and Sari, D.I. 2019. Pharmacognostical studies and determination of total flavonoids of paitan (Tithonia diversifolia (Hemsl.) A. Gray. Pharmacognosy Journal, 11(6):1256–1261. doi:10.5530/pj.2019.11.195.
Lemaire, G. and Belanger, G. 2019. Allometries in plants as drivers of forage nutritive value: a review. Agriculture, 10(1):5. doi:10.3390/agriculture10010005.
Lesmeister, K.E.E.; Tozer, P.R.R. and Heinrichs, A.J.J. 2004. Development and analysis of a rumen tissue sampling procedure. Journal of Dairy Science, 87(5):1336–1344. doi:10.3168/jds.S0022-0302(04)73283-X.
Lezcano, Y.; Soca, M.; Ojeda, F.; Roque, E.; Fontes, D.; Montejo, I.L.; Santana, H.; Martínez, J. and Cubillas, N. 2012. Caracterización bromatológica de Tithonia diversifolia (Hemsl.) A. Gray en dos etapas de su ciclo fisiológico. Pastures and Forages, 5(3):275–282.
Li, D.; Ni, K.; Zhang, Y.; Lin, Y. and Yang, F. 2019. Fermentation characteristics, chemical composition and microbial community of tropical forage silage under different temperatures. Asian-Australasian Journal of Animal Sciences, 32(5):665–674. doi:10.5713/ajas.18.0085.
Li, M.; Hassan, F.; Lin, Q.; Arshad, M.A.; Akhtar, M.U.; Peng, L.; Yang, C.; Liang, X. and Huang, J. 2025. In vitro evaluation of ruminal digestibility, fermentation characteristics, and bacterial diversity of kenaf crop at various cutting heights. Veterinary Sciences, 12(1):50. doi:10.3390/vetsci12010050.
Licitra, G.; Hernandez, T.M. and Van Soest, P.J. 1996. Standardization of procedures for nitrogen fractionation of ruminant feeds. Animal Feed Science and Technology, 57(4):347–358. doi:10.1016/0377-8401(95)00837-3.
Lombard, J.; Urie, N.; Garry, F.; Godden, S.; Quigley, J.; Earleywine, T.; McGuirk, S.; Moore, D.; Branan, M.; Chamorro, M.; Smith, G.; Shivley, C.; Catherman, D.; Haines, D.; Heinrichs, A.J.; James, R.; Maas, J. and Sterner, K. 2020. Consensus recommendations on calf- and herd-level passive immunity in dairy calves in the United States. Journal of Dairy Science, 103(8):7611–7624. doi:10.3168/jds.2019-17955.
Londoño, J.; Mahecha, L. and Angulo, J. 2019. Desempeño agronómico y valor nutritivo de Tithonia diversifolia (Hemsl.) A Gray para la alimentación de bovinos-Revisión. Revista Colombiana de Ciencia Animal - RECIA, 11(1):28–41. doi:10.24188/recia.v0.n0.2019.693.
Loya, J.L.; Vega, E.; Gómez, A.; Navarrete, R.; Calvo, C.; García, I.A.; Valdés, Y.S. and Sanginés, L. 2020. Rumen fermentation and diet degradability in sheep fed sugarcane (Saccharum officinarum) silage supplemented with Tithonia diversifolia or alfalfa (Medicago sativa) and rice polishing. Austral Journal of Veterinary Sciences, 52(2):55–61. doi:10.4067/S0719-81322020000200055.
Lv, B.; Wei, H.; Li, Y. and Xue, Z. 2021. Symbiotic exploration of silage machinery based on technological system evolution. Journal of Physics: Conference Series, 2066(1):012087. doi:10.1088/1742-6596/2066/1/012087.
Macoon, B.; Sollenberger, L.E.; Moore, J.E.; Staples, C.R.; Fike, J.H. and Portier, K.M. 2003. Comparison of three techniques for estimating the forage intake of lactating dairy cows on pasture. Journal of Animal Science, 81(9):2357–2366. doi:10.2527/2003.8192357x.
Mahecha, L.; Escobar, J.P.; Suárez, J.F. and Restrepo, L.F. 2007. Tithonia diversifolia (Hemsl.) Gray (botón de oro) como suplemento forrajero de vacas F1 (holstein por cebú). Livestock Research for Rural Development, 19(2):16.
Mahecha, L.; Londoño, J.D. and Angulo, J. 2022. Agronomic and nutritional asssessment of an intensive silvopastoral system: Tithonia diversifolia, Sambucus nigra, Cynodon nlemfuensis, and Urochloa plantaginea. Proceedings of the National Academy of Sciences, India Section B: Biological Sciences, 92:37–47. doi:10.1007/s40011-021-01282-7.
Maldini, G.; Kennedy, K.M. and Allen, M.S. 2019. Effects of rate and amount of propionic acid infused into the rumen on feeding behavior of Holstein cows in the postpartum period. Journal of Dairy Science, 102(9):8120–8126. doi:10.3168/jds.2019-16307.
Mangwe, M.C.; Mason, W.A.; Reed, C.B.; Spaans, O.K.; Pacheco, D. and Bryant, R.H. 2025. A systematic review and meta-analysis of cow-level factors affecting milk urea nitrogen and urinary nitrogen output under pasture-based diets. Journal of Dairy Science, 108(1):579–596. doi:10.3168/jds.2024-25394.
Masood, A.; Tasleem, F.; Patricia, O.; Ali, M.S.; Hussain, S.; Siddiqui, F. and Azhar, A. 2017. Assessment of pharmacological potential and safety profile of Tithonia diversifolia. Pakistan Journal of Pharmacology, 34(1–2):45–58.
Mauricio, R.M.; Mould, F.L.; Dhanoa, M.S.; Owen, E.; Channa, K.S. and Theodorou, M.K. 1999. A semi-automated in vitro gas production technique for ruminant feedstuff evaluation. Animal Feed Science and Technology, 79(4):321–330. doi:10.1016/S0377-8401(99)00033-4.
McCreary, D.K.; Kossa, W.C.; Ramachandran, S. and Kurtz, R.R. 1978. A novel and rapid method for the preparation of methyl esters for gas chromatography: application to the determination of the fatty acids of edible fats and oils. Journal of Chromatographic Science, 16(8):329–331. doi:10.1093/chromsci/16.8.329.
McKay, Z.C.; Lynch, M.B.; Mulligan, F.J.; Rajauria, G.; Miller, C. and Pierce, K.M. 2019. The effect of concentrate supplementation type on milk production, dry matter intake, rumen fermentation, and nitrogen excretion in late-lactation, spring-calving grazing dairy cows. Journal of Dairy Science, 102(6):5042–5053. doi:10.3168/jds.2018-15796.
Mejía, E.; Mahecha, L. and Angulo, J. 2016. Tithonia diversifolia: especie para ramoneo en sistemas silvopastoriles y métodos para estimar su consumo. Agronomía Mesoamericana, 28(1):289–302. doi:10.15517/am.v28i1.22673.
Mejía, E.; Mahecha, L. and Angulo, J. 2017. Consumo de materia seca en un sistema silvopastoril de <i>Tithonia diversifolia<i/> en trópico alto. Agronomía Mesoamericana, 28(2):389. doi:10.15517/ma.v28i2.23561.
Menci, R.; Coppa, M.; Torrent, A.; Natalello, A.; Valenti, B.; Luciano, G.; Priolo, A. and Niderkorn, V. 2021a. Effects of two tannin extracts at different doses in interaction with a green or dry forage substrate on in vitro rumen fermentation and biohydrogenation. Animal Feed Science and Technology, 278:114977. doi:10.1016/j.anifeedsci.2021.114977.
Menci, R.; Natalello, A.; Luciano, G.; Priolo, A.; Valenti, B.; Difalco, A.; Rapisarda, T.; Caccamo, M.; Constant, I.; Niderkorn, V. and Coppa, M. 2021b. Cheese quality from cows given a tannin extract in 2 different grazing seasons. Journal of Dairy Science, 104(9):9543–9555. doi:10.3168/jds.2021-20292.
Menezes, G.L.; de Oliveira, A.F.; de Assis Pires, F.P.A.; Gonçalves, L.C.; de Menezes, R.A.; de Sousa, P.G.; de Medeiros, P.H.A.; de Pinho, M.M.; Lana, Â.M.Q.; de Araújo, V.E. and Jayme, D.G. 2023. Efficacy of adding chemical and microbial additives to silage on beef cattle performance: Systematic review and meta‐analysis. Grass and Forage Science, 78(1):1–22. doi:10.1111/gfs.12579.
Mertens, D. 2002. Gravimetric determination of amylase-treated neutral detergent fiber in feeds with refluxing in beakers or crucibles: collaborative study . Journal of AOAC INTERNATIONAL, 85(1):1217–1240.
Mioto da Costa, M.C.; Ítavo, L.C. v.; Ferreira Ítavo, C.C.B.; Dias, A.M.; Petit, H. v.; Reis, F.A.; Gomes, R.C.; Leal, E.S.; Niwa, M.V.G. and de Moraes, G.J. 2019. Evaluation of internal and external markers to estimate faecal output and feed intake in sheep fed fresh forage. Animal Production Science, 59(4):741. doi:10.1071/AN16567.
Miyaji, M.; Matsuyama, H. and Hosoda, K. 2014. Effect of substituting brown rice for corn on lactation and digestion in dairy cows fed diets with a high proportion of grain. Journal of Dairy Science, 97(2):952–960. doi:10.3168/jds.2013-7046.
Molano, R.A.; Girard, C.L. and van Amburgh, M.E. 2021. Effect of dietary supplementation of 2 forms of a B vitamin and choline blend on the performance of Holstein calves during the transition and postweaning phase. Journal of Dairy Science, 104(10):10812–10827. doi:10.3168/jds.2021-20461.
Montero, J.V.; Macas, K.M.; González, K.T.; Mendoza, C.F.; Montero de la Cueva, J.V.; Moreira, K.; González, K.T. and Mendoza, C.F. 2019. Evaluación del botón de oro (Tithonia diversifolia) en la alimentación de cuyes. Idesia (Arica), 37(4):5–9. doi:10.4067/S0718-34292019000400005.
Moufarreg, I.M.M. de O.; De Siqueira, J.C.; Rodrigues, K.F.; Vaz, R.G.M.V.; Moron, S.E.; Parente, I.P.; Mendonça, R.A.N.; Campos, C.F.A. and Araújo, C.C. 2021. Effects of feeding cassava bagasse to slow-growing broilers. Brazilian Journal of Development, 7(4):39078–39099. doi:10.34117/bjdv7n4-392.
Muck, R.E.; Nadeau, E.M.G.; McAllister, T.A.; Contreras-Govea, F.E.; Santos, M.C. and Kung, L. 2018. Silage review: Recent advances and future uses of silage additives. Journal of Dairy Science, 101(5):3980–4000. doi:10.3168/jds.2017-13839.
Muir, J.P. 2002. Hand‐Plucked forage yield and quality and seed production from annual and short‐lived perennial warm‐season legumes fertilized with composted manure. Crop Science, 42(3):897–904. doi:10.2135/cropsci2002.8970.
Munyaneza, N.; Niyukuri, J. and Hachimi, Y. El. 2017. Milk urea nitrogen as an indicator of nitrogen metabolism efficiency in dairy cows: a review. Theriogenology Insight - An International Journal of Reproduction in all Animals, 7(3):145. doi:10.5958/2277-3371.2017.00032.8.
Navas, A. and Montaña, V. 2019. Comportamiento de Tithonia diversifolia, bajo condiciones de bosque húmedo tropical. Revista de Investigaciones Veterinarias del Perú, 30(2):721–732. doi:10.15381/rivep.v30i2.15066.
van Niekerk, J.K.; Middeldorp, M.; Guan, L.L. and Steele, M.A. 2021a. Preweaning to postweaning rumen papillae structural growth, ruminal fermentation characteristics, and acute-phase proteins in calves. Journal of Dairy Science, 104(3):3632–3645. doi:10.3168/jds.2020-19003.
van Niekerk, J.K.; Middeldorp, M.; Guan, L.L. and Steele, M.A. 2021b. Preweaning to postweaning rumen papillae structural growth, ruminal fermentation characteristics, and acute-phase proteins in calves. Journal of Dairy Science, 104(3):3632–3645. doi:10.3168/jds.2020-19003.
Nieto, D.F.; Lagos, E.; Avellaneda, Y. and Castro, E. 2020. Productividad de vacas lecheras suplementadas con ensilaje de haba alpargata o remolacha forrajera. Agronomía Mesoamericana, 31(2):341–351. doi:10.15517/am.v31i2.37806.
Nizzy, A.M. and Kannan, S. 2022. A review on the conversion of cassava wastes into value-added products towards a sustainable environment. Environmental Science and Pollution Research, 29(46):69223–69240. doi:10.1007/s11356-022-22500-3.
NRC. 1989. Nutrient Requirements of Dairy Cattle. National Academies Press, Washington, D.C.
NRC. 2001. Nutrient Requirements of Dairy Cattle. 7th ed. National Academies Press, Washington, D.C.
Olabode, S.; Sola, O.; Akanbi, W.B.; Adesina, G.O. and Babajide, P.A. 2007. Evaluation of Tithonia diversifolia (Hemsl.) A Gray for soil improvement. World Journal of Agricultural Sciences, 3(4):503–507.
Olsen, M.A.; Vhile, S.G.; Porcellato, D.; Kidane, A. and Skeie, S.B. 2021. Feeding concentrates with different protein sources to high-yielding, mid-lactation norwegian red cows: effect on cheese ripening. Journal of Dairy Science, 104(4):4062–4073. doi:10.3168/jds.2020-19226.
Oluwasola, T.A. and Dairo, F.A.S. 2016. Proximate composition, amino acid profile and some anti-nutrients of Tithonia diversifolia cut at two different times. African Journal of Agricultural Research, 11(38):3659–3663. doi:10.5897/AJAR2016.10910.
Oyewole, I.O.; Ibidapo, C.A.; Moronkola, D.O.; Oduola, A.O.; Adeoye, G.O.; Anyasor G. and Obansa, J.A. 2008. Anti-malarial and repellent activities of Tithonia diversifolia (Hemsl.) leaf extracts. Journal of Medicinal Plants Research, 2(8):171–175. doi:10.5897/JMPR.9000104.
Owoyele, V.B.; Wuraola, C.O.; Soladoye, A.O. and Olaleye, S.B. 2004. Studies on the anti-inflammatory and analgesic properties of Tithonia diversifolia leaf extract. Journal of Ethnopharmacology, 90(2–3):317–321. doi:10.1016/j.jep.2003.10.010.
Paniagua, L.D.; Arias, L.M.; Alpízar, A.; Castillo, M.A.; Camacho, M.I.; Padilla, J.E. and Campos, M. 2020. Effect of planting density and regrowth age on the production and bromatological composition of Tithonia diversifolia (Hemsl.) A. Gray. Pastos y Forrajes, 43(4):275–283.
Partey, S.T. 2011. Effect of pruning frequency and pruning height on the biomass production of Tithonia diversifolia (Hemsl) A. Gray. Agroforestry Systems, 83(2):181–187. doi:10.1007/s10457-010-9367-y.
Penner, G.B.; Taniguchi, M.; Guan, L.L.; Beauchemin, K.A. and Oba, M. 2009. Effect of dietary forage to concentrate ratio on volatile fatty acid absorption and the expression of genes related to volatile fatty acid absorption and metabolism in ruminal tissue. Journal of Dairy Science, 92(6):2767–2781. doi:10.3168/jds.2008-1716.
Phuong, H.N.; Friggens, N.C.; de Boer, I.J.M. and Schmidely, P. 2013. Factors affecting energy and nitrogen efficiency of dairy cows: A meta-analysis. Journal of Dairy Science, 96(11):7245–7259. doi:10.3168/jds.2013-6977.
Piao, S.; Liu, Q.; Chen, A.; Janssens, I.A.; Fu, Y.; Dai, J.; Liu, L.; Lian, X.; Shen, M. and Zhu, X. 2019. Plant phenology and global climate change: current progresses and challenges. Global Change Biology, 25(6):1922–1940. doi:10.1111/gcb.14619.
Piltz, J.W.; Meyer, R.G.; Brennan, M.A. and Boschma, S.P. 2022. Fermentation quality of silages produced from wilted sown tropical perennial grass pastures with or without a bacterial inoculant. Agronomy, 12(7):1721. doi:10.3390/agronomy12071721.
Posada, S.L.; Ramírez, J.F. and Rosero, R. 2014. Producción de metano y digestibilidad de mezclas kikuyo (Pennisetum clandestinum) - papa (Solanum tuberosum).. Agronomía Mesoamericana, 25(1):141. doi:10.15517/am.v25i1.14214.
Pretti, I.R.; Luz, A.C. da; Jamal, C.M. and Batitucci, M. do C.P. 2018a. Variation of biochemical and antioxidant activity with respect to the phenological stage of Tithonia diversifolia Hemsl. (Asteraceae) populations. Industrial Crops and Products, 121(1):241–249. doi:10.1016/j.indcrop.2018.04.080.
Posada, S.L.; Ramírez, J.F. and Rosero, R. 2014. Producción de metano y digestibilidad de mezclas kikuyo (Pennisetum clandestinum) - papa (Solanum tuberosum).. Agronomía Mesoamericana, 25(1):141. doi:10.15517/am.v25i1.14214.
Pretti, I.R.; Luz, A.C. da; Jamal, C.M. and Batitucci, M. do C.P. 2018a. Variation of biochemical and antioxidant activity with respect to the phenological stage of Tithonia diversifolia Hemsl. (Asteraceae) populations. Industrial Crops and Products, 121(1):241–249. doi:10.1016/j.indcrop.2018.04.080.
Pretti, I.R.; Luz, A.C. da; Jamal, C.M. and Batitucci, M. do C.P. 2018b. Variation of biochemical and antioxidant activity with respect to the phenological stage of Tithonia diversifolia Hemsl. (Asteraceae) populations. Industrial Crops and Products, 121(1):241–249. doi:10.1016/j.indcrop.2018.04.080.
Prieto, E.; Vargas, J.E.; Angulo, J. and Mahecha, L. 2016. Aceites vegetales sobre ácidos grasos y producción de metano in vitro en vacas lecheras.. Agronomía Mesoamericana, 28(1):1. doi:10.15517/am.v28i1.22034.
Quigley, J.D.; Lago, A.; Chapman, C.; Erickson, P. and Polo, J. 2013. Evaluation of the Brix refractometer to estimate immunoglobulin G concentration in bovine colostrum. Journal of Dairy Science, 96(2):1148–1155. doi:10.3168/jds.2012-5823.
Quiñones, J.D.; Cardona, J.L. and Castro, E. 2020. Ensilaje de arbustivas forrajeras para sistemas de alimentación ganadera del trópico altoandino. Revista de Investigaciones Altoandinas, 22(3):285–301. doi:10.18271/ria.2020.662.
Ramos, L.; Apráez, J.E.; Cortes, K.S. and Apráez, J.J. 2021. Nutritional, antinutritional and phenological characterization of promising forage species for animal feeding in a cold tropical zone. Revista de Ciencias Agrícolas, 38(1):86–96. doi:10.22267/rcia.213801.152.
Rashama, C.; Ijoma, G.N. and Matambo, T.S. 2021. The effects of phytochemicals on methanogenesis: insights from ruminant digestion and implications for industrial biogas digesters management. Phytochemistry Reviews, 20(6):1245–1271. doi:10.1007/s11101-021-09744-6.
Reilly, J.S. ed. . 2001. Euthanasia of Animals Used for Scientific Purposes. 2nd ed. ANZCCART: Australian and New Zealand Council for the Care of Animals in Research and Teaching, Adelaide (Australia).
Ren, H.; Bai, H.; Su, X.; Pang, J.; Li, X.; Wu, S.; Cao, Y.; Cai, C. and Yao, J. 2020. Decreased amylolytic microbes of the hindgut and increased blood glucose implied improved starch utilization in the small intestine by feeding rumen-protected leucine in dairy calves. Journal of Dairy Science, 103(5):4218–4235. doi:10.3168/jds.2019-17194.
Ribeiro, R.S.; Terry, S.A.; Sacramento, J.P.; Silveira, S.R. e; Bento, C.B.P.; da Silva, E.F.; Mantovani, H.C.; Gama, M.A.S. da; Pereira, L.G.R.; Tomich, T.R.; Maurício, R.M. and Chaves, A.V. 2016. Tithonia diversifolia as a supplementary feed for dairy cows. PLOS ONE, 11(12):e0165751. doi:10.1371/journal.pone.0165751.
Rivera, J.; Villegas, G.; Chará, J.; Durango, S.G.; Romero, M. and Verchot, L. 2022. Effect of Tithonia diversifolia (Hemsl.) A. Gray intake on in vivo methane (CH4) emission and milk production in dual-purpose cows in the Colombian Amazonian piedmont. Translational Animal Science, 6(4):1–12. doi:10.1093/tas/txac139.
Rivera, J.E.; Chará, J.; Gómez, J.F.; Ruíz, T. and Barahona, R. 2018. Variabilidad fenotípica de Tithonia diversifolia A. Gray para la producción animal sostenible. Livestock Research for Rural Development, 30(12):200.
Rivera, J.E.; Ruíz, T.E.; Chará, J.; Gómez, J.F. and Barahona, R. 2021. Biomass production and nutritional properties of promising genotypes of Tithonia diversifolia (Hemsl.) A. Gray under different environments. Tropical Grasslands-Forrajes Tropicales, 9(3):280–291. doi:10.17138/tgft(9)280-291.
Rivera, J.E.; Villegas, G.; Chará, J.; Durango, S.; Romero, M. and Verchot, L. 2024. Silvopastoral systems with Tithonia diversifolia (Hemsl.) A. Gray reduce N2O–N and CH4 emissions from cattle manure deposited on grasslands in the Amazon piedmont. Agroforestry Systems, 98(5):1091–1104. doi:10.1007/s10457-023-00859-7.
Roa, M.L.; Corredor, J.R. and Hernández, M.C. 2020. Physiological behavior of broilers using diets with Tithonia diversifolia and probiotics. Archivos de Zootecnia, 69(268):406–417. doi:10.21071/az.v69i268.5388.
Roca, A.I.; Dillard, S.L. and Soder, K.J. 2020. Ruminal fermentation and enteric methane production of legumes containing condensed tannins fed in continuous culture. Journal of Dairy Science, 103(8):7028–7038. doi:10.3168/jds.2019-17627.
Rodríguez, M.; Ojeda, F.; Pozo, Y.; Rondón, A. and Milián, G. 2022. Evaluation of two microbial inoculants as fermentation activators in silages of Tithonia diversifolia (Hemsl.) A. Gray. Pastos y Forrajes, 45:2022.
Romero, R.; Alcívar, E. and Alpízar, J. 2017. Afrecho de yuca como sustituto parcial del maíz en la alimentación de cerdos de engorde. La Técnica: Revista de las Agrociencias, Esp(2):54–61. doi:10.33936/la_tecnica.v0i0.974.
Roopa, M.S.; Shubharani, R.; Rhetso, T. and Sivaram, V. 2020. Comparative analysis of phytochemical constituents, free radical scavenging activity and GC-MS analysis of leaf and flower extract of Tithonia diversifolia (Hemsl.). International Journal of Pharmaceutical Sciences and Research, 11(10):5081–5090. doi:10.13040/IJPSR.0975-8232.11(10).5081-90.
Rosa, F.; Busato, S.; Avaroma, F.C.; Mohan, R.; Carpinelli, N.; Bionaz, M. and Osorio, J.S. 2021. Short communication: Molecular markers for epithelial cells across gastrointestinal tissues and fecal RNA in preweaning dairy calves. Journal of Dairy Science, 104(1):1175–1182. doi:10.3168/jds.2020-18955.
Rosales, J. and Urbietta, H. 1993. Comparativo de niveles de afrecho de yuca en raciones para cerdos en crecimiento y engorde, en la zona de Pucallpa. Folia Amazonica, 5(1–2):159–169. doi:10.24841/fa.v5i1-2.238.
Rosero, R. and Posada, S.L. 2007. Modelación de la cinética de degradación de alimentos para rumiantes. Revista Colombiana de Ciencias Pecuarias, 20(2):174–182. doi:10.17533/udea.rccp.324134.
Ruiz, J.F.; Cerón, F.; Barahona, R. and Bolívar, D.M. 2019. Caracterización de los sistemas de producción bovina de leche según el nivel de intensificación y su relación con variables económicas y técnicas asociadas a la sustentabilidad. Livestock Research for Rural Development, 31(3):40.
Ruiz, R.R.; Ballina, H.S. and Ruiz, E. 2023. Características morfológicas foliares y su relación con la defoliación en en tres especies de plantas forrajeras. Acta Biológica Colombiana, 28(1):12–22. doi:10.15446/abc.v28n1.88402.
Ruiz, T.E.; Febles, G. and Díaz, H. 2012a. Distancia de plantación, frecuencia y altura de corte en la producción de biomasa de Tithonia diversifolia colecta 10 durante el año. Revista Cubana de Ciencia Agrícola, 46(4):423–426.
Ruiz, T.E.; Torres, V.; Febles, G.; Díaz, H.; Sarduy, L.; González, J.; Díaz, H. and González, J. 2012d. Utilización de la modelación para estudiar el crecimiento de Tithonia diversifolia colecta 10. Revista Cubana de Ciencia Agrícola, 46(3):237–242.
Ruiz, T.E.; Torres, V.; Febles, G.; Díaz, H. and González, J. 2012b. Empleo de la modelación para estudiar el crecimiento del material vegetal 23 de Tithonia diversifolia. Revista Cubana de Ciencia Agrícola, 4(1):23–29.
Ruiz, T.E.; Torres, V.; Febles, G.; Díaz, H. and González, J. 2012c. Utilización de la modelación para estudiar el crecimiento de Tithonia diversifolia colecta 17. Revista Cubana de Ciencia Agrícola, 46(3):243–247.
Ruiz, T.E.; Torres, V.; Febles, G.; Díaz, H.; Sarduy, L.; González, J.; Díaz, H. and González, J. 2012d. Utilización de la modelación para estudiar el crecimiento de Tithonia diversifolia colecta 10. Revista Cubana de Ciencia Agrícola, 46(3):237–242.
Ruiz, T.E.; Torres, . V.; Valenciaga, N.; Galindo, J.; Febles, G.; Medina, Y.; Díaz, H. and Mora, C. 2021. Tithonia diversifolia material vegetal O-23 analizado mediante modelación de sus componentes morfológicos de crecimiento. Investigación Agropecuaria, 25(2):69–81.
Ruiz, T.E.; Torres, V.; Febles, G.; Díaz, H. and González, J. 2013. Estudio del comportamiento de ecotipos destacados de Tithonia diversifolia en relación con algunos componentes morfológicos. Livestock Research for Rural Development, 25(9):154.
Sadeghi, K.; Ganjkhanlou, M.; Fekri, A. and Palangi, V. 2025. A study investigating the relationship between milk urea nitrogen and the reproductive performance of Holstein cows. Journal of the Hellenic Veterinary Medical Society, 75(4):8353–8362. doi:10.12681/jhvms.37076.
Salcedo, J.G.; Contreras, K.; García, A. and Fernandez, A. 2016. Modelado de la cinética de secado del afrecho de yuca (Manihot esculenta Crantz). Revista Mexicana de Ingeniería Química, 15(3):883–891.
dos Santos, A.M.; Santos, M.V.; da Silva, L.D.; dos Santos, J.B.; Ferreira, E.A. and Santos, L.D.T. 2021. Effects of irrigation and nitrogen fertilization rates on yield, agronomic efficiency and morphophysiology in Tithonia diversifolia. Agricultural Water Management, 248:106782. doi:10.1016/j.agwat.2021.106782.
Schmitt, M.H.; Ward, D. and Shrader, A.M. 2020. Salivary tannin-binding proteins: A foraging advantage for goats?. Livestock Science, 234:103974. doi:10.1016/j.livsci.2020.103974.
Schrobback, P.; Gonzalez, C.; Mayberry, D. and Herrero, M. 2023. On-farm investments into dairy cow health: evidence from 15 case study countries. Frontiers in Veterinary Science, 10. doi:10.3389/fvets.2023.1288199.
Schroeder, G.F.; Gagliostro, G.A.; Bargo, F.; Delahoy, J.E. and Muller, L.D. 2004. Effects of fat supplementation on milk production and composition by dairy cows on pasture: a review. Livestock Production Science, 86(1–3):1–18. doi:10.1016/S0301-6226(03)00118-0.
Serna, T.; Contreras, Y.; Lozano, M.; Salcedo, J. and Hernández, J. 2018. Varicación del método de secado en la fermentación espontánea de almidón nativo de yuca. @limentech, Ciencia y Tecnología Alimentaria, 15(1):50. doi:10.24054/16927125.v1.n1.2017.2962.
Serpa, J.G.; Hernández, E.J.; Fernández, G.; Sandoval, L.C. and Andrade, R.D. 2022. Post-industrial context of cassava bagasse and trend of studies towards a sustainable industry: A scoping review – Part I. F1000Research, 11:562. doi:10.12688/f1000research.110429.1.
Shao, T.; Ohba, N.; Shimojo, M. and Masuda, Y. 2004. Effects of adding glucose, sorbic acid and pre-fermented juices on the fermentation quality of guineagrass (Panicum maximum Jacq.) silages. Asian-Australasian Journal of Animal Sciences, 17(6):808–813. doi:10.5713/ajas.2004.808.
Shao, T.; Zhang, M.; Shimojo, M. and Masuda, Y. 2007. Fermentation quality of italian ryegrass (Lolium multiflorum Lam.) silages treated with encapsulated-glucose, glucose, sorbic acid and pre-fermented juices. Asian-Australasian Journal of Animal Science, 20(11):1699–1704.
Shipley, B. and Vu, T.T. 2002. Dry matter content as a measure of dry matter concentration in plants and their parts. New Phytologist, 153(2):359–364. doi:10.1046/j.0028-646X.2001.00320.x.
Sikiru, A.B.,; Yousuf, M.B. and Ademola, S.G. 2018. Cassava bran–fish processing waste as dry season feed resources for sheep in Nigeria Southern Guinea Savannah. Journal of Rangeland Science1, 8(1):11–22.
Van Soest, P.J. 1994. Nutritional Ecology of the Ruminant. 2nd ed. Cornell University Press, ed. Cornell University Press, Ithaca (Nueva York).
Van Soest, P.J.; Robertson, J.B. and Lewis, B.A. 1991. Methods for dietary fiber, neutral detergent fiber, and nonstarch polysaccharides in relation to animal nutrition. Journal of Dairy Science, 74(10):3583–3697. doi:10.3168/jds.S0022-0302(91)78551-2.
Soundharrajan, I.; Park, H.S.; Rengasamy, S.; Sivanesan, R. and Choi, K.C. 2021. Application and future prospective of lactic acid bacteria as natural additives for silage production—a review. Applied Sciences, 11(17):8127. doi:10.3390/app11178127.
Sousa, L.B.; Albuquerque, M.L.; de Oliveira, H.G.; Sousa, L.B.; e Silva, L.S.; Machado, F.S.; Tomich, T.R.; Oss, D.B.; Ferreira, A.L.; Campos, M.M.; Costa, I.C. and Ribeiro Pereira, L.G. 2022. Prosopis juliflora piperidine alkaloid extract levels in diet for sheep change energy and nitrogen metabolism and affect enteric methane yield. Journal of the Science of Food and Agriculture, 102(12):5132–5140. doi:10.1002/jsfa.11864.
Tahir, M.; Wang, T.; Zhang, J.; Xia, T.; Deng, X.; Cao, X. and Zhong, J. 2025. Compound lactic acid bacteria enhance the aerobic stability of Sesbania cannabina and corn mixed silage. BMC Microbiology, 25(1):68. doi:10.1186/s12866-025-03781-3.
Takahashi, L.S.; da Costa, R.L.D.; Pérez, S.; Niderkorn, V.; Lugo, F.C. and Abdalla, A.L. 2024. Assessing nutritional quality and gas production kinetics: incorporating Tithonia diversifolia into sugarcane silage. Agroforestry Systems, 98(7):2197–2208. doi:10.1007/s10457-024-01007-5.
Tarekegn, G.M.; Karlsson, J.; Kronqvist, C.; Berglund, B.; Holtenius, K. and Strandberg, E. 2021. Genetic parameters of forage dry matter intake and milk produced from forage in swedish red and holstein dairy cows. Journal of Dairy Science, 104(4):4424–4440. doi:10.3168/jds.2020-19224.
Tedeschi, L.O.; Muir, J.P.; Naumann, H.D.; Norris, A.B.; Ramírez-Restrepo, C.A. and Mertens-Talcott, S.U. 2021. Nutritional aspects of ecologically relevant phytochemicals in ruminant production. Frontiers in Veterinary Science, 8:628445. doi:10.3389/fvets.2021.628445.
Temel, S.; Surmen, M. and Tan, M. 2015. Effects of growth stages on the nutritive value of specific halophyte species in saline grasslands. Journal of Animal and Plant Sciences, 25(5):1419–1428.
Terry, S.A.; Ribeiro, R.S.; Freitas, D.S.; Delarota, G.D.; Pereira, L.G.R.; Tomich, T.R.; Maurício, R.M. and Chaves, A. V. 2016. Effects of Tithonia diversifolia on in vitro methane production and ruminal fermentation characteristics. Animal Production Science, 56(3):437. doi:10.1071/AN15560.
Thiex, N.J.; Manson, H.; Anderson, S. and Persson, J.-Å. 2002. Determination of crude protein in animal feed, gorage, grain, and oilseeds by using block digestion with a copper catalyst and steam distillation into boric acid: collaborative study. Journal of AOAC International, 85(2):309–317. doi:10.1093/jaoac/85.2.309.
Torres, P.; Pérez, A.; Marmolejo, L.F.; Ordoñez, J.A. and García, R. 2010. Una mirada a la agroindusria de extracción de almidón de yuca, desde la estandarización de procesos. Revista EIA, 14(1):23–38.
Torres, P.; Valencia, Y. and Canchala, T. 2014. Modelación de la separación de partículas no retenidas en la etapa de sedimentación en canales: proceso de extracción de almidón de yuca. Biotecnología en el Sector Agropecuario y Agroindustrial, 12(2):81–89.
Tricarico, J.M.; Kebreab, E. and Wattiaux, M.A. 2020. MILK Symposium review: sustainability of dairy production and consumption in low-income countries with emphasis on productivity and environmental impact. Journal of Dairy Science, 103(11):9791–9802. doi:10.3168/jds.2020-18269.
Tümmler, L.-M.; Derno, M.; Röttgen, V.; Vernunft, A.; Tuchscherer, A.; Wolf, P. and Kuhla, B. 2020. Effects of 2 colostrum and subsequent milk replacer feeding intensities on methane production, rumen development, and performance in young calves. Journal of Dairy Science, 103(7):6054–6069. doi:10.3168/jds.2019-17875.
Uu, C.; Canul, J.R.; Chay, A.J.; Piñeiro, Á.T.; Villanueva, G.; R. Aryal, D.; Pozo, D. and Casanova, F. 2022. Seasonal variation in biomass yield and quality of Tithonia diversifolia at different cutting heights. Ecosistemas y Recursos Agropecuarios, 9(3). doi:10.19136/era.a9n3.3252.
Uu, C.; Pozo, D.; Raj, D.; Dzio, B.; Villanueva, G.; Casanova, F.; Cha, A. and Canúl, J. 2023. Biomass production and chemical composition of Tithonia diversifolia by the date of harvesting at different cutting heights. Tropical and Subtropical Agroecosystems, 26(3):72. doi:10.56369/tsaes.4888.
Vargas, J.; Pabon, M.L. and Carulla, J.E. 2021. Methane emissions from lambs fed kikuyu hay alone or mixtured with lotus hay. Archivos Latinoamericanos de Producción Animal, 29(1–2):1–9. doi:10.53588/alpa.291201.
Vargas, J.; Sierra, A.; Mancipe, E. and Avellaneda, Y. 2018. El kikuyo, una gramínea presente en los sistemas de rumiantes en trópico alto colombiano. CES Medicina Veterinaria y Zootecnia, 13(2):137–156. doi:10.21615/4558.
Vargas, V.T.; Pérez, P.; López, S.; Castillo, E.; Cruz, C. and Jarillo, J. 2022a. Production and nutritional quality of Tithonia diversifolia (Hemsl.) A. Grey in three seasons of the year and its effect on the preference by pelibuey sheep. Revista Mexicana de Ciencias Pecuarias, 13(1):240–257. doi:10.22319/rmcp.v13i1.5906.
Vargas, V.T.; Pérez, P.; López, S.; Castillo, E.; Cruz, C. and Jarillo, J. 2022b. Production and nutritional quality of Tithonia diversifolia (Hemsl.) A. Grey in three seasons of the year and its effect on the preference by pelibuey sheep. Revista Mexicana de Ciencias Pecuarias, 13(1):240–257. doi:10.22319/rmcp.v13i1.5906.
Verdecia, D.M.; Herrera, R.S.; Ramírez, J.L.; Bodas, R.; Leonard, L.; Giráldez, F.J.; Andrés, S.; Santana, A.; Méndez, Y. and López, S. 2018. Yield components, chemical characterization and polyphenolic profile of Tithonia diversifolia in Valle del Cauto, Cuba. Cuban Journal of Agricultural Science, 52(4):457–471.
Verdecia, D.M.; Olmo, C.; Hernández, L.G.; Ojeda, A.; Ramírez, J.L. and Martínez, Y. 2022. Chemical composition of the foliage meal of Tithonia diversifolia. Enfoque UTE, 13(4):1–10. doi:10.29019/enfoqueute.856.
Verdecia, D.M.; Ramírez, J.L.; Leonard, I.; Álvarez, Y.; Bazán, Y.; Bodas, R.; Andrés, S.; Álvarez, J.; Giráldez, F. and López, S. 2011. Rendimiento productivo y composición química del arbusto forrajero Tithonia diversifolia en una zona del Valle del Cauto, Cuba. REDVET: Revista Electrónica de Veterinaria, 12(5):1–13.
Vitalis, F.; Henry, D.; Sagne, K.; Matho, A.; Florence, F.; Kuietche, M. and Julius, N. 2019. Effects of graded levels of boiled wild sunflower (Tithonia diversifolia Hemsl A. Gray) leaf meal on growth and carcass characteristics of rabbits. Journal of Animal & Plant Sciences, 41.2:6940–6950. doi:10.35759/JAnmPlSci.v41-2.7.
Wang, J.; Wang, J.Q.; Zhou, H. and Feng, T. 2009. Effects of addition of previously fermented juice prepared from alfalfa on fermentation quality and protein degradation of alfalfa silage. Animal Feed Science and Technology, 151(3–4):280–290. doi:10.1016/j.anifeedsci.2009.03.001.
Wang, S.; Zhang, G.; Zhao, J.; Dong, Z.; Li, J. and Shao, T. 2023. Fermentation quality, aerobic stability and in vitro gas production kinetics and digestibility in total mixed ration silage treated with lactic acid bacteria inoculants and antimicrobial additives. Italian Journal of Animal Science, 22(1):430–441. doi:10.1080/1828051X.2023.2206422.
Weligama, V.T.; Moghaddam, L.; Welsh, Z.G.; Wang, T.; Xiao, H.-W. and Karim, A. 2023. Extraction and characterisation of starch from cassava (Manihot esculenta) agro-industrial wastes. LWT, 182:114787. doi:10.1016/j.lwt.2023.114787.
Wilkinson, J.M. and Davies, D.R. 2013. The aerobic stability of silage: key findings and recent developments. Grass and Forage Science, 68(1):1–19. doi:10.1111/j.1365-2494.2012.00891.x.
Williams, C.H.; David, D.J. and Iismaa, O. 1962. The determination of chromic oxide in faeces samples by atomic absorption spectrophotometry. The Journal of Agricultural Science, 59(3):381–385. doi:10.1017/S002185960001546X.
Xu, H.J.; Zhang, Q.Y.; Wang, L.H.; Zhang, C.R.; Li, Y. and Zhang, Y.G. 2022. Growth performance, digestibility, blood metabolites, ruminal fermentation, and bacterial communities in response to the inclusion of gallic acid in the starter feed of preweaning dairy calves. Journal of Dairy Science, 105(4):3078–3089. doi:10.3168/jds.2021-20838.
Yamasaki, M.; Kishihara, K.; Ikeda, I.; Sugano, M. and Yamada, K. 1999. A recommended esterification method for gas chromatographic measurement of conjugated linoleic acid. Journal of the American Oil Chemists’ Society, 76(8):933–938. doi:10.1007/s11746-999-0109-0.
Yitbarek, M.B. and Tamir, B. 2014. Silage Additives: Review. Open Journal of Applied Sciences, 4(5):258–274. doi:10.4236/ojapps.2014.45026.
Zwietering, M.H.; Jongenburger, I.; Rombouts, F.M. and van ’t Riet, K. 1990. Modeling of the bacterial growth curve. Applied and Environmental Microbiology, 56(6):1875–1881. doi:10.1128/aem.56.6.1875-1881.1990.
dc.rights.uri.none.fl_str_mv http://creativecommons.org/licenses/by-nc-sa/4.0/
dc.rights.accessrights.none.fl_str_mv info:eu-repo/semantics/openAccess
dc.rights.license.en.fl_str_mv Attribution-NonCommercial-ShareAlike 4.0 International
dc.rights.coar.none.fl_str_mv http://purl.org/coar/access_right/c_abf2
rights_invalid_str_mv http://creativecommons.org/licenses/by-nc-sa/4.0/
Attribution-NonCommercial-ShareAlike 4.0 International
http://purl.org/coar/access_right/c_abf2
eu_rights_str_mv openAccess
dc.format.extent.none.fl_str_mv 113 páginas
dc.format.mimetype.none.fl_str_mv application/pdf
dc.publisher.none.fl_str_mv Universidad de Antioquia
dc.publisher.program.none.fl_str_mv Doctorado en Ciencias Animales
dc.publisher.department.none.fl_str_mv Departamento de Producción Agropecuaria
dc.publisher.place.none.fl_str_mv Medellín, Colombia
dc.publisher.faculty.none.fl_str_mv Facultad de Ciencias Agrarias
dc.publisher.branch.none.fl_str_mv Campus Medellín - Ciudadela Robledo
publisher.none.fl_str_mv Universidad de Antioquia
institution Universidad de Antioquia
bitstream.url.fl_str_mv https://bibliotecadigital.udea.edu.co/bitstreams/ac7abe99-f8c0-4e67-bce5-555d393d92c2/download
https://bibliotecadigital.udea.edu.co/bitstreams/ccd46f5e-f0ef-4117-ab67-637c9a682612/download
https://bibliotecadigital.udea.edu.co/bitstreams/b273b3ca-26c5-4c5e-bc78-65628860b388/download
https://bibliotecadigital.udea.edu.co/bitstreams/ccf8cef5-6ef0-4602-af8c-c755fea40e1c/download
https://bibliotecadigital.udea.edu.co/bitstreams/e9b600ee-449f-48d9-bf86-a1978f6b7d11/download
bitstream.checksum.fl_str_mv 47cc3c3f752b905db18aa613d6891321
b76e7a76e24cf2f94b3ce0ae5ed275d0
5643bfd9bcf29d560eeec56d584edaa9
d2313c7ca672c2b52dcc7b1ee5b4484b
9734c8ceb990d58ce0fbd0cc4cf465aa
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
MD5
MD5
repository.name.fl_str_mv Repositorio Institucional de la Universidad de Antioquia
repository.mail.fl_str_mv aplicacionbibliotecadigitalbiblioteca@udea.edu.co
_version_ 1851052304137977856
spelling Agulo Arizala, JoaquínMahecha Ledesma, LilianaBarragán Hernández, Wilson AndrésCastaño Jiménez, Gastón AdolfoGrupo de Investigación en Ciencias Agrarias -GRICA-Castro Rincón, EdwinMolano Torres, Rodrigo AlonsoVivas Quila, Nelson José2025-11-07T20:30:35Z2027-11-072025G.A. Castaño Jiménez; W.A. Barragán Hernández; L. Mahecha Ledesma y J. Angulo Arizala , “Evaluación del ensilado mixto de botón de oro (Tithonia diversifolia) y afrecho de yuca como sustituto parcial del alimento concentrado en la dieta de vacas lecheras y crías lactantes”, Tesis doctoral, Doctorado en Ciencias Animales, Universidad de Antioquia, Medellín, Antioquia, Colombia, 2025.https://hdl.handle.net/10495/48160El botón de oro (Tithonia diversifolia, TD) es un forraje tropical con alto contenido de proteína y una concentración moderada de metabolitos secundarios, los cuales modulan la fermentación ruminal hacia rutas metabólicas favorables tanto para el desempeño animal como para el medio ambiente. El afrecho de yuca (AY), un subproducto agroindustrial rico en almidón puede complementar al TD durante el proceso de ensilado, mejorando tanto la calidad fermentativa como el valor nutricional del producto final. En este estudio se llevaron a cabo seis ensayos experimentales diseñados para evaluar el uso de ensilado mixto de TD y AY como sustituto parcial del concentrado en la alimentación de vacas lecheras y crías lactantes. Los ensayos abordaron aspectos clave como el desarrollo fenológico del TD, el uso de aditivos alternativos para la producción de ensilaje, la digestibilidad in vitro y las evaluaciones en modelos animales. Los dos primeros ensayos evaluaron los efectos de la edad de rebrote y la altura de corte sobre las características morfológicas, la composición nutricional y el rendimiento de biomasa del TD en dos zonas tropicales andinas (media y alta montaña). Se encontró que la madurez de la planta influye en la calidad del forraje, observándose valores óptimos a los 40 días de rebrote en la zona de altitud media y a los 80 días en la zona de alta montaña, con una altura de corte de 70 cm. Además, se identificaron variables fenológicas clave que permiten predecir el momento óptimo de cosecha. En un tercer ensayo, se evaluaron los efectos de cinco aditivos sobre el perfil fermentativo y la estabilidad aeróbica de los ensilajes mixtos. Los mejores resultados se obtuvieron con la adición de azúcar disuelta en jugo fermentado de microbiota epífita, lo que mejoró la conservación del ensilaje y su estabilidad aeróbica tras la apertura del silo. En el cuarto ensayo se utilizó la técnica de producción de gas in vitro para evaluar la fermentación ruminal y la digestibilidad de ensilajes con niveles crecientes de AY (0–800 g kg–1 MS). La producción total de gas y la digestibilidad in vitro de la materia seca (DIVMS) aumentaron a partir de 400 g kg–1 MS de AY, junto con interacciones significativas entre el sustrato y el tiempo de incubación para DIVMS, la producción de gas y el factor de partición, lo que sugiere una mayor eficiencia fermentativa. El quinto ensayo fue una evaluación in vivo preliminar del uso del ensilado mixto como reemplazo parcial del concentrado en terneros lactantes. Los resultados indicaron que la sustitución puede realizarse sin comprometer el desempeño productivo. Finalmente, un ensayo in vivo con vacas lecheras en pastoreo evaluó la inclusión del ensilado mixto TD–AY (150 y 300 g kg–1 MS) en la dieta. La sustitución parcial del concentrado no afectó la producción ni la composición de la leche, pero sí redujo los costos de suplementación y los niveles de nitrógeno ureico en leche. En resumen, los resultados respaldan el uso de ensilados mixtos de TD y BY como una estrategia viable para reemplazar parcialmente el concentrado, mejorar el aprovechamiento del forraje, reducir los costos de alimentación y promover la sostenibilidad en los sistemas lecheros tropicales.Wild sunflower (Tithonia diversifolia, TD) is a tropical forage with high protein content and a moderate concentration of secondary metabolites, which modulate ruminal fermentation toward metabolic pathways beneficial to both animal performance and environmental impact. Cassava bagasse (CB), an agro-industrial by-product rich in starch, can complement TD during the ensiling process, improving both the fermentation quality and nutritional value of the final product. This study involved six experimental trials designed to evaluate the use of mixed TD and CB silage as a partial replacement for concentrate in the diets of dairy cows and suckling calves. The trials addressed key aspects such as the phenological development of TD, the use of alternative additives for silage production, in vitro digestibility, and in vivo animal performance. The first two trials assessed the effects of regrowth age and cutting height on the morphological characteristics, nutritional composition, and biomass yield of TD in two Andean tropical zones (mid- and high-altitude). Plant maturity influenced forage quality, with optimal values observed at 40 days of regrowth in the mid-altitude zone and 80 days in the high-altitude zone, using a cutting height of 70 cm. Additionally, key phenological variables were identified to help predict the optimal harvest stage. In a third trial, the effects of five additives on the fermentation profile and aerobic stability of the mixed silages were evaluated. The best results were obtained with the addition of sugar diluted in fermented juice of epiphytic microbiota, which improved silage preservation and aerobic stability after silo opening. The fourth trial used the in vitro gas production technique to assess ruminal fermentation and digestibility of silages with increasing levels of CB (0–800 g kg–1 DM). Total gas production and in vitro dry matter digestibility (IVDMD) increased from 400 g kg⁻1 DM of CB onward, along with significant substrate × incubation time interactions for IVDMD, gas production, and partitioning factor, suggesting enhanced fermentative efficiency. The fifth trial was a preliminary in vivo evaluation of using mixed silage as a partial replacement for concentrate in suckling calves. Results indicated that the replacement could be made without compromising productive performance. Finally, an in vivo trial with grazing dairy cows evaluated the inclusion of TD–CB mixed silage (150 and 300 g kg–1 DM) in the diet. Partial replacement of concentrate did not affect milk yield or composition but reduced supplementation costs and milk urea nitrogen levels. In summary, the results support the use of mixed TD and CB silages as a viable strategy to partially replace concentrate, improve forage utilization, reduce feeding costs, and promote sustainability in tropical dairy production systems.Sistemas Sostenibles de Producción AnimalCOL0009556DoctoradoDoctor en Ciencias Animales113 páginasapplication/pdfspaengUniversidad de AntioquiaDoctorado en Ciencias AnimalesDepartamento de Producción AgropecuariaMedellín, ColombiaFacultad de Ciencias AgrariasCampus Medellín - Ciudadela Robledohttp://creativecommons.org/licenses/by-nc-sa/4.0/info:eu-repo/semantics/openAccessAttribution-NonCommercial-ShareAlike 4.0 Internationalhttp://purl.org/coar/access_right/c_abf2Yuca como alimento para animalesCassava as feedTithonia diversifoliaSubproducto de la molineríaMilling by-productsAditivo de ensilajeSilage additivesConservación de forrajesFodder conservationFenologíaPhenologyDigestibilidad in vitroIn vitro digestibilityAlimentación de rumiantesRuminant feedingGanado de lecheDairy cattlehttp://aims.fao.org/aos/agrovoc/c_32258http://aims.fao.org/aos/agrovoc/c_4841http://aims.fao.org/aos/agrovoc/c_f782f7d9http://aims.fao.org/aos/agrovoc/c_393bde22http://aims.fao.org/aos/agrovoc/c_5774http://aims.fao.org/aos/agrovoc/c_34856http://aims.fao.org/aos/agrovoc/c_b7dc4fa8http://aims.fao.org/aos/agrovoc/c_2108http://id.loc.gov/authorities/subjects/sh85020617ODS 2: Hambre cero. Poner fin al hambre, lograr la seguridad alimentaria y la mejora de la nutrición y promover la agricultura sostenibleODS 8: Trabajo decente y crecimiento económico. Promover el crecimiento económico sostenido, inclusivo y sostenible, el empleo pleno y productivo y el trabajo decente para todosODS 12: Producción y consumo responsables. Garantizar modalidades de consumo y producción sosteniblesODS 15: Vida de ecosistemas terrestres. Proteger, restablecer y promover el uso sostenible de los ecosistemas terrestres, gestionar sosteniblemente los bosques, luchar contra la desertificación, detener e invertir la degradación de las tierras y detener la pérdida de biodiversidadEvaluación del ensilado mixto de botón de oro (Tithonia diversifolia) y afrecho de yuca como sustituto parcial del alimento concentrado en la dieta de vacas lecheras y crías lactantesTrabajo de grado - Doctoradohttp://purl.org/coar/resource_type/c_db06http://purl.org/redcol/resource_type/TDTexthttp://purl.org/coar/version/c_b1a7d7d4d402bcceinfo:eu-repo/semantics/doctoralThesisinfo:eu-repo/semantics/draftAbouelezz, K.F.M.; Wang, S.; Xia, W.G.; Chen, W.; Elokil, A.A.; Zhang, Y.N.; Wang, S.L.; Li, K.C.; Huang, X.B. and Zheng, C.T. 2022. Effects of dietary inclusion of cassava starch-extraction-residue meal on egg production, egg quality, oxidative status, and yolk fatty acid profile in laying ducks. Poultry Science, 101(9):102015. doi:10.1016/j.psj.2022.102015.Acuña, L.L.; Hurtado, V.L. and Torres, D.M. 2014. Evaluación de la calidad del huevo de codornices (Coturnix coturnix japonica) utilizando algunos alimentos energéticos. Revista Sistemas de Producción Agroecológicos, 5(2):30–43. doi:10.22579/22484817.653.Addah, W. 2022. Microbial approach to improving aerobic stability of silage. Nigerian Journal fo Animal Science, 24(2):231–244.Adesogan, A.T.; Krueger, N.; Salawu, M.B.; Dean, D.B. and Staples, C.R. 2004. The influence of treatment with dual purpose bacterial inoculants or soluble carbohydrates on the fermentation and aerobic stability of bermudagrass. Journal of Dairy Science, 87(10):3407–3416. doi:10.3168/jds.S0022-0302(04)73476-1.Aguerre, M.J.; Duval, B.; Powell, J.M.; Vadas, P.A. and Wattiaux, M.A. 2020. Effects of feeding a quebracho–chestnut tannin extract on lactating cow performance and nitrogen utilization efficiency. Journal of Dairy Science, 103(3):2264–2271. doi:10.3168/jds.2019-17442.Ahanger, M.A.; Bhat, J.A.; Siddiqui, M.H.; Rinklebe, J. and Ahmad, P. 2020. Integration of silicon and secondary metabolites in plants: a significant association in stress tolerance. Journal of Experimental Botany, 71(21):6758–6774. doi:10.1093/jxb/eraa291.Amanzougarene, Z. and Fondevila, M. 2020. Fitting of the in vitro gas production technique to the study of high concentrate diets. Animals, 10(10):1935. doi:10.3390/ani10101935.An, L.V. and Lindberg, J.E. 2004. Ensiling of sweet potato leaves (Ipomoea batatas (L.) Lam) and the nutritive value of sweet potato leaf silage for growing pigs. Asian-Australasian Journal of Animal Sciences, 17(4):497–503. doi:10.5713/ajas.2004.497.Andueza, D.; Picard, F.; Note, P. and Carrère, P. 2021. Relationship between the chemical composition, nutritive value and the maturity stage of six temperate perennial grasses during their first growth cycle along an altitude gradient. European Journal of Agronomy, 130:126364. doi:10.1016/j.eja.2021.126364.Angulo, J.; Barragán, W.; Casas, N. and Mahecha, L. 2024. Evaluación agronómica de Tithonia diversifolia (Hemsl.) A. Gray basado en criterio de corte con tiempo térmico. Revista de Investigaciones Veterinarias del Perú, 35(5):e29287. doi:10.15381/rivep.v35i5.29287.Angulo, J.; Nemocón, A.; Barragán, W.A.; Gallo, J. and Mahecha, L. 2022a. Residuos de la industria alimentaria (snacks) como alimento en una lechería en el trópico alto colombiano. Ciencia & Tecnología Agropecuaria, 23(1). doi:10.21930/rcta.vol23_num1_art:2055.Angulo, J.; Nemocón, A.M.; Posada, S.L. and Mahecha, L. 2022b. Producción, calidad de leche y análisis económico de vacas holstein suplementadas con ensilaje de botón de oro (Tithonia diversifolia) o ensilaje de maíz. Biotecnología en el Sector Agropecuario y Agroindustrial, 20(1):27–40. doi:10.18684/bsaa.v20.n1.2022.1535.AOAC. 2010. Official Methods of Analysis of AOAC International. 18th ed. Association of Analytical Communities, ed. AOAC International, Gaithersburg (Maryland).Araújo, J.A.S.; Almeida, J.C.C.; Reis, R.A.; Carvalho, C.A.B. and Barbero, R.P. 2020. Harvest period and baking industry residue inclusion on production efficiency and chemical composition of tropical grass silage. Journal of Cleaner Production, 266:121953. doi:10.1016/j.jclepro.2020.121953.Arias, L.M.; Alpízar, A.; Castillo, M.Á.; Camacho, M.I.; Arronis, V. and Padilla, J. 2018. Producción, calidad bromatológica de la leche y los costos de suplementación con Tithonia diversifolia (Hemsl.) A. Gray, en vacas jersey. Pastos y Forrajes, 41(4):266–272.Arias, L.M.; López, M.; Castillo, M. and Alpízar, A. 2023. Fertilización y edad de rebrote sobre rendimiento y composición bromatológica de Tithonia diversifolia. Agronomía Mesoamericana, 34(3):53172. doi:10.15517/am.2023.53172.Arief, A.; Rusdimansyah, R.; Sowmen, S.; Pazla, R. and Rizqan, R. 2020. Milk production and quality of Etawa crossbreed dairy goat that given Tithonia diversifolia corn waste and concentrate based palm kernel cake. Biodiversitas Journal of Biological Diversity, 21(9):4004–4009. doi:10.13057/biodiv/d210910.Arriola, K.G.; Oliveira, A.S.; Jiang, Y.; Kim, D.; Silva, H.M.; Kim, S.C.; Amaro, F.X.; Ogunade, I.M.; Sultana, H.; Pech Cervantes, A.A.; Ferraretto, L.F.; Vyas, D. and Adesogan, A.T. 2021. Meta-analysis of effects of inoculation with Lactobacillus buchneri, with or without other bacteria, on silage fermentation, aerobic stability, and performance of dairy cows. Journal of Dairy Science, 104(7):7653–7670. doi:10.3168/jds.2020-19647.Arroquy, J.I.; Cornacchione, M.V.; Colombatto, D. and Kunst, C. 2014. Chemical composition and in vitro ruminal degradation of hay and silage from tropical grasses. Canadian Journal of Animal Science, 94(4):705–715. doi:10.4141/cjas-2014-014.Arzani, H.; Zohdi, M.; Fish, E.; Zahedi Amiri, G.H.; Nikkhah, A. and Wester, D. 2004. Phenological effects on forage quality of five grass species. Journal of Range Management, 57(6):624–629. doi:10.2111/1551-5028(2004)057[0624:peofqo]2.0.co;2.Asaadi, A.M. and Dadkhah, A.R. 2010. The study of forage quality of Haloxylon aphyllum and Eurotia ceratoides in different phenological stages. Research Journal of Biological Sciences, 5(7):470–475. doi:10.3923/rjbsci.2010.470.475.Astúa, M.; Campos, C.M. and Rojas, A. 2021. Efecto de la fertilización nitrogenada y la edad de rebrote sobre las características morfológicas y rendimiento agronómico del botón de oro (Tithonia diversifolia) ecotipo INTA-Quepos. Nutrición Animal Tropical, 15(1):1–18. doi:10.15517/nat.v15i1.47521.Astúa, M.; Rojas, A. and Campos, C.M. 2020. Extracción de nutrientes del botón de oro (Tithonia diversifolia) ecotipo INTA-Quepos a tres edades de rebrote con tres niveles de fertilización nitrogenada. Nutrición Animal Tropical, 14(2):113–130. doi:10.15517/nat.v14i2.44682.Avellaneda, Y.; Mancipe, E.A. and Vargas, J. de J. 2020. Effect of regrowth period on morphological development and chemical composition of kikuyu grass (Cenchrus clandestinus) in Colombian’s highlands. Revista CES Medicina Veterinaria y Zootecnia, 15(2):23–37. doi:10.21615/cesmvz.15.2.2.Ayeni, A.O.; Lordbanjou, D.T. and Majek, B.A. 1997. Tithonia diversifolia (Mexican sunflower) in south-western Nigeria: occurrence and growth habit. Weed Research, 37(6):443–449. doi:10.1046/j.1365-3180.1997.d01-72.x.Barboza, J.; Santos, M.; Paschoaloto, J.R.; Bonfá, C.S. and Silva, A.M.S. 2024. Fermentation and nutritional characteristics of silage composed of proportions of Tithonia diversifolia and Sorghum bicolor. Revista Brasileira de Engenharia Agrícola e Ambiental, 29(10):e284291. doi:10.1590/1807-1929/agriambi.v29n10exxxxxx.Barreto, O.T.; Henao, J.C.; Ospina, M.A. and Castañeda, R.D. 2024. Effects of Tithonia diversifolia extract as a feed additive on digestibility and performance of hair lambs. Animals, 14(24):3648. doi:10.3390/ani14243648.Benchaar, C.; McAllister, T.A. and Chouinard, P.Y. 2008. Digestion, ruminal fermentation, ciliate protozoal populations, and milk production from dairy cows fed cinnamaldehyde, quebracho condensed tannin, or Yucca schidigera saponin extracts. Journal of Dairy Science, 91(12):4765–4777. doi:10.3168/jds.2008-1338.Bernardes, T.F.; Gervásio, J.R.S.; De Morais, G. and Casagrande, D.R. 2019. Technical note: A comparison of methods to determine pH in silages. Journal of Dairy Science, 102(10):9039–9042. doi:10.3168/jds.2019-16553.Bernardes, T.F.; Gervásio, J.R.S.; De Morais, G. and Casagrande, D.R. 2019. Technical note: A comparison of methods to determine pH in silages. Journal of Dairy Science, 102(10):9039–9042. doi:10.3168/jds.2019-16553.Bernardon, A.; Miqueloto, T.; Winter, F.L.; de Medeiros Neto, C. and Sbrissia, A.F. 2021. Herbage accumulation dynamics in mixed pastures composed of kikuyugrass and tall fescue as affected by grazing management. Grass and Forage Science, 76(4):508–521. doi:10.1111/gfs.12549.Betancourt, J.A.; Núñez, L.A. and Castaño, G.A. 2017. Suministro de ensilaje de Tithonia diversifolia sólo o mezclado con afrecho de yuca en la dieta de pollos de engorde. Tropical and Subtropical Agroecosystems, 20(2):203–213. doi:10.56369/tsaes.2213.Bizzuti, B.E.; de Abreu Faria, L.; da Costa, W.S.; Lima, P. de M.T.; Ovani, V.S.; Krüger, A.M.; Louvandini, H. and Abdalla, A.L. 2021a. Potential use of cassava by-product as ruminant feed. Tropical Animal Health and Production, 53(1):108. doi:10.1007/s11250-021-02555-z.Bizzuti, B.E.; de Abreu Faria, L.; da Costa, W.S.; Lima, P. de M.T.; Ovani, V.S.; Krüger, A.M.; Louvandini, H. and Abdalla, A.L. 2021b. Potential use of cassava by-product as ruminant feed. Tropical Animal Health and Production, 53(1):108. doi:10.1007/s11250-021-02555-z.Bizzuti, B.E.; Pérez-Márquez, S.; van Cleef, F. de O.S.; Ovani, V.S.; Costa, W.S.; Lima, P.M.T.; Louvandini, H. and Abdalla, A.L. 2023. In vitro degradability and methane production from by-products fed to ruminants. Agronomy, 13(4):1043. doi:10.3390/agronomy13041043.Bonilla, J.; Lemus, C.; Montaño, M.; González, V. and Ly, J. 2012. Ruminal fermentation, digestibility and methane production in sheep fed with foru levels of corn stover. Tropical and Subtropical Agroecosystems, 15(3):499–509.Borreani, G. and Tabacco, E. 2010. The relationship of silage temperature with the microbiological status of the face of corn silage bunkers. Journal of Dairy Science, 93(6):2620–2629. doi:10.3168/jds.2009-2919.Botero, J.M.; Gómez, A. and Botero, M.A. 2019a. Rendimiento, parámetros agronómicos y calidad nutricional de la Tithonia diversifolia con base en diferentes niveles de fertilización. Revista Mexicana de Ciencias Pecuarias, 10(3):789–800. doi:10.22319/rmcp.v10i3.4667.Botero, J.M.; Gómez, A. and Botero, M.A. 2019b. Rendimiento, parámetros agronómicos y calidad nutricional de la Tithonia diversifolia con base en diferentes niveles de fertilización. Revista Mexicana de Ciencias Pecuarias, 10(3):789–800. doi:10.22319/rmcp.v10i3.4667.Buckmaster, D.R. 2009. Technical note: equipment matching for silage harvest. Applied Engineering in Agriculture, 25(1):31–36. doi:10.13031/2013.25423.Burakowska, K.; Górka, P.; Kent-Dennis, C.; Kowalski, Z.M.; Laarveld, B. and Penner, G.B. 2020. Effect of heat-treated canola meal and glycerol inclusion on performance and gastrointestinal development of holstein calves. Journal of Dairy Science, 103(9):7998–8019. doi:10.3168/jds.2019-18133.Bureenok, S.; Namihira, T.; Tamaki, M.; Mizumachi, S.; Kawamoto, Y. and Nakada, T. 2005. Fermentative quality of guineagrass silage by using fermented juice of the epiphytic lactic acid bacteria (FJLB) as a silage additive. Asian-Australasian Journal of Animal Sciences, 18(6):807–811. doi:10.5713/ajas.2005.807.Bureenok, S.; Suksombat, W. and Kawamoto, Y. 2011. Effects of the fermented juice of epiphytic lactic acid bacteria (FJLB) and molasses on digestibility and rumen fermentation characteristics of ruzigrass (Brachiaria ruziziensis) silages. Livestock Science, 138(1–3):266–271. doi:10.1016/j.livsci.2011.01.003.Burren, A.; Terranova, M.; Kreuzer, M.; Kupper, T. and Probst, S. 2025. The relationship between milk urea nitrogen content and urinary nitrogen excretion as determined in 4 Swiss dairy breeds. Journal of Dairy Science, :In press. doi:10.3168/jds.2024-25915.Cabanilla, M.G.; Meza, C.J.; Avellaneda, J.H.; Meza, M.T.; Vivas, W. and Meza, G.A. 2021. Desempeño agronómico y valor nutricional en Tithonia diversifolia (Hemsl.) A Gray bajo un sistema de corte. Ciencia y Tecnología, 14(1):71–78. doi:10.18779/cyt.v14i1.450.Canto, F.M.; Ampuero, G. and Quispe, H.A. 2023. Efecto de la altura de corte sobre los parámetros agronómicos de Tithonia diversifolia. Revista de Investigaciones Altoandinas, 25(2):117–121. doi:10.18271/ria.2023.518.Cao, L.; Goto, M. and Ohshima, M. 2002. Variations in the fermentation characteristics of alfalfa silage of different harvest times as treated with fermented juice of epiphytic lactic acid aacteria. Japanese Journal of Grassland Science, 47(6):583–587. doi:10.14941/grass.47.583.Cardona, J.L.; Angulo, J. and Mahecha, L. 2022. Less nitrogen losses to the environment and more efficiency in dairy cows grazing on silvopastoral systems with Tithonia diversifolia supplemented with polyunsaturated fatty acids. Agroforestry Systems, 96(2):343–357. doi:10.1007/s10457-021-00722-7.Cardona, J.L.; Escobar, L.D.; Guatusmal, C.; Meneses, D.H.; Ríos, L.M. and Castro, E. 2020. Effect of harvest age on the digestibility and energy fractioning of two forage shrubs in Colombia. Pastos y Forrajes, 43(3):254–262.Cardona, J.L.; Mahecha, L. and Angulo, J. 2017. Efecto sobre la fermentación in vitro de mezclas de Tithonia diversifolia, Cenchrus clandestinum y grasas poliinsaturadas. Agronomía Mesoamericana, 28(2):405–426. doi:10.15517/ma.v28i2.25697.Cardona, J.L.; Mahecha, L. and Angulo, J. 2019. Estimación de metano en vacas pastoreando sistemas silvopastoriles con Tithonia diversifolia y suplementadas con grasas polinsaturadas. Revista Científica FVC-LUZ, 29(2):107–118.Carranco, M.E.; Barrita, V.; Fuente, B.; Ávila, E. and Sanginés, L. 2020. Inclusión de harina de Tithonia diversifolia en raciones para gallinas ponedoras de primer ciclo y su efecto sobre la pigmentación de yema de huevo. Revista Mexicana de Ciencias Pecuarias, 11(2):355–368. doi:10.22319/rmcp.v11i2.5090.Carvalho, J.N. de; Pires, A.J.V.; Silva, F.F. da; Veloso, C.M.; Santos, C.L. dos and Carvalho, G.G.P. de. 2009. Desempenho de ovinos mantidos com dietas com capim-elefante ensilado com diferentes aditivos. Revista Brasileira de Zootecnia, 38(6):994–1000. doi:10.1590/S1516-35982009000600004.Castaño, G.; Barragán, W.; Mahecha, L. and Angulo, J. 2023. Review of the nutritional quality of wild sunflower and cassava bran for silage production in dairy cattle. Veterinaria México OX, 10:1–23. doi:10.22201/fmvz.24486760e.2023.1201.Castaño, G. and Cardona, J. 2015. Engorde de conejos alimentados con Tithonia diversifolia, Trichanthera gigantea y Arachis pintoi. Revista U.D.C.A. Actualidad & Divulgación Científica, 18(1):147–154. doi:10.31910/rudca.v18.n1.2015.463.Castaño, G.A. 2012. Efecto del proceso de ensilaje sobre el valor nutricional de Pennisetum purpureum, Tithonia diversifolia y Trichanthera gigantea. Investigaciones Unisarc, 10(2):22–36.Castaño, G.A.; Pabón, M.L. and Carulla, J.E. 2014. Concentration of trans-vaccenic and rumenic acids in the milk from grazing cows supplemented with palm oil, rice bran or whole cottonseed. Revista Brasileira de Zootecnia, 43(6):315–326. doi:10.1590/S1516-35982014000600006.Cerdas, R. 2018. Extracción de nutrientes y productividad del botón de oro (Tithonia diversifolia) con varias dosis de fertilización nitrogenada. InterSedes, 19(39):171–187. doi:10.15517/isucr.v19i39.34076.Charmley, E. 2001. Towards improved silage quality – A review. Canadian Journal of Animal Science, 81(2):157–168. doi:10.4141/A00-066.Chiquiza, L.N.; Montoya, O.I.; Restrepo, C. and Orozco, F. 2016. Estudio de la microbiota del proceso de producción de almidón agrio de yuca. Información Tecnológica, 27(5):3–14. doi:10.4067/S0718-07642016000500002.Chukwuka, K.S.; Ogunyemi, S.; Osho, J.S.A.; Atiri, G.I.; Moughalu, J. and K. S. Chukwuka, S.O.J.S.A.O.G.I.A. 2007. Eco-physiological responses of Tithonia diversifolia (Hemsl) A. Gray in nursery and field conditions. Journal of Biological Sciences, 7(5):771–775. doi:10.3923/jbs.2007.771.775.Coblentz, W.K.; Akins, M.S.; Kalscheur, K.F.; Brink, G.E. and Cavadini, J.S. 2018. Effects of growth stage and growing degree day accumulations on triticale forages: 2. In vitro disappearance of neutral detergent fiber. Journal of Dairy Science, 101(10):8986–9003. doi:10.3168/jds.2018-14867.Cook, C.W. 1964. Symposium on nutrition of forages and pastures: collecting forage samples representative of ingested material of grazing animals for nutritional studies. Journal of Animal Science, 23(1):265–270. doi:10.2527/jas1964.231265x.Daniel, J.L.P.; Bernardes, T.F.; Jobim, C.C.; Schmidt, P. and Nussio, L.G. 2019. Production and utilization of silages in tropical areas with focus on Brazil. Grass and Forage Science, 74(2):188–200. doi:10.1111/gfs.12417.Diarra, S.S. and Devi, A. 2015. Feeding value of some cassava by-products meal for poultry: a review. Pakistan Journal of Nutrition, 14(10):735–741. doi:10.3923/pjn.2015.735.741.Díaz, G.; Gutiérrez, R.; Pérez, N.; Vega, S.L.; González, M.; Prado, G.; Urbán, G.; Ramírez, A. and Pinto, M. 2002. Detección de adulteraciones en la grasa de leche pasteurizada mexicana. Revista de Salud Animal, 24:54+.Dlamini, B.S.; Chen, C.-R.; Shyu, D.J.H. and Chang, C.-I. 2020. Flavonoids from Tithonia diversifolia and their antioxidant and antibacterial activity. Chemistry of Natural Compounds, 56(5):906–908. doi:10.1007/s10600-020-03182-0.Dong, Z.; Shao, T.; Li, J.; Yang, L. and Yuan, X. 2020. Effect of alfalfa microbiota on fermentation quality and bacterial community succession in fresh or sterile napier grass silages. Journal of Dairy Science, 103(5):4288–4301. doi:10.3168/jds.2019-16961.Driehuis, F.; Wilkinson, J.M.; Jiang, Y.; Ogunade, I. and Adesogan, A.T. 2018. Silage review: Animal and human health risks from silage. Journal of Dairy Science, 101(5):4093–4110. doi:10.3168/jds.2017-13836.Du, Z.; Yang, F.; Fang, J.; Yamasaki, S.; Oya, T.; Nguluve, D.; Kumagai, H. and Cai, Y. 2023. Silage preparation and sustainable livestock production of natural woody plant. Frontiers in Plant Science, 14:1253178. doi:10.3389/fpls.2023.1253178.Dyck, B.L.; Colazo, M.G.; Ambrose, D.J.; Dyck, M.K. and Doepel, L. 2011. Starch source and content in postpartum dairy cow diets: effects on plasma metabolites and reproductive processes. Journal of Dairy Science, 94(9):4636–4646. doi:10.3168/jds.2010-4056.Edmonson, A.J.; Lean, I.J.; Weaver, L.D.; Farver, T. and Webster, G. 1989. A body condition scoring chart for holstein dairy cows. Journal of Dairy Science, 72(1):68–78. doi:10.3168/jds.S0022-0302(89)79081-0.Elizondo, J.A. 2021. Calidad nutricional y consumo por cabras de forraje de botón de oro (Tithonia diversifolia). Agronomía Costarricense, 5(2):135–142. doi:10.15517/rac.v45i2.47774.Enriquez, D.; Cruz, T.; Teixeira, D.L. and Steinfort, U. 2020. Phenological stages of mediterranean forage legumes, based on the BBCH scale. Annals of Applied Biology, 176(3):357–368. doi:10.1111/aab.12578.Ferreira, A.L.; Lobato, A.B.; Lopes, R.; de Menezes Rabelo, É.; Ferreira, C. and Moreira, S. 2019. Chemical characterization, antioxidanta, citotoxic and microbiological activities of essential oil of leaf of Tihtonia diversifolia A. Gray (Asteraceae). Pharmaceuticals, 12(1):34. doi:10.3390/ph12010034.Fessenden, S.W.; Ross, D.A.; Block, E. and Van Amburgh, M.E. 2020. Comparison of milk production, intake, and total-tract nutrient digestion in lactating dairy cattle fed diets containing either wheat middlings and urea, commercial fermentation by-product, or rumen-protected soybean meal. Journal of Dairy Science, 103(6):5090–5101. doi:10.3168/jds.2019-17744.Firkins, J.L. 2021. Invited review: advances in rumen efficiency. Applied Animal Science, 37(4):388–403. doi:10.15232/aas.2021-02163.Folch, J.; Lees, M. and Stanley, G.H.S. 1957. A simple method for the isolation and purification of total lipides from animal tissues. Journal of Biological Chemistry, 226(1):497–509. doi:10.1016/S0021-9258(18)64849-5.Fukumori, R.; Oba, M.; Izumi, K.; Otsuka, M.; Suzuki, K.; Gondaira, S.; Higuchi, H. and Oikawa, S. 2020. Effects of butyrate supplementation on blood glucagon-like peptide-2 concentration and gastrointestinal functions of lactating dairy cows fed diets differing in starch content. Journal of Dairy Science, 103(4):3656–3667. doi:10.3168/jds.2019-17677.Galindo, J.; González, N.; Ruiz, T.; Herrera, M.; Moreira, O.; Capó, A. and Díaz, H. 2022. Effect of three collections of Tithonia diversifolia on the ruminal microbial population of cattle. Cuban Journal of Agricultural Science, 56(1):1–12.Gallego, L.A.; Machena, L. and Angulo, J. 2014. Potencial forrajero de Tithonia diversifolia Hemsl. A Gray en la producción de vacas lecheras. Agronomía Mesoamericana, 25(2):393–403. doi:10.15517/am.v25i2.15454.Gallego, L.A.; Mahecha, L. and Angulo, J. 2017a. Calidad nutricional de Tithonia diversifolia Hemsl. A Gray bajo tres sistemas de siembra en el trópico alto. Agronomía Mesoamericana, 28(1):213–222. doi:10.15517/am.v28i1.21671.Gallego, L.A.; Mahecha, L. and Angulo, J. 2017b. Producción, calidad de leche y beneficio:costo de suplementar vacas holstein con Tithonia diversifolia. Agronomía Mesoamericana, 28(2):357–370. doi:10.15517/ma.v28i2.25945.Gao, R.; Wang, B.; Jia, T.; Luo, Y. and Yu, Z. 2021. Effects of different carbohydrate sources on alfalfa silage quality at different ensiling days. Agriculture, 11(1):58. doi:10.3390/agriculture11010058.Garces, R. and Mancha, M. 1993. One-step lipid extraction and fatty acid methyl esters preparation from fresh plant tissues. Analytical Biochemistry, 211(1):139–143. doi:10.1006/abio.1993.1244.García, C.; Salcedo, J. and Alvis, A. 2018. Condiciones óptimas de la etapa de lixiviación en la extracción de almidón de yuca. Biotecnología en el Sector Agropecuario y Agroindustrial, 16(1):62–67. doi:doi: http://dx.doi.org/10.18684/bsaa.v16n1.1146.Gómez, L.M.; Posada, S.L.; Olivera, M.; Rosero, R. and Aguirre, P. 2017. Análisis de rentabilidad de la producción de leche de acuerdo con la variación de la fuente de carbohidrato utilizada en el suplemento de vacas holstein. Revista de Medicina Veterinaria, 34(Suplemento):9–22. doi:10.19052/mv.4251.González, G. and Rodríguez, A.A. 2003. Effect of storage method on fermentation characteristics, aerobic stability, and forage intake of tropical grasses ensiled in round bales. Journal of Dairy Science, 86(3):926–933. doi:10.3168/jds.S0022-0302(03)73675-3.Górka, P.; Kowalski, Z.M.; Zabielski, R. and Guilloteau, P. 2018. Invited review: use of butyrate to promote gastrointestinal tract development in calves. Journal of Dairy Science, 101(6):4785–4800. doi:10.3168/jds.2017-14086.Grazziotin, R.C.B.; Halfen, J.; Rosa, F.; Schmitt, E.; Anderson, J.L.; Ballard, V. and Osorio, J.S. 2020. Altered rumen fermentation patterns in lactating dairy cows supplemented with phytochemicals improve milk production and efficiency. Journal of Dairy Science, 103(1):301–312. doi:10.3168/jds.2019-16996.Guatusmal, C.; Escobar, L.D.; Meneses, D.H.; Cardona, J.L. and Castro, E. 2020. Producción y calidad de Tithonia diversifolia y Sambucus nigra en trópico altoandino colombiano. Agronomía Mesoamericana, 31(1):193–208. doi:10.15517/am.v31i1.36677.Guo, X.; Xu, D.; Li, F.; Bai, J. and Su, R. 2023. Current approaches on the roles of lactic acid bacteria in crop silage. Microbial Biotechnology, 16(1):67–87. doi:10.1111/1751-7915.14184.Guyader, J.; Eugène, M.; Doreau, M.; Morgavi, D.P.; Gérard, C. and Martin, C. 2017. Tea saponin reduced methanogenesis in vitro but increased methane yield in lactating dairy cows. Journal of Dairy Science, 100(3):1845–1855. doi:10.3168/jds.2016-11644.Hanlon, M.E.; Moorby, J.M.; McConochie, H.R. and Foskolos, A. 2020. Effects of addition of nutritionally improved straw in dairy cow diets at 2 starch levels. Journal of Dairy Science, 103(11):10233–10244. doi:10.3168/jds.2020-18360.Hassan, F.; Arshad, M.A.; Ebeid, H.M.; Rehman, M.S.; Khan, M.S.; Shahid, S. and Yang, C. 2020. Phytogenic additives can modulate rumen microbiome to mediate fermentation kinetics and methanogenesis through exploiting diet–microbe interaction. Frontiers in Veterinary Science, 7:576801. doi:10.3389/fvets.2020.575801.Hernández, E.; Romero, A.; Corona, L. and Talamtes, J.M. 2024. Rumen fermentation of feed samples incubated in filter bags made from different textiles or dispersed in the medium using an in vitro gas production system. Ciencia Rural, 54(2). doi:10.1590/0103-8478cr20220462.Herrera, R.S.; Verdecia, M.D. and Ramírez, J.L. 2020. Chemical composition, secondary and primary metabolites of Tithonia diversifolia related to climate. Cuban Journal of Agricultural Science, 54(3):425–433.Higginbotham, G.E.; Mueller, S.C.; Bolsen, K.K. and DePeters, E.J. 1998. Effects of inoculants containing propionic acid bacteria on fermentation and aerobic stability of corn silage. Journal of Dairy Science, 81(8):2185–2192. doi:10.3168/jds.S0022-0302(98)75797-2.Holden, L.A.; Muller, L.D. and Fales, S.L. 1994. Estimation of Intake in High Producing Holstein Cows Grazing Grass Pasture. Journal of Dairy Science, 77(8):2332–2340. doi:10.3168/jds.S0022-0302(94)77176-9.Holdridge, L. 1982. Ecología Basada En Zonas de Vida. 3rd ed. Agrícola,Centro Interamericano de Información y Documentación AmericanoInstituto Interamericano de Cooperación para la Agricultura —IICA, San José, Costa Rica.Holguín, V.; Cuchillo, M.; Mazabel, J.; Quintero, S.; Martens, S. and Mora, J. 2021. In vitro methane production and fermentative parameters of wild sunflower and elephant grass silage mixtures, either inoculated or not with epiphytic lactic acid bacteria strains. Revista Mexicana de Ciencias Pecuarias, 12(3):789–810. doi:10.22319/rmcp.v12i3.5577.Holguín, V.A.; Cuchillo, M.; Mazabel, J.; Quintero, S. and Mora, J. 2020. Efecto de la mezcla ensilada de Penisetum purpureum y Tithonia diversifolia sobre la fermentación ruminal in vitro y su emisión de metano en el sistema RUSITEC. Revista Mexicana de Ciencias Pecuarias, 11(1):19–37. doi:10.22319/rmcp.v11i1.4740.Holguín, V.A.; Ortiz, S.; Díaz, G. and Mora, J. 2019. Estimation of leaf area of Tithonia diversifolia using allometric equations. Tropical and Subtropical Agroecosystems, 22(1):231–238. doi:10.56369/tsaes.2794.Holtshausen, L.; Chaves, A.V.; Beauchemin, K.A.; McGinn, S.M.; McAllister, T.A.; Odongo, N.E.; Cheeke, P.R. and Benchaar, C. 2009. Feeding saponin-containing Yucca schidigera and Quillaja saponaria to decrease enteric methane production in dairy cows. Journal of Dairy Science, 92(6):2809–2821. doi:10.3168/jds.2008-1843.Huang, Y.; Schoonmaker, J.P.; Oren, S.L.; Trenkle, A. and Beitz, D.C. 2009. Calcium salts of CLA improve availability of dietary CLA. Livestock Science, 122(1):1–7. doi:10.1016/j.livsci.2008.07.010.Huertas, M.A.; Mayorga, O.L.; García, Y.M.; Holguín, V.A. and Mora, J. 2021. In vitro methane production from silages based on Cenchrus purpureus mixed with Tithonia diversifolia in different proportions. Acta Scientiarum: Animal Sciences, 43(e51322):1–11. doi:10.4025/actascianimsci.v43i1.51322.Hurley, W.L.; Warner, G.J. and Grummer, R.R. 1987. Changes in triglyceride fatty acid composition of mammary secretions during involution. Journal of Dairy Science, 70(11):2406–2410. doi:10.3168/jds.S0022-0302(87)80302-8.Jahani, H.; Baraz, H.; Bagheri, N. and Ghaffari, M.H. 2022. Effects of a mixture of phytobiotic-rich herbal extracts on growth performance, blood metabolites, rumen fermentation, and bacterial population of dairy calves. Journal of Dairy Science, 105(6):5062–5073. doi:10.3168/jds.2021-20687.Johnson, L.M.; Harrison, J.H.; Davidson, D.; Mahanna, W.C.; Shinners, K. and Linder, D. 2002. Corn silage management: effects of maturity, inoculation, and mechanical processing on pack fensity and serobic dtability. Journal of Dairy Science, 85(2):434–444. doi:10.3168/jds.S0022-0302(02)74092-7.Juárez, F.I.; Pell, A.; Blake, R.W.; Montero, M. and Pinos, J.M. 2018. In vitro ruminal degradation of neutral detergent fiber insoluble protein from tropical pastures fertilized with nitrogen. Revista Mexicana de Ciencias Pecuarias, 9(3):588–600. doi:10.22319/rmcp.v9i3.4490.Jurado, P. and Sörensen, P.M. 2020. Characterization of saponin foam from Saponaria officinalis for food applications. Food Hydrocolloids, 101:105541. doi:10.1016/j.foodhyd.2019.105541.Kaewpila, C.; Khota, W.; Gunun, P.; Kesorn, P. and Cherdthong, A. 2020. Strategic addition of different additives to improve silage fermentation, aerobic stability and in vitro digestibility of napier grasses at late maturity stage. Agriculture, 10(7):262. doi:10.3390/agriculture10070262.Kammes, K.L. and Allen, M.S. 2012. Rates of particle size reduction and passage are faster for legume compared with cool-season grass, resulting in lower rumen fill and less effective fiber. Journal of Dairy Science, 95(6):3288–3297. doi:10.3168/jds.2011-5022.Kang, J.; Tang, S.; Zhong, R.; Tan, Z. and Wu, D. 2021. Alfalfa silage treated with sucrose has an improved feed quality and more beneficial bacterial communities. Frontiers in Microbiology, 12. doi:10.3389/fmicb.2021.670165.Kara, K. 2021. The investigation of fatty acids compositions of Jerusalem artichoke (Helianthus tuberosus) herbage harvested at different phenological stages. Ankara Üniversitesi Veteriner Fakültesi Dergisi, 68(3):259–267. doi:10.33988/auvfd.753067.Karlsson, J.; Lindberg, M.; Åkerlind, M. and Holtenius, K. 2020. Whole-lactation feed intake, milk yield, and energy balance of holstein and swedish red dairy cows fed grass-clover silage and 2 levels of byproduct-based concentrate. Journal of Dairy Science, 103(10):8922–8937. doi:10.3168/jds.2020-18204.Kehoe, S.I.; Dill-McFarland, K.A.; Breaker, J.D. and Suen, G. 2019. Effects of corn silage inclusion in preweaning calf diets. Journal of Dairy Science, 102(5):4131–4137. doi:10.3168/jds.2018-15799.Khan, M.A.; Lee, H.J.; Lee, W.S.; Kim, H.S.; Ki, K.S.; Hur, T.Y.; Suh, G.H.; Kang, S.J. and Choi, Y.J. 2007a. Structural growth, rumen development, and metabolic and immune responses of Holstein male calves fed milk through step-down and conventional methods. Journal of Dairy Science, 90(7):3376–3387. doi:10.3168/jds.2007-0104.Khan, M.A.; Lee, H.J.; Lee, W.S.; Kim, H.S.; Kim, S.B.; Ki, K.S.; Park, S.J.; Ha, J.K. and Choi, Y.J. 2007b. Starch source evaluation in calf starter: I. Feed consumption, body weight gain, structural growth, and blood metabolites in Holstein calves. Journal of Dairy Science, 90(11):5259–5268. doi:10.3168/jds.2007-0338.Khan, N.A.; Khan, N.; Tang, S. and Tan, Z. 2023. Optimizing corn silage quality during hot summer conditions of the tropics: investigating the effect of additives on in-silo fermentation characteristics, nutrient profiles, digestibility and post-ensiling stability. Frontiers in Plant Science, 14. doi:10.3389/fpls.2023.1305999.Khota, W.; Pholsen, S.; Higgs, D. and Cai, Y. 2016. Natural lactic acid bacteria population of tropical grasses and their fermentation factor analysis of silage prepared with cellulase and inoculant. Journal of Dairy Science, 99(12):9768–9781. doi:10.3168/jds.2016-11180.Kozłowska, M.; Cieślak, A.; Jóźwik, A.; El‐Sherbiny, M.; Stochmal, A.; Oleszek, W.; Kowalczyk, M.; Filipiak, W. and Szumacher‐Strabel, M. 2020. The effect of total and individual alfalfa saponins on rumen methane production. Journal of the Science of Food and Agriculture, 100(5):1922–1930. doi:10.1002/jsfa.10204.Krüger, A.M.; Lima, P. de M.T.; Ovani, V.; Pérez, S.; Louvandini, H. and Abdalla, A.L. 2024. Ruminant grazing lands in the tropics: silvopastoral systems and Tithonia diversifolia as tools with potential to promote sustainability. Agronomy, 14(7):1386. doi:10.3390/agronomy14071386.Kung, L.; Shaver, R.D.; Grant, R.J. and Schmidt, R.J. 2018. Silage review: Interpretation of chemical, microbial, and organoleptic components of silages. Journal of Dairy Science, 101(5):4020–4033. doi:10.3168/jds.2017-13909.Kung, L.; Taylor, C.C.; Lynch, M.P. and Neylon, J.M. 2003. The effect of treating Alfalfa with Lactobacillus buchneri 40788 on silage fermentation, aerobic stability, and nutritive value for lactating dairy cows. Journal of Dairy Science, 86(1):336–343. doi:10.3168/jds.S0022-0302(03)73611-X.Ladeska, V.; Dewanti, E. and Sari, D.I. 2019. Pharmacognostical studies and determination of total flavonoids of paitan (Tithonia diversifolia (Hemsl.) A. Gray. Pharmacognosy Journal, 11(6):1256–1261. doi:10.5530/pj.2019.11.195.Lemaire, G. and Belanger, G. 2019. Allometries in plants as drivers of forage nutritive value: a review. Agriculture, 10(1):5. doi:10.3390/agriculture10010005.Lesmeister, K.E.E.; Tozer, P.R.R. and Heinrichs, A.J.J. 2004. Development and analysis of a rumen tissue sampling procedure. Journal of Dairy Science, 87(5):1336–1344. doi:10.3168/jds.S0022-0302(04)73283-X.Lezcano, Y.; Soca, M.; Ojeda, F.; Roque, E.; Fontes, D.; Montejo, I.L.; Santana, H.; Martínez, J. and Cubillas, N. 2012. Caracterización bromatológica de Tithonia diversifolia (Hemsl.) A. Gray en dos etapas de su ciclo fisiológico. Pastures and Forages, 5(3):275–282.Li, D.; Ni, K.; Zhang, Y.; Lin, Y. and Yang, F. 2019. Fermentation characteristics, chemical composition and microbial community of tropical forage silage under different temperatures. Asian-Australasian Journal of Animal Sciences, 32(5):665–674. doi:10.5713/ajas.18.0085.Li, M.; Hassan, F.; Lin, Q.; Arshad, M.A.; Akhtar, M.U.; Peng, L.; Yang, C.; Liang, X. and Huang, J. 2025. In vitro evaluation of ruminal digestibility, fermentation characteristics, and bacterial diversity of kenaf crop at various cutting heights. Veterinary Sciences, 12(1):50. doi:10.3390/vetsci12010050.Licitra, G.; Hernandez, T.M. and Van Soest, P.J. 1996. Standardization of procedures for nitrogen fractionation of ruminant feeds. Animal Feed Science and Technology, 57(4):347–358. doi:10.1016/0377-8401(95)00837-3.Lombard, J.; Urie, N.; Garry, F.; Godden, S.; Quigley, J.; Earleywine, T.; McGuirk, S.; Moore, D.; Branan, M.; Chamorro, M.; Smith, G.; Shivley, C.; Catherman, D.; Haines, D.; Heinrichs, A.J.; James, R.; Maas, J. and Sterner, K. 2020. Consensus recommendations on calf- and herd-level passive immunity in dairy calves in the United States. Journal of Dairy Science, 103(8):7611–7624. doi:10.3168/jds.2019-17955.Londoño, J.; Mahecha, L. and Angulo, J. 2019. Desempeño agronómico y valor nutritivo de Tithonia diversifolia (Hemsl.) A Gray para la alimentación de bovinos-Revisión. Revista Colombiana de Ciencia Animal - RECIA, 11(1):28–41. doi:10.24188/recia.v0.n0.2019.693.Loya, J.L.; Vega, E.; Gómez, A.; Navarrete, R.; Calvo, C.; García, I.A.; Valdés, Y.S. and Sanginés, L. 2020. Rumen fermentation and diet degradability in sheep fed sugarcane (Saccharum officinarum) silage supplemented with Tithonia diversifolia or alfalfa (Medicago sativa) and rice polishing. Austral Journal of Veterinary Sciences, 52(2):55–61. doi:10.4067/S0719-81322020000200055.Lv, B.; Wei, H.; Li, Y. and Xue, Z. 2021. Symbiotic exploration of silage machinery based on technological system evolution. Journal of Physics: Conference Series, 2066(1):012087. doi:10.1088/1742-6596/2066/1/012087.Macoon, B.; Sollenberger, L.E.; Moore, J.E.; Staples, C.R.; Fike, J.H. and Portier, K.M. 2003. Comparison of three techniques for estimating the forage intake of lactating dairy cows on pasture. Journal of Animal Science, 81(9):2357–2366. doi:10.2527/2003.8192357x.Mahecha, L.; Escobar, J.P.; Suárez, J.F. and Restrepo, L.F. 2007. Tithonia diversifolia (Hemsl.) Gray (botón de oro) como suplemento forrajero de vacas F1 (holstein por cebú). Livestock Research for Rural Development, 19(2):16.Mahecha, L.; Londoño, J.D. and Angulo, J. 2022. Agronomic and nutritional asssessment of an intensive silvopastoral system: Tithonia diversifolia, Sambucus nigra, Cynodon nlemfuensis, and Urochloa plantaginea. Proceedings of the National Academy of Sciences, India Section B: Biological Sciences, 92:37–47. doi:10.1007/s40011-021-01282-7.Maldini, G.; Kennedy, K.M. and Allen, M.S. 2019. Effects of rate and amount of propionic acid infused into the rumen on feeding behavior of Holstein cows in the postpartum period. Journal of Dairy Science, 102(9):8120–8126. doi:10.3168/jds.2019-16307.Mangwe, M.C.; Mason, W.A.; Reed, C.B.; Spaans, O.K.; Pacheco, D. and Bryant, R.H. 2025. A systematic review and meta-analysis of cow-level factors affecting milk urea nitrogen and urinary nitrogen output under pasture-based diets. Journal of Dairy Science, 108(1):579–596. doi:10.3168/jds.2024-25394.Masood, A.; Tasleem, F.; Patricia, O.; Ali, M.S.; Hussain, S.; Siddiqui, F. and Azhar, A. 2017. Assessment of pharmacological potential and safety profile of Tithonia diversifolia. Pakistan Journal of Pharmacology, 34(1–2):45–58.Mauricio, R.M.; Mould, F.L.; Dhanoa, M.S.; Owen, E.; Channa, K.S. and Theodorou, M.K. 1999. A semi-automated in vitro gas production technique for ruminant feedstuff evaluation. Animal Feed Science and Technology, 79(4):321–330. doi:10.1016/S0377-8401(99)00033-4.McCreary, D.K.; Kossa, W.C.; Ramachandran, S. and Kurtz, R.R. 1978. A novel and rapid method for the preparation of methyl esters for gas chromatography: application to the determination of the fatty acids of edible fats and oils. Journal of Chromatographic Science, 16(8):329–331. doi:10.1093/chromsci/16.8.329.McKay, Z.C.; Lynch, M.B.; Mulligan, F.J.; Rajauria, G.; Miller, C. and Pierce, K.M. 2019. The effect of concentrate supplementation type on milk production, dry matter intake, rumen fermentation, and nitrogen excretion in late-lactation, spring-calving grazing dairy cows. Journal of Dairy Science, 102(6):5042–5053. doi:10.3168/jds.2018-15796.Mejía, E.; Mahecha, L. and Angulo, J. 2016. Tithonia diversifolia: especie para ramoneo en sistemas silvopastoriles y métodos para estimar su consumo. Agronomía Mesoamericana, 28(1):289–302. doi:10.15517/am.v28i1.22673.Mejía, E.; Mahecha, L. and Angulo, J. 2017. Consumo de materia seca en un sistema silvopastoril de <i>Tithonia diversifolia<i/> en trópico alto. Agronomía Mesoamericana, 28(2):389. doi:10.15517/ma.v28i2.23561.Menci, R.; Coppa, M.; Torrent, A.; Natalello, A.; Valenti, B.; Luciano, G.; Priolo, A. and Niderkorn, V. 2021a. Effects of two tannin extracts at different doses in interaction with a green or dry forage substrate on in vitro rumen fermentation and biohydrogenation. Animal Feed Science and Technology, 278:114977. doi:10.1016/j.anifeedsci.2021.114977.Menci, R.; Natalello, A.; Luciano, G.; Priolo, A.; Valenti, B.; Difalco, A.; Rapisarda, T.; Caccamo, M.; Constant, I.; Niderkorn, V. and Coppa, M. 2021b. Cheese quality from cows given a tannin extract in 2 different grazing seasons. Journal of Dairy Science, 104(9):9543–9555. doi:10.3168/jds.2021-20292.Menezes, G.L.; de Oliveira, A.F.; de Assis Pires, F.P.A.; Gonçalves, L.C.; de Menezes, R.A.; de Sousa, P.G.; de Medeiros, P.H.A.; de Pinho, M.M.; Lana, Â.M.Q.; de Araújo, V.E. and Jayme, D.G. 2023. Efficacy of adding chemical and microbial additives to silage on beef cattle performance: Systematic review and meta‐analysis. Grass and Forage Science, 78(1):1–22. doi:10.1111/gfs.12579.Mertens, D. 2002. Gravimetric determination of amylase-treated neutral detergent fiber in feeds with refluxing in beakers or crucibles: collaborative study . Journal of AOAC INTERNATIONAL, 85(1):1217–1240.Mioto da Costa, M.C.; Ítavo, L.C. v.; Ferreira Ítavo, C.C.B.; Dias, A.M.; Petit, H. v.; Reis, F.A.; Gomes, R.C.; Leal, E.S.; Niwa, M.V.G. and de Moraes, G.J. 2019. Evaluation of internal and external markers to estimate faecal output and feed intake in sheep fed fresh forage. Animal Production Science, 59(4):741. doi:10.1071/AN16567.Miyaji, M.; Matsuyama, H. and Hosoda, K. 2014. Effect of substituting brown rice for corn on lactation and digestion in dairy cows fed diets with a high proportion of grain. Journal of Dairy Science, 97(2):952–960. doi:10.3168/jds.2013-7046.Molano, R.A.; Girard, C.L. and van Amburgh, M.E. 2021. Effect of dietary supplementation of 2 forms of a B vitamin and choline blend on the performance of Holstein calves during the transition and postweaning phase. Journal of Dairy Science, 104(10):10812–10827. doi:10.3168/jds.2021-20461.Montero, J.V.; Macas, K.M.; González, K.T.; Mendoza, C.F.; Montero de la Cueva, J.V.; Moreira, K.; González, K.T. and Mendoza, C.F. 2019. Evaluación del botón de oro (Tithonia diversifolia) en la alimentación de cuyes. Idesia (Arica), 37(4):5–9. doi:10.4067/S0718-34292019000400005.Moufarreg, I.M.M. de O.; De Siqueira, J.C.; Rodrigues, K.F.; Vaz, R.G.M.V.; Moron, S.E.; Parente, I.P.; Mendonça, R.A.N.; Campos, C.F.A. and Araújo, C.C. 2021. Effects of feeding cassava bagasse to slow-growing broilers. Brazilian Journal of Development, 7(4):39078–39099. doi:10.34117/bjdv7n4-392.Muck, R.E.; Nadeau, E.M.G.; McAllister, T.A.; Contreras-Govea, F.E.; Santos, M.C. and Kung, L. 2018. Silage review: Recent advances and future uses of silage additives. Journal of Dairy Science, 101(5):3980–4000. doi:10.3168/jds.2017-13839.Muir, J.P. 2002. Hand‐Plucked forage yield and quality and seed production from annual and short‐lived perennial warm‐season legumes fertilized with composted manure. Crop Science, 42(3):897–904. doi:10.2135/cropsci2002.8970.Munyaneza, N.; Niyukuri, J. and Hachimi, Y. El. 2017. Milk urea nitrogen as an indicator of nitrogen metabolism efficiency in dairy cows: a review. Theriogenology Insight - An International Journal of Reproduction in all Animals, 7(3):145. doi:10.5958/2277-3371.2017.00032.8.Navas, A. and Montaña, V. 2019. Comportamiento de Tithonia diversifolia, bajo condiciones de bosque húmedo tropical. Revista de Investigaciones Veterinarias del Perú, 30(2):721–732. doi:10.15381/rivep.v30i2.15066.van Niekerk, J.K.; Middeldorp, M.; Guan, L.L. and Steele, M.A. 2021a. Preweaning to postweaning rumen papillae structural growth, ruminal fermentation characteristics, and acute-phase proteins in calves. Journal of Dairy Science, 104(3):3632–3645. doi:10.3168/jds.2020-19003.van Niekerk, J.K.; Middeldorp, M.; Guan, L.L. and Steele, M.A. 2021b. Preweaning to postweaning rumen papillae structural growth, ruminal fermentation characteristics, and acute-phase proteins in calves. Journal of Dairy Science, 104(3):3632–3645. doi:10.3168/jds.2020-19003.Nieto, D.F.; Lagos, E.; Avellaneda, Y. and Castro, E. 2020. Productividad de vacas lecheras suplementadas con ensilaje de haba alpargata o remolacha forrajera. Agronomía Mesoamericana, 31(2):341–351. doi:10.15517/am.v31i2.37806.Nizzy, A.M. and Kannan, S. 2022. A review on the conversion of cassava wastes into value-added products towards a sustainable environment. Environmental Science and Pollution Research, 29(46):69223–69240. doi:10.1007/s11356-022-22500-3.NRC. 1989. Nutrient Requirements of Dairy Cattle. National Academies Press, Washington, D.C.NRC. 2001. Nutrient Requirements of Dairy Cattle. 7th ed. National Academies Press, Washington, D.C.Olabode, S.; Sola, O.; Akanbi, W.B.; Adesina, G.O. and Babajide, P.A. 2007. Evaluation of Tithonia diversifolia (Hemsl.) A Gray for soil improvement. World Journal of Agricultural Sciences, 3(4):503–507.Olsen, M.A.; Vhile, S.G.; Porcellato, D.; Kidane, A. and Skeie, S.B. 2021. Feeding concentrates with different protein sources to high-yielding, mid-lactation norwegian red cows: effect on cheese ripening. Journal of Dairy Science, 104(4):4062–4073. doi:10.3168/jds.2020-19226.Oluwasola, T.A. and Dairo, F.A.S. 2016. Proximate composition, amino acid profile and some anti-nutrients of Tithonia diversifolia cut at two different times. African Journal of Agricultural Research, 11(38):3659–3663. doi:10.5897/AJAR2016.10910.Oyewole, I.O.; Ibidapo, C.A.; Moronkola, D.O.; Oduola, A.O.; Adeoye, G.O.; Anyasor G. and Obansa, J.A. 2008. Anti-malarial and repellent activities of Tithonia diversifolia (Hemsl.) leaf extracts. Journal of Medicinal Plants Research, 2(8):171–175. doi:10.5897/JMPR.9000104.Owoyele, V.B.; Wuraola, C.O.; Soladoye, A.O. and Olaleye, S.B. 2004. Studies on the anti-inflammatory and analgesic properties of Tithonia diversifolia leaf extract. Journal of Ethnopharmacology, 90(2–3):317–321. doi:10.1016/j.jep.2003.10.010.Paniagua, L.D.; Arias, L.M.; Alpízar, A.; Castillo, M.A.; Camacho, M.I.; Padilla, J.E. and Campos, M. 2020. Effect of planting density and regrowth age on the production and bromatological composition of Tithonia diversifolia (Hemsl.) A. Gray. Pastos y Forrajes, 43(4):275–283.Partey, S.T. 2011. Effect of pruning frequency and pruning height on the biomass production of Tithonia diversifolia (Hemsl) A. Gray. Agroforestry Systems, 83(2):181–187. doi:10.1007/s10457-010-9367-y.Penner, G.B.; Taniguchi, M.; Guan, L.L.; Beauchemin, K.A. and Oba, M. 2009. Effect of dietary forage to concentrate ratio on volatile fatty acid absorption and the expression of genes related to volatile fatty acid absorption and metabolism in ruminal tissue. Journal of Dairy Science, 92(6):2767–2781. doi:10.3168/jds.2008-1716.Phuong, H.N.; Friggens, N.C.; de Boer, I.J.M. and Schmidely, P. 2013. Factors affecting energy and nitrogen efficiency of dairy cows: A meta-analysis. Journal of Dairy Science, 96(11):7245–7259. doi:10.3168/jds.2013-6977.Piao, S.; Liu, Q.; Chen, A.; Janssens, I.A.; Fu, Y.; Dai, J.; Liu, L.; Lian, X.; Shen, M. and Zhu, X. 2019. Plant phenology and global climate change: current progresses and challenges. Global Change Biology, 25(6):1922–1940. doi:10.1111/gcb.14619.Piltz, J.W.; Meyer, R.G.; Brennan, M.A. and Boschma, S.P. 2022. Fermentation quality of silages produced from wilted sown tropical perennial grass pastures with or without a bacterial inoculant. Agronomy, 12(7):1721. doi:10.3390/agronomy12071721.Posada, S.L.; Ramírez, J.F. and Rosero, R. 2014. Producción de metano y digestibilidad de mezclas kikuyo (Pennisetum clandestinum) - papa (Solanum tuberosum).. Agronomía Mesoamericana, 25(1):141. doi:10.15517/am.v25i1.14214.Pretti, I.R.; Luz, A.C. da; Jamal, C.M. and Batitucci, M. do C.P. 2018a. Variation of biochemical and antioxidant activity with respect to the phenological stage of Tithonia diversifolia Hemsl. (Asteraceae) populations. Industrial Crops and Products, 121(1):241–249. doi:10.1016/j.indcrop.2018.04.080.Posada, S.L.; Ramírez, J.F. and Rosero, R. 2014. Producción de metano y digestibilidad de mezclas kikuyo (Pennisetum clandestinum) - papa (Solanum tuberosum).. Agronomía Mesoamericana, 25(1):141. doi:10.15517/am.v25i1.14214.Pretti, I.R.; Luz, A.C. da; Jamal, C.M. and Batitucci, M. do C.P. 2018a. Variation of biochemical and antioxidant activity with respect to the phenological stage of Tithonia diversifolia Hemsl. (Asteraceae) populations. Industrial Crops and Products, 121(1):241–249. doi:10.1016/j.indcrop.2018.04.080.Pretti, I.R.; Luz, A.C. da; Jamal, C.M. and Batitucci, M. do C.P. 2018b. Variation of biochemical and antioxidant activity with respect to the phenological stage of Tithonia diversifolia Hemsl. (Asteraceae) populations. Industrial Crops and Products, 121(1):241–249. doi:10.1016/j.indcrop.2018.04.080.Prieto, E.; Vargas, J.E.; Angulo, J. and Mahecha, L. 2016. Aceites vegetales sobre ácidos grasos y producción de metano in vitro en vacas lecheras.. Agronomía Mesoamericana, 28(1):1. doi:10.15517/am.v28i1.22034.Quigley, J.D.; Lago, A.; Chapman, C.; Erickson, P. and Polo, J. 2013. Evaluation of the Brix refractometer to estimate immunoglobulin G concentration in bovine colostrum. Journal of Dairy Science, 96(2):1148–1155. doi:10.3168/jds.2012-5823.Quiñones, J.D.; Cardona, J.L. and Castro, E. 2020. Ensilaje de arbustivas forrajeras para sistemas de alimentación ganadera del trópico altoandino. Revista de Investigaciones Altoandinas, 22(3):285–301. doi:10.18271/ria.2020.662.Ramos, L.; Apráez, J.E.; Cortes, K.S. and Apráez, J.J. 2021. Nutritional, antinutritional and phenological characterization of promising forage species for animal feeding in a cold tropical zone. Revista de Ciencias Agrícolas, 38(1):86–96. doi:10.22267/rcia.213801.152.Rashama, C.; Ijoma, G.N. and Matambo, T.S. 2021. The effects of phytochemicals on methanogenesis: insights from ruminant digestion and implications for industrial biogas digesters management. Phytochemistry Reviews, 20(6):1245–1271. doi:10.1007/s11101-021-09744-6.Reilly, J.S. ed. . 2001. Euthanasia of Animals Used for Scientific Purposes. 2nd ed. ANZCCART: Australian and New Zealand Council for the Care of Animals in Research and Teaching, Adelaide (Australia).Ren, H.; Bai, H.; Su, X.; Pang, J.; Li, X.; Wu, S.; Cao, Y.; Cai, C. and Yao, J. 2020. Decreased amylolytic microbes of the hindgut and increased blood glucose implied improved starch utilization in the small intestine by feeding rumen-protected leucine in dairy calves. Journal of Dairy Science, 103(5):4218–4235. doi:10.3168/jds.2019-17194.Ribeiro, R.S.; Terry, S.A.; Sacramento, J.P.; Silveira, S.R. e; Bento, C.B.P.; da Silva, E.F.; Mantovani, H.C.; Gama, M.A.S. da; Pereira, L.G.R.; Tomich, T.R.; Maurício, R.M. and Chaves, A.V. 2016. Tithonia diversifolia as a supplementary feed for dairy cows. PLOS ONE, 11(12):e0165751. doi:10.1371/journal.pone.0165751.Rivera, J.; Villegas, G.; Chará, J.; Durango, S.G.; Romero, M. and Verchot, L. 2022. Effect of Tithonia diversifolia (Hemsl.) A. Gray intake on in vivo methane (CH4) emission and milk production in dual-purpose cows in the Colombian Amazonian piedmont. Translational Animal Science, 6(4):1–12. doi:10.1093/tas/txac139.Rivera, J.E.; Chará, J.; Gómez, J.F.; Ruíz, T. and Barahona, R. 2018. Variabilidad fenotípica de Tithonia diversifolia A. Gray para la producción animal sostenible. Livestock Research for Rural Development, 30(12):200.Rivera, J.E.; Ruíz, T.E.; Chará, J.; Gómez, J.F. and Barahona, R. 2021. Biomass production and nutritional properties of promising genotypes of Tithonia diversifolia (Hemsl.) A. Gray under different environments. Tropical Grasslands-Forrajes Tropicales, 9(3):280–291. doi:10.17138/tgft(9)280-291.Rivera, J.E.; Villegas, G.; Chará, J.; Durango, S.; Romero, M. and Verchot, L. 2024. Silvopastoral systems with Tithonia diversifolia (Hemsl.) A. Gray reduce N2O–N and CH4 emissions from cattle manure deposited on grasslands in the Amazon piedmont. Agroforestry Systems, 98(5):1091–1104. doi:10.1007/s10457-023-00859-7.Roa, M.L.; Corredor, J.R. and Hernández, M.C. 2020. Physiological behavior of broilers using diets with Tithonia diversifolia and probiotics. Archivos de Zootecnia, 69(268):406–417. doi:10.21071/az.v69i268.5388.Roca, A.I.; Dillard, S.L. and Soder, K.J. 2020. Ruminal fermentation and enteric methane production of legumes containing condensed tannins fed in continuous culture. Journal of Dairy Science, 103(8):7028–7038. doi:10.3168/jds.2019-17627.Rodríguez, M.; Ojeda, F.; Pozo, Y.; Rondón, A. and Milián, G. 2022. Evaluation of two microbial inoculants as fermentation activators in silages of Tithonia diversifolia (Hemsl.) A. Gray. Pastos y Forrajes, 45:2022.Romero, R.; Alcívar, E. and Alpízar, J. 2017. Afrecho de yuca como sustituto parcial del maíz en la alimentación de cerdos de engorde. La Técnica: Revista de las Agrociencias, Esp(2):54–61. doi:10.33936/la_tecnica.v0i0.974.Roopa, M.S.; Shubharani, R.; Rhetso, T. and Sivaram, V. 2020. Comparative analysis of phytochemical constituents, free radical scavenging activity and GC-MS analysis of leaf and flower extract of Tithonia diversifolia (Hemsl.). International Journal of Pharmaceutical Sciences and Research, 11(10):5081–5090. doi:10.13040/IJPSR.0975-8232.11(10).5081-90.Rosa, F.; Busato, S.; Avaroma, F.C.; Mohan, R.; Carpinelli, N.; Bionaz, M. and Osorio, J.S. 2021. Short communication: Molecular markers for epithelial cells across gastrointestinal tissues and fecal RNA in preweaning dairy calves. Journal of Dairy Science, 104(1):1175–1182. doi:10.3168/jds.2020-18955.Rosales, J. and Urbietta, H. 1993. Comparativo de niveles de afrecho de yuca en raciones para cerdos en crecimiento y engorde, en la zona de Pucallpa. Folia Amazonica, 5(1–2):159–169. doi:10.24841/fa.v5i1-2.238.Rosero, R. and Posada, S.L. 2007. Modelación de la cinética de degradación de alimentos para rumiantes. Revista Colombiana de Ciencias Pecuarias, 20(2):174–182. doi:10.17533/udea.rccp.324134.Ruiz, J.F.; Cerón, F.; Barahona, R. and Bolívar, D.M. 2019. Caracterización de los sistemas de producción bovina de leche según el nivel de intensificación y su relación con variables económicas y técnicas asociadas a la sustentabilidad. Livestock Research for Rural Development, 31(3):40.Ruiz, R.R.; Ballina, H.S. and Ruiz, E. 2023. Características morfológicas foliares y su relación con la defoliación en en tres especies de plantas forrajeras. Acta Biológica Colombiana, 28(1):12–22. doi:10.15446/abc.v28n1.88402.Ruiz, T.E.; Febles, G. and Díaz, H. 2012a. Distancia de plantación, frecuencia y altura de corte en la producción de biomasa de Tithonia diversifolia colecta 10 durante el año. Revista Cubana de Ciencia Agrícola, 46(4):423–426.Ruiz, T.E.; Torres, V.; Febles, G.; Díaz, H.; Sarduy, L.; González, J.; Díaz, H. and González, J. 2012d. Utilización de la modelación para estudiar el crecimiento de Tithonia diversifolia colecta 10. Revista Cubana de Ciencia Agrícola, 46(3):237–242.Ruiz, T.E.; Torres, V.; Febles, G.; Díaz, H. and González, J. 2012b. Empleo de la modelación para estudiar el crecimiento del material vegetal 23 de Tithonia diversifolia. Revista Cubana de Ciencia Agrícola, 4(1):23–29.Ruiz, T.E.; Torres, V.; Febles, G.; Díaz, H. and González, J. 2012c. Utilización de la modelación para estudiar el crecimiento de Tithonia diversifolia colecta 17. Revista Cubana de Ciencia Agrícola, 46(3):243–247.Ruiz, T.E.; Torres, V.; Febles, G.; Díaz, H.; Sarduy, L.; González, J.; Díaz, H. and González, J. 2012d. Utilización de la modelación para estudiar el crecimiento de Tithonia diversifolia colecta 10. Revista Cubana de Ciencia Agrícola, 46(3):237–242.Ruiz, T.E.; Torres, . V.; Valenciaga, N.; Galindo, J.; Febles, G.; Medina, Y.; Díaz, H. and Mora, C. 2021. Tithonia diversifolia material vegetal O-23 analizado mediante modelación de sus componentes morfológicos de crecimiento. Investigación Agropecuaria, 25(2):69–81.Ruiz, T.E.; Torres, V.; Febles, G.; Díaz, H. and González, J. 2013. Estudio del comportamiento de ecotipos destacados de Tithonia diversifolia en relación con algunos componentes morfológicos. Livestock Research for Rural Development, 25(9):154.Sadeghi, K.; Ganjkhanlou, M.; Fekri, A. and Palangi, V. 2025. A study investigating the relationship between milk urea nitrogen and the reproductive performance of Holstein cows. Journal of the Hellenic Veterinary Medical Society, 75(4):8353–8362. doi:10.12681/jhvms.37076.Salcedo, J.G.; Contreras, K.; García, A. and Fernandez, A. 2016. Modelado de la cinética de secado del afrecho de yuca (Manihot esculenta Crantz). Revista Mexicana de Ingeniería Química, 15(3):883–891.dos Santos, A.M.; Santos, M.V.; da Silva, L.D.; dos Santos, J.B.; Ferreira, E.A. and Santos, L.D.T. 2021. Effects of irrigation and nitrogen fertilization rates on yield, agronomic efficiency and morphophysiology in Tithonia diversifolia. Agricultural Water Management, 248:106782. doi:10.1016/j.agwat.2021.106782.Schmitt, M.H.; Ward, D. and Shrader, A.M. 2020. Salivary tannin-binding proteins: A foraging advantage for goats?. Livestock Science, 234:103974. doi:10.1016/j.livsci.2020.103974.Schrobback, P.; Gonzalez, C.; Mayberry, D. and Herrero, M. 2023. On-farm investments into dairy cow health: evidence from 15 case study countries. Frontiers in Veterinary Science, 10. doi:10.3389/fvets.2023.1288199.Schroeder, G.F.; Gagliostro, G.A.; Bargo, F.; Delahoy, J.E. and Muller, L.D. 2004. Effects of fat supplementation on milk production and composition by dairy cows on pasture: a review. Livestock Production Science, 86(1–3):1–18. doi:10.1016/S0301-6226(03)00118-0.Serna, T.; Contreras, Y.; Lozano, M.; Salcedo, J. and Hernández, J. 2018. Varicación del método de secado en la fermentación espontánea de almidón nativo de yuca. @limentech, Ciencia y Tecnología Alimentaria, 15(1):50. doi:10.24054/16927125.v1.n1.2017.2962.Serpa, J.G.; Hernández, E.J.; Fernández, G.; Sandoval, L.C. and Andrade, R.D. 2022. Post-industrial context of cassava bagasse and trend of studies towards a sustainable industry: A scoping review – Part I. F1000Research, 11:562. doi:10.12688/f1000research.110429.1.Shao, T.; Ohba, N.; Shimojo, M. and Masuda, Y. 2004. Effects of adding glucose, sorbic acid and pre-fermented juices on the fermentation quality of guineagrass (Panicum maximum Jacq.) silages. Asian-Australasian Journal of Animal Sciences, 17(6):808–813. doi:10.5713/ajas.2004.808.Shao, T.; Zhang, M.; Shimojo, M. and Masuda, Y. 2007. Fermentation quality of italian ryegrass (Lolium multiflorum Lam.) silages treated with encapsulated-glucose, glucose, sorbic acid and pre-fermented juices. Asian-Australasian Journal of Animal Science, 20(11):1699–1704.Shipley, B. and Vu, T.T. 2002. Dry matter content as a measure of dry matter concentration in plants and their parts. New Phytologist, 153(2):359–364. doi:10.1046/j.0028-646X.2001.00320.x.Sikiru, A.B.,; Yousuf, M.B. and Ademola, S.G. 2018. Cassava bran–fish processing waste as dry season feed resources for sheep in Nigeria Southern Guinea Savannah. Journal of Rangeland Science1, 8(1):11–22.Van Soest, P.J. 1994. Nutritional Ecology of the Ruminant. 2nd ed. Cornell University Press, ed. Cornell University Press, Ithaca (Nueva York).Van Soest, P.J.; Robertson, J.B. and Lewis, B.A. 1991. Methods for dietary fiber, neutral detergent fiber, and nonstarch polysaccharides in relation to animal nutrition. Journal of Dairy Science, 74(10):3583–3697. doi:10.3168/jds.S0022-0302(91)78551-2.Soundharrajan, I.; Park, H.S.; Rengasamy, S.; Sivanesan, R. and Choi, K.C. 2021. Application and future prospective of lactic acid bacteria as natural additives for silage production—a review. Applied Sciences, 11(17):8127. doi:10.3390/app11178127.Sousa, L.B.; Albuquerque, M.L.; de Oliveira, H.G.; Sousa, L.B.; e Silva, L.S.; Machado, F.S.; Tomich, T.R.; Oss, D.B.; Ferreira, A.L.; Campos, M.M.; Costa, I.C. and Ribeiro Pereira, L.G. 2022. Prosopis juliflora piperidine alkaloid extract levels in diet for sheep change energy and nitrogen metabolism and affect enteric methane yield. Journal of the Science of Food and Agriculture, 102(12):5132–5140. doi:10.1002/jsfa.11864.Tahir, M.; Wang, T.; Zhang, J.; Xia, T.; Deng, X.; Cao, X. and Zhong, J. 2025. Compound lactic acid bacteria enhance the aerobic stability of Sesbania cannabina and corn mixed silage. BMC Microbiology, 25(1):68. doi:10.1186/s12866-025-03781-3.Takahashi, L.S.; da Costa, R.L.D.; Pérez, S.; Niderkorn, V.; Lugo, F.C. and Abdalla, A.L. 2024. Assessing nutritional quality and gas production kinetics: incorporating Tithonia diversifolia into sugarcane silage. Agroforestry Systems, 98(7):2197–2208. doi:10.1007/s10457-024-01007-5.Tarekegn, G.M.; Karlsson, J.; Kronqvist, C.; Berglund, B.; Holtenius, K. and Strandberg, E. 2021. Genetic parameters of forage dry matter intake and milk produced from forage in swedish red and holstein dairy cows. Journal of Dairy Science, 104(4):4424–4440. doi:10.3168/jds.2020-19224.Tedeschi, L.O.; Muir, J.P.; Naumann, H.D.; Norris, A.B.; Ramírez-Restrepo, C.A. and Mertens-Talcott, S.U. 2021. Nutritional aspects of ecologically relevant phytochemicals in ruminant production. Frontiers in Veterinary Science, 8:628445. doi:10.3389/fvets.2021.628445.Temel, S.; Surmen, M. and Tan, M. 2015. Effects of growth stages on the nutritive value of specific halophyte species in saline grasslands. Journal of Animal and Plant Sciences, 25(5):1419–1428.Terry, S.A.; Ribeiro, R.S.; Freitas, D.S.; Delarota, G.D.; Pereira, L.G.R.; Tomich, T.R.; Maurício, R.M. and Chaves, A. V. 2016. Effects of Tithonia diversifolia on in vitro methane production and ruminal fermentation characteristics. Animal Production Science, 56(3):437. doi:10.1071/AN15560.Thiex, N.J.; Manson, H.; Anderson, S. and Persson, J.-Å. 2002. Determination of crude protein in animal feed, gorage, grain, and oilseeds by using block digestion with a copper catalyst and steam distillation into boric acid: collaborative study. Journal of AOAC International, 85(2):309–317. doi:10.1093/jaoac/85.2.309.Torres, P.; Pérez, A.; Marmolejo, L.F.; Ordoñez, J.A. and García, R. 2010. Una mirada a la agroindusria de extracción de almidón de yuca, desde la estandarización de procesos. Revista EIA, 14(1):23–38.Torres, P.; Valencia, Y. and Canchala, T. 2014. Modelación de la separación de partículas no retenidas en la etapa de sedimentación en canales: proceso de extracción de almidón de yuca. Biotecnología en el Sector Agropecuario y Agroindustrial, 12(2):81–89.Tricarico, J.M.; Kebreab, E. and Wattiaux, M.A. 2020. MILK Symposium review: sustainability of dairy production and consumption in low-income countries with emphasis on productivity and environmental impact. Journal of Dairy Science, 103(11):9791–9802. doi:10.3168/jds.2020-18269.Tümmler, L.-M.; Derno, M.; Röttgen, V.; Vernunft, A.; Tuchscherer, A.; Wolf, P. and Kuhla, B. 2020. Effects of 2 colostrum and subsequent milk replacer feeding intensities on methane production, rumen development, and performance in young calves. Journal of Dairy Science, 103(7):6054–6069. doi:10.3168/jds.2019-17875.Uu, C.; Canul, J.R.; Chay, A.J.; Piñeiro, Á.T.; Villanueva, G.; R. Aryal, D.; Pozo, D. and Casanova, F. 2022. Seasonal variation in biomass yield and quality of Tithonia diversifolia at different cutting heights. Ecosistemas y Recursos Agropecuarios, 9(3). doi:10.19136/era.a9n3.3252.Uu, C.; Pozo, D.; Raj, D.; Dzio, B.; Villanueva, G.; Casanova, F.; Cha, A. and Canúl, J. 2023. Biomass production and chemical composition of Tithonia diversifolia by the date of harvesting at different cutting heights. Tropical and Subtropical Agroecosystems, 26(3):72. doi:10.56369/tsaes.4888.Vargas, J.; Pabon, M.L. and Carulla, J.E. 2021. Methane emissions from lambs fed kikuyu hay alone or mixtured with lotus hay. Archivos Latinoamericanos de Producción Animal, 29(1–2):1–9. doi:10.53588/alpa.291201.Vargas, J.; Sierra, A.; Mancipe, E. and Avellaneda, Y. 2018. El kikuyo, una gramínea presente en los sistemas de rumiantes en trópico alto colombiano. CES Medicina Veterinaria y Zootecnia, 13(2):137–156. doi:10.21615/4558.Vargas, V.T.; Pérez, P.; López, S.; Castillo, E.; Cruz, C. and Jarillo, J. 2022a. Production and nutritional quality of Tithonia diversifolia (Hemsl.) A. Grey in three seasons of the year and its effect on the preference by pelibuey sheep. Revista Mexicana de Ciencias Pecuarias, 13(1):240–257. doi:10.22319/rmcp.v13i1.5906.Vargas, V.T.; Pérez, P.; López, S.; Castillo, E.; Cruz, C. and Jarillo, J. 2022b. Production and nutritional quality of Tithonia diversifolia (Hemsl.) A. Grey in three seasons of the year and its effect on the preference by pelibuey sheep. Revista Mexicana de Ciencias Pecuarias, 13(1):240–257. doi:10.22319/rmcp.v13i1.5906.Verdecia, D.M.; Herrera, R.S.; Ramírez, J.L.; Bodas, R.; Leonard, L.; Giráldez, F.J.; Andrés, S.; Santana, A.; Méndez, Y. and López, S. 2018. Yield components, chemical characterization and polyphenolic profile of Tithonia diversifolia in Valle del Cauto, Cuba. Cuban Journal of Agricultural Science, 52(4):457–471.Verdecia, D.M.; Olmo, C.; Hernández, L.G.; Ojeda, A.; Ramírez, J.L. and Martínez, Y. 2022. Chemical composition of the foliage meal of Tithonia diversifolia. Enfoque UTE, 13(4):1–10. doi:10.29019/enfoqueute.856.Verdecia, D.M.; Ramírez, J.L.; Leonard, I.; Álvarez, Y.; Bazán, Y.; Bodas, R.; Andrés, S.; Álvarez, J.; Giráldez, F. and López, S. 2011. Rendimiento productivo y composición química del arbusto forrajero Tithonia diversifolia en una zona del Valle del Cauto, Cuba. REDVET: Revista Electrónica de Veterinaria, 12(5):1–13.Vitalis, F.; Henry, D.; Sagne, K.; Matho, A.; Florence, F.; Kuietche, M. and Julius, N. 2019. Effects of graded levels of boiled wild sunflower (Tithonia diversifolia Hemsl A. Gray) leaf meal on growth and carcass characteristics of rabbits. Journal of Animal & Plant Sciences, 41.2:6940–6950. doi:10.35759/JAnmPlSci.v41-2.7.Wang, J.; Wang, J.Q.; Zhou, H. and Feng, T. 2009. Effects of addition of previously fermented juice prepared from alfalfa on fermentation quality and protein degradation of alfalfa silage. Animal Feed Science and Technology, 151(3–4):280–290. doi:10.1016/j.anifeedsci.2009.03.001.Wang, S.; Zhang, G.; Zhao, J.; Dong, Z.; Li, J. and Shao, T. 2023. Fermentation quality, aerobic stability and in vitro gas production kinetics and digestibility in total mixed ration silage treated with lactic acid bacteria inoculants and antimicrobial additives. Italian Journal of Animal Science, 22(1):430–441. doi:10.1080/1828051X.2023.2206422.Weligama, V.T.; Moghaddam, L.; Welsh, Z.G.; Wang, T.; Xiao, H.-W. and Karim, A. 2023. Extraction and characterisation of starch from cassava (Manihot esculenta) agro-industrial wastes. LWT, 182:114787. doi:10.1016/j.lwt.2023.114787.Wilkinson, J.M. and Davies, D.R. 2013. The aerobic stability of silage: key findings and recent developments. Grass and Forage Science, 68(1):1–19. doi:10.1111/j.1365-2494.2012.00891.x.Williams, C.H.; David, D.J. and Iismaa, O. 1962. The determination of chromic oxide in faeces samples by atomic absorption spectrophotometry. The Journal of Agricultural Science, 59(3):381–385. doi:10.1017/S002185960001546X.Xu, H.J.; Zhang, Q.Y.; Wang, L.H.; Zhang, C.R.; Li, Y. and Zhang, Y.G. 2022. Growth performance, digestibility, blood metabolites, ruminal fermentation, and bacterial communities in response to the inclusion of gallic acid in the starter feed of preweaning dairy calves. Journal of Dairy Science, 105(4):3078–3089. doi:10.3168/jds.2021-20838.Yamasaki, M.; Kishihara, K.; Ikeda, I.; Sugano, M. and Yamada, K. 1999. A recommended esterification method for gas chromatographic measurement of conjugated linoleic acid. Journal of the American Oil Chemists’ Society, 76(8):933–938. doi:10.1007/s11746-999-0109-0.Yitbarek, M.B. and Tamir, B. 2014. Silage Additives: Review. Open Journal of Applied Sciences, 4(5):258–274. doi:10.4236/ojapps.2014.45026.Zwietering, M.H.; Jongenburger, I.; Rombouts, F.M. and van ’t Riet, K. 1990. Modeling of the bacterial growth curve. Applied and Environmental Microbiology, 56(6):1875–1881. doi:10.1128/aem.56.6.1875-1881.1990.PublicationORIGINALCastañoGaston_2025_Ensilado_Mixto_Ganado.pdfCastañoGaston_2025_Ensilado_Mixto_Ganado.pdfapplication/pdf11075816https://bibliotecadigital.udea.edu.co/bitstreams/ac7abe99-f8c0-4e67-bce5-555d393d92c2/download47cc3c3f752b905db18aa613d6891321MD55trueAnonymousREAD2027-11-07LICENSElicense.txtlicense.txttext/plain; charset=utf-814837https://bibliotecadigital.udea.edu.co/bitstreams/ccd46f5e-f0ef-4117-ab67-637c9a682612/downloadb76e7a76e24cf2f94b3ce0ae5ed275d0MD53falseAnonymousREADCC-LICENSElicense_rdflicense_rdfapplication/rdf+xml; charset=utf-81160https://bibliotecadigital.udea.edu.co/bitstreams/b273b3ca-26c5-4c5e-bc78-65628860b388/download5643bfd9bcf29d560eeec56d584edaa9MD54falseAnonymousREADTEXTCastañoGaston_2025_Ensilado_Mixto_Ganado.pdf.txtCastañoGaston_2025_Ensilado_Mixto_Ganado.pdf.txtExtracted texttext/plain101144https://bibliotecadigital.udea.edu.co/bitstreams/ccf8cef5-6ef0-4602-af8c-c755fea40e1c/downloadd2313c7ca672c2b52dcc7b1ee5b4484bMD56falseAnonymousREAD2027-11-07THUMBNAILCastañoGaston_2025_Ensilado_Mixto_Ganado.pdf.jpgCastañoGaston_2025_Ensilado_Mixto_Ganado.pdf.jpgGenerated Thumbnailimage/jpeg8385https://bibliotecadigital.udea.edu.co/bitstreams/e9b600ee-449f-48d9-bf86-a1978f6b7d11/download9734c8ceb990d58ce0fbd0cc4cf465aaMD57falseAnonymousREAD2027-11-0710495/48160oai:bibliotecadigital.udea.edu.co:10495/481602025-11-08 04:04:12.262http://creativecommons.org/licenses/by-nc-sa/4.0/Attribution-NonCommercial-ShareAlike 4.0 Internationalembargo2027-11-07https://bibliotecadigital.udea.edu.coRepositorio Institucional de la Universidad de Antioquiaaplicacionbibliotecadigitalbiblioteca@udea.edu.coTEEgT0JSQSAoVEFMIFkgQ09NTyBTRSBERUZJTkUgTcOBUyBBREVMQU5URSkgU0UgT1RPUkdBIEJBSk8gTE9TIFRFUk1JTk9TIERFIEVTVEEgTElDRU5DSUEgUMOaQkxJQ0EgREUgQ1JFQVRJVkUgQ09NTU9OUyAo4oCcTFBDQ+KAnSBPIOKAnExJQ0VOQ0lB4oCdKS4gTEEgT0JSQSBFU1TDgSBQUk9URUdJREEgUE9SIERFUkVDSE9TIERFIEFVVE9SIFkvVSBPVFJBUyBMRVlFUyBBUExJQ0FCTEVTLiBRVUVEQSBQUk9ISUJJRE8gQ1VBTFFVSUVSIFVTTyBRVUUgU0UgSEFHQSBERSBMQSBPQlJBIFFVRSBOTyBDVUVOVEUgQ09OIExBIEFVVE9SSVpBQ0nDk04gUEVSVElORU5URSBERSBDT05GT1JNSURBRCBDT04gTE9TIFTDiVJNSU5PUyBERSBFU1RBIExJQ0VOQ0lBIFkgREUgTEEgTEVZIERFIERFUkVDSE8gREUgQVVUT1IuCgpNRURJQU5URSBFTCBFSkVSQ0lDSU8gREUgQ1VBTFFVSUVSQSBERSBMT1MgREVSRUNIT1MgUVVFIFNFIE9UT1JHQU4gRU4gRVNUQSBMSUNFTkNJQSwgVVNURUQgQUNFUFRBIFkgQUNVRVJEQSBRVUVEQVIgT0JMSUdBRE8gRU4gTE9TIFRFUk1JTk9TIFFVRSBTRSBTRcORQUxBTiBFTiBFTExBLiBFTCBMSUNFTkNJQU5URSBDT05DRURFIEEgVVNURUQgTE9TIERFUkVDSE9TIENPTlRFTklET1MgRU4gRVNUQSBMSUNFTkNJQSBDT05ESUNJT05BRE9TIEEgTEEgQUNFUFRBQ0nDk04gREUgU1VTIFRFUk1JTk9TIFkgQ09ORElDSU9ORVMuIAoKMS4gRGVmaW5pY2lvbmVzCmEuIE9icmEgQ29sZWN0aXZhIGVzIHVuYSBvYnJhLCB0YWwgY29tbyB1bmEgcHVibGljYWNpw7NuIHBlcmnDs2RpY2EsIHVuYSBhbnRvbG9nw61hLCBvIHVuYSBlbmNpY2xvcGVkaWEsIGVuIGxhIHF1ZSBsYSBvYnJhIGVuIHN1IHRvdGFsaWRhZCwgc2luIG1vZGlmaWNhY2nDs24gYWxndW5hLCBqdW50byBjb24gdW4gZ3J1cG8gZGUgb3RyYXMgY29udHJpYnVjaW9uZXMgcXVlIGNvbnN0aXR1eWVuIG9icmFzIHNlcGFyYWRhcyBlIGluZGVwZW5kaWVudGVzIGVuIHPDrSBtaXNtYXMsIHNlIGludGVncmFuIGVuIHVuIHRvZG8gY29sZWN0aXZvLiBVbmEgT2JyYSBxdWUgY29uc3RpdHV5ZSB1bmEgb2JyYSBjb2xlY3RpdmEgbm8gc2UgY29uc2lkZXJhcsOhIHVuYSBPYnJhIERlcml2YWRhIChjb21vIHNlIGRlZmluZSBhYmFqbykgcGFyYSBsb3MgcHJvcMOzc2l0b3MgZGUgZXN0YSBsaWNlbmNpYS4gYXF1ZWxsYSBwcm9kdWNpZGEgcG9yIHVuIGdydXBvIGRlIGF1dG9yZXMsIGVuIHF1ZSBsYSBPYnJhIHNlIGVuY3VlbnRyYSBzaW4gbW9kaWZpY2FjaW9uZXMsIGp1bnRvIGNvbiB1bmEgY2llcnRhIGNhbnRpZGFkIGRlIG90cmFzIGNvbnRyaWJ1Y2lvbmVzLCBxdWUgY29uc3RpdHV5ZW4gZW4gc8OtIG1pc21vcyB0cmFiYWpvcyBzZXBhcmFkb3MgZSBpbmRlcGVuZGllbnRlcywgcXVlIHNvbiBpbnRlZ3JhZG9zIGFsIHRvZG8gY29sZWN0aXZvLCB0YWxlcyBjb21vIHB1YmxpY2FjaW9uZXMgcGVyacOzZGljYXMsIGFudG9sb2fDrWFzIG8gZW5jaWNsb3BlZGlhcy4KYi4gT2JyYSBEZXJpdmFkYSBzaWduaWZpY2EgdW5hIG9icmEgYmFzYWRhIGVuIGxhIG9icmEgb2JqZXRvIGRlIGVzdGEgbGljZW5jaWEgbyBlbiDDqXN0YSB5IG90cmFzIG9icmFzIHByZWV4aXN0ZW50ZXMsIHRhbGVzIGNvbW8gdHJhZHVjY2lvbmVzLCBhcnJlZ2xvcyBtdXNpY2FsZXMsIGRyYW1hdGl6YWNpb25lcywg4oCcZmljY2lvbmFsaXphY2lvbmVz4oCdLCB2ZXJzaW9uZXMgcGFyYSBjaW5lLCDigJxncmFiYWNpb25lcyBkZSBzb25pZG/igJ0sIHJlcHJvZHVjY2lvbmVzIGRlIGFydGUsIHJlc8O6bWVuZXMsIGNvbmRlbnNhY2lvbmVzLCBvIGN1YWxxdWllciBvdHJhIGVuIGxhIHF1ZSBsYSBvYnJhIHB1ZWRhIHNlciB0cmFuc2Zvcm1hZGEsIGNhbWJpYWRhIG8gYWRhcHRhZGEsIGV4Y2VwdG8gYXF1ZWxsYXMgcXVlIGNvbnN0aXR1eWFuIHVuYSBvYnJhIGNvbGVjdGl2YSwgbGFzIHF1ZSBubyBzZXLDoW4gY29uc2lkZXJhZGFzIHVuYSBvYnJhIGRlcml2YWRhIHBhcmEgZWZlY3RvcyBkZSBlc3RhIGxpY2VuY2lhLiAoUGFyYSBldml0YXIgZHVkYXMsIGVuIGVsIGNhc28gZGUgcXVlIGxhIE9icmEgc2VhIHVuYSBjb21wb3NpY2nDs24gbXVzaWNhbCBvIHVuYSBncmFiYWNpw7NuIHNvbm9yYSwgcGFyYSBsb3MgZWZlY3RvcyBkZSBlc3RhIExpY2VuY2lhIGxhIHNpbmNyb25pemFjacOzbiB0ZW1wb3JhbCBkZSBsYSBPYnJhIGNvbiB1bmEgaW1hZ2VuIGVuIG1vdmltaWVudG8gc2UgY29uc2lkZXJhcsOhIHVuYSBPYnJhIERlcml2YWRhIHBhcmEgbG9zIGZpbmVzIGRlIGVzdGEgbGljZW5jaWEpLgpjLiBMaWNlbmNpYW50ZSwgZXMgZWwgaW5kaXZpZHVvIG8gbGEgZW50aWRhZCB0aXR1bGFyIGRlIGxvcyBkZXJlY2hvcyBkZSBhdXRvciBxdWUgb2ZyZWNlIGxhIE9icmEgZW4gY29uZm9ybWlkYWQgY29uIGxhcyBjb25kaWNpb25lcyBkZSBlc3RhIExpY2VuY2lhLgpkLiBBdXRvciBvcmlnaW5hbCwgZXMgZWwgaW5kaXZpZHVvIHF1ZSBjcmXDsyBsYSBPYnJhLgplLiBPYnJhLCBlcyBhcXVlbGxhIG9icmEgc3VzY2VwdGlibGUgZGUgcHJvdGVjY2nDs24gcG9yIGVsIHLDqWdpbWVuIGRlIERlcmVjaG8gZGUgQXV0b3IgeSBxdWUgZXMgb2ZyZWNpZGEgZW4gbG9zIHTDqXJtaW5vcyBkZSBlc3RhIGxpY2VuY2lhCmYuIFVzdGVkLCBlcyBlbCBpbmRpdmlkdW8gbyBsYSBlbnRpZGFkIHF1ZSBlamVyY2l0YSBsb3MgZGVyZWNob3Mgb3RvcmdhZG9zIGFsIGFtcGFybyBkZSBlc3RhIExpY2VuY2lhIHkgcXVlIGNvbiBhbnRlcmlvcmlkYWQgbm8gaGEgdmlvbGFkbyBsYXMgY29uZGljaW9uZXMgZGUgbGEgbWlzbWEgcmVzcGVjdG8gYSBsYSBPYnJhLCBvIHF1ZSBoYXlhIG9idGVuaWRvIGF1dG9yaXphY2nDs24gZXhwcmVzYSBwb3IgcGFydGUgZGVsIExpY2VuY2lhbnRlIHBhcmEgZWplcmNlciBsb3MgZGVyZWNob3MgYWwgYW1wYXJvIGRlIGVzdGEgTGljZW5jaWEgcGVzZSBhIHVuYSB2aW9sYWNpw7NuIGFudGVyaW9yLgoJICAKMi4gRGVyZWNob3MgZGUgVXNvcyBIb25yYWRvcyB5IGV4Y2VwY2lvbmVzIExlZ2FsZXMuCk5hZGEgZW4gZXN0YSBMaWNlbmNpYSBwb2Ryw6Egc2VyIGludGVycHJldGFkbyBjb21vIHVuYSBkaXNtaW51Y2nDs24sIGxpbWl0YWNpw7NuIG8gcmVzdHJpY2Npw7NuIGRlIGxvcyBkZXJlY2hvcyBkZXJpdmFkb3MgZGVsIHVzbyBob25yYWRvIHkgb3RyYXMgbGltaXRhY2lvbmVzIG8gZXhjZXBjaW9uZXMgYSBsb3MgZGVyZWNob3MgZGVsIGF1dG9yIGJham8gZWwgcsOpZ2ltZW4gbGVnYWwgdmlnZW50ZSBvIGRlcml2YWRvIGRlIGN1YWxxdWllciBvdHJhIG5vcm1hIHF1ZSBzZSBsZSBhcGxpcXVlLgogIAozLiBDb25jZXNpw7NuIGRlIGxhIExpY2VuY2lhLgpCYWpvIGxvcyB0w6lybWlub3MgeSBjb25kaWNpb25lcyBkZSBlc3RhIExpY2VuY2lhLCBlbCBMaWNlbmNpYW50ZSBvdG9yZ2EgYSBVc3RlZCB1bmEgbGljZW5jaWEgbXVuZGlhbCwgbGlicmUgZGUgcmVnYWzDrWFzLCBubyBleGNsdXNpdmEgeSBwZXJwZXR1YSAoZHVyYW50ZSB0b2RvIGVsIHBlcsOtb2RvIGRlIHZpZ2VuY2lhIGRlIGxvcyBkZXJlY2hvcyBkZSBhdXRvcikgcGFyYSBlamVyY2VyIGVzdG9zIGRlcmVjaG9zIHNvYnJlIGxhIE9icmEgdGFsIHkgY29tbyBzZSBpbmRpY2EgYSBjb250aW51YWNpw7NuOgphLiBSZXByb2R1Y2lyIGxhIE9icmEsIGluY29ycG9yYXIgbGEgT2JyYSBlbiB1bmEgbyBtw6FzIE9icmFzIENvbGVjdGl2YXMsIHkgcmVwcm9kdWNpciBsYSBPYnJhIGluY29ycG9yYWRhIGVuIGxhcyBPYnJhcyBDb2xlY3RpdmFzLgpiLiBEaXN0cmlidWlyIGNvcGlhcyBvIGZvbm9ncmFtYXMgZGUgbGFzIE9icmFzLCBleGhpYmlybGFzIHDDumJsaWNhbWVudGUsIGVqZWN1dGFybGFzIHDDumJsaWNhbWVudGUgeS9vIHBvbmVybGFzIGEgZGlzcG9zaWNpw7NuIHDDumJsaWNhLCBpbmNsdXnDqW5kb2xhcyBjb21vIGluY29ycG9yYWRhcyBlbiBPYnJhcyBDb2xlY3RpdmFzLCBzZWfDum4gY29ycmVzcG9uZGEuCmMuIERpc3RyaWJ1aXIgY29waWFzIGRlIGxhcyBPYnJhcyBEZXJpdmFkYXMgcXVlIHNlIGdlbmVyZW4sIGV4aGliaXJsYXMgcMO6YmxpY2FtZW50ZSwgZWplY3V0YXJsYXMgcMO6YmxpY2FtZW50ZSB5L28gcG9uZXJsYXMgYSBkaXNwb3NpY2nDs24gcMO6YmxpY2EuCgpMb3MgZGVyZWNob3MgbWVuY2lvbmFkb3MgYW50ZXJpb3JtZW50ZSBwdWVkZW4gc2VyIGVqZXJjaWRvcyBlbiB0b2RvcyBsb3MgbWVkaW9zIHkgZm9ybWF0b3MsIGFjdHVhbG1lbnRlIGNvbm9jaWRvcyBvIHF1ZSBzZSBpbnZlbnRlbiBlbiBlbCBmdXR1cm8uIExvcyBkZXJlY2hvcyBhbnRlcyBtZW5jaW9uYWRvcyBpbmNsdXllbiBlbCBkZXJlY2hvIGEgcmVhbGl6YXIgZGljaGFzIG1vZGlmaWNhY2lvbmVzIGVuIGxhIG1lZGlkYSBxdWUgc2VhbiB0w6ljbmljYW1lbnRlIG5lY2VzYXJpYXMgcGFyYSBlamVyY2VyIGxvcyBkZXJlY2hvcyBlbiBvdHJvIG1lZGlvIG8gZm9ybWF0b3MsIHBlcm8gZGUgb3RyYSBtYW5lcmEgdXN0ZWQgbm8gZXN0w6EgYXV0b3JpemFkbyBwYXJhIHJlYWxpemFyIG9icmFzIGRlcml2YWRhcy4gVG9kb3MgbG9zIGRlcmVjaG9zIG5vIG90b3JnYWRvcyBleHByZXNhbWVudGUgcG9yIGVsIExpY2VuY2lhbnRlIHF1ZWRhbiBwb3IgZXN0ZSBtZWRpbyByZXNlcnZhZG9zLCBpbmNsdXllbmRvIHBlcm8gc2luIGxpbWl0YXJzZSBhIGFxdWVsbG9zIHF1ZSBzZSBtZW5jaW9uYW4gZW4gbGFzIHNlY2Npb25lcyA0KGQpIHkgNChlKS4KICAgIAo0LiBSZXN0cmljY2lvbmVzLgpMYSBsaWNlbmNpYSBvdG9yZ2FkYSBlbiBsYSBhbnRlcmlvciBTZWNjacOzbiAzIGVzdMOhIGV4cHJlc2FtZW50ZSBzdWpldGEgeSBsaW1pdGFkYSBwb3IgbGFzIHNpZ3VpZW50ZXMgcmVzdHJpY2Npb25lczoKYS4gVXN0ZWQgcHVlZGUgZGlzdHJpYnVpciwgZXhoaWJpciBww7pibGljYW1lbnRlLCBlamVjdXRhciBww7pibGljYW1lbnRlLCBvIHBvbmVyIGEgZGlzcG9zaWNpw7NuIHDDumJsaWNhIGxhIE9icmEgc8OzbG8gYmFqbyBsYXMgY29uZGljaW9uZXMgZGUgZXN0YSBMaWNlbmNpYSwgeSBVc3RlZCBkZWJlIGluY2x1aXIgdW5hIGNvcGlhIGRlIGVzdGEgbGljZW5jaWEgbyBkZWwgSWRlbnRpZmljYWRvciBVbml2ZXJzYWwgZGUgUmVjdXJzb3MgZGUgbGEgbWlzbWEgY29uIGNhZGEgY29waWEgZGUgbGEgT2JyYSBxdWUgZGlzdHJpYnV5YSwgZXhoaWJhIHDDumJsaWNhbWVudGUsIGVqZWN1dGUgcMO6YmxpY2FtZW50ZSBvIHBvbmdhIGEgZGlzcG9zaWNpw7NuIHDDumJsaWNhLiBObyBlcyBwb3NpYmxlIG9mcmVjZXIgbyBpbXBvbmVyIG5pbmd1bmEgY29uZGljacOzbiBzb2JyZSBsYSBPYnJhIHF1ZSBhbHRlcmUgbyBsaW1pdGUgbGFzIGNvbmRpY2lvbmVzIGRlIGVzdGEgTGljZW5jaWEgbyBlbCBlamVyY2ljaW8gZGUgbG9zIGRlcmVjaG9zIGRlIGxvcyBkZXN0aW5hdGFyaW9zIG90b3JnYWRvcyBlbiBlc3RlIGRvY3VtZW50by4gTm8gZXMgcG9zaWJsZSBzdWJsaWNlbmNpYXIgbGEgT2JyYS4gVXN0ZWQgZGViZSBtYW50ZW5lciBpbnRhY3RvcyB0b2RvcyBsb3MgYXZpc29zIHF1ZSBoYWdhbiByZWZlcmVuY2lhIGEgZXN0YSBMaWNlbmNpYSB5IGEgbGEgY2zDoXVzdWxhIGRlIGxpbWl0YWNpw7NuIGRlIGdhcmFudMOtYXMuIFVzdGVkIG5vIHB1ZWRlIGRpc3RyaWJ1aXIsIGV4aGliaXIgcMO6YmxpY2FtZW50ZSwgZWplY3V0YXIgcMO6YmxpY2FtZW50ZSwgbyBwb25lciBhIGRpc3Bvc2ljacOzbiBww7pibGljYSBsYSBPYnJhIGNvbiBhbGd1bmEgbWVkaWRhIHRlY25vbMOzZ2ljYSBxdWUgY29udHJvbGUgZWwgYWNjZXNvIG8gbGEgdXRpbGl6YWNpw7NuIGRlIGVsbGEgZGUgdW5hIGZvcm1hIHF1ZSBzZWEgaW5jb25zaXN0ZW50ZSBjb24gbGFzIGNvbmRpY2lvbmVzIGRlIGVzdGEgTGljZW5jaWEuIExvIGFudGVyaW9yIHNlIGFwbGljYSBhIGxhIE9icmEgaW5jb3Jwb3JhZGEgYSB1bmEgT2JyYSBDb2xlY3RpdmEsIHBlcm8gZXN0byBubyBleGlnZSBxdWUgbGEgT2JyYSBDb2xlY3RpdmEgYXBhcnRlIGRlIGxhIG9icmEgbWlzbWEgcXVlZGUgc3VqZXRhIGEgbGFzIGNvbmRpY2lvbmVzIGRlIGVzdGEgTGljZW5jaWEuIFNpIFVzdGVkIGNyZWEgdW5hIE9icmEgQ29sZWN0aXZhLCBwcmV2aW8gYXZpc28gZGUgY3VhbHF1aWVyIExpY2VuY2lhbnRlIGRlYmUsIGVuIGxhIG1lZGlkYSBkZSBsbyBwb3NpYmxlLCBlbGltaW5hciBkZSBsYSBPYnJhIENvbGVjdGl2YSBjdWFscXVpZXIgcmVmZXJlbmNpYSBhIGRpY2hvIExpY2VuY2lhbnRlIG8gYWwgQXV0b3IgT3JpZ2luYWwsIHNlZ8O6biBsbyBzb2xpY2l0YWRvIHBvciBlbCBMaWNlbmNpYW50ZSB5IGNvbmZvcm1lIGxvIGV4aWdlIGxhIGNsw6F1c3VsYSA0KGMpLgpiLiBVc3RlZCBubyBwdWVkZSBlamVyY2VyIG5pbmd1bm8gZGUgbG9zIGRlcmVjaG9zIHF1ZSBsZSBoYW4gc2lkbyBvdG9yZ2Fkb3MgZW4gbGEgU2VjY2nDs24gMyBwcmVjZWRlbnRlIGRlIG1vZG8gcXVlIGVzdMOpbiBwcmluY2lwYWxtZW50ZSBkZXN0aW5hZG9zIG8gZGlyZWN0YW1lbnRlIGRpcmlnaWRvcyBhIGNvbnNlZ3VpciB1biBwcm92ZWNobyBjb21lcmNpYWwgbyB1bmEgY29tcGVuc2FjacOzbiBtb25ldGFyaWEgcHJpdmFkYS4gRWwgaW50ZXJjYW1iaW8gZGUgbGEgT2JyYSBwb3Igb3RyYXMgb2JyYXMgcHJvdGVnaWRhcyBwb3IgZGVyZWNob3MgZGUgYXV0b3IsIHlhIHNlYSBhIHRyYXbDqXMgZGUgdW4gc2lzdGVtYSBwYXJhIGNvbXBhcnRpciBhcmNoaXZvcyBkaWdpdGFsZXMgKGRpZ2l0YWwgZmlsZS1zaGFyaW5nKSBvIGRlIGN1YWxxdWllciBvdHJhIG1hbmVyYSBubyBzZXLDoSBjb25zaWRlcmFkbyBjb21vIGVzdGFyIGRlc3RpbmFkbyBwcmluY2lwYWxtZW50ZSBvIGRpcmlnaWRvIGRpcmVjdGFtZW50ZSBhIGNvbnNlZ3VpciB1biBwcm92ZWNobyBjb21lcmNpYWwgbyB1bmEgY29tcGVuc2FjacOzbiBtb25ldGFyaWEgcHJpdmFkYSwgc2llbXByZSBxdWUgbm8gc2UgcmVhbGljZSB1biBwYWdvIG1lZGlhbnRlIHVuYSBjb21wZW5zYWNpw7NuIG1vbmV0YXJpYSBlbiByZWxhY2nDs24gY29uIGVsIGludGVyY2FtYmlvIGRlIG9icmFzIHByb3RlZ2lkYXMgcG9yIGVsIGRlcmVjaG8gZGUgYXV0b3IuCmMuIFNpIHVzdGVkIGRpc3RyaWJ1eWUsIGV4aGliZSBww7pibGljYW1lbnRlLCBlamVjdXRhIHDDumJsaWNhbWVudGUgbyBlamVjdXRhIHDDumJsaWNhbWVudGUgZW4gZm9ybWEgZGlnaXRhbCBsYSBPYnJhIG8gY3VhbHF1aWVyIE9icmEgRGVyaXZhZGEgdSBPYnJhIENvbGVjdGl2YSwgVXN0ZWQgZGViZSBtYW50ZW5lciBpbnRhY3RhIHRvZGEgbGEgaW5mb3JtYWNpw7NuIGRlIGRlcmVjaG8gZGUgYXV0b3IgZGUgbGEgT2JyYSB5IHByb3BvcmNpb25hciwgZGUgZm9ybWEgcmF6b25hYmxlIHNlZ8O6biBlbCBtZWRpbyBvIG1hbmVyYSBxdWUgVXN0ZWQgZXN0w6kgdXRpbGl6YW5kbzogKGkpIGVsIG5vbWJyZSBkZWwgQXV0b3IgT3JpZ2luYWwgc2kgZXN0w6EgcHJvdmlzdG8gKG8gc2V1ZMOzbmltbywgc2kgZnVlcmUgYXBsaWNhYmxlKSwgeS9vIChpaSkgZWwgbm9tYnJlIGRlIGxhIHBhcnRlIG8gbGFzIHBhcnRlcyBxdWUgZWwgQXV0b3IgT3JpZ2luYWwgeS9vIGVsIExpY2VuY2lhbnRlIGh1YmllcmVuIGRlc2lnbmFkbyBwYXJhIGxhIGF0cmlidWNpw7NuICh2LmcuLCB1biBpbnN0aXR1dG8gcGF0cm9jaW5hZG9yLCBlZGl0b3JpYWwsIHB1YmxpY2FjacOzbikgZW4gbGEgaW5mb3JtYWNpw7NuIGRlIGxvcyBkZXJlY2hvcyBkZSBhdXRvciBkZWwgTGljZW5jaWFudGUsIHTDqXJtaW5vcyBkZSBzZXJ2aWNpb3MgbyBkZSBvdHJhcyBmb3JtYXMgcmF6b25hYmxlczsgZWwgdMOtdHVsbyBkZSBsYSBPYnJhIHNpIGVzdMOhIHByb3Zpc3RvOyBlbiBsYSBtZWRpZGEgZGUgbG8gcmF6b25hYmxlbWVudGUgZmFjdGlibGUgeSwgc2kgZXN0w6EgcHJvdmlzdG8sIGVsIElkZW50aWZpY2Fkb3IgVW5pZm9ybWUgZGUgUmVjdXJzb3MgKFVuaWZvcm0gUmVzb3VyY2UgSWRlbnRpZmllcikgcXVlIGVsIExpY2VuY2lhbnRlIGVzcGVjaWZpY2EgcGFyYSBzZXIgYXNvY2lhZG8gY29uIGxhIE9icmEsIHNhbHZvIHF1ZSB0YWwgVVJJIG5vIHNlIHJlZmllcmEgYSBsYSBub3RhIHNvYnJlIGxvcyBkZXJlY2hvcyBkZSBhdXRvciBvIGEgbGEgaW5mb3JtYWNpw7NuIHNvYnJlIGVsIGxpY2VuY2lhbWllbnRvIGRlIGxhIE9icmE7IHkgZW4gZWwgY2FzbyBkZSB1bmEgT2JyYSBEZXJpdmFkYSwgYXRyaWJ1aXIgZWwgY3LDqWRpdG8gaWRlbnRpZmljYW5kbyBlbCB1c28gZGUgbGEgT2JyYSBlbiBsYSBPYnJhIERlcml2YWRhICh2LmcuLCAiVHJhZHVjY2nDs24gRnJhbmNlc2EgZGUgbGEgT2JyYSBkZWwgQXV0b3IgT3JpZ2luYWwsIiBvICJHdWnDs24gQ2luZW1hdG9ncsOhZmljbyBiYXNhZG8gZW4gbGEgT2JyYSBvcmlnaW5hbCBkZWwgQXV0b3IgT3JpZ2luYWwiKS4gVGFsIGNyw6lkaXRvIHB1ZWRlIHNlciBpbXBsZW1lbnRhZG8gZGUgY3VhbHF1aWVyIGZvcm1hIHJhem9uYWJsZTsgZW4gZWwgY2Fzbywgc2luIGVtYmFyZ28sIGRlIE9icmFzIERlcml2YWRhcyB1IE9icmFzIENvbGVjdGl2YXMsIHRhbCBjcsOpZGl0byBhcGFyZWNlcsOhLCBjb21vIG3DrW5pbW8sIGRvbmRlIGFwYXJlY2UgZWwgY3LDqWRpdG8gZGUgY3VhbHF1aWVyIG90cm8gYXV0b3IgY29tcGFyYWJsZSB5IGRlIHVuYSBtYW5lcmEsIGFsIG1lbm9zLCB0YW4gZGVzdGFjYWRhIGNvbW8gZWwgY3LDqWRpdG8gZGUgb3RybyBhdXRvciBjb21wYXJhYmxlLiAgCmQuIFBhcmEgZXZpdGFyIHRvZGEgY29uZnVzacOzbiwgZWwgTGljZW5jaWFudGUgYWNsYXJhIHF1ZSwgY3VhbmRvIGxhIG9icmEgZXMgdW5hIGNvbXBvc2ljacOzbiBtdXNpY2FsOgoKaS4gUmVnYWzDrWFzIHBvciBpbnRlcnByZXRhY2nDs24geSBlamVjdWNpw7NuIGJham8gbGljZW5jaWFzIGdlbmVyYWxlcy4gRWwgTGljZW5jaWFudGUgc2UgcmVzZXJ2YSBlbCBkZXJlY2hvIGV4Y2x1c2l2byBkZSBhdXRvcml6YXIgbGEgZWplY3VjacOzbiBww7pibGljYSBvIGxhIGVqZWN1Y2nDs24gcMO6YmxpY2EgZGlnaXRhbCBkZSBsYSBvYnJhIHkgZGUgcmVjb2xlY3Rhciwgc2VhIGluZGl2aWR1YWxtZW50ZSBvIGEgdHJhdsOpcyBkZSB1bmEgc29jaWVkYWQgZGUgZ2VzdGnDs24gY29sZWN0aXZhIGRlIGRlcmVjaG9zIGRlIGF1dG9yIHkgZGVyZWNob3MgY29uZXhvcyAocG9yIGVqZW1wbG8sIFNBWUNPKSwgbGFzIHJlZ2Fsw61hcyBwb3IgbGEgZWplY3VjacOzbiBww7pibGljYSBvIHBvciBsYSBlamVjdWNpw7NuIHDDumJsaWNhIGRpZ2l0YWwgZGUgbGEgb2JyYSAocG9yIGVqZW1wbG8gV2ViY2FzdCkgbGljZW5jaWFkYSBiYWpvIGxpY2VuY2lhcyBnZW5lcmFsZXMsIHNpIGxhIGludGVycHJldGFjacOzbiBvIGVqZWN1Y2nDs24gZGUgbGEgb2JyYSBlc3TDoSBwcmltb3JkaWFsbWVudGUgb3JpZW50YWRhIHBvciBvIGRpcmlnaWRhIGEgbGEgb2J0ZW5jacOzbiBkZSB1bmEgdmVudGFqYSBjb21lcmNpYWwgbyB1bmEgY29tcGVuc2FjacOzbiBtb25ldGFyaWEgcHJpdmFkYS4KaWkuIFJlZ2Fsw61hcyBwb3IgRm9ub2dyYW1hcy4gRWwgTGljZW5jaWFudGUgc2UgcmVzZXJ2YSBlbCBkZXJlY2hvIGV4Y2x1c2l2byBkZSByZWNvbGVjdGFyLCBpbmRpdmlkdWFsbWVudGUgbyBhIHRyYXbDqXMgZGUgdW5hIHNvY2llZGFkIGRlIGdlc3Rpw7NuIGNvbGVjdGl2YSBkZSBkZXJlY2hvcyBkZSBhdXRvciB5IGRlcmVjaG9zIGNvbmV4b3MgKHBvciBlamVtcGxvLCBsb3MgY29uc2FncmFkb3MgcG9yIGxhIFNBWUNPKSwgdW5hIGFnZW5jaWEgZGUgZGVyZWNob3MgbXVzaWNhbGVzIG8gYWxnw7puIGFnZW50ZSBkZXNpZ25hZG8sIGxhcyByZWdhbMOtYXMgcG9yIGN1YWxxdWllciBmb25vZ3JhbWEgcXVlIFVzdGVkIGNyZWUgYSBwYXJ0aXIgZGUgbGEgb2JyYSAo4oCcdmVyc2nDs24gY292ZXLigJ0pIHkgZGlzdHJpYnV5YSwgZW4gbG9zIHTDqXJtaW5vcyBkZWwgcsOpZ2ltZW4gZGUgZGVyZWNob3MgZGUgYXV0b3IsIHNpIGxhIGNyZWFjacOzbiBvIGRpc3RyaWJ1Y2nDs24gZGUgZXNhIHZlcnNpw7NuIGNvdmVyIGVzdMOhIHByaW1vcmRpYWxtZW50ZSBkZXN0aW5hZGEgbyBkaXJpZ2lkYSBhIG9idGVuZXIgdW5hIHZlbnRhamEgY29tZXJjaWFsIG8gdW5hIGNvbXBlbnNhY2nDs24gbW9uZXRhcmlhIHByaXZhZGEuCiAgICAgIAplLiBHZXN0acOzbiBkZSBEZXJlY2hvcyBkZSBBdXRvciBzb2JyZSBJbnRlcnByZXRhY2lvbmVzIHkgRWplY3VjaW9uZXMgRGlnaXRhbGVzIChXZWJDYXN0aW5nKS4gUGFyYSBldml0YXIgdG9kYSBjb25mdXNpw7NuLCBlbCBMaWNlbmNpYW50ZSBhY2xhcmEgcXVlLCBjdWFuZG8gbGEgb2JyYSBzZWEgdW4gZm9ub2dyYW1hLCBlbCBMaWNlbmNpYW50ZSBzZSByZXNlcnZhIGVsIGRlcmVjaG8gZXhjbHVzaXZvIGRlIGF1dG9yaXphciBsYSBlamVjdWNpw7NuIHDDumJsaWNhIGRpZ2l0YWwgZGUgbGEgb2JyYSAocG9yIGVqZW1wbG8sIHdlYmNhc3QpIHkgZGUgcmVjb2xlY3RhciwgaW5kaXZpZHVhbG1lbnRlIG8gYSB0cmF2w6lzIGRlIHVuYSBzb2NpZWRhZCBkZSBnZXN0acOzbiBjb2xlY3RpdmEgZGUgZGVyZWNob3MgZGUgYXV0b3IgeSBkZXJlY2hvcyBjb25leG9zIChwb3IgZWplbXBsbywgQUNJTlBSTyksIGxhcyByZWdhbMOtYXMgcG9yIGxhIGVqZWN1Y2nDs24gcMO6YmxpY2EgZGlnaXRhbCBkZSBsYSBvYnJhIChwb3IgZWplbXBsbywgd2ViY2FzdCksIHN1amV0YSBhIGxhcyBkaXNwb3NpY2lvbmVzIGFwbGljYWJsZXMgZGVsIHLDqWdpbWVuIGRlIERlcmVjaG8gZGUgQXV0b3IsIHNpIGVzdGEgZWplY3VjacOzbiBww7pibGljYSBkaWdpdGFsIGVzdMOhIHByaW1vcmRpYWxtZW50ZSBkaXJpZ2lkYSBhIG9idGVuZXIgdW5hIHZlbnRhamEgY29tZXJjaWFsIG8gdW5hIGNvbXBlbnNhY2nDs24gbW9uZXRhcmlhIHByaXZhZGEuCiAgCjUuIFJlcHJlc2VudGFjaW9uZXMsIEdhcmFudMOtYXMgeSBMaW1pdGFjaW9uZXMgZGUgUmVzcG9uc2FiaWxpZGFkLgpBIE1FTk9TIFFVRSBMQVMgUEFSVEVTIExPIEFDT1JEQVJBTiBERSBPVFJBIEZPUk1BIFBPUiBFU0NSSVRPLCBFTCBMSUNFTkNJQU5URSBPRlJFQ0UgTEEgT0JSQSAoRU4gRUwgRVNUQURPIEVOIEVMIFFVRSBTRSBFTkNVRU5UUkEpIOKAnFRBTCBDVUFM4oCdLCBTSU4gQlJJTkRBUiBHQVJBTlTDjUFTIERFIENMQVNFIEFMR1VOQSBSRVNQRUNUTyBERSBMQSBPQlJBLCBZQSBTRUEgRVhQUkVTQSwgSU1QTMONQ0lUQSwgTEVHQUwgTyBDVUFMUVVJRVJBIE9UUkEsIElOQ0xVWUVORE8sIFNJTiBMSU1JVEFSU0UgQSBFTExBUywgR0FSQU5Uw41BUyBERSBUSVRVTEFSSURBRCwgQ09NRVJDSUFCSUxJREFELCBBREFQVEFCSUxJREFEIE8gQURFQ1VBQ0nDk04gQSBQUk9Qw5NTSVRPIERFVEVSTUlOQURPLCBBVVNFTkNJQSBERSBJTkZSQUNDScOTTiwgREUgQVVTRU5DSUEgREUgREVGRUNUT1MgTEFURU5URVMgTyBERSBPVFJPIFRJUE8sIE8gTEEgUFJFU0VOQ0lBIE8gQVVTRU5DSUEgREUgRVJST1JFUywgU0VBTiBPIE5PIERFU0NVQlJJQkxFUyAoUFVFREFOIE8gTk8gU0VSIEVTVE9TIERFU0NVQklFUlRPUykuIEFMR1VOQVMgSlVSSVNESUNDSU9ORVMgTk8gUEVSTUlURU4gTEEgRVhDTFVTScOTTiBERSBHQVJBTlTDjUFTIElNUEzDjUNJVEFTLCBFTiBDVVlPIENBU08gRVNUQSBFWENMVVNJw5NOIFBVRURFIE5PIEFQTElDQVJTRSBBIFVTVEVELgogIAo2LiBMaW1pdGFjacOzbiBkZSByZXNwb25zYWJpbGlkYWQuCkEgTUVOT1MgUVVFIExPIEVYSUpBIEVYUFJFU0FNRU5URSBMQSBMRVkgQVBMSUNBQkxFLCBFTCBMSUNFTkNJQU5URSBOTyBTRVLDgSBSRVNQT05TQUJMRSBBTlRFIFVTVEVEIFBPUiBEQcORTyBBTEdVTk8sIFNFQSBQT1IgUkVTUE9OU0FCSUxJREFEIEVYVFJBQ09OVFJBQ1RVQUwsIFBSRUNPTlRSQUNUVUFMIE8gQ09OVFJBQ1RVQUwsIE9CSkVUSVZBIE8gU1VCSkVUSVZBLCBTRSBUUkFURSBERSBEQcORT1MgTU9SQUxFUyBPIFBBVFJJTU9OSUFMRVMsIERJUkVDVE9TIE8gSU5ESVJFQ1RPUywgUFJFVklTVE9TIE8gSU1QUkVWSVNUT1MgUFJPRFVDSURPUyBQT1IgRUwgVVNPIERFIEVTVEEgTElDRU5DSUEgTyBERSBMQSBPQlJBLCBBVU4gQ1VBTkRPIEVMIExJQ0VOQ0lBTlRFIEhBWUEgU0lETyBBRFZFUlRJRE8gREUgTEEgUE9TSUJJTElEQUQgREUgRElDSE9TIERBw5FPUy4gQUxHVU5BUyBMRVlFUyBOTyBQRVJNSVRFTiBMQSBFWENMVVNJw5NOIERFIENJRVJUQSBSRVNQT05TQUJJTElEQUQsIEVOIENVWU8gQ0FTTyBFU1RBIEVYQ0xVU0nDk04gUFVFREUgTk8gQVBMSUNBUlNFIEEgVVNURUQuCiAgCjcuIFTDqXJtaW5vLgkKYS4gRXN0YSBMaWNlbmNpYSB5IGxvcyBkZXJlY2hvcyBvdG9yZ2Fkb3MgZW4gdmlydHVkIGRlIGVsbGEgdGVybWluYXLDoW4gYXV0b23DoXRpY2FtZW50ZSBzaSBVc3RlZCBpbmZyaW5nZSBhbGd1bmEgY29uZGljacOzbiBlc3RhYmxlY2lkYSBlbiBlbGxhLiBTaW4gZW1iYXJnbywgbG9zIGluZGl2aWR1b3MgbyBlbnRpZGFkZXMgcXVlIGhhbiByZWNpYmlkbyBPYnJhcyBEZXJpdmFkYXMgbyBDb2xlY3RpdmFzIGRlIFVzdGVkIGRlIGNvbmZvcm1pZGFkIGNvbiBlc3RhIExpY2VuY2lhLCBubyB2ZXLDoW4gdGVybWluYWRhcyBzdXMgbGljZW5jaWFzLCBzaWVtcHJlIHF1ZSBlc3RvcyBpbmRpdmlkdW9zIG8gZW50aWRhZGVzIHNpZ2FuIGN1bXBsaWVuZG8gw61udGVncmFtZW50ZSBsYXMgY29uZGljaW9uZXMgZGUgZXN0YXMgbGljZW5jaWFzLiBMYXMgU2VjY2lvbmVzIDEsIDIsIDUsIDYsIDcsIHkgOCBzdWJzaXN0aXLDoW4gYSBjdWFscXVpZXIgdGVybWluYWNpw7NuIGRlIGVzdGEgTGljZW5jaWEuCmIuIFN1amV0YSBhIGxhcyBjb25kaWNpb25lcyB5IHTDqXJtaW5vcyBhbnRlcmlvcmVzLCBsYSBsaWNlbmNpYSBvdG9yZ2FkYSBhcXXDrSBlcyBwZXJwZXR1YSAoZHVyYW50ZSBlbCBwZXLDrW9kbyBkZSB2aWdlbmNpYSBkZSBsb3MgZGVyZWNob3MgZGUgYXV0b3IgZGUgbGEgb2JyYSkuIE5vIG9ic3RhbnRlIGxvIGFudGVyaW9yLCBlbCBMaWNlbmNpYW50ZSBzZSByZXNlcnZhIGVsIGRlcmVjaG8gYSBwdWJsaWNhciB5L28gZXN0cmVuYXIgbGEgT2JyYSBiYWpvIGNvbmRpY2lvbmVzIGRlIGxpY2VuY2lhIGRpZmVyZW50ZXMgbyBhIGRlamFyIGRlIGRpc3RyaWJ1aXJsYSBlbiBsb3MgdMOpcm1pbm9zIGRlIGVzdGEgTGljZW5jaWEgZW4gY3VhbHF1aWVyIG1vbWVudG87IGVuIGVsIGVudGVuZGlkbywgc2luIGVtYmFyZ28sIHF1ZSBlc2EgZWxlY2Npw7NuIG5vIHNlcnZpcsOhIHBhcmEgcmV2b2NhciBlc3RhIGxpY2VuY2lhIG8gcXVlIGRlYmEgc2VyIG90b3JnYWRhICwgYmFqbyBsb3MgdMOpcm1pbm9zIGRlIGVzdGEgbGljZW5jaWEpLCB5IGVzdGEgbGljZW5jaWEgY29udGludWFyw6EgZW4gcGxlbm8gdmlnb3IgeSBlZmVjdG8gYSBtZW5vcyBxdWUgc2VhIHRlcm1pbmFkYSBjb21vIHNlIGV4cHJlc2EgYXRyw6FzLiBMYSBMaWNlbmNpYSByZXZvY2FkYSBjb250aW51YXLDoSBzaWVuZG8gcGxlbmFtZW50ZSB2aWdlbnRlIHkgZWZlY3RpdmEgc2kgbm8gc2UgbGUgZGEgdMOpcm1pbm8gZW4gbGFzIGNvbmRpY2lvbmVzIGluZGljYWRhcyBhbnRlcmlvcm1lbnRlLgogIAo4LiBWYXJpb3MuCmEuIENhZGEgdmV6IHF1ZSBVc3RlZCBkaXN0cmlidXlhIG8gcG9uZ2EgYSBkaXNwb3NpY2nDs24gcMO6YmxpY2EgbGEgT2JyYSBvIHVuYSBPYnJhIENvbGVjdGl2YSwgZWwgTGljZW5jaWFudGUgb2ZyZWNlcsOhIGFsIGRlc3RpbmF0YXJpbyB1bmEgbGljZW5jaWEgZW4gbG9zIG1pc21vcyB0w6lybWlub3MgeSBjb25kaWNpb25lcyBxdWUgbGEgbGljZW5jaWEgb3RvcmdhZGEgYSBVc3RlZCBiYWpvIGVzdGEgTGljZW5jaWEuCmIuIFNpIGFsZ3VuYSBkaXNwb3NpY2nDs24gZGUgZXN0YSBMaWNlbmNpYSByZXN1bHRhIGludmFsaWRhZGEgbyBubyBleGlnaWJsZSwgc2Vnw7puIGxhIGxlZ2lzbGFjacOzbiB2aWdlbnRlLCBlc3RvIG5vIGFmZWN0YXLDoSBuaSBsYSB2YWxpZGV6IG5pIGxhIGFwbGljYWJpbGlkYWQgZGVsIHJlc3RvIGRlIGNvbmRpY2lvbmVzIGRlIGVzdGEgTGljZW5jaWEgeSwgc2luIGFjY2nDs24gYWRpY2lvbmFsIHBvciBwYXJ0ZSBkZSBsb3Mgc3VqZXRvcyBkZSBlc3RlIGFjdWVyZG8sIGFxdcOpbGxhIHNlIGVudGVuZGVyw6EgcmVmb3JtYWRhIGxvIG3DrW5pbW8gbmVjZXNhcmlvIHBhcmEgaGFjZXIgcXVlIGRpY2hhIGRpc3Bvc2ljacOzbiBzZWEgdsOhbGlkYSB5IGV4aWdpYmxlLgpjLiBOaW5nw7puIHTDqXJtaW5vIG8gZGlzcG9zaWNpw7NuIGRlIGVzdGEgTGljZW5jaWEgc2UgZXN0aW1hcsOhIHJlbnVuY2lhZGEgeSBuaW5ndW5hIHZpb2xhY2nDs24gZGUgZWxsYSBzZXLDoSBjb25zZW50aWRhIGEgbWVub3MgcXVlIGVzYSByZW51bmNpYSBvIGNvbnNlbnRpbWllbnRvIHNlYSBvdG9yZ2FkbyBwb3IgZXNjcml0byB5IGZpcm1hZG8gcG9yIGxhIHBhcnRlIHF1ZSByZW51bmNpZSBvIGNvbnNpZW50YS4KZC4gRXN0YSBMaWNlbmNpYSByZWZsZWphIGVsIGFjdWVyZG8gcGxlbm8gZW50cmUgbGFzIHBhcnRlcyByZXNwZWN0byBhIGxhIE9icmEgYXF1w60gbGljZW5jaWFkYS4gTm8gaGF5IGFycmVnbG9zLCBhY3VlcmRvcyBvIGRlY2xhcmFjaW9uZXMgcmVzcGVjdG8gYSBsYSBPYnJhIHF1ZSBubyBlc3TDqW4gZXNwZWNpZmljYWRvcyBlbiBlc3RlIGRvY3VtZW50by4gRWwgTGljZW5jaWFudGUgbm8gc2UgdmVyw6EgbGltaXRhZG8gcG9yIG5pbmd1bmEgZGlzcG9zaWNpw7NuIGFkaWNpb25hbCBxdWUgcHVlZGEgc3VyZ2lyIGVuIGFsZ3VuYSBjb211bmljYWNpw7NuIGVtYW5hZGEgZGUgVXN0ZWQuIEVzdGEgTGljZW5jaWEgbm8gcHVlZGUgc2VyIG1vZGlmaWNhZGEgc2luIGVsIGNvbnNlbnRpbWllbnRvIG11dHVvIHBvciBlc2NyaXRvIGRlbCBMaWNlbmNpYW50ZSB5IFVzdGVkLgo=