Predicting recurrence in stage III and IV head and neck cancer patients undergoing chemoradiotherapy using PET/CT radiomics : A multicenter study using statistical and machine learning methods. Undergraduate Thesis

ABSTRACT : What can the metabolic behavior of a tumor tell us about a patient having recurrence after treatment? 18F-FDG PET/CT image is widely used in oncology because it allows doctors to detect tumors by observing regions in the body with abnormal glucose consumption. This “abnormal consumption”...

Full description

Autores:
Salas Villa, Eliana
Tipo de recurso:
Trabajo de grado de pregrado
Fecha de publicación:
2025
Institución:
Universidad de Antioquia
Repositorio:
Repositorio UdeA
Idioma:
eng
OAI Identifier:
oai:bibliotecadigital.udea.edu.co:10495/44975
Acceso en línea:
https://hdl.handle.net/10495/44975
Palabra clave:
Neoplasias de Cabeza y Cuello
Head and Neck Neoplasms
Detección Precoz del Cáncer
Early Detection of Cancer
Tomografía Computarizada por Tomografía de Emisión de Positrones
Positron Emission Tomography Computed Tomography
https://id.nlm.nih.gov/mesh/D006258
https://id.nlm.nih.gov/mesh/D055088
https://id.nlm.nih.gov/mesh/D000072078
Rights
embargoedAccess
License
https://creativecommons.org/licenses/by-nc-sa/4.0/
id UDEA2_190856fc1659bc001493f3f2fed05155
oai_identifier_str oai:bibliotecadigital.udea.edu.co:10495/44975
network_acronym_str UDEA2
network_name_str Repositorio UdeA
repository_id_str
dc.title.spa.fl_str_mv Predicting recurrence in stage III and IV head and neck cancer patients undergoing chemoradiotherapy using PET/CT radiomics : A multicenter study using statistical and machine learning methods. Undergraduate Thesis
dc.title.translated.spa.fl_str_mv Predicción de la recurrencia en pacientes con cáncer de cabeza y cuello en estadios III y IV sometidos a quimiorradioterapia mediante radiómica PET/CT : Un estudio multicéntrico que utiliza métodos estadísticos y de aprendizaje automático
title Predicting recurrence in stage III and IV head and neck cancer patients undergoing chemoradiotherapy using PET/CT radiomics : A multicenter study using statistical and machine learning methods. Undergraduate Thesis
spellingShingle Predicting recurrence in stage III and IV head and neck cancer patients undergoing chemoradiotherapy using PET/CT radiomics : A multicenter study using statistical and machine learning methods. Undergraduate Thesis
Neoplasias de Cabeza y Cuello
Head and Neck Neoplasms
Detección Precoz del Cáncer
Early Detection of Cancer
Tomografía Computarizada por Tomografía de Emisión de Positrones
Positron Emission Tomography Computed Tomography
https://id.nlm.nih.gov/mesh/D006258
https://id.nlm.nih.gov/mesh/D055088
https://id.nlm.nih.gov/mesh/D000072078
title_short Predicting recurrence in stage III and IV head and neck cancer patients undergoing chemoradiotherapy using PET/CT radiomics : A multicenter study using statistical and machine learning methods. Undergraduate Thesis
title_full Predicting recurrence in stage III and IV head and neck cancer patients undergoing chemoradiotherapy using PET/CT radiomics : A multicenter study using statistical and machine learning methods. Undergraduate Thesis
title_fullStr Predicting recurrence in stage III and IV head and neck cancer patients undergoing chemoradiotherapy using PET/CT radiomics : A multicenter study using statistical and machine learning methods. Undergraduate Thesis
title_full_unstemmed Predicting recurrence in stage III and IV head and neck cancer patients undergoing chemoradiotherapy using PET/CT radiomics : A multicenter study using statistical and machine learning methods. Undergraduate Thesis
title_sort Predicting recurrence in stage III and IV head and neck cancer patients undergoing chemoradiotherapy using PET/CT radiomics : A multicenter study using statistical and machine learning methods. Undergraduate Thesis
dc.creator.fl_str_mv Salas Villa, Eliana
dc.contributor.advisor.none.fl_str_mv Ariza Cuberos, Isabella
Acosta Tamayo, Oscar
dc.contributor.author.none.fl_str_mv Salas Villa, Eliana
dc.subject.decs.none.fl_str_mv Neoplasias de Cabeza y Cuello
Head and Neck Neoplasms
Detección Precoz del Cáncer
Early Detection of Cancer
Tomografía Computarizada por Tomografía de Emisión de Positrones
Positron Emission Tomography Computed Tomography
topic Neoplasias de Cabeza y Cuello
Head and Neck Neoplasms
Detección Precoz del Cáncer
Early Detection of Cancer
Tomografía Computarizada por Tomografía de Emisión de Positrones
Positron Emission Tomography Computed Tomography
https://id.nlm.nih.gov/mesh/D006258
https://id.nlm.nih.gov/mesh/D055088
https://id.nlm.nih.gov/mesh/D000072078
dc.subject.meshuri.none.fl_str_mv https://id.nlm.nih.gov/mesh/D006258
https://id.nlm.nih.gov/mesh/D055088
https://id.nlm.nih.gov/mesh/D000072078
description ABSTRACT : What can the metabolic behavior of a tumor tell us about a patient having recurrence after treatment? 18F-FDG PET/CT image is widely used in oncology because it allows doctors to detect tumors by observing regions in the body with abnormal glucose consumption. This “abnormal consumption” can be quantified through the Standardized Uptake Value (SUV). By setting different SUV thresholds within a delineated tumor, the analysis can go further by characterizing intra-tumoral metabolism. Head and Neck cancer (HNC) is the seventh most common worldwide and has a recurrence rate of 50%, therefore predicting recurrence is crucial for early treatment decision-making. In this study, a multicenter dataset containing 1872 clinical, tumor-to-lymph-node distances and SUV-intensity-based features extracted from the pre-treatment PET/CT images of 232 stage III and IV HNC patients was analyzed to exploit its capacity of predicting Disease-free survival (DFS). To achieve this, a comparative analysis was conducted by exploring combinations of dimensionality reduction techniques that went from the most traditional of correlation threshold shrinkage to PCA and even creating a completely novel approach of SUV threshold vs. feature curve (TFC) descriptors like the slope and the maximum value which are highly clinically interpretable. Then, also different state-of-the-art feature selection and machine learning survival models were tested until finding the combination with the best performance. This was achieved by the random survival forest model over the TFC descriptors + PCA dataset selected by univariate cox proportional hazards method that obtained a c-index of 0.7, outperforming the prediction capacity of the most used statistical method in survival analysis, which is multivariate Cox proportional hazards.
publishDate 2025
dc.date.accessioned.none.fl_str_mv 2025-02-18T18:33:32Z
dc.date.available.none.fl_str_mv 2025-02-18T18:33:32Z
dc.date.issued.none.fl_str_mv 2025
dc.type.spa.fl_str_mv Tesis/Trabajo de grado - Monografía - Pregrado
dc.type.coar.spa.fl_str_mv http://purl.org/coar/resource_type/c_7a1f
dc.type.redcol.spa.fl_str_mv https://purl.org/redcol/resource_type/TP
dc.type.coarversion.spa.fl_str_mv http://purl.org/coar/version/c_b1a7d7d4d402bcce
dc.type.driver.spa.fl_str_mv info:eu-repo/semantics/bachelorThesis
dc.type.version.spa.fl_str_mv info:eu-repo/semantics/draft
format http://purl.org/coar/resource_type/c_7a1f
status_str draft
dc.identifier.uri.none.fl_str_mv https://hdl.handle.net/10495/44975
url https://hdl.handle.net/10495/44975
dc.language.iso.spa.fl_str_mv eng
language eng
dc.rights.uri.spa.fl_str_mv https://creativecommons.org/licenses/by-nc-sa/4.0/
dc.rights.uri.*.fl_str_mv http://creativecommons.org/licenses/by-nc-sa/2.5/co/
dc.rights.accessrights.spa.fl_str_mv info:eu-repo/semantics/embargoedAccess
dc.rights.coar.spa.fl_str_mv http://purl.org/coar/access_right/c_f1cf
rights_invalid_str_mv https://creativecommons.org/licenses/by-nc-sa/4.0/
http://creativecommons.org/licenses/by-nc-sa/2.5/co/
http://purl.org/coar/access_right/c_f1cf
eu_rights_str_mv embargoedAccess
dc.format.extent.spa.fl_str_mv 50 páginas
dc.format.mimetype.spa.fl_str_mv application/pdf
dc.publisher.spa.fl_str_mv Universidad de Antioquia
dc.publisher.place.spa.fl_str_mv Medellín, Colombia
dc.publisher.faculty.spa.fl_str_mv Facultad de Ingeniería. Bioingeniería
institution Universidad de Antioquia
bitstream.url.fl_str_mv https://bibliotecadigital.udea.edu.co/bitstreams/8d59bbe3-d2dc-48fa-a54d-f8b4b319ceab/download
https://bibliotecadigital.udea.edu.co/bitstreams/f5448902-67ae-472e-92cd-bbf2c1db1209/download
https://bibliotecadigital.udea.edu.co/bitstreams/bc399ef8-fa5e-482d-b76a-bcead99bc814/download
https://bibliotecadigital.udea.edu.co/bitstreams/353487fd-9faf-44b1-8528-566254e264ab/download
https://bibliotecadigital.udea.edu.co/bitstreams/4c348ea0-742a-49d5-a125-230af5847262/download
bitstream.checksum.fl_str_mv e2060682c9c70d4d30c83c51448f4eed
8a4605be74aa9ea9d79846c1fba20a33
d9ab13669c9f07cd1ed77aaaca9a960b
684182ade494b120f30e19db5861809f
8a49239d3e643e661011424c3575ab71
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
MD5
MD5
repository.name.fl_str_mv Repositorio Institucional de la Universidad de Antioquia
repository.mail.fl_str_mv aplicacionbibliotecadigitalbiblioteca@udea.edu.co
_version_ 1851052223283331072
spelling Ariza Cuberos, IsabellaAcosta Tamayo, OscarSalas Villa, Eliana2025-02-18T18:33:32Z2025-02-18T18:33:32Z2025https://hdl.handle.net/10495/44975ABSTRACT : What can the metabolic behavior of a tumor tell us about a patient having recurrence after treatment? 18F-FDG PET/CT image is widely used in oncology because it allows doctors to detect tumors by observing regions in the body with abnormal glucose consumption. This “abnormal consumption” can be quantified through the Standardized Uptake Value (SUV). By setting different SUV thresholds within a delineated tumor, the analysis can go further by characterizing intra-tumoral metabolism. Head and Neck cancer (HNC) is the seventh most common worldwide and has a recurrence rate of 50%, therefore predicting recurrence is crucial for early treatment decision-making. In this study, a multicenter dataset containing 1872 clinical, tumor-to-lymph-node distances and SUV-intensity-based features extracted from the pre-treatment PET/CT images of 232 stage III and IV HNC patients was analyzed to exploit its capacity of predicting Disease-free survival (DFS). To achieve this, a comparative analysis was conducted by exploring combinations of dimensionality reduction techniques that went from the most traditional of correlation threshold shrinkage to PCA and even creating a completely novel approach of SUV threshold vs. feature curve (TFC) descriptors like the slope and the maximum value which are highly clinically interpretable. Then, also different state-of-the-art feature selection and machine learning survival models were tested until finding the combination with the best performance. This was achieved by the random survival forest model over the TFC descriptors + PCA dataset selected by univariate cox proportional hazards method that obtained a c-index of 0.7, outperforming the prediction capacity of the most used statistical method in survival analysis, which is multivariate Cox proportional hazards.RESUMEN : ¿Qué puede decirnos el comportamiento metabólico de un tumor sobre un paciente con recurrencia tras el tratamiento? La imagen 18F-FDG PET/CT se utiliza ampliamente en oncología porque permite a los médicos detectar tumores observando regiones del cuerpo con un consumo anormal de glucosa. Este «consumo anormal» puede cuantificarse mediante el valor de captación estandarizado (SUV por sus siglas en inglés). Al establecer diferentes umbrales SUV dentro de un tumor delimitado, el análisis puede ir más allá, caracterizando el metabolismo intratumoral. El cáncer de cabeza y cuello (CCC) es el séptimo más frecuente en todo el mundo y tiene una tasa de recurrencia del 50%, por lo que predecir la recurrencia es crucial para la toma de decisiones tempranas sobre el tratamiento. En este estudio, se analizó un conjunto de datos multicéntrico que contenía 1872 características clínicas, de distancias entre tumor y ganglios linfáticos y de intensidad SUV extraídas de las imágenes PET/CT previas al tratamiento de 232 pacientes con cáncer de cabeza y cuello en estadios III y IV, con el fin de explotar su capacidad para predecir la supervivencia libre de enfermedad (SLE). Para ello, se llevó a cabo un análisis comparativo explorando combinaciones de técnicas de reducción de dimensionalidad que iban desde la más tradicional de reducción de umbral de correlación hasta PCA e incluso creando un enfoque completamente novedoso de descriptores de umbral SUV vs. curva de características (TFC) tal como la pendiente y el valor máximo que son altamente interpretables clínicamente. A continuación, también se probaron diferentes modelos de supervivencia tradicionales de aprendizaje automático y selección de características hasta encontrar la combinación con el mejor rendimiento. Esto se consiguió mediante el modelo de random survival forest sobre el conjunto de datos de descriptores TFC + PCA seleccionados por el método de riesgos proporcionales de Cox univariado, que obtuvo un c-index de 0.7, superando la capacidad de predicción del método estadístico más utilizado en el análisis de supervivencia, que es modelo de riesgos proporcionales de Cox multivariado.PregradoBioingeniera50 páginasapplication/pdfengUniversidad de AntioquiaMedellín, ColombiaFacultad de Ingeniería. Bioingenieríahttps://creativecommons.org/licenses/by-nc-sa/4.0/http://creativecommons.org/licenses/by-nc-sa/2.5/co/info:eu-repo/semantics/embargoedAccesshttp://purl.org/coar/access_right/c_f1cfPredicting recurrence in stage III and IV head and neck cancer patients undergoing chemoradiotherapy using PET/CT radiomics : A multicenter study using statistical and machine learning methods. Undergraduate ThesisPredicción de la recurrencia en pacientes con cáncer de cabeza y cuello en estadios III y IV sometidos a quimiorradioterapia mediante radiómica PET/CT : Un estudio multicéntrico que utiliza métodos estadísticos y de aprendizaje automáticoTesis/Trabajo de grado - Monografía - Pregradohttp://purl.org/coar/resource_type/c_7a1fhttps://purl.org/redcol/resource_type/TPhttp://purl.org/coar/version/c_b1a7d7d4d402bcceinfo:eu-repo/semantics/bachelorThesisinfo:eu-repo/semantics/draftNeoplasias de Cabeza y CuelloHead and Neck NeoplasmsDetección Precoz del CáncerEarly Detection of CancerTomografía Computarizada por Tomografía de Emisión de PositronesPositron Emission Tomography Computed Tomographyhttps://id.nlm.nih.gov/mesh/D006258https://id.nlm.nih.gov/mesh/D055088https://id.nlm.nih.gov/mesh/D000072078PublicationCC-LICENSElicense_rdflicense_rdfapplication/rdf+xml; charset=utf-81051https://bibliotecadigital.udea.edu.co/bitstreams/8d59bbe3-d2dc-48fa-a54d-f8b4b319ceab/downloade2060682c9c70d4d30c83c51448f4eedMD52falseAnonymousREADLICENSElicense.txtlicense.txttext/plain; charset=utf-81748https://bibliotecadigital.udea.edu.co/bitstreams/f5448902-67ae-472e-92cd-bbf2c1db1209/download8a4605be74aa9ea9d79846c1fba20a33MD53falseAnonymousREADORIGINALSalasEliana_2025_RecurrencePredictionStage.pdfSalasEliana_2025_RecurrencePredictionStage.pdfTrabajo de grado de pregradoapplication/pdf2077669https://bibliotecadigital.udea.edu.co/bitstreams/bc399ef8-fa5e-482d-b76a-bcead99bc814/downloadd9ab13669c9f07cd1ed77aaaca9a960bMD51trueAnonymousREAD2025-08-01TEXTSalasEliana_2025_RecurrencePredictionStage.pdf.txtSalasEliana_2025_RecurrencePredictionStage.pdf.txtExtracted texttext/plain82673https://bibliotecadigital.udea.edu.co/bitstreams/353487fd-9faf-44b1-8528-566254e264ab/download684182ade494b120f30e19db5861809fMD54falseAnonymousREAD2025-08-01THUMBNAILSalasEliana_2025_RecurrencePredictionStage.pdf.jpgSalasEliana_2025_RecurrencePredictionStage.pdf.jpgGenerated Thumbnailimage/jpeg6450https://bibliotecadigital.udea.edu.co/bitstreams/4c348ea0-742a-49d5-a125-230af5847262/download8a49239d3e643e661011424c3575ab71MD55falseAnonymousREAD2025-08-0110495/44975oai:bibliotecadigital.udea.edu.co:10495/449752025-03-26 18:52:55.762https://creativecommons.org/licenses/by-nc-sa/4.0/embargo2025-08-01https://bibliotecadigital.udea.edu.coRepositorio Institucional de la Universidad de Antioquiaaplicacionbibliotecadigitalbiblioteca@udea.edu.coTk9URTogUExBQ0UgWU9VUiBPV04gTElDRU5TRSBIRVJFClRoaXMgc2FtcGxlIGxpY2Vuc2UgaXMgcHJvdmlkZWQgZm9yIGluZm9ybWF0aW9uYWwgcHVycG9zZXMgb25seS4KCk5PTi1FWENMVVNJVkUgRElTVFJJQlVUSU9OIExJQ0VOU0UKCkJ5IHNpZ25pbmcgYW5kIHN1Ym1pdHRpbmcgdGhpcyBsaWNlbnNlLCB5b3UgKHRoZSBhdXRob3Iocykgb3IgY29weXJpZ2h0Cm93bmVyKSBncmFudHMgdG8gRFNwYWNlIFVuaXZlcnNpdHkgKERTVSkgdGhlIG5vbi1leGNsdXNpdmUgcmlnaHQgdG8gcmVwcm9kdWNlLAp0cmFuc2xhdGUgKGFzIGRlZmluZWQgYmVsb3cpLCBhbmQvb3IgZGlzdHJpYnV0ZSB5b3VyIHN1Ym1pc3Npb24gKGluY2x1ZGluZwp0aGUgYWJzdHJhY3QpIHdvcmxkd2lkZSBpbiBwcmludCBhbmQgZWxlY3Ryb25pYyBmb3JtYXQgYW5kIGluIGFueSBtZWRpdW0sCmluY2x1ZGluZyBidXQgbm90IGxpbWl0ZWQgdG8gYXVkaW8gb3IgdmlkZW8uCgpZb3UgYWdyZWUgdGhhdCBEU1UgbWF5LCB3aXRob3V0IGNoYW5naW5nIHRoZSBjb250ZW50LCB0cmFuc2xhdGUgdGhlCnN1Ym1pc3Npb24gdG8gYW55IG1lZGl1bSBvciBmb3JtYXQgZm9yIHRoZSBwdXJwb3NlIG9mIHByZXNlcnZhdGlvbi4KCllvdSBhbHNvIGFncmVlIHRoYXQgRFNVIG1heSBrZWVwIG1vcmUgdGhhbiBvbmUgY29weSBvZiB0aGlzIHN1Ym1pc3Npb24gZm9yCnB1cnBvc2VzIG9mIHNlY3VyaXR5LCBiYWNrLXVwIGFuZCBwcmVzZXJ2YXRpb24uCgpZb3UgcmVwcmVzZW50IHRoYXQgdGhlIHN1Ym1pc3Npb24gaXMgeW91ciBvcmlnaW5hbCB3b3JrLCBhbmQgdGhhdCB5b3UgaGF2ZQp0aGUgcmlnaHQgdG8gZ3JhbnQgdGhlIHJpZ2h0cyBjb250YWluZWQgaW4gdGhpcyBsaWNlbnNlLiBZb3UgYWxzbyByZXByZXNlbnQKdGhhdCB5b3VyIHN1Ym1pc3Npb24gZG9lcyBub3QsIHRvIHRoZSBiZXN0IG9mIHlvdXIga25vd2xlZGdlLCBpbmZyaW5nZSB1cG9uCmFueW9uZSdzIGNvcHlyaWdodC4KCklmIHRoZSBzdWJtaXNzaW9uIGNvbnRhaW5zIG1hdGVyaWFsIGZvciB3aGljaCB5b3UgZG8gbm90IGhvbGQgY29weXJpZ2h0LAp5b3UgcmVwcmVzZW50IHRoYXQgeW91IGhhdmUgb2J0YWluZWQgdGhlIHVucmVzdHJpY3RlZCBwZXJtaXNzaW9uIG9mIHRoZQpjb3B5cmlnaHQgb3duZXIgdG8gZ3JhbnQgRFNVIHRoZSByaWdodHMgcmVxdWlyZWQgYnkgdGhpcyBsaWNlbnNlLCBhbmQgdGhhdApzdWNoIHRoaXJkLXBhcnR5IG93bmVkIG1hdGVyaWFsIGlzIGNsZWFybHkgaWRlbnRpZmllZCBhbmQgYWNrbm93bGVkZ2VkCndpdGhpbiB0aGUgdGV4dCBvciBjb250ZW50IG9mIHRoZSBzdWJtaXNzaW9uLgoKSUYgVEhFIFNVQk1JU1NJT04gSVMgQkFTRUQgVVBPTiBXT1JLIFRIQVQgSEFTIEJFRU4gU1BPTlNPUkVEIE9SIFNVUFBPUlRFRApCWSBBTiBBR0VOQ1kgT1IgT1JHQU5JWkFUSU9OIE9USEVSIFRIQU4gRFNVLCBZT1UgUkVQUkVTRU5UIFRIQVQgWU9VIEhBVkUKRlVMRklMTEVEIEFOWSBSSUdIVCBPRiBSRVZJRVcgT1IgT1RIRVIgT0JMSUdBVElPTlMgUkVRVUlSRUQgQlkgU1VDSApDT05UUkFDVCBPUiBBR1JFRU1FTlQuCgpEU1Ugd2lsbCBjbGVhcmx5IGlkZW50aWZ5IHlvdXIgbmFtZShzKSBhcyB0aGUgYXV0aG9yKHMpIG9yIG93bmVyKHMpIG9mIHRoZQpzdWJtaXNzaW9uLCBhbmQgd2lsbCBub3QgbWFrZSBhbnkgYWx0ZXJhdGlvbiwgb3RoZXIgdGhhbiBhcyBhbGxvd2VkIGJ5IHRoaXMKbGljZW5zZSwgdG8geW91ciBzdWJtaXNzaW9uLgo=