PyHyst: Python Magnetic Hysteresis Analysis Toolkit

PyHyst is a free, open-source Python toolkit designed for end-to-end analysis of magnetic hysteresis data. It overcomes the limitations of proprietary magnetometry software by providing a fully modular pipeline that integrates raw data ingestion, preprocessing, advanced curve decomposition, high-fie...

Full description

Autores:
Díaz Granados Cano, Sebastián
Tipo de recurso:
Trabajo de grado de pregrado
Fecha de publicación:
2025
Institución:
Universidad de Antioquia
Repositorio:
Repositorio UdeA
Idioma:
eng
OAI Identifier:
oai:bibliotecadigital.udea.edu.co:10495/47766
Acceso en línea:
https://hdl.handle.net/10495/47766
Palabra clave:
Programas Informáticos
Software
Análisis de datos
Data analysis
Histéresis
Hysteresis
Magnetismo
Magnetism
Interfases gráficas con el usuario (Sistemas para computador)
Graphical user interfaces (computer systems)
Magnetic hysteresis
Open-source software
Graphical user interface
Custom-function fitting
http://vocabularies.unesco.org/thesaurus/concept2214
https://id.nlm.nih.gov/mesh/D012984
ODS 4: Educación de calidad. Garantizar una educación inclusiva y equitativa de calidad y promover oportunidades de aprendizaje permanente para todos
Rights
openAccess
License
http://creativecommons.org/licenses/by-nc-sa/4.0/
Description
Summary:PyHyst is a free, open-source Python toolkit designed for end-to-end analysis of magnetic hysteresis data. It overcomes the limitations of proprietary magnetometry software by providing a fully modular pipeline that integrates raw data ingestion, preprocessing, advanced curve decomposition, high-field extrapolation, and customizable curve fitting—all accessible through a user-friendly graphical interface. Core features include robust parsing of .DAT and .CSV files with automated metadata extraction (mass, volume, units) and unit normalization via the Pint library; dual methods for branch separation (zero-crossing and derivative-based) and interpolation onto a common field axis; symmetry and drift correction through R²-maximization of inverted branches, logarithmic-like field gridding near coercivity, and multiple loop-closure modes; and decomposition of reversible (induced) and irreversible (remanent) magnetization components following Von Dobeneck’s even–odd formalism. For high-field analysis, PyHyst implements Jackson and Solheid’s three-term approach-to saturation model and supports user-supplied basis functions (sigmoidal, hyperbolic, double-logistic) via both nonlinear least squares and non-negative fitting. A PyQt-based GUI enables non-programmers to execute the full pipeline, visualize intermediate and final results, and export structured data for downstream applications. Validation against experimental datasets from the GES solid-state magnetism group demonstrates the toolkit’s accuracy, reproducibility, and adaptability. Looking forward, future work will extend automated parameter tuning and uncertainty quantification, integrate statistical rigor inspired by HystLab’s F-test framework, and incorporate loop squareness ratio metrics and other characteristic parameters. The addition of a custom-function mode allowing users to define and compare novel hysteresis models—represents a significant advancement in flexibility and extensibility.