Quantile-Based Multivariate Log-Normal Distribution

We introduce a quantile-based multivariate log-normal distribution, providing a new multivariate skewed distribution with positive support. The parameters of this distribution are interpretable in terms of quantiles of marginal distributions and associations between pairs of variables, a desirable f...

Full description

Autores:
Morán Vásquez, Raúl Alejandro
Roldán Correa, Alejandro
Nagar, Daya Krishna
Tipo de recurso:
Article of investigation
Fecha de publicación:
2023
Institución:
Universidad de Antioquia
Repositorio:
Repositorio UdeA
Idioma:
eng
OAI Identifier:
oai:bibliotecadigital.udea.edu.co:10495/46090
Acceso en línea:
https://hdl.handle.net/10495/46090
Palabra clave:
Lognormal distribution
Independencia (matemáticas)
Independence (Mathematics)
Distribución (teoría de probabilidades)
Distribution (probability theory)
Método estadístico
Statistical methods
Análisis multivariante
Multivariate analysis
Kullback-Leiber divergence
Mixed moments
Quantile-based distribution
http://aims.fao.org/aos/agrovoc/c_7377
http://aims.fao.org/aos/agrovoc/c_28921
http://id.loc.gov/authorities/subjects/sh85078134
Rights
openAccess
License
http://creativecommons.org/licenses/by/4.0/
Description
Summary:We introduce a quantile-based multivariate log-normal distribution, providing a new multivariate skewed distribution with positive support. The parameters of this distribution are interpretable in terms of quantiles of marginal distributions and associations between pairs of variables, a desirable feature for statistical modeling purposes. We derive statistical properties of the quantile-based multivariate log-normal distribution involving the transformations, closed-form expressions for the mixed moments, expected value, covariance matrix, mode, Shannon entropy, and Kullback–Leibler divergence. We also present results on marginalization, conditioning, and independence. Additionally, we discuss parameter estimation and verify its performance through simulation studies. We evaluate the model fitting based on Mahalanobis-type distances. An application to children data is presented.