Automated software for counting and measuring Hyalella genus using artificial intelligence

ABSTRACT: Amphipods belonging to the Hyalella genus are macroinvertebrates that inhabit aquatic environments. They are of particular interest in areas such as limnology and ecotoxicology, where data on the number of Hyalella individuals and their allometric measurements are used to assess the enviro...

Full description

Autores:
Pineda Alarcón, Ludy Yanith
Zuluaga Montoya, Maycol Esteban
Ruíz González, Santiago
Fernández Mc Cann, David Stephen
Vélez Macías, Fabio de Jesús
Aguirre Ramírez, Nestor Jaime
Puerta Quintana, Yarin Tatiana
Cañón Barriga, Julio Eduardo
Tipo de recurso:
Article of investigation
Fecha de publicación:
2023
Institución:
Universidad de Antioquia
Repositorio:
Repositorio UdeA
Idioma:
eng
OAI Identifier:
oai:bibliotecadigital.udea.edu.co:10495/37406
Acceso en línea:
https://hdl.handle.net/10495/37406
Palabra clave:
Aprendizaje Profundo
Deep Learning
Procesamiento de Imagen Asistido por Computador
Image Processing, Computer-Assisted
Macroinvertebrados
Macroinvertebrates
Morfología animal
Animal morphology
Alometría
Allometry
http://aims.fao.org/aos/agrovoc/c_10d271a5
http://aims.fao.org/aos/agrovoc/c_421
http://aims.fao.org/aos/agrovoc/c_24962
Rights
openAccess
License
http://creativecommons.org/licenses/by/2.5/co/
id UDEA2_1541fd5ccfdea6cb6d15b0e5dd41f96a
oai_identifier_str oai:bibliotecadigital.udea.edu.co:10495/37406
network_acronym_str UDEA2
network_name_str Repositorio UdeA
repository_id_str
dc.title.spa.fl_str_mv Automated software for counting and measuring Hyalella genus using artificial intelligence
title Automated software for counting and measuring Hyalella genus using artificial intelligence
spellingShingle Automated software for counting and measuring Hyalella genus using artificial intelligence
Aprendizaje Profundo
Deep Learning
Procesamiento de Imagen Asistido por Computador
Image Processing, Computer-Assisted
Macroinvertebrados
Macroinvertebrates
Morfología animal
Animal morphology
Alometría
Allometry
http://aims.fao.org/aos/agrovoc/c_10d271a5
http://aims.fao.org/aos/agrovoc/c_421
http://aims.fao.org/aos/agrovoc/c_24962
title_short Automated software for counting and measuring Hyalella genus using artificial intelligence
title_full Automated software for counting and measuring Hyalella genus using artificial intelligence
title_fullStr Automated software for counting and measuring Hyalella genus using artificial intelligence
title_full_unstemmed Automated software for counting and measuring Hyalella genus using artificial intelligence
title_sort Automated software for counting and measuring Hyalella genus using artificial intelligence
dc.creator.fl_str_mv Pineda Alarcón, Ludy Yanith
Zuluaga Montoya, Maycol Esteban
Ruíz González, Santiago
Fernández Mc Cann, David Stephen
Vélez Macías, Fabio de Jesús
Aguirre Ramírez, Nestor Jaime
Puerta Quintana, Yarin Tatiana
Cañón Barriga, Julio Eduardo
dc.contributor.author.none.fl_str_mv Pineda Alarcón, Ludy Yanith
Zuluaga Montoya, Maycol Esteban
Ruíz González, Santiago
Fernández Mc Cann, David Stephen
Vélez Macías, Fabio de Jesús
Aguirre Ramírez, Nestor Jaime
Puerta Quintana, Yarin Tatiana
Cañón Barriga, Julio Eduardo
dc.contributor.researchgroup.spa.fl_str_mv GeoLimna
GEPAR-Grupo de Electrónica de Potencia, Automatización y Robótica
Grupo de Investigación en Gestión y Modelación Ambiental (GAIA)
dc.subject.decs.none.fl_str_mv Aprendizaje Profundo
Deep Learning
Procesamiento de Imagen Asistido por Computador
Image Processing, Computer-Assisted
topic Aprendizaje Profundo
Deep Learning
Procesamiento de Imagen Asistido por Computador
Image Processing, Computer-Assisted
Macroinvertebrados
Macroinvertebrates
Morfología animal
Animal morphology
Alometría
Allometry
http://aims.fao.org/aos/agrovoc/c_10d271a5
http://aims.fao.org/aos/agrovoc/c_421
http://aims.fao.org/aos/agrovoc/c_24962
dc.subject.agrovoc.none.fl_str_mv Macroinvertebrados
Macroinvertebrates
Morfología animal
Animal morphology
Alometría
Allometry
dc.subject.agrovocuri.none.fl_str_mv http://aims.fao.org/aos/agrovoc/c_10d271a5
http://aims.fao.org/aos/agrovoc/c_421
http://aims.fao.org/aos/agrovoc/c_24962
description ABSTRACT: Amphipods belonging to the Hyalella genus are macroinvertebrates that inhabit aquatic environments. They are of particular interest in areas such as limnology and ecotoxicology, where data on the number of Hyalella individuals and their allometric measurements are used to assess the environmental dynamics of aquatic ecosystems. In this study, we introduce HyACS, a software tool that uses a model developed with the YOLOv3's architecture to detect individuals, and digital image processing techniques to extract morphological metrics of the Hyalella genus. The software detects body metrics of length, arc length, maximum width, eccentricity, perimeter, and area of Hyalella individuals, using basic imaging capture equipment. The performance metrics indicate that the model developed can achieve high prediction levels, with an accuracy above 90% for the correct identification of individuals. It can perform up to four times faster than traditional visual counting methods and provide precise morphological measurements of Hyalella individuals, which may improve further studies of the species populations and enhance their use as bioindicators of water quality.
publishDate 2023
dc.date.accessioned.none.fl_str_mv 2023-11-25T01:23:41Z
dc.date.available.none.fl_str_mv 2023-11-25T01:23:41Z
dc.date.issued.none.fl_str_mv 2023
dc.type.spa.fl_str_mv Artículo de investigación
dc.type.coar.spa.fl_str_mv http://purl.org/coar/resource_type/c_2df8fbb1
dc.type.redcol.spa.fl_str_mv https://purl.org/redcol/resource_type/ART
dc.type.coarversion.spa.fl_str_mv http://purl.org/coar/version/c_970fb48d4fbd8a85
dc.type.driver.spa.fl_str_mv info:eu-repo/semantics/article
dc.type.version.spa.fl_str_mv info:eu-repo/semantics/publishedVersion
format http://purl.org/coar/resource_type/c_2df8fbb1
status_str publishedVersion
dc.identifier.citation.spa.fl_str_mv Pineda-Alarcón, L., Zuluaga, M., Ruíz, S. et al. Automated software for counting and measuring Hyalella genus using artificial intelligence. Environ Sci Pollut Res (2023). https://doi.org/10.1007/s11356-023-30835-8
dc.identifier.issn.none.fl_str_mv 0944-1344
dc.identifier.uri.none.fl_str_mv https://hdl.handle.net/10495/37406
dc.identifier.doi.none.fl_str_mv 10.1007/s11356-023-30835-8
dc.identifier.eissn.none.fl_str_mv 1614-7499
identifier_str_mv Pineda-Alarcón, L., Zuluaga, M., Ruíz, S. et al. Automated software for counting and measuring Hyalella genus using artificial intelligence. Environ Sci Pollut Res (2023). https://doi.org/10.1007/s11356-023-30835-8
0944-1344
10.1007/s11356-023-30835-8
1614-7499
url https://hdl.handle.net/10495/37406
dc.language.iso.spa.fl_str_mv eng
language eng
dc.relation.ispartofjournalabbrev.spa.fl_str_mv Environ. Sci. Pollut. Res. Int.
dc.relation.citationendpage.spa.fl_str_mv 13
dc.relation.citationstartpage.spa.fl_str_mv 1
dc.relation.citationvolume.spa.fl_str_mv 30
dc.relation.ispartofjournal.spa.fl_str_mv Environmental Science and Pollution Research
dc.rights.uri.*.fl_str_mv http://creativecommons.org/licenses/by/2.5/co/
dc.rights.uri.spa.fl_str_mv https://creativecommons.org/licenses/by/4.0/
dc.rights.accessrights.spa.fl_str_mv info:eu-repo/semantics/openAccess
dc.rights.accessrights.*.fl_str_mv Atribución 2.5 Colombia
dc.rights.coar.spa.fl_str_mv http://purl.org/coar/access_right/c_abf2
rights_invalid_str_mv http://creativecommons.org/licenses/by/2.5/co/
https://creativecommons.org/licenses/by/4.0/
Atribución 2.5 Colombia
http://purl.org/coar/access_right/c_abf2
eu_rights_str_mv openAccess
dc.format.extent.spa.fl_str_mv 13
dc.format.mimetype.spa.fl_str_mv application/pdf
dc.publisher.spa.fl_str_mv Springer
dc.publisher.place.spa.fl_str_mv Berlín, Alemania
institution Universidad de Antioquia
bitstream.url.fl_str_mv https://bibliotecadigital.udea.edu.co/bitstreams/72b06bd6-fc7a-41ee-995c-b020ddfd3dd5/download
https://bibliotecadigital.udea.edu.co/bitstreams/23cc9615-614d-4ef1-9261-0657e1ca68c8/download
https://bibliotecadigital.udea.edu.co/bitstreams/01cbbf0f-948a-4b45-b95e-53968717d377/download
https://bibliotecadigital.udea.edu.co/bitstreams/27958d11-4d93-4a6f-bd41-ca25651fa617/download
https://bibliotecadigital.udea.edu.co/bitstreams/00c3ef39-2640-418d-bccc-429812c3036a/download
bitstream.checksum.fl_str_mv efa2aabb0729397d78fbd51287af8b03
1646d1f6b96dbbbc38035efc9239ac9c
8a4605be74aa9ea9d79846c1fba20a33
31cbf49f49259e0993bcbaacc049f576
06811b1baa87af21c2a200446fb9931f
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
MD5
MD5
repository.name.fl_str_mv Repositorio Institucional de la Universidad de Antioquia
repository.mail.fl_str_mv aplicacionbibliotecadigitalbiblioteca@udea.edu.co
_version_ 1851052584712798208
spelling Pineda Alarcón, Ludy YanithZuluaga Montoya, Maycol EstebanRuíz González, SantiagoFernández Mc Cann, David StephenVélez Macías, Fabio de JesúsAguirre Ramírez, Nestor JaimePuerta Quintana, Yarin TatianaCañón Barriga, Julio EduardoGeoLimnaGEPAR-Grupo de Electrónica de Potencia, Automatización y RobóticaGrupo de Investigación en Gestión y Modelación Ambiental (GAIA)2023-11-25T01:23:41Z2023-11-25T01:23:41Z2023Pineda-Alarcón, L., Zuluaga, M., Ruíz, S. et al. Automated software for counting and measuring Hyalella genus using artificial intelligence. Environ Sci Pollut Res (2023). https://doi.org/10.1007/s11356-023-30835-80944-1344https://hdl.handle.net/10495/3740610.1007/s11356-023-30835-81614-7499ABSTRACT: Amphipods belonging to the Hyalella genus are macroinvertebrates that inhabit aquatic environments. They are of particular interest in areas such as limnology and ecotoxicology, where data on the number of Hyalella individuals and their allometric measurements are used to assess the environmental dynamics of aquatic ecosystems. In this study, we introduce HyACS, a software tool that uses a model developed with the YOLOv3's architecture to detect individuals, and digital image processing techniques to extract morphological metrics of the Hyalella genus. The software detects body metrics of length, arc length, maximum width, eccentricity, perimeter, and area of Hyalella individuals, using basic imaging capture equipment. The performance metrics indicate that the model developed can achieve high prediction levels, with an accuracy above 90% for the correct identification of individuals. It can perform up to four times faster than traditional visual counting methods and provide precise morphological measurements of Hyalella individuals, which may improve further studies of the species populations and enhance their use as bioindicators of water quality.Colombia. Ministerio de Ciencia, Tecnología e InnovaciónCOL0135041COL0039045COL000983213application/pdfengSpringerBerlín, Alemaniahttp://creativecommons.org/licenses/by/2.5/co/https://creativecommons.org/licenses/by/4.0/info:eu-repo/semantics/openAccessAtribución 2.5 Colombiahttp://purl.org/coar/access_right/c_abf2Automated software for counting and measuring Hyalella genus using artificial intelligenceArtículo de investigaciónhttp://purl.org/coar/resource_type/c_2df8fbb1https://purl.org/redcol/resource_type/ARThttp://purl.org/coar/version/c_970fb48d4fbd8a85info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionAprendizaje ProfundoDeep LearningProcesamiento de Imagen Asistido por ComputadorImage Processing, Computer-AssistedMacroinvertebradosMacroinvertebratesMorfología animalAnimal morphologyAlometríaAllometryhttp://aims.fao.org/aos/agrovoc/c_10d271a5http://aims.fao.org/aos/agrovoc/c_421http://aims.fao.org/aos/agrovoc/c_24962Environ. Sci. Pollut. Res. Int.13130Environmental Science and Pollution Researchconvocatoria 733RoR:048jthh02PublicationORIGINALPinedaLudy_2023_Automated_Software.pdfPinedaLudy_2023_Automated_Software.pdfArtículo de investigaciónapplication/pdf1737448https://bibliotecadigital.udea.edu.co/bitstreams/72b06bd6-fc7a-41ee-995c-b020ddfd3dd5/downloadefa2aabb0729397d78fbd51287af8b03MD51trueAnonymousREADCC-LICENSElicense_rdflicense_rdfapplication/rdf+xml; charset=utf-8927https://bibliotecadigital.udea.edu.co/bitstreams/23cc9615-614d-4ef1-9261-0657e1ca68c8/download1646d1f6b96dbbbc38035efc9239ac9cMD52falseAnonymousREADLICENSElicense.txtlicense.txttext/plain; charset=utf-81748https://bibliotecadigital.udea.edu.co/bitstreams/01cbbf0f-948a-4b45-b95e-53968717d377/download8a4605be74aa9ea9d79846c1fba20a33MD53falseAnonymousREADTEXTPinedaLudy_2023_Automated_Software.pdf.txtPinedaLudy_2023_Automated_Software.pdf.txtExtracted texttext/plain61296https://bibliotecadigital.udea.edu.co/bitstreams/27958d11-4d93-4a6f-bd41-ca25651fa617/download31cbf49f49259e0993bcbaacc049f576MD54falseAnonymousREADTHUMBNAILPinedaLudy_2023_Automated_Software.pdf.jpgPinedaLudy_2023_Automated_Software.pdf.jpgGenerated Thumbnailimage/jpeg13265https://bibliotecadigital.udea.edu.co/bitstreams/00c3ef39-2640-418d-bccc-429812c3036a/download06811b1baa87af21c2a200446fb9931fMD55falseAnonymousREAD10495/37406oai:bibliotecadigital.udea.edu.co:10495/374062025-03-27 00:39:40.93http://creativecommons.org/licenses/by/2.5/co/open.accesshttps://bibliotecadigital.udea.edu.coRepositorio Institucional de la Universidad de Antioquiaaplicacionbibliotecadigitalbiblioteca@udea.edu.coTk9URTogUExBQ0UgWU9VUiBPV04gTElDRU5TRSBIRVJFClRoaXMgc2FtcGxlIGxpY2Vuc2UgaXMgcHJvdmlkZWQgZm9yIGluZm9ybWF0aW9uYWwgcHVycG9zZXMgb25seS4KCk5PTi1FWENMVVNJVkUgRElTVFJJQlVUSU9OIExJQ0VOU0UKCkJ5IHNpZ25pbmcgYW5kIHN1Ym1pdHRpbmcgdGhpcyBsaWNlbnNlLCB5b3UgKHRoZSBhdXRob3Iocykgb3IgY29weXJpZ2h0Cm93bmVyKSBncmFudHMgdG8gRFNwYWNlIFVuaXZlcnNpdHkgKERTVSkgdGhlIG5vbi1leGNsdXNpdmUgcmlnaHQgdG8gcmVwcm9kdWNlLAp0cmFuc2xhdGUgKGFzIGRlZmluZWQgYmVsb3cpLCBhbmQvb3IgZGlzdHJpYnV0ZSB5b3VyIHN1Ym1pc3Npb24gKGluY2x1ZGluZwp0aGUgYWJzdHJhY3QpIHdvcmxkd2lkZSBpbiBwcmludCBhbmQgZWxlY3Ryb25pYyBmb3JtYXQgYW5kIGluIGFueSBtZWRpdW0sCmluY2x1ZGluZyBidXQgbm90IGxpbWl0ZWQgdG8gYXVkaW8gb3IgdmlkZW8uCgpZb3UgYWdyZWUgdGhhdCBEU1UgbWF5LCB3aXRob3V0IGNoYW5naW5nIHRoZSBjb250ZW50LCB0cmFuc2xhdGUgdGhlCnN1Ym1pc3Npb24gdG8gYW55IG1lZGl1bSBvciBmb3JtYXQgZm9yIHRoZSBwdXJwb3NlIG9mIHByZXNlcnZhdGlvbi4KCllvdSBhbHNvIGFncmVlIHRoYXQgRFNVIG1heSBrZWVwIG1vcmUgdGhhbiBvbmUgY29weSBvZiB0aGlzIHN1Ym1pc3Npb24gZm9yCnB1cnBvc2VzIG9mIHNlY3VyaXR5LCBiYWNrLXVwIGFuZCBwcmVzZXJ2YXRpb24uCgpZb3UgcmVwcmVzZW50IHRoYXQgdGhlIHN1Ym1pc3Npb24gaXMgeW91ciBvcmlnaW5hbCB3b3JrLCBhbmQgdGhhdCB5b3UgaGF2ZQp0aGUgcmlnaHQgdG8gZ3JhbnQgdGhlIHJpZ2h0cyBjb250YWluZWQgaW4gdGhpcyBsaWNlbnNlLiBZb3UgYWxzbyByZXByZXNlbnQKdGhhdCB5b3VyIHN1Ym1pc3Npb24gZG9lcyBub3QsIHRvIHRoZSBiZXN0IG9mIHlvdXIga25vd2xlZGdlLCBpbmZyaW5nZSB1cG9uCmFueW9uZSdzIGNvcHlyaWdodC4KCklmIHRoZSBzdWJtaXNzaW9uIGNvbnRhaW5zIG1hdGVyaWFsIGZvciB3aGljaCB5b3UgZG8gbm90IGhvbGQgY29weXJpZ2h0LAp5b3UgcmVwcmVzZW50IHRoYXQgeW91IGhhdmUgb2J0YWluZWQgdGhlIHVucmVzdHJpY3RlZCBwZXJtaXNzaW9uIG9mIHRoZQpjb3B5cmlnaHQgb3duZXIgdG8gZ3JhbnQgRFNVIHRoZSByaWdodHMgcmVxdWlyZWQgYnkgdGhpcyBsaWNlbnNlLCBhbmQgdGhhdApzdWNoIHRoaXJkLXBhcnR5IG93bmVkIG1hdGVyaWFsIGlzIGNsZWFybHkgaWRlbnRpZmllZCBhbmQgYWNrbm93bGVkZ2VkCndpdGhpbiB0aGUgdGV4dCBvciBjb250ZW50IG9mIHRoZSBzdWJtaXNzaW9uLgoKSUYgVEhFIFNVQk1JU1NJT04gSVMgQkFTRUQgVVBPTiBXT1JLIFRIQVQgSEFTIEJFRU4gU1BPTlNPUkVEIE9SIFNVUFBPUlRFRApCWSBBTiBBR0VOQ1kgT1IgT1JHQU5JWkFUSU9OIE9USEVSIFRIQU4gRFNVLCBZT1UgUkVQUkVTRU5UIFRIQVQgWU9VIEhBVkUKRlVMRklMTEVEIEFOWSBSSUdIVCBPRiBSRVZJRVcgT1IgT1RIRVIgT0JMSUdBVElPTlMgUkVRVUlSRUQgQlkgU1VDSApDT05UUkFDVCBPUiBBR1JFRU1FTlQuCgpEU1Ugd2lsbCBjbGVhcmx5IGlkZW50aWZ5IHlvdXIgbmFtZShzKSBhcyB0aGUgYXV0aG9yKHMpIG9yIG93bmVyKHMpIG9mIHRoZQpzdWJtaXNzaW9uLCBhbmQgd2lsbCBub3QgbWFrZSBhbnkgYWx0ZXJhdGlvbiwgb3RoZXIgdGhhbiBhcyBhbGxvd2VkIGJ5IHRoaXMKbGljZW5zZSwgdG8geW91ciBzdWJtaXNzaW9uLgo=