Determinación de péptidos bioactivos del chachafruto (Erythrina edulis)

En el contexto actual de crecimiento poblacional y preocupación por la seguridad alimentaria y el impacto ambiental, se ha intensificado la investigación sobre fuentes de proteínas sostenibles y nutritivas. Erythrina edulis (chachafruto) es una leguminosa endémica de América del Sur, conocida por su...

Full description

Autores:
Correa Caleño, Jessica Leonor
Tipo de recurso:
Doctoral thesis
Fecha de publicación:
2025
Institución:
Universidad de Antioquia
Repositorio:
Repositorio UdeA
Idioma:
spa
OAI Identifier:
oai:bibliotecadigital.udea.edu.co:10495/46332
Acceso en línea:
https://hdl.handle.net/10495/46332
Palabra clave:
Erythrina edulis
Alimento funcional
Functional foods
Hidrolizado de proteínas
Protein hydrolysates
Propiedad antioxidante
Antioxidant properties
Factor inmunológico
Immunological factors
Hidrólisis enzimática
Enzymatic hydrolysis
Seguridad alimentaria
Food security
Péptidos bioactivos
http://aims.fao.org/aos/agrovoc/c_2f007684
http://aims.fao.org/aos/agrovoc/c_3732
http://aims.fao.org/aos/agrovoc/c_11805097
http://aims.fao.org/aos/agrovoc/c_29621
http://aims.fao.org/aos/agrovoc/c_27512
http://aims.fao.org/aos/agrovoc/c_10967
http://id.loc.gov/authorities/subjects/sh90001362
ODS 2: Hambre cero. Poner fin al hambre, lograr la seguridad alimentaria y la mejora de la nutrición y promover la agricultura sostenible
ODS 3: Salud y bienestar. Garantizar una vida sana y promover el bienestar de todos a todas las edades
Rights
embargoedAccess
License
http://creativecommons.org/licenses/by-nc-sa/4.0/
id UDEA2_13b8261f6d5f71f5757782d5eb165508
oai_identifier_str oai:bibliotecadigital.udea.edu.co:10495/46332
network_acronym_str UDEA2
network_name_str Repositorio UdeA
repository_id_str
dc.title.spa.fl_str_mv Determinación de péptidos bioactivos del chachafruto (Erythrina edulis)
title Determinación de péptidos bioactivos del chachafruto (Erythrina edulis)
spellingShingle Determinación de péptidos bioactivos del chachafruto (Erythrina edulis)
Erythrina edulis
Alimento funcional
Functional foods
Hidrolizado de proteínas
Protein hydrolysates
Propiedad antioxidante
Antioxidant properties
Factor inmunológico
Immunological factors
Hidrólisis enzimática
Enzymatic hydrolysis
Seguridad alimentaria
Food security
Péptidos bioactivos
http://aims.fao.org/aos/agrovoc/c_2f007684
http://aims.fao.org/aos/agrovoc/c_3732
http://aims.fao.org/aos/agrovoc/c_11805097
http://aims.fao.org/aos/agrovoc/c_29621
http://aims.fao.org/aos/agrovoc/c_27512
http://aims.fao.org/aos/agrovoc/c_10967
http://id.loc.gov/authorities/subjects/sh90001362
ODS 2: Hambre cero. Poner fin al hambre, lograr la seguridad alimentaria y la mejora de la nutrición y promover la agricultura sostenible
ODS 3: Salud y bienestar. Garantizar una vida sana y promover el bienestar de todos a todas las edades
title_short Determinación de péptidos bioactivos del chachafruto (Erythrina edulis)
title_full Determinación de péptidos bioactivos del chachafruto (Erythrina edulis)
title_fullStr Determinación de péptidos bioactivos del chachafruto (Erythrina edulis)
title_full_unstemmed Determinación de péptidos bioactivos del chachafruto (Erythrina edulis)
title_sort Determinación de péptidos bioactivos del chachafruto (Erythrina edulis)
dc.creator.fl_str_mv Correa Caleño, Jessica Leonor
dc.contributor.advisor.none.fl_str_mv Zapata Montoya, José Edgar
dc.contributor.author.none.fl_str_mv Correa Caleño, Jessica Leonor
dc.contributor.researchgroup.none.fl_str_mv Grupo de Nutrición y Tecnología de Alimentos
dc.contributor.jury.none.fl_str_mv Hernández Ledesma, Blanca
Jiménez Aliaga, Karim Lizeth
Martínez Villaluenga, Cristina
dc.subject.lcsh.none.fl_str_mv Erythrina edulis
topic Erythrina edulis
Alimento funcional
Functional foods
Hidrolizado de proteínas
Protein hydrolysates
Propiedad antioxidante
Antioxidant properties
Factor inmunológico
Immunological factors
Hidrólisis enzimática
Enzymatic hydrolysis
Seguridad alimentaria
Food security
Péptidos bioactivos
http://aims.fao.org/aos/agrovoc/c_2f007684
http://aims.fao.org/aos/agrovoc/c_3732
http://aims.fao.org/aos/agrovoc/c_11805097
http://aims.fao.org/aos/agrovoc/c_29621
http://aims.fao.org/aos/agrovoc/c_27512
http://aims.fao.org/aos/agrovoc/c_10967
http://id.loc.gov/authorities/subjects/sh90001362
ODS 2: Hambre cero. Poner fin al hambre, lograr la seguridad alimentaria y la mejora de la nutrición y promover la agricultura sostenible
ODS 3: Salud y bienestar. Garantizar una vida sana y promover el bienestar de todos a todas las edades
dc.subject.agrovoc.none.fl_str_mv Alimento funcional
Functional foods
Hidrolizado de proteínas
Protein hydrolysates
Propiedad antioxidante
Antioxidant properties
Factor inmunológico
Immunological factors
Hidrólisis enzimática
Enzymatic hydrolysis
Seguridad alimentaria
Food security
dc.subject.proposal.spa.fl_str_mv Péptidos bioactivos
dc.subject.agrovocuri.none.fl_str_mv http://aims.fao.org/aos/agrovoc/c_2f007684
http://aims.fao.org/aos/agrovoc/c_3732
http://aims.fao.org/aos/agrovoc/c_11805097
http://aims.fao.org/aos/agrovoc/c_29621
http://aims.fao.org/aos/agrovoc/c_27512
http://aims.fao.org/aos/agrovoc/c_10967
dc.subject.lcshuri.none.fl_str_mv http://id.loc.gov/authorities/subjects/sh90001362
dc.subject.ods.none.fl_str_mv ODS 2: Hambre cero. Poner fin al hambre, lograr la seguridad alimentaria y la mejora de la nutrición y promover la agricultura sostenible
ODS 3: Salud y bienestar. Garantizar una vida sana y promover el bienestar de todos a todas las edades
description En el contexto actual de crecimiento poblacional y preocupación por la seguridad alimentaria y el impacto ambiental, se ha intensificado la investigación sobre fuentes de proteínas sostenibles y nutritivas. Erythrina edulis (chachafruto) es una leguminosa endémica de América del Sur, conocida por su alto contenido proteico y calidad nutricional. Este estudio investigó los péptidos bioactivos derivados de E. edulis, enfocándose en su potencial antioxidante y efectos inmunomoduladores. El objetivo principal fue evaluar los péptidos obtenidos mediante hidrólisis enzimática de las proteínas de esta leguminosa. La metodología incluyó la extracción de proteínas de semillas y vainas, seguida de su hidrólisis con Alcalasa y estudios de digestión gastrointestinal simulada. Los resultados mostraron que tanto las semillas como las vainas son fuentes ricas en proteínas de alta calidad. La hidrólisis enzimática mejoró significativamente la capacidad antioxidante, especialmente en las fracciones de bajo peso molecular (<3 kDa). Los estudios de digestión gastrointestinal indican que los péptidos bioactivos liberados mantienen o mejoran su actividad antioxidante y presentan efectos inmunomoduladores. En conclusión, E. edulis es una fuente prometedora de péptidos bioactivos con aplicaciones potenciales en alimentos funcionales y nutracéuticos. La investigación destaca el valor de los subproductos de esta leguminosa, promoviendo su uso integral y contribuyendo a la sostenibilidad y reducción de residuos. Los péptidos obtenidos no solo tienen propiedades antioxidantes, sino también potenciales efectos antidiabéticos, antihipertensivos y antiinflamatorios, lo que los convierte en candidatos prometedores para el desarrollo de productos nutracéuticos y farmacéuticos.
publishDate 2025
dc.date.accessioned.none.fl_str_mv 2025-06-11T20:19:28Z
dc.date.issued.none.fl_str_mv 2025
dc.date.available.none.fl_str_mv 2027-06-11
dc.type.none.fl_str_mv Trabajo de grado - Doctorado
dc.type.coar.none.fl_str_mv http://purl.org/coar/resource_type/c_db06
dc.type.redcol.none.fl_str_mv http://purl.org/redcol/resource_type/TD
dc.type.content.none.fl_str_mv Text
dc.type.coarversion.none.fl_str_mv http://purl.org/coar/version/c_b1a7d7d4d402bcce
dc.type.driver.none.fl_str_mv info:eu-repo/semantics/doctoralThesis
dc.type.version.none.fl_str_mv info:eu-repo/semantics/draft
format http://purl.org/coar/resource_type/c_db06
status_str draft
dc.identifier.citation.none.fl_str_mv Correa Caleño, J. (2025). Determinación de péptidos bioactivos del chachafruto (Erythrina edulis). [Tesis doctoral]. Universidad de Antioquia, Medellín, Colombia.
dc.identifier.uri.none.fl_str_mv https://hdl.handle.net/10495/46332
identifier_str_mv Correa Caleño, J. (2025). Determinación de péptidos bioactivos del chachafruto (Erythrina edulis). [Tesis doctoral]. Universidad de Antioquia, Medellín, Colombia.
url https://hdl.handle.net/10495/46332
dc.language.iso.none.fl_str_mv spa
language spa
dc.relation.references.none.fl_str_mv Agyei, D., Tsopmo, A., & Udenigwe, C. C. (2018). Bioinformatics and peptidomics approaches to the discovery and analysis of food-derived bioactive peptides. Analytical and Bioanalytical Chemistry, 410(15), 3463-3472. https://doi.org/10.1007/s00216-018-0974-1
Aguayo-Cerón, K. A., Sánchez-Muñoz, F., Gutierrez-Rojas, R. A., Acevedo-Villavicencio, L. N., FloresZarate, A. V., Huang, F., Giacoman-Martinez, A., Villafaña, S., & Romero-Nava, R. (2023). Glycine: The Smallest Anti-Inflammatory Micronutrient. International Journal of Molecular Sciences, 24(14), Article 14. https://doi.org/10.3390/ijms241411236
Agyei, D., Tsopmo, A., & Udenigwe, C. C. (2018). Bioinformatics and peptidomics approaches to the discovery and analysis of food-derived bioactive peptides. Analytical and Bioanalytical Chemistry, 410(15), 3463-3472. https://doi.org/10.1007/s00216-018-0974-1
Ajibola, C. F., Fashakin, J. B., Fagbemi, T. N., & Aluko, R. E. (2011). Effect of Peptide Size on Antioxidant Properties of African Yam Bean Seed (Sphenostylis stenocarpa) Protein Hydrolysate Fractions. International Journal of Molecular Sciences, 12(10), Article 10. https://doi.org/10.3390/ijms12106685
Ali, A., Waly, M. I., Bhatt, N., & Devarajan, S. (2022). Bioactive Components of Plant Protein Foods in the Prevention and Management of Non-communicable Diseases. En A. Manickavasagan, L.-T. Lim, & A. Ali (Eds.), Plant Protein Foods (pp. 381-405). Springer International Publishing. https://doi.org/10.1007/978-3-030-91206-2_13
Alonso, R., Pisa, D., Marina, A., Morato-López, E., Rábano, A., Rodal, I., & Carrasco, L. (2015). Evidence for fungal infection in cerebrospinal fluid and brain tissue from patients with amyotrophic lateral sclerosis. https://digital.csic.es/handle/10261/272297
Aluko, R. E. (2015). Structure and function of plant protein-derived antihypertensive peptides. Current Opinion in Food Science, 4, 44-50. https://doi.org/10.1016/j.cofs.2015.05.002
Amigo, L., Martínez-Maqueda, D., & Hernández-Ledesma, B. (2020). In Silico and In Vitro Analysis of Multifunctionality of Animal Food-Derived Peptides. Foods, 9(8), Article 8. https://doi.org/10.3390/foods9080991
An, J., Liu, J., Liang, Y., Ma, Y., Chen, C., Cheng, Y., Peng, P., Zhou, N., Zhang, R., Addy, M., Chen, P., Liu, Y., Huang, G., Ren, D., & Ruan, R. (2020). Characterization, bioavailability and protective effects of phenolic-rich extracts from almond hulls against pro-oxidant induced toxicity in Caco-2 cells. Food Chemistry, 322, 126742. https://doi.org/10.1016/j.foodchem.2020.126742
Anisimov, V. N., & Khavinson, V. Kh. (2010). Peptide bioregulation of aging: Results and prospects. Biogerontology, 11(2), 139-149. https://doi.org/10.1007/s10522-009-9249-8
Antony, P., & Vijayan, R. (2021). Bioactive Peptides as Potential Nutraceuticals for Diabetes Therapy: A Comprehensive Review. International Journal of Molecular Sciences, 22(16), Article 16. https://doi.org/10.3390/ijms22169059
Ashaolu, T. J., Zarei, M., Agrawal, H., Kharazmi, M. S., & Jafari, S. M. (2024). A critical review on immunomodulatory peptides from plant sources; action mechanisms and recent advances. Critical Reviews in Food Science and Nutrition, 64(20), 7220-7236. https://doi.org/10.1080/10408398.2023.2183380
Barrera Marín, N., & Mejía Leudo, M. (1998). Chachafruto, balú, sachaporoto; Erythrina edulis, Triana. Pasado, presente y futuro. Universidad Nacional de Colombia - UNAL. http://localhost:8080/handle/11348/4120
Berraquero-García, C., Rivero-Pino, F., Ospina, J. L., Pérez-Gálvez, R., Espejo-Carpio, F. J., Guadix, A., García-Moreno, P. J., & Guadix, E. M. (2023). Activity, structural features and in silico digestion of antidiabetic peptides. Food Bioscience, 102954. https://www.sciencedirect.com/science/article/pii/S2212429223006053
Brandatilde, C., Polakowski, O., Fillus, R., Luz, M. S. R. da, Silva, C. S. da, Preti, V. B., Marzagatilde, V., Ribeiro, O., Abrahatilde, V., & Rosenfeld, O. (2022). Use of Specific Supplementation for Healing in Surgical Wounds: Case Report. Mathews Journal of Surgery, 5(1), 1-5. https://doi.org/10.30654/MJS.10016
Cagnin, C., Garcia, B. de F., Rocha, T. de S., & Prudencio, S. H. (2024). Bioactive Peptides from Corn (Zea mays L.) with the Potential to Decrease the Risk of Developing Non-Communicable Chronic Diseases: In Silico Evaluation. Biology, 13(10), 772. https://www.mdpi.com/2079-7737/13/10/772
Charoenkwan, P., Nantasenamat, C., Hasan, M. M., Moni, M. A., Lio’, P., Manavalan, B., & Shoombuatong, W. (2022). StackDPPIV: A novel computational approach for accurate prediction of dipeptidyl peptidase IV (DPP-IV) inhibitory peptides. Methods, 204, 189-198. https://doi.org/10.1016/j.ymeth.2021.12.001
Correa, J. L., Zapata, J. E., & Hernández-Ledesma, B. (2024). Impact of Alcalase Hydrolysis and Simulated Gastrointestinal Digestion on the Release of Bioactive Peptides from Erythrina edulis (Chachafruto) Proteins. International Journal of Molecular Sciences, 25(17), Article 17. https://doi.org/10.3390/ijms25179290
Correa, J. L., Zapata Montoya, J. E., & Hernández-Ledesma, B. (2022). Release of bioactive peptides from Erythrina edulis (Chachafruto) proteins under simulated gastrointestinal digestion. https://doi.org/10.3390/nu14245256
Dadar, M., Shahali, Y., Chakraborty, S., Prasad, M., Tahoori, F., Tiwari, R., & Dhama, K. (2019). Antiinflammatory peptides: Current knowledge and promising prospects. Inflammation Research, 68(2), 125-145. https://doi.org/10.1007/s00011-018-1208-x
De Fátima Garcia, B., De Barros, M., & De Souza Rocha, T. (2021). Bioactive peptides from beans with the potential to decrease the risk of developing noncommunicable chronic diseases. Critical Reviews in Food Science and Nutrition, 61(12), 2003-2021. https://doi.org/10.1080/10408398.2020.1768047
de la Rosa, A. P. B., Montoya, A. B., Martínez-Cuevas, P., Hernández-Ledesma, B., León-Galván, M. F., De León-Rodríguez, A., & González, C. (2010). Tryptic amaranth glutelin digests induce endothelial nitric oxide production through inhibition of ACE: Antihypertensive role of amaranth peptides. Nitric Oxide: Biology and Chemistry, 23(2), 106-111. https://doi.org/10.1016/j.niox.2010.04.006
Deacon, C. F. (2020). Dipeptidyl peptidase 4 inhibitors in the treatment of type 2 diabetes mellitus. Nature Reviews Endocrinology, 16(11), 642-653. https://doi.org/10.1038/s41574-020-0399-8
Domínguez Magaña, M. A. D. J. (2009). Aislamiento de Biopeptidos con Actividad Inhibitoria de la Enzima Convertidora de Angiotensina-I a Partir de Hidrolizados de P. lunatus. https://tesis.ipn.mx/bitstream/handle/123456789/7922/Dom%C3%ADnguez%20Maga%C3%B1a %2C%20Mario%20Alberto%20De%20Jes%C3%BAs_ENCB_Tesis.pdf?sequence=4&isAllowed=y
Du, A., Jia, W., & Zhang, R. (2024). Machine learning methods for unveiling the potential of antioxidant short peptides in goat milk-derived proteins during in vitro gastrointestinal digestion. Journal of Dairy Science. https://www.sciencedirect.com/science/article/pii/S0022030224009706
Du, Z., Comer, J., & Li, Y. (2023). Bioinformatics approaches to discovering food-derived bioactive peptides: Reviews and perspectives. TrAC Trends in Analytical Chemistry, 162, 117051. https://doi.org/10.1016/j.trac.2023.117051
Du, Z., & Li, Y. (2022). Review and perspective on bioactive peptides: A roadmap for research, development, and future opportunities. Journal of Agriculture and Food Research, 9, 100353. https://doi.org/10.1016/j.jafr.2022.100353
Esfandi, R., Walters, M. E., & Tsopmo, A. (2019). Antioxidant properties and potential mechanisms of hydrolyzed proteins and peptides from cereals. Heliyon, 5(4). https://doi.org/10.1016/j.heliyon.2019.e01538
Fashakin, O. O., Tangjaidee, P., Unban, K., Klangpetch, W., Khumsap, T., Sringarm, K., Rawdkuen, S., & Phongthai, S. (2023). Isolation and Identification of Antioxidant Peptides Derived from Cricket (Gryllus bimaculatus) Protein Fractions. Insects, 14(8), Article 8. https://doi.org/10.3390/insects14080674
Flores-Holguín, N., Frau, J., & Glossman-Mitnik, D. (2021). In Silico Pharmacokinetics, ADMET Study and Conceptual DFT Analysis of Two Plant Cyclopeptides Isolated From Rosaceae as a Computational Peptidology Approach. Frontiers in Chemistry, 9. https://doi.org/10.3389/fchem.2021.708364
Fosgerau, K., & Hoffmann, T. (2015). Peptide therapeutics: Current status and future directions. Drug discovery today, 20(1), 122-128. https://www.sciencedirect.com/science/article/pii/S1359644614003997
García-Nebot, M. J., Recio, I., & Hernández-Ledesma, B. (2014). Antioxidant activity and protective effects of peptide lunasin against oxidative stress in intestinal Caco-2 cells. Food and Chemical Toxicology, 65, 155-161. https://www.sciencedirect.com/science/article/pii/S0278691513008430
Gawde, U., Chakraborty, S., Waghu, F. H., Barai, R. S., Khanderkar, A., Indraguru, R., Shirsat, T., & IdiculaThomas, S. (2023). CAMPR4: A database of natural and synthetic antimicrobial peptides. Nucleic Acids Research, 51(D1), D377-D383. https://doi.org/10.1093/nar/gkac933
Gibbs, C. A., Weber, D. S., & Warren, J. J. (2022). Clustering of Aromatic Amino Acid Residues around Methionine in Proteins. Biomolecules, 12(1), Article 1. https://doi.org/10.3390/biom12010006
González-Montoya, M., Hernández-Ledesma, B., Mora-Escobedo, R., & Martínez-Villaluenga, C. (2018). Bioactive Peptides from Germinated Soybean with Anti-Diabetic Potential by Inhibition of Dipeptidyl Peptidase-IV, α-Amylase, and α-Glucosidase Enzymes. International Journal of Molecular Sciences, 19(10), Article 10. https://doi.org/10.3390/ijms19102883
Gori, A., Longhi, R., Peri, C., & Colombo, G. (2013). Peptides for immunological purposes: Design, strategies and applications. Amino Acids, 45(2), 257-268. https://doi.org/10.1007/s00726-013-1526-9
Götz, S., García-Gómez, J. M., Terol, J., Williams, T. D., Nagaraj, S. H., Nueda, M. J., Robles, M., Talón, M., Dopazo, J., & Conesa, A. (2008). High-throughput functional annotation and data mining with the Blast2GO suite. Nucleic acids research, 36(10), 3420-3435. https://academic.oup.com/nar/article-abstract/36/10/3420/2410320
Guerra-Almonacid, C. M., Torruco-Uco, J. G., Murillo-Arango, W., Méndez-Arteaga, J. J., & RodríguezMiranda, J. (2019). Effect of ultrasound pretreatment on the antioxidant capacity and antihypertensive activity of bioactive peptides obtained from the protein hydrolysates of Erythrina edulis. Emirates Journal of Food and Agriculture, 288-296.
Guha, S., & Majumder, K. (2019). Structural-features of food-derived bioactive peptides with antiinflammatory activity: A brief review. Journal of Food Biochemistry, 43(1), e12531.
Gupta, S., Kapoor, P., Chaudhary, K., Gautam, A., Kumar, R., Consortium, O. S. D. D., & Raghava, G. P. (2013). In silico approach for predicting toxicity of peptides and proteins. PloS one, 8(9), e73957. https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0073957
Guy, R. C. (2024). Ames test. En P. Wexler (Ed.), Encyclopedia of Toxicology (Fourth Edition) (pp. 377-379). Academic Press. https://doi.org/10.1016/B978-0-12-824315-2.01101-5
Hadjicharalambous, A., Bournakas, N., Newman, H., Skynner, M. J., & Beswick, P. (2022). Antimicrobial and Cell-Penetrating Peptides: Understanding Penetration for the Design of Novel Conjugate Antibiotics. Antibiotics, 11(11), Article 11. https://doi.org/10.3390/antibiotics11111636
He, Y., & Lazaridis, T. (2013). Activity Determinants of Helical Antimicrobial Peptides: A Large-Scale Computational Study. PLOS ONE, 8(6), e66440. https://doi.org/10.1371/journal.pone.0066440
Hong, Y., Boiti, A., Vallone, D., & Foulkes, N. S. (2024). Reactive Oxygen Species Signaling and Oxidative Stress: Transcriptional Regulation and Evolution. Antioxidants, 13(3), Article 3. https://doi.org/10.3390/antiox13030312
Hsieh, C.-H., Wang, T.-Y., Hung, C.-C., Jao, C.-L., Hsieh, Y.-L., Wu, S.-X., & Hsu, K.-C. (2016). In silico, in vitro and in vivo analyses of dipeptidyl peptidase IV inhibitory activity and the antidiabetic effect of sodium caseinate hydrolysate. Food & Function, 7(2), 1122-1128. https://doi.org/10.1039/C5FO01324K
Idrees, M., Mohammad, A. R., Karodia, N., & Rahman, A. (2020). Multimodal role of amino acids in microbial control and drug development. Antibiotics, 9(6), 330. https://www.mdpi.com/2079-6382/9/6/330
Intiquilla, A., Jiménez-Aliaga, K., Guzmán, F., Alvarez, C. A., Zavaleta, A. I., Izaguirre, V., & HernándezLedesma, B. (2019). Novel antioxidant peptides obtained by alcalase hydrolysis of Erythrina edulis (pajuro) protein. Journal of the Science of Food and Agriculture, 99(5), 2420-2427.
Iwaniak, A., Darewicz, M., Mogut, D., & Minkiewicz, P. (2019). Elucidation of the role of in silico methodologies in approaches to studying bioactive peptides derived from foods. Journal of Functional Foods, 61, 103486. https://doi.org/10.1016/j.jff.2019.103486
Jochems, P. G. M., Garssen, J., Van Keulen, A. M., Masereeuw, R., & Jeurink, P. V. (2018). Evaluating Human Intestinal Cell Lines for Studying Dietary Protein Absorption. Nutrients, 10(3), Article 3. https://doi.org/10.3390/nu10030322
Kacprzyk, L., Rydengård, V., Mörgelin, M., Davoudi, M., Pasupuleti, M., Malmsten, M., & Schmidtchen, A. (2007). Antimicrobial activity of histidine-rich peptides is dependent on acidic conditions. Biochimica et Biophysica Acta (BBA)-Biomembranes, 1768(11), 2667-2680. https://www.sciencedirect.com/science/article/pii/S0005273607002362
Kang, S., Kang, M., & Lim, H. (2021). Global and Regional Patterns in Noncommunicable Diseases and Dietary Factors across National Income Levels. Nutrients, 13(10), Article 10. https://doi.org/10.3390/nu13103595
Kaushik, A. C., Mehmood, A., Peng, S., Zhang, Y.-J., Dai, X., & Wei, D.-Q. (2021). A-CaMP: A tool for anti-cancer and antimicrobial peptide generation. Journal of Biomolecular Structure and Dynamics, 39(1), 285-293. https://doi.org/10.1080/07391102.2019.1708796
Khatun, M. S., Hasan, M. M., & Kurata, H. (2019). PreAIP: Computational Prediction of Anti-inflammatory Peptides by Integrating Multiple Complementary Features. Frontiers in Genetics, 10. https://doi.org/10.3389/fgene.2019.00129
Khavinson, V. K., Popovich, I. G., Linkova, N. S., Mironova, E. S., & Ilina, A. R. (2021). Peptide Regulation of Gene Expression: A Systematic Review. Molecules, 26(22), Article 22. https://doi.org/10.3390/molecules26227053
Kim, I.-S., Kim, C.-H., & Yang, W.-S. (2021). Physiologically Active Molecules and Functional Properties of Soybeans in Human Health—A Current Perspective. International Journal of Molecular Sciences, 22(8), Article 8. https://doi.org/10.3390/ijms22084054
Krawczyk, P. A., Laub, M., & Kozik, P. (2020). To Kill But Not Be Killed: Controlling the Activity of Mammalian Pore-Forming Proteins. Frontiers in Immunology, 11. https://doi.org/10.3389/fimmu.2020.601405
Kumar, R., Chaudhary, K., Singh Chauhan, J., Nagpal, G., Kumar, R., Sharma, M., & Raghava, G. P. S. (2015). An in silico platform for predicting, screening and designing of antihypertensive peptides. Scientific Reports, 5(1), 12512. https://doi.org/10.1038/srep12512
Li, G.-H., Le, G.-W., Shi, Y.-H., & Shrestha, S. (2004). Angiotensin I–converting enzyme inhibitory peptides derived from food proteins and their physiological and pharmacological effects. Nutrition Research, 24(7), 469-486. https://doi.org/10.1016/j.nutres.2003.10.014
Li, S., Wang, Y., Xue, Z., Jia, Y., Li, R., He, C., & Chen, H. (2021). The structure-mechanism relationship and mode of actions of antimicrobial peptides: A review. Trends in Food Science & Technology, 109, 103-115. https://www.sciencedirect.com/science/article/pii/S092422442100008X
Liu, H., Zhang, L., Yu, J., & Shao, S. (2024). Advances in the application and mechanism of bioactive peptides in the treatment of inflammation. Frontiers in Immunology, 15, 1413179. https://www.frontiersin.org/journals/immunology/articles/10.3389/fimmu.2024.1413179/full
Liu, W., Chen, X., Li, H., Zhang, J., An, J., & Liu, X. (2022). Anti-inflammatory function of plant-derived bioactive peptides: A review. Foods, 11(15), 2361. https://www.mdpi.com/2304-8158/11/15/2361
Luo, Y., & Song, Y. (2021). Mechanism of Antimicrobial Peptides: Antimicrobial, Anti-Inflammatory and Antibiofilm Activities. International Journal of Molecular Sciences, 22(21), Article 21. https://doi.org/10.3390/ijms222111401
Ma, K., Wang, Y., Wang, M., Wang, Z., Wang, X., Ju, X., & He, R. (2021). Antihypertensive activity of the ACE–renin inhibitory peptide derived from Moringa oleifera protein. Food & Function, 12(19), 8994-9006. https://pubs.rsc.org/en/content/articlehtml/2009/jm/d1fo01103k
Martemucci, G., Costagliola, C., Mariano, M., D’andrea, L., Napolitano, P., & D’Alessandro, A. G. (2022). Free Radical Properties, Source and Targets, Antioxidant Consumption and Health. Oxygen, 2(2), Article 2. https://doi.org/10.3390/oxygen2020006
Matemu, A., Nakamura, S., & Katayama, S. (2021). Health benefits of antioxidative peptides derived from legume proteins with a high amino acid score. Antioxidants, 10(2), 316.
Matsufuji, H., Matsui, T., Seki, E., Osajima, K., Nakashima, M., & Osajima, Y. (1994). Angiotensin Iconverting enzyme inhibitory peptides in an alkaline protease hydrolyzate derived from sardine muscle. Bioscience, Biotechnology, and Biochemistry, 58(12), 2244-2245. https://doi.org/10.1271/bbb.58.2244
Mei, S., Li, F., Leier, A., Marquez-Lago, T. T., Giam, K., Croft, N. P., Akutsu, T., Smith, A. I., Li, J., Rossjohn, J., Purcell, A. W., & Song, J. (2020). A comprehensive review and performance evaluation of bioinformatics tools for HLA class I peptide-binding prediction. Briefings in Bioinformatics, 21(4), 1119. https://doi.org/10.1093/bib/bbz051
Mishra, S. S., Kumar, N., Sirvi, G., Sharma, C. S., Singh, H. P., & Pandiya, H. (2017). Computational prediction of pharmacokinetic, bioactivity and toxicity parameters of some selected anti-arrhythmic agents. Pharm. Chem. J, 4, 143-146. https://www.researchgate.net/profile/Neeraj-Kumar128/publication/334204825_Computational_Prediction_of_Pharmacokinetic_Bioactivity_and_Toxicity_Parameters_of_Some_Selected_Anti_arrhythmic_Agents/links/5d1ccd43a6fdcc2462bd48d9/Computational-Prediction-of-Pharmacokinetic-Bioactivity-and-Toxicity-Parameters-of-SomeSelected-Anti-arrhythmic-Agents.pdf
Mooney, C., Haslam, N. J., Pollastri, G., & Shields, D. C. (2012). Towards the improved discovery and design of functional peptides: Common features of diverse classes permit generalized prediction of bioactivity. https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0045012
Mulvihill, E. E., & Drucker, D. J. (2014). Pharmacology, physiology, and mechanisms of action of dipeptidyl peptidase-4 inhibitors. Endocrine Reviews, 35(6), 992-1019. https://doi.org/10.1210/er.2014-1035
Nongonierma, A. B., & FitzGerald, R. J. (2013). Dipeptidyl peptidase IV inhibitory and antioxidative properties of milk protein-derived dipeptides and hydrolysates. Peptides, 39, 157-163. https://doi.org/10.1016/j.peptides.2012.11.016
Nongonierma, A. B., & FitzGerald, R. J. (2019). Features of dipeptidyl peptidase IV (DPP-IV) inhibitory peptides from dietary proteins. Journal of Food Biochemistry, 43(1), e12451. https://doi.org/10.1111/jfbc.12451
Ohyanagi, H., Sakata, K., & Komatsu, S. (2012). Soybean Proteome Database 2012: Update on the comprehensive data repository for soybean proteomics. Frontiers in Plant Science, 3. https://doi.org/10.3389/fpls.2012.00110
Okella, H., Okello, E., Mtewa, A. G., Ikiriza, H., Kaggwa, B., Aber, J., Ndekezi, C., Nkamwesiga, J., Ajayi, C. O., Mugeni, I. M., Ssentamu, G., Ochwo, S., Odongo, S., Tolo, C. U., Kato, C. D., & Engeu, P. O. (2022). ADMET profiling and molecular docking of potential antimicrobial peptides previously isolated from African catfish, Clarias gariepinus. Frontiers in Molecular Biosciences, 9. https://doi.org/10.3389/fmolb.2022.1039286
Palma-Albino, C., Intiquilla, A., Jiménez-Aliaga, K., Rodríguez-Arana, N., Solano, E., Flores, E., Zavaleta, A. I., Izaguirre, V., & Hernández-Ledesma, B. (2021). Albumin from Erythrina edulis (Pajuro) as a Promising Source of Multifunctional Peptides. Antioxidants, 10(11), 1722.
Peng, H., Wang, J., Chen, J., Peng, Y., Wang, X., Chen, Y., Kaplan, D. L., & Wang, Q. (2023). Challenges and opportunities in delivering oral peptides and proteins. Expert Opinion on Drug Delivery, 20(10), 1349-1369. https://doi.org/10.1080/17425247.2023.2237408
Pérez-Pérez, V., Jiménez-Martínez, C., González-Escobar, J. L., & Corzo-Ríos, L. J. (2024). Exploring the impact of encapsulation on the stability and bioactivity of peptides extracted from botanical sources: Trends and opportunities. Frontiers in Chemistry, 12. https://doi.org/10.3389/fchem.2024.1423500
Pires, D. E. V., Blundell, T. L., & Ascher, D. B. (2015). pkCSM: Predicting Small-Molecule Pharmacokinetic and Toxicity Properties Using Graph-Based Signatures. Journal of Medicinal Chemistry, 58(9), 4066-4072. https://doi.org/10.1021/acs.jmedchem.5b00104
Powers, J.-P. S., & Hancock, R. E. W. (2003). The relationship between peptide structure and antibacterial activity. Peptides, 24(11), 1681-1691. https://doi.org/10.1016/j.peptides.2003.08.023
Qin, D., Jiao, L., Wang, R., Zhao, Y., Hao, Y., & Liang, G. (2023). Prediction of antioxidant peptides using a quantitative structure−activity relationship predictor (AnOxPP) based on bidirectional long shortterm memory neural network and interpretable amino acid descriptors. Computers in Biology and Medicine, 154, 106591. https://doi.org/10.1016/j.compbiomed.2023.106591
Ramalingam, A., Kudapa, H., Pazhamala, L. T., Weckwerth, W., & Varshney, R. K. (2015). Proteomics and Metabolomics: Two Emerging Areas for Legume Improvement. Frontiers in Plant Science, 6. https://doi.org/10.3389/fpls.2015.01116
Rathi, D., Gayen, D., Gayali, S., Chakraborty, S., & Chakraborty, N. (2016). Legume proteomics: Progress, prospects, and challenges. PROTEOMICS, 16(2), 310-327. https://doi.org/10.1002/pmic.201500257
Rodríguez-Arana, N., Jiménez-Aliaga, K., Intiquilla, A., León, J. A., Flores, E., Zavaleta, A. I., Izaguirre, V., Solis-Calero, C., & Hernández-Ledesma, B. (2022). Protection against oxidative stress and metabolic alterations by synthetic peptides derived from Erythrina edulis seed protein. Antioxidants, 11(11), 2101. https://www.mdpi.com/2076-3921/11/11/2101
Ryu, B., Shin, K.-H., & Kim, S.-K. (2021). Muscle Protein Hydrolysates and Amino Acid Composition in Fish. Marine Drugs, 19(7), Article 7. https://doi.org/10.3390/md19070377
Sanchiz, Á., Morato, E., Rastrojo, A., Camacho, E., Gonzalez-De la Fuente, S., Marina, A., Aguado, B., & Requena, J. M. (2020). The experimental proteome of Leishmania infantum promastigote and its usefulness for improving gene annotations. Genes, 11(9), 1036. https://www.mdpi.com/2073-4425/11/9/1036
Shaker, B., Ahmad, S., Lee, J., Jung, C., & Na, D. (2021). In silico methods and tools for drug discovery. Computers in Biology and Medicine, 137, 104851. https://doi.org/10.1016/j.compbiomed.2021.104851
Shen, W., & Matsui, T. (2017). Current knowledge of intestinal absorption of bioactive peptides. Food & Function, 8(12), 4306-4314. https://doi.org/10.1039/C7FO01185G
Shevchenko, A., Wilm, M., Vorm, O., & Mann, M. (1996). Mass Spectrometric Sequencing of Proteins from Silver-Stained Polyacrylamide Gels. Analytical Chemistry, 68(5), 850-858. https://doi.org/10.1021/ac950914h
Shu, H., Zhao, Q., Huang, Y., Shi, Q., & Yang, J. (2024). Antihypertensive peptide resources map of ribulose-1, 5-bisphosphate carboxylase/oxygenases (RuBisCO) in angiosperms: Revealed by an integrated in silico and in vitro approach. Food Chemistry, 433, 137332. https://www.sciencedirect.com/science/article/pii/S0308814623019507
Silva, F. G. D., Hernández-Ledesma, B., Amigo, L., Netto, F. M., & Miralles, B. (2017). Identification of peptides released from flaxseed (Linum usitatissimum) protein by Alcalase® hydrolysis: Antioxidant activity. LWT-Food Science and Technology, 76, 140-146.
Singh, B. P., Bangar, S. P., Alblooshi, M., Ajayi, F. F., Mudgil, P., & Maqsood, S. (2023). Plant-derived proteins as a sustainable source of bioactive peptides: Recent research updates on emerging production methods, bioactivities, and potential application. Critical Reviews in Food Science and Nutrition, 63(28), 9539-9560. https://doi.org/10.1080/10408398.2022.2067120
Tehrani, S. S., Hosseini, H. M., & Mirhosseini, S. A. (2024). Evaluation of Anti-endotoxin Activity, Hemolytic Activity, and Cytotoxicity of a Novel Designed Peptide: An In Silico and In Vitro Study. International Journal of Peptide Research and Therapeutics, 30(2), 16. https://doi.org/10.1007/s10989-024-10591-0
The Gene Ontology resource: Enriching a GOld mine. (2021). Nucleic acids research, 49(D1), D325-D334. https://academic.oup.com/nar/article-abstract/49/D1/D325/6027811
Torrent, M., Andreu, D., Nogués, V. M., & Boix, E. (2011). Connecting Peptide Physicochemical and Antimicrobial Properties by a Rational Prediction Model. PLOS ONE, 6(2), e16968. https://doi.org/10.1371/journal.pone.0016968
Torruco-Uco, J. G., Domínguez-Magaña, M. A., Dávila-Ortíz, G., Martínez-Ayala, A., Chel-Guerrero, L. A., & Betancur-Ancona, D. A. (2008). Péptidos Antihipertensivos, Una Alternativa De Tratamiento De Origen Natural: Una Revisión Antihypertensive Peptides, an Alternative for Treatment of Natural Origin: A Review. Ciencia y Tecnologia Alimentaria, 6(2), 158-168. https://doi.org/10.1080/11358120809487641
Tran, N. H., Qiao, R., Xin, L., Chen, X., Liu, C., Zhang, X., Shan, B., Ghodsi, A., & Li, M. (2019). Deep learning enables de novo peptide sequencing from data-independent-acquisition mass spectrometry. Nature methods, 16(1), 63-66. https://www.nature.com/articles/s41592-018-0260-3
Tran, N. H., Zhang, X., Xin, L., Shan, B., & Li, M. (2017). De novo peptide sequencing by deep learning. Proceedings of the National Academy of Sciences, 114(31), 8247-8252. https://doi.org/10.1073/pnas.1705691114
Velásquez Holguín, L. F. (2019). Evaluación del potencial antioxidante e inhibitorio de la enzima convertidora de angiotensina (ECA) de hidrolizados proteicos de semillas de chachafruto (Erythrina edulis Micheli.). https://repository.ut.edu.co/server/api/core/bitstreams/25af1433-19dc-480c-b5ad7b6bf234835d/content
Waghu, F. H., Gopi, L., Barai, R. S., Ramteke, P., Nizami, B., & Idicula-Thomas, S. (2014). CAMP: Collection of sequences and structures of antimicrobial peptides. Nucleic acids research, 42(D1), D1154-D1158. https://academic.oup.com/nar/article-abstract/42/D1/D1154/1055481
Wang, M., Tan, G., Eljaszewicz, A., Meng, Y., Wawrzyniak, P., Acharya, S., Altunbulakli, C., Westermann, P., Dreher, A., & Yan, L. (2019). Laundry detergents and detergent residue after rinsing directly disrupt tight junction barrier integrity in human bronchial epithelial cells. Journal of Allergy and Clinical Immunology, 143(5), 1892-1903. https://www.sciencedirect.com/science/article/pii/S0091674918316658
Xu, B., Dong, Q., Yu, C., Chen, H., Zhao, Y., Zhang, B., Yu, P., & Chen, M. (2024). Advances in Research on the Activity Evaluation, Mechanism and Structure-Activity Relationships of Natural Antioxidant Peptides. Antioxidants, 13(4), Article 4. https://doi.org/10.3390/antiox13040479
Xu, C., Liu, Y., Li, K., Zhang, J., Wei, B., & Wang, H. (2024). Absorption of food-derived peptides: Mechanisms, influencing factors, and enhancement strategies. Food Research International, 197, 115190. https://doi.org/10.1016/j.foodres.2024.115190
You, H., Zhang, Y., Wu, T., Li, J., Wang, L., Yu, Z., Liu, J., Liu, X., & Ding, L. (2022). Identification of dipeptidyl peptidase IV inhibitory peptides from rapeseed proteins. LWT, 160, 113255. https://doi.org/10.1016/j.lwt.2022.113255
Zaky, A. A., Simal-Gandara, J., Eun, J.-B., Shim, J.-H., & Abd El-Aty, A. M. (2022). Bioactivities, Applications, Safety, and Health Benefits of Bioactive Peptides From Food and By-Products: A Review. Frontiers in Nutrition, 8. https://doi.org/10.3389/fnut.2021.815640
Zou, T.-B., He, T.-P., Li, H.-B., Tang, H.-W., & Xia, E.-Q. (2016). The structure-activity relationship of the antioxidant peptides from natural proteins. Molecules, 21(1), 72.
dc.rights.uri.none.fl_str_mv http://creativecommons.org/licenses/by-nc-sa/4.0/
dc.rights.accessrights.none.fl_str_mv info:eu-repo/semantics/embargoedAccess
dc.rights.license.en.fl_str_mv Attribution-NonCommercial-ShareAlike 4.0 International
dc.rights.coar.none.fl_str_mv http://purl.org/coar/access_right/c_f1cf
rights_invalid_str_mv http://creativecommons.org/licenses/by-nc-sa/4.0/
Attribution-NonCommercial-ShareAlike 4.0 International
http://purl.org/coar/access_right/c_f1cf
eu_rights_str_mv embargoedAccess
dc.format.extent.none.fl_str_mv 187 páginas
dc.format.mimetype.none.fl_str_mv application/pdf
dc.publisher.none.fl_str_mv Universidad de Antioquia
dc.publisher.program.none.fl_str_mv Doctorado en Ciencias Farmacéuticas y Alimentarias
dc.publisher.place.none.fl_str_mv Medellín, Colombia
dc.publisher.faculty.none.fl_str_mv Facultad de Ciencias Farmacéuticas y Alimentarias
dc.publisher.branch.none.fl_str_mv Campus Medellín - Ciudad Universitaria
publisher.none.fl_str_mv Universidad de Antioquia
institution Universidad de Antioquia
bitstream.url.fl_str_mv https://bibliotecadigital.udea.edu.co/bitstreams/eee20164-ceef-453d-995e-23c2763c44fb/download
https://bibliotecadigital.udea.edu.co/bitstreams/4892f761-c08e-4f78-8e5e-266677bbc636/download
https://bibliotecadigital.udea.edu.co/bitstreams/34903405-cdb1-4013-9ed2-2fa0900b43cf/download
https://bibliotecadigital.udea.edu.co/bitstreams/f5efba3f-25ef-4bf8-a184-146d7364472a/download
https://bibliotecadigital.udea.edu.co/bitstreams/2ba93c2c-6b19-4979-a6e6-73f892952903/download
bitstream.checksum.fl_str_mv b76e7a76e24cf2f94b3ce0ae5ed275d0
eda9bd84ef28856cae93fe8f3c8d40a7
5643bfd9bcf29d560eeec56d584edaa9
99e72a1a43b2739615cf0c0e4948a244
33f380f87cb81bf13f3577cf27d80ba9
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
MD5
MD5
repository.name.fl_str_mv Repositorio Institucional de la Universidad de Antioquia
repository.mail.fl_str_mv aplicacionbibliotecadigitalbiblioteca@udea.edu.co
_version_ 1851052124242182144
spelling Zapata Montoya, José EdgarCorrea Caleño, Jessica LeonorGrupo de Nutrición y Tecnología de AlimentosHernández Ledesma, BlancaJiménez Aliaga, Karim LizethMartínez Villaluenga, Cristina2025-06-11T20:19:28Z2027-06-112025Correa Caleño, J. (2025). Determinación de péptidos bioactivos del chachafruto (Erythrina edulis). [Tesis doctoral]. Universidad de Antioquia, Medellín, Colombia.https://hdl.handle.net/10495/46332En el contexto actual de crecimiento poblacional y preocupación por la seguridad alimentaria y el impacto ambiental, se ha intensificado la investigación sobre fuentes de proteínas sostenibles y nutritivas. Erythrina edulis (chachafruto) es una leguminosa endémica de América del Sur, conocida por su alto contenido proteico y calidad nutricional. Este estudio investigó los péptidos bioactivos derivados de E. edulis, enfocándose en su potencial antioxidante y efectos inmunomoduladores. El objetivo principal fue evaluar los péptidos obtenidos mediante hidrólisis enzimática de las proteínas de esta leguminosa. La metodología incluyó la extracción de proteínas de semillas y vainas, seguida de su hidrólisis con Alcalasa y estudios de digestión gastrointestinal simulada. Los resultados mostraron que tanto las semillas como las vainas son fuentes ricas en proteínas de alta calidad. La hidrólisis enzimática mejoró significativamente la capacidad antioxidante, especialmente en las fracciones de bajo peso molecular (<3 kDa). Los estudios de digestión gastrointestinal indican que los péptidos bioactivos liberados mantienen o mejoran su actividad antioxidante y presentan efectos inmunomoduladores. En conclusión, E. edulis es una fuente prometedora de péptidos bioactivos con aplicaciones potenciales en alimentos funcionales y nutracéuticos. La investigación destaca el valor de los subproductos de esta leguminosa, promoviendo su uso integral y contribuyendo a la sostenibilidad y reducción de residuos. Los péptidos obtenidos no solo tienen propiedades antioxidantes, sino también potenciales efectos antidiabéticos, antihipertensivos y antiinflamatorios, lo que los convierte en candidatos prometedores para el desarrollo de productos nutracéuticos y farmacéuticos.In the current context of population growth and concerns about food security and environmental impact, research on sustainable and nutritious protein sources has intensified. Erythrina edulis (chachafruto) is a legume endemic to South America, known for its high protein content and nutritional quality. This study investigated the bioactive peptides derived from E. edulis, focusing on their antioxidant potential and immunomodulatory effects. The main objective was to evaluate the peptides obtained through enzymatic hydrolysis of the proteins from this legume. The methodology included the extraction of proteins from seeds and pods, followed by hydrolysis with Alcalase and simulated gastrointestinal digestion studies. The results showed that both seeds and pods are rich sources of high-quality proteins. Enzymatic hydrolysis significantly enhanced the antioxidant capacity, especially in low molecular weight fractions (<3 kDa). Gastrointestinal digestion studies indicated that the released bioactive peptides maintain or improve their antioxidant activity and exhibit immunomodulatory effects. In conclusion, E. edulis is a promising source of bioactive peptides with potential applications in functional foods and nutraceuticals. The research highlights the value of the by-products of this legume, promoting their integral use and contributing to sustainability and waste reduction. The obtained peptides not only have antioxidant properties but also potential antidiabetic, antihypertensive, and anti-inflammatory effects, making them promising candidates for the development of nutraceutical and pharmaceutical products.Resumen 15 Abstract 16 1. Introducción 17 1.1. Planteamiento del problema 20 1.2. Objetivos 21 1.2.1. Objetivo general 21 1.2.2. Objetivos específicos 21 1.4 Referencias 22 2. Marco teórico 26 2.1. Generalidades de las leguminosas 26 2.1.1. Leguminosas como fuente de proteína 26 2.2. Erythrina edulis 27 2.2.1. Distribución y hábitat 27 2.2.2. Descripción 27 2.2.3. Aplicaciones y usos de la proteína y otros compuestos de E. edulis 28 2.3. Extracción de proteínas vegetales 31 2.4. Hidrólisis enzimática de proteínas 32 2.4.1. Determinación del grado de hidrólisis 33 2.4.2. Aplicaciones de los hidrolizados proteicos 34 2.5. Péptidos bioactivos 37 2.5.1. Obtención de péptidos bioactivos 38 2.5.1.1. Péptidos obtenidos por hidrólisis enzimática. 38 2.5.1.2. Péptidos obtenidos por digestión in vitro 40 2.5.2. Tipos de péptidos bioactivos 41 2.5.2.1. Péptidos con actividad opioide 41 2.5.2.2. Péptidos inmunomoduladores 41 2.5.2.3. Péptidos antioxidantes 42 2.5.3. Péptidos Bioactivos derivados de alimentos 44 2.5.4. Péptidos en leguminosas 45 2.6. Referencias 47 3. HIDRÓLISIS ENZIMÁTICA DE CONCENTRADOS PROTEÍCOS DE SEMILLAS Y VAINAS DE CHACHAFRUTO 57 3.1. Introducción 57 3.2. Materiales y métodos 59 3.2.2. Obtención del concentrado proteico de semillas y vainas (CPC - CPV) 60 3.2.3. Caracterización fisicoquímica 60 3.2.3.1. Determinación de fracciones proteicas 61 3.2.3.2. Determinación de polifenoles totales 62 3.2.3.3. Flavonoides totales 62 3.2.3.4. Cuantificación de clorofila 63 3.2.4. Cuantificación de aminoácidos 63 3.2.5. Hidrólisis enzimática 64 3.2.6. Fraccionamiento por tamaño molecular y por hidrofobicidad del Hidrolizado enzimático de semilla (HES) y de vaina (HEV) 65 3.2.7. Capacidad Antioxidante 65 3.2.7.1. Ensayo de captación de radicales ABTS•+ 66 3.2.7.2. Actividad reductora de Fe+3 (Ferric Reducing/Antioxidant Power) FRAP 66 3.2.7.3. Capacidad de absorción de radicales de oxígeno (ORAC) 66 3.2.8. Secado por atomización 67 3.2.9. Análisis estadístico 67 3.3. Resultados y discusión 68 3.3.1. Caracterización fisicoquímica 68 3.3.2. Fraccionamiento de proteínas presentes en semillas y vainas de E. edulis. 70 3.3.3. Composición aminoacídica de semillas y vainas de E. edulis. 71 3.3.4. Hidrólisis enzimática 72 3.3.5. Capacidad antioxidante 74 3.4. Conclusiones 82 3.5. Referencias 82 3.6. Anexos 88 4. DIGESTIÓN GASTROINTESTINAL DEL CONCENTRADO PROTEICO DE SEMILLAS DE CHACHAFRUTO 91 4.1. Introducción 91 4.2. Materiales y métodos 92 4.2.1. Materiales 92 4.2.2. Análisis de la Harina de Semilla 93 4.2.3. Concentrado Proteico de la semilla de Chachafruto (CPC) 93 4.2.4. Digestión gastrointestinal simulada 94 4.2.5. Actividad antioxidante por ensayos bioquímicos 94 4.2.6. Efectos protectores en macrófagos RAW264.7 95 4.2.6.1. Cultivo celular 95 4.2.6.2. Efectos en la Viabilidad Celular 96 4.2.6.3. Efectos en la Generación de EROS 96 4.2.6.4. Efectos en los Niveles de NO 96 4.2.7. Análisis estadístico 97 4.3. Resultados y discusión 97 4.3.1. Caracterización del concentrado de proteína de semilla de chachafruto (CPC): comportamiento bajo digestión gastrointestinal simulada 97 4.3.2. Impacto de la digestión gastrointestinal en la actividad antioxidante del concentrado de proteína de semilla de chachafruto (CPC) 99 4.3.3. Efecto del concentrado de proteina de chachafruto (CPC) en Macrófagos RAW264.7 bajo condiciones basales y estimuladas 101 4.4. Conclusiones 107 4.5. Referencias 107 5. DIGESTIÓN GASTROINTESTINAL DEL HIDROLIZADO DEL CONCENTRADO PROTEICO DE LA SEMILLA DE CHACHAFRUTO 111 5.1. Introducción 111 5.2. Materiales y métodos 112 5.2.1. Electroforesis (SDS-PAGE) del Hidrolizado de Proteína de Semilla de Chachafruto (HES) 112 5.2.2. Digestión Gastrointestinal Simulada 113 5.2.3. Distribución del peso molecular 114 5.2.4. Actividad antioxidante por ensayos bioquímicos 114 5.2.5. Efecto protector en células de macrófagos RAW264.7 115 5.2.5.1. Cultivo celular 115 5.2.5.2. Efectos sobre la viabilidad celular 115 5.2.5.3. Efectos sobre la generación de especies reactivas de oxígeno (EROS) 115 5.2.5.4. Efectos sobre los niveles de óxido nítrico (NO) 116 5.2.6. Análisis estadístico 116 5.3. Resultados y discusión 116 5.3.1. SDS-PAGE del Hidrolizado de Proteína de Semilla de Chachafruto (HES) 116 5.3.2. Comportamiento del Hidrolizado de Concentrado de Proteína de Chachafruto (HES) bajo Digestión Gastrointestinal Simulada 118 5.3.3. Efecto de la digestión gastrointestinal simulada en la actividad antioxidante del hidrolizado de proteína de chachafruto (HES) 119 5.3.4. Impacto de la digestión gastrointestinal simulada en los efectos moduladores del HES en un modelo de células inmunológicas 122 5.4. Conclusiones 127 5.5. Referencias 127 6. PEPTIDOS BIOACTIVOS DEL CHACHAFRUTO: UN ENFOQUE EX VIVO E IN SILICO 131 6.1. Introducción 131 6.2. Materiales y métodos 132 6.2.1. Ensayos antioxidantes ex vivo 132 6.2.1.1. Cultivo celular 133 6.2.1.2. Condiciones de tratamiento 133 6.2.1.3. Determinación de Especies Reactivas de Oxígeno (EROS) intracelulares 133 6.2.2. Identificación de las proteínas de E. edulis 134 6.2.2.1. Digestión de las proteínas en gel (Stacking gel) 134 6.2.3. Digestión gastrointestinal in silico de E. edulis 136 6.2.4. Predicción de la bioactividad in silico 136 6.2.5. Análisis estadístico 137 6.3. Resultados y discusión 137 6.3.1. Ensayos antioxidantes Ex vivo 137 6.3.1.1. Efectos del DGIHES y su fracción <3 kDa sobre la generación de EROS intracelular en células Caco-2 137 6.3.2. Identificación de las proteínas de E. edulis 139 6.3.2.1. Clasificación funcional de las proteínas identificadas 141 6.3.3. Digestión in silico del proteoma de E. edulis 145 6.3.3.1. Digestión con Alcalasa 145 6.3.3.1.1. Péptidos antioxidantes de E. edulis 147 6.3.3.1.2. Péptidos antimicrobianos de E. edulis 150 6.3.3.1.3. Péptidos antidiabéticos de E. edulis 152 6.3.3.1.4. Péptidos antihipertensivos de E. edulis 154 6.3.3.1.5. Péptidos de E. edulis con actividad antiinflamatoria 156 6.3.3.2. Digestión completa de las proteínas de E. edulis 159 6.3.3.2.1. Estudio ADMET de los péptidos multifuncionales de E. edulis 161 6.4. Conclusiones 165 6.5. Referencias 166 6.6. Anexos 173 7. CONCLUSIONES GENERALES 185 8. PERSPECTIVAS 186BiotecnologíaCOL0010771DoctoradoDoctor en Ciencias Farmacéuticas y Alimentarias187 páginasapplication/pdfspaUniversidad de AntioquiaDoctorado en Ciencias Farmacéuticas y AlimentariasMedellín, ColombiaFacultad de Ciencias Farmacéuticas y AlimentariasCampus Medellín - Ciudad Universitariahttp://creativecommons.org/licenses/by-nc-sa/4.0/info:eu-repo/semantics/embargoedAccessAttribution-NonCommercial-ShareAlike 4.0 Internationalhttp://purl.org/coar/access_right/c_f1cfErythrina edulisAlimento funcionalFunctional foodsHidrolizado de proteínasProtein hydrolysatesPropiedad antioxidanteAntioxidant propertiesFactor inmunológicoImmunological factorsHidrólisis enzimáticaEnzymatic hydrolysisSeguridad alimentariaFood securityPéptidos bioactivoshttp://aims.fao.org/aos/agrovoc/c_2f007684http://aims.fao.org/aos/agrovoc/c_3732http://aims.fao.org/aos/agrovoc/c_11805097http://aims.fao.org/aos/agrovoc/c_29621http://aims.fao.org/aos/agrovoc/c_27512http://aims.fao.org/aos/agrovoc/c_10967http://id.loc.gov/authorities/subjects/sh90001362ODS 2: Hambre cero. Poner fin al hambre, lograr la seguridad alimentaria y la mejora de la nutrición y promover la agricultura sostenibleODS 3: Salud y bienestar. Garantizar una vida sana y promover el bienestar de todos a todas las edadesDeterminación de péptidos bioactivos del chachafruto (Erythrina edulis)Trabajo de grado - Doctoradohttp://purl.org/coar/resource_type/c_db06http://purl.org/redcol/resource_type/TDTexthttp://purl.org/coar/version/c_b1a7d7d4d402bcceinfo:eu-repo/semantics/doctoralThesisinfo:eu-repo/semantics/draftAgyei, D., Tsopmo, A., & Udenigwe, C. C. (2018). Bioinformatics and peptidomics approaches to the discovery and analysis of food-derived bioactive peptides. Analytical and Bioanalytical Chemistry, 410(15), 3463-3472. https://doi.org/10.1007/s00216-018-0974-1Aguayo-Cerón, K. A., Sánchez-Muñoz, F., Gutierrez-Rojas, R. A., Acevedo-Villavicencio, L. N., FloresZarate, A. V., Huang, F., Giacoman-Martinez, A., Villafaña, S., & Romero-Nava, R. (2023). Glycine: The Smallest Anti-Inflammatory Micronutrient. International Journal of Molecular Sciences, 24(14), Article 14. https://doi.org/10.3390/ijms241411236Agyei, D., Tsopmo, A., & Udenigwe, C. C. (2018). Bioinformatics and peptidomics approaches to the discovery and analysis of food-derived bioactive peptides. Analytical and Bioanalytical Chemistry, 410(15), 3463-3472. https://doi.org/10.1007/s00216-018-0974-1Ajibola, C. F., Fashakin, J. B., Fagbemi, T. N., & Aluko, R. E. (2011). Effect of Peptide Size on Antioxidant Properties of African Yam Bean Seed (Sphenostylis stenocarpa) Protein Hydrolysate Fractions. International Journal of Molecular Sciences, 12(10), Article 10. https://doi.org/10.3390/ijms12106685Ali, A., Waly, M. I., Bhatt, N., & Devarajan, S. (2022). Bioactive Components of Plant Protein Foods in the Prevention and Management of Non-communicable Diseases. En A. Manickavasagan, L.-T. Lim, & A. Ali (Eds.), Plant Protein Foods (pp. 381-405). Springer International Publishing. https://doi.org/10.1007/978-3-030-91206-2_13Alonso, R., Pisa, D., Marina, A., Morato-López, E., Rábano, A., Rodal, I., & Carrasco, L. (2015). Evidence for fungal infection in cerebrospinal fluid and brain tissue from patients with amyotrophic lateral sclerosis. https://digital.csic.es/handle/10261/272297Aluko, R. E. (2015). Structure and function of plant protein-derived antihypertensive peptides. Current Opinion in Food Science, 4, 44-50. https://doi.org/10.1016/j.cofs.2015.05.002Amigo, L., Martínez-Maqueda, D., & Hernández-Ledesma, B. (2020). In Silico and In Vitro Analysis of Multifunctionality of Animal Food-Derived Peptides. Foods, 9(8), Article 8. https://doi.org/10.3390/foods9080991An, J., Liu, J., Liang, Y., Ma, Y., Chen, C., Cheng, Y., Peng, P., Zhou, N., Zhang, R., Addy, M., Chen, P., Liu, Y., Huang, G., Ren, D., & Ruan, R. (2020). Characterization, bioavailability and protective effects of phenolic-rich extracts from almond hulls against pro-oxidant induced toxicity in Caco-2 cells. Food Chemistry, 322, 126742. https://doi.org/10.1016/j.foodchem.2020.126742Anisimov, V. N., & Khavinson, V. Kh. (2010). Peptide bioregulation of aging: Results and prospects. Biogerontology, 11(2), 139-149. https://doi.org/10.1007/s10522-009-9249-8Antony, P., & Vijayan, R. (2021). Bioactive Peptides as Potential Nutraceuticals for Diabetes Therapy: A Comprehensive Review. International Journal of Molecular Sciences, 22(16), Article 16. https://doi.org/10.3390/ijms22169059Ashaolu, T. J., Zarei, M., Agrawal, H., Kharazmi, M. S., & Jafari, S. M. (2024). A critical review on immunomodulatory peptides from plant sources; action mechanisms and recent advances. Critical Reviews in Food Science and Nutrition, 64(20), 7220-7236. https://doi.org/10.1080/10408398.2023.2183380Barrera Marín, N., & Mejía Leudo, M. (1998). Chachafruto, balú, sachaporoto; Erythrina edulis, Triana. Pasado, presente y futuro. Universidad Nacional de Colombia - UNAL. http://localhost:8080/handle/11348/4120Berraquero-García, C., Rivero-Pino, F., Ospina, J. L., Pérez-Gálvez, R., Espejo-Carpio, F. J., Guadix, A., García-Moreno, P. J., & Guadix, E. M. (2023). Activity, structural features and in silico digestion of antidiabetic peptides. Food Bioscience, 102954. https://www.sciencedirect.com/science/article/pii/S2212429223006053Brandatilde, C., Polakowski, O., Fillus, R., Luz, M. S. R. da, Silva, C. S. da, Preti, V. B., Marzagatilde, V., Ribeiro, O., Abrahatilde, V., & Rosenfeld, O. (2022). Use of Specific Supplementation for Healing in Surgical Wounds: Case Report. Mathews Journal of Surgery, 5(1), 1-5. https://doi.org/10.30654/MJS.10016Cagnin, C., Garcia, B. de F., Rocha, T. de S., & Prudencio, S. H. (2024). Bioactive Peptides from Corn (Zea mays L.) with the Potential to Decrease the Risk of Developing Non-Communicable Chronic Diseases: In Silico Evaluation. Biology, 13(10), 772. https://www.mdpi.com/2079-7737/13/10/772Charoenkwan, P., Nantasenamat, C., Hasan, M. M., Moni, M. A., Lio’, P., Manavalan, B., & Shoombuatong, W. (2022). StackDPPIV: A novel computational approach for accurate prediction of dipeptidyl peptidase IV (DPP-IV) inhibitory peptides. Methods, 204, 189-198. https://doi.org/10.1016/j.ymeth.2021.12.001Correa, J. L., Zapata, J. E., & Hernández-Ledesma, B. (2024). Impact of Alcalase Hydrolysis and Simulated Gastrointestinal Digestion on the Release of Bioactive Peptides from Erythrina edulis (Chachafruto) Proteins. International Journal of Molecular Sciences, 25(17), Article 17. https://doi.org/10.3390/ijms25179290Correa, J. L., Zapata Montoya, J. E., & Hernández-Ledesma, B. (2022). Release of bioactive peptides from Erythrina edulis (Chachafruto) proteins under simulated gastrointestinal digestion. https://doi.org/10.3390/nu14245256Dadar, M., Shahali, Y., Chakraborty, S., Prasad, M., Tahoori, F., Tiwari, R., & Dhama, K. (2019). Antiinflammatory peptides: Current knowledge and promising prospects. Inflammation Research, 68(2), 125-145. https://doi.org/10.1007/s00011-018-1208-xDe Fátima Garcia, B., De Barros, M., & De Souza Rocha, T. (2021). Bioactive peptides from beans with the potential to decrease the risk of developing noncommunicable chronic diseases. Critical Reviews in Food Science and Nutrition, 61(12), 2003-2021. https://doi.org/10.1080/10408398.2020.1768047de la Rosa, A. P. B., Montoya, A. B., Martínez-Cuevas, P., Hernández-Ledesma, B., León-Galván, M. F., De León-Rodríguez, A., & González, C. (2010). Tryptic amaranth glutelin digests induce endothelial nitric oxide production through inhibition of ACE: Antihypertensive role of amaranth peptides. Nitric Oxide: Biology and Chemistry, 23(2), 106-111. https://doi.org/10.1016/j.niox.2010.04.006Deacon, C. F. (2020). Dipeptidyl peptidase 4 inhibitors in the treatment of type 2 diabetes mellitus. Nature Reviews Endocrinology, 16(11), 642-653. https://doi.org/10.1038/s41574-020-0399-8Domínguez Magaña, M. A. D. J. (2009). Aislamiento de Biopeptidos con Actividad Inhibitoria de la Enzima Convertidora de Angiotensina-I a Partir de Hidrolizados de P. lunatus. https://tesis.ipn.mx/bitstream/handle/123456789/7922/Dom%C3%ADnguez%20Maga%C3%B1a %2C%20Mario%20Alberto%20De%20Jes%C3%BAs_ENCB_Tesis.pdf?sequence=4&isAllowed=yDu, A., Jia, W., & Zhang, R. (2024). Machine learning methods for unveiling the potential of antioxidant short peptides in goat milk-derived proteins during in vitro gastrointestinal digestion. Journal of Dairy Science. https://www.sciencedirect.com/science/article/pii/S0022030224009706Du, Z., Comer, J., & Li, Y. (2023). Bioinformatics approaches to discovering food-derived bioactive peptides: Reviews and perspectives. TrAC Trends in Analytical Chemistry, 162, 117051. https://doi.org/10.1016/j.trac.2023.117051Du, Z., & Li, Y. (2022). Review and perspective on bioactive peptides: A roadmap for research, development, and future opportunities. Journal of Agriculture and Food Research, 9, 100353. https://doi.org/10.1016/j.jafr.2022.100353Esfandi, R., Walters, M. E., & Tsopmo, A. (2019). Antioxidant properties and potential mechanisms of hydrolyzed proteins and peptides from cereals. Heliyon, 5(4). https://doi.org/10.1016/j.heliyon.2019.e01538Fashakin, O. O., Tangjaidee, P., Unban, K., Klangpetch, W., Khumsap, T., Sringarm, K., Rawdkuen, S., & Phongthai, S. (2023). Isolation and Identification of Antioxidant Peptides Derived from Cricket (Gryllus bimaculatus) Protein Fractions. Insects, 14(8), Article 8. https://doi.org/10.3390/insects14080674Flores-Holguín, N., Frau, J., & Glossman-Mitnik, D. (2021). In Silico Pharmacokinetics, ADMET Study and Conceptual DFT Analysis of Two Plant Cyclopeptides Isolated From Rosaceae as a Computational Peptidology Approach. Frontiers in Chemistry, 9. https://doi.org/10.3389/fchem.2021.708364Fosgerau, K., & Hoffmann, T. (2015). Peptide therapeutics: Current status and future directions. Drug discovery today, 20(1), 122-128. https://www.sciencedirect.com/science/article/pii/S1359644614003997García-Nebot, M. J., Recio, I., & Hernández-Ledesma, B. (2014). Antioxidant activity and protective effects of peptide lunasin against oxidative stress in intestinal Caco-2 cells. Food and Chemical Toxicology, 65, 155-161. https://www.sciencedirect.com/science/article/pii/S0278691513008430Gawde, U., Chakraborty, S., Waghu, F. H., Barai, R. S., Khanderkar, A., Indraguru, R., Shirsat, T., & IdiculaThomas, S. (2023). CAMPR4: A database of natural and synthetic antimicrobial peptides. Nucleic Acids Research, 51(D1), D377-D383. https://doi.org/10.1093/nar/gkac933Gibbs, C. A., Weber, D. S., & Warren, J. J. (2022). Clustering of Aromatic Amino Acid Residues around Methionine in Proteins. Biomolecules, 12(1), Article 1. https://doi.org/10.3390/biom12010006González-Montoya, M., Hernández-Ledesma, B., Mora-Escobedo, R., & Martínez-Villaluenga, C. (2018). Bioactive Peptides from Germinated Soybean with Anti-Diabetic Potential by Inhibition of Dipeptidyl Peptidase-IV, α-Amylase, and α-Glucosidase Enzymes. International Journal of Molecular Sciences, 19(10), Article 10. https://doi.org/10.3390/ijms19102883Gori, A., Longhi, R., Peri, C., & Colombo, G. (2013). Peptides for immunological purposes: Design, strategies and applications. Amino Acids, 45(2), 257-268. https://doi.org/10.1007/s00726-013-1526-9Götz, S., García-Gómez, J. M., Terol, J., Williams, T. D., Nagaraj, S. H., Nueda, M. J., Robles, M., Talón, M., Dopazo, J., & Conesa, A. (2008). High-throughput functional annotation and data mining with the Blast2GO suite. Nucleic acids research, 36(10), 3420-3435. https://academic.oup.com/nar/article-abstract/36/10/3420/2410320Guerra-Almonacid, C. M., Torruco-Uco, J. G., Murillo-Arango, W., Méndez-Arteaga, J. J., & RodríguezMiranda, J. (2019). Effect of ultrasound pretreatment on the antioxidant capacity and antihypertensive activity of bioactive peptides obtained from the protein hydrolysates of Erythrina edulis. Emirates Journal of Food and Agriculture, 288-296.Guha, S., & Majumder, K. (2019). Structural-features of food-derived bioactive peptides with antiinflammatory activity: A brief review. Journal of Food Biochemistry, 43(1), e12531.Gupta, S., Kapoor, P., Chaudhary, K., Gautam, A., Kumar, R., Consortium, O. S. D. D., & Raghava, G. P. (2013). In silico approach for predicting toxicity of peptides and proteins. PloS one, 8(9), e73957. https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0073957Guy, R. C. (2024). Ames test. En P. Wexler (Ed.), Encyclopedia of Toxicology (Fourth Edition) (pp. 377-379). Academic Press. https://doi.org/10.1016/B978-0-12-824315-2.01101-5Hadjicharalambous, A., Bournakas, N., Newman, H., Skynner, M. J., & Beswick, P. (2022). Antimicrobial and Cell-Penetrating Peptides: Understanding Penetration for the Design of Novel Conjugate Antibiotics. Antibiotics, 11(11), Article 11. https://doi.org/10.3390/antibiotics11111636He, Y., & Lazaridis, T. (2013). Activity Determinants of Helical Antimicrobial Peptides: A Large-Scale Computational Study. PLOS ONE, 8(6), e66440. https://doi.org/10.1371/journal.pone.0066440Hong, Y., Boiti, A., Vallone, D., & Foulkes, N. S. (2024). Reactive Oxygen Species Signaling and Oxidative Stress: Transcriptional Regulation and Evolution. Antioxidants, 13(3), Article 3. https://doi.org/10.3390/antiox13030312Hsieh, C.-H., Wang, T.-Y., Hung, C.-C., Jao, C.-L., Hsieh, Y.-L., Wu, S.-X., & Hsu, K.-C. (2016). In silico, in vitro and in vivo analyses of dipeptidyl peptidase IV inhibitory activity and the antidiabetic effect of sodium caseinate hydrolysate. Food & Function, 7(2), 1122-1128. https://doi.org/10.1039/C5FO01324KIdrees, M., Mohammad, A. R., Karodia, N., & Rahman, A. (2020). Multimodal role of amino acids in microbial control and drug development. Antibiotics, 9(6), 330. https://www.mdpi.com/2079-6382/9/6/330Intiquilla, A., Jiménez-Aliaga, K., Guzmán, F., Alvarez, C. A., Zavaleta, A. I., Izaguirre, V., & HernándezLedesma, B. (2019). Novel antioxidant peptides obtained by alcalase hydrolysis of Erythrina edulis (pajuro) protein. Journal of the Science of Food and Agriculture, 99(5), 2420-2427.Iwaniak, A., Darewicz, M., Mogut, D., & Minkiewicz, P. (2019). Elucidation of the role of in silico methodologies in approaches to studying bioactive peptides derived from foods. Journal of Functional Foods, 61, 103486. https://doi.org/10.1016/j.jff.2019.103486Jochems, P. G. M., Garssen, J., Van Keulen, A. M., Masereeuw, R., & Jeurink, P. V. (2018). Evaluating Human Intestinal Cell Lines for Studying Dietary Protein Absorption. Nutrients, 10(3), Article 3. https://doi.org/10.3390/nu10030322Kacprzyk, L., Rydengård, V., Mörgelin, M., Davoudi, M., Pasupuleti, M., Malmsten, M., & Schmidtchen, A. (2007). Antimicrobial activity of histidine-rich peptides is dependent on acidic conditions. Biochimica et Biophysica Acta (BBA)-Biomembranes, 1768(11), 2667-2680. https://www.sciencedirect.com/science/article/pii/S0005273607002362Kang, S., Kang, M., & Lim, H. (2021). Global and Regional Patterns in Noncommunicable Diseases and Dietary Factors across National Income Levels. Nutrients, 13(10), Article 10. https://doi.org/10.3390/nu13103595Kaushik, A. C., Mehmood, A., Peng, S., Zhang, Y.-J., Dai, X., & Wei, D.-Q. (2021). A-CaMP: A tool for anti-cancer and antimicrobial peptide generation. Journal of Biomolecular Structure and Dynamics, 39(1), 285-293. https://doi.org/10.1080/07391102.2019.1708796Khatun, M. S., Hasan, M. M., & Kurata, H. (2019). PreAIP: Computational Prediction of Anti-inflammatory Peptides by Integrating Multiple Complementary Features. Frontiers in Genetics, 10. https://doi.org/10.3389/fgene.2019.00129Khavinson, V. K., Popovich, I. G., Linkova, N. S., Mironova, E. S., & Ilina, A. R. (2021). Peptide Regulation of Gene Expression: A Systematic Review. Molecules, 26(22), Article 22. https://doi.org/10.3390/molecules26227053Kim, I.-S., Kim, C.-H., & Yang, W.-S. (2021). Physiologically Active Molecules and Functional Properties of Soybeans in Human Health—A Current Perspective. International Journal of Molecular Sciences, 22(8), Article 8. https://doi.org/10.3390/ijms22084054Krawczyk, P. A., Laub, M., & Kozik, P. (2020). To Kill But Not Be Killed: Controlling the Activity of Mammalian Pore-Forming Proteins. Frontiers in Immunology, 11. https://doi.org/10.3389/fimmu.2020.601405Kumar, R., Chaudhary, K., Singh Chauhan, J., Nagpal, G., Kumar, R., Sharma, M., & Raghava, G. P. S. (2015). An in silico platform for predicting, screening and designing of antihypertensive peptides. Scientific Reports, 5(1), 12512. https://doi.org/10.1038/srep12512Li, G.-H., Le, G.-W., Shi, Y.-H., & Shrestha, S. (2004). Angiotensin I–converting enzyme inhibitory peptides derived from food proteins and their physiological and pharmacological effects. Nutrition Research, 24(7), 469-486. https://doi.org/10.1016/j.nutres.2003.10.014Li, S., Wang, Y., Xue, Z., Jia, Y., Li, R., He, C., & Chen, H. (2021). The structure-mechanism relationship and mode of actions of antimicrobial peptides: A review. Trends in Food Science & Technology, 109, 103-115. https://www.sciencedirect.com/science/article/pii/S092422442100008XLiu, H., Zhang, L., Yu, J., & Shao, S. (2024). Advances in the application and mechanism of bioactive peptides in the treatment of inflammation. Frontiers in Immunology, 15, 1413179. https://www.frontiersin.org/journals/immunology/articles/10.3389/fimmu.2024.1413179/fullLiu, W., Chen, X., Li, H., Zhang, J., An, J., & Liu, X. (2022). Anti-inflammatory function of plant-derived bioactive peptides: A review. Foods, 11(15), 2361. https://www.mdpi.com/2304-8158/11/15/2361Luo, Y., & Song, Y. (2021). Mechanism of Antimicrobial Peptides: Antimicrobial, Anti-Inflammatory and Antibiofilm Activities. International Journal of Molecular Sciences, 22(21), Article 21. https://doi.org/10.3390/ijms222111401Ma, K., Wang, Y., Wang, M., Wang, Z., Wang, X., Ju, X., & He, R. (2021). Antihypertensive activity of the ACE–renin inhibitory peptide derived from Moringa oleifera protein. Food & Function, 12(19), 8994-9006. https://pubs.rsc.org/en/content/articlehtml/2009/jm/d1fo01103kMartemucci, G., Costagliola, C., Mariano, M., D’andrea, L., Napolitano, P., & D’Alessandro, A. G. (2022). Free Radical Properties, Source and Targets, Antioxidant Consumption and Health. Oxygen, 2(2), Article 2. https://doi.org/10.3390/oxygen2020006Matemu, A., Nakamura, S., & Katayama, S. (2021). Health benefits of antioxidative peptides derived from legume proteins with a high amino acid score. Antioxidants, 10(2), 316.Matsufuji, H., Matsui, T., Seki, E., Osajima, K., Nakashima, M., & Osajima, Y. (1994). Angiotensin Iconverting enzyme inhibitory peptides in an alkaline protease hydrolyzate derived from sardine muscle. Bioscience, Biotechnology, and Biochemistry, 58(12), 2244-2245. https://doi.org/10.1271/bbb.58.2244Mei, S., Li, F., Leier, A., Marquez-Lago, T. T., Giam, K., Croft, N. P., Akutsu, T., Smith, A. I., Li, J., Rossjohn, J., Purcell, A. W., & Song, J. (2020). A comprehensive review and performance evaluation of bioinformatics tools for HLA class I peptide-binding prediction. Briefings in Bioinformatics, 21(4), 1119. https://doi.org/10.1093/bib/bbz051Mishra, S. S., Kumar, N., Sirvi, G., Sharma, C. S., Singh, H. P., & Pandiya, H. (2017). Computational prediction of pharmacokinetic, bioactivity and toxicity parameters of some selected anti-arrhythmic agents. Pharm. Chem. J, 4, 143-146. https://www.researchgate.net/profile/Neeraj-Kumar128/publication/334204825_Computational_Prediction_of_Pharmacokinetic_Bioactivity_and_Toxicity_Parameters_of_Some_Selected_Anti_arrhythmic_Agents/links/5d1ccd43a6fdcc2462bd48d9/Computational-Prediction-of-Pharmacokinetic-Bioactivity-and-Toxicity-Parameters-of-SomeSelected-Anti-arrhythmic-Agents.pdfMooney, C., Haslam, N. J., Pollastri, G., & Shields, D. C. (2012). Towards the improved discovery and design of functional peptides: Common features of diverse classes permit generalized prediction of bioactivity. https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0045012Mulvihill, E. E., & Drucker, D. J. (2014). Pharmacology, physiology, and mechanisms of action of dipeptidyl peptidase-4 inhibitors. Endocrine Reviews, 35(6), 992-1019. https://doi.org/10.1210/er.2014-1035Nongonierma, A. B., & FitzGerald, R. J. (2013). Dipeptidyl peptidase IV inhibitory and antioxidative properties of milk protein-derived dipeptides and hydrolysates. Peptides, 39, 157-163. https://doi.org/10.1016/j.peptides.2012.11.016Nongonierma, A. B., & FitzGerald, R. J. (2019). Features of dipeptidyl peptidase IV (DPP-IV) inhibitory peptides from dietary proteins. Journal of Food Biochemistry, 43(1), e12451. https://doi.org/10.1111/jfbc.12451Ohyanagi, H., Sakata, K., & Komatsu, S. (2012). Soybean Proteome Database 2012: Update on the comprehensive data repository for soybean proteomics. Frontiers in Plant Science, 3. https://doi.org/10.3389/fpls.2012.00110Okella, H., Okello, E., Mtewa, A. G., Ikiriza, H., Kaggwa, B., Aber, J., Ndekezi, C., Nkamwesiga, J., Ajayi, C. O., Mugeni, I. M., Ssentamu, G., Ochwo, S., Odongo, S., Tolo, C. U., Kato, C. D., & Engeu, P. O. (2022). ADMET profiling and molecular docking of potential antimicrobial peptides previously isolated from African catfish, Clarias gariepinus. Frontiers in Molecular Biosciences, 9. https://doi.org/10.3389/fmolb.2022.1039286Palma-Albino, C., Intiquilla, A., Jiménez-Aliaga, K., Rodríguez-Arana, N., Solano, E., Flores, E., Zavaleta, A. I., Izaguirre, V., & Hernández-Ledesma, B. (2021). Albumin from Erythrina edulis (Pajuro) as a Promising Source of Multifunctional Peptides. Antioxidants, 10(11), 1722.Peng, H., Wang, J., Chen, J., Peng, Y., Wang, X., Chen, Y., Kaplan, D. L., & Wang, Q. (2023). Challenges and opportunities in delivering oral peptides and proteins. Expert Opinion on Drug Delivery, 20(10), 1349-1369. https://doi.org/10.1080/17425247.2023.2237408Pérez-Pérez, V., Jiménez-Martínez, C., González-Escobar, J. L., & Corzo-Ríos, L. J. (2024). Exploring the impact of encapsulation on the stability and bioactivity of peptides extracted from botanical sources: Trends and opportunities. Frontiers in Chemistry, 12. https://doi.org/10.3389/fchem.2024.1423500Pires, D. E. V., Blundell, T. L., & Ascher, D. B. (2015). pkCSM: Predicting Small-Molecule Pharmacokinetic and Toxicity Properties Using Graph-Based Signatures. Journal of Medicinal Chemistry, 58(9), 4066-4072. https://doi.org/10.1021/acs.jmedchem.5b00104Powers, J.-P. S., & Hancock, R. E. W. (2003). The relationship between peptide structure and antibacterial activity. Peptides, 24(11), 1681-1691. https://doi.org/10.1016/j.peptides.2003.08.023Qin, D., Jiao, L., Wang, R., Zhao, Y., Hao, Y., & Liang, G. (2023). Prediction of antioxidant peptides using a quantitative structure−activity relationship predictor (AnOxPP) based on bidirectional long shortterm memory neural network and interpretable amino acid descriptors. Computers in Biology and Medicine, 154, 106591. https://doi.org/10.1016/j.compbiomed.2023.106591Ramalingam, A., Kudapa, H., Pazhamala, L. T., Weckwerth, W., & Varshney, R. K. (2015). Proteomics and Metabolomics: Two Emerging Areas for Legume Improvement. Frontiers in Plant Science, 6. https://doi.org/10.3389/fpls.2015.01116Rathi, D., Gayen, D., Gayali, S., Chakraborty, S., & Chakraborty, N. (2016). Legume proteomics: Progress, prospects, and challenges. PROTEOMICS, 16(2), 310-327. https://doi.org/10.1002/pmic.201500257Rodríguez-Arana, N., Jiménez-Aliaga, K., Intiquilla, A., León, J. A., Flores, E., Zavaleta, A. I., Izaguirre, V., Solis-Calero, C., & Hernández-Ledesma, B. (2022). Protection against oxidative stress and metabolic alterations by synthetic peptides derived from Erythrina edulis seed protein. Antioxidants, 11(11), 2101. https://www.mdpi.com/2076-3921/11/11/2101Ryu, B., Shin, K.-H., & Kim, S.-K. (2021). Muscle Protein Hydrolysates and Amino Acid Composition in Fish. Marine Drugs, 19(7), Article 7. https://doi.org/10.3390/md19070377Sanchiz, Á., Morato, E., Rastrojo, A., Camacho, E., Gonzalez-De la Fuente, S., Marina, A., Aguado, B., & Requena, J. M. (2020). The experimental proteome of Leishmania infantum promastigote and its usefulness for improving gene annotations. Genes, 11(9), 1036. https://www.mdpi.com/2073-4425/11/9/1036Shaker, B., Ahmad, S., Lee, J., Jung, C., & Na, D. (2021). In silico methods and tools for drug discovery. Computers in Biology and Medicine, 137, 104851. https://doi.org/10.1016/j.compbiomed.2021.104851Shen, W., & Matsui, T. (2017). Current knowledge of intestinal absorption of bioactive peptides. Food & Function, 8(12), 4306-4314. https://doi.org/10.1039/C7FO01185GShevchenko, A., Wilm, M., Vorm, O., & Mann, M. (1996). Mass Spectrometric Sequencing of Proteins from Silver-Stained Polyacrylamide Gels. Analytical Chemistry, 68(5), 850-858. https://doi.org/10.1021/ac950914hShu, H., Zhao, Q., Huang, Y., Shi, Q., & Yang, J. (2024). Antihypertensive peptide resources map of ribulose-1, 5-bisphosphate carboxylase/oxygenases (RuBisCO) in angiosperms: Revealed by an integrated in silico and in vitro approach. Food Chemistry, 433, 137332. https://www.sciencedirect.com/science/article/pii/S0308814623019507Silva, F. G. D., Hernández-Ledesma, B., Amigo, L., Netto, F. M., & Miralles, B. (2017). Identification of peptides released from flaxseed (Linum usitatissimum) protein by Alcalase® hydrolysis: Antioxidant activity. LWT-Food Science and Technology, 76, 140-146.Singh, B. P., Bangar, S. P., Alblooshi, M., Ajayi, F. F., Mudgil, P., & Maqsood, S. (2023). Plant-derived proteins as a sustainable source of bioactive peptides: Recent research updates on emerging production methods, bioactivities, and potential application. Critical Reviews in Food Science and Nutrition, 63(28), 9539-9560. https://doi.org/10.1080/10408398.2022.2067120Tehrani, S. S., Hosseini, H. M., & Mirhosseini, S. A. (2024). Evaluation of Anti-endotoxin Activity, Hemolytic Activity, and Cytotoxicity of a Novel Designed Peptide: An In Silico and In Vitro Study. International Journal of Peptide Research and Therapeutics, 30(2), 16. https://doi.org/10.1007/s10989-024-10591-0The Gene Ontology resource: Enriching a GOld mine. (2021). Nucleic acids research, 49(D1), D325-D334. https://academic.oup.com/nar/article-abstract/49/D1/D325/6027811Torrent, M., Andreu, D., Nogués, V. M., & Boix, E. (2011). Connecting Peptide Physicochemical and Antimicrobial Properties by a Rational Prediction Model. PLOS ONE, 6(2), e16968. https://doi.org/10.1371/journal.pone.0016968Torruco-Uco, J. G., Domínguez-Magaña, M. A., Dávila-Ortíz, G., Martínez-Ayala, A., Chel-Guerrero, L. A., & Betancur-Ancona, D. A. (2008). Péptidos Antihipertensivos, Una Alternativa De Tratamiento De Origen Natural: Una Revisión Antihypertensive Peptides, an Alternative for Treatment of Natural Origin: A Review. Ciencia y Tecnologia Alimentaria, 6(2), 158-168. https://doi.org/10.1080/11358120809487641Tran, N. H., Qiao, R., Xin, L., Chen, X., Liu, C., Zhang, X., Shan, B., Ghodsi, A., & Li, M. (2019). Deep learning enables de novo peptide sequencing from data-independent-acquisition mass spectrometry. Nature methods, 16(1), 63-66. https://www.nature.com/articles/s41592-018-0260-3Tran, N. H., Zhang, X., Xin, L., Shan, B., & Li, M. (2017). De novo peptide sequencing by deep learning. Proceedings of the National Academy of Sciences, 114(31), 8247-8252. https://doi.org/10.1073/pnas.1705691114Velásquez Holguín, L. F. (2019). Evaluación del potencial antioxidante e inhibitorio de la enzima convertidora de angiotensina (ECA) de hidrolizados proteicos de semillas de chachafruto (Erythrina edulis Micheli.). https://repository.ut.edu.co/server/api/core/bitstreams/25af1433-19dc-480c-b5ad7b6bf234835d/contentWaghu, F. H., Gopi, L., Barai, R. S., Ramteke, P., Nizami, B., & Idicula-Thomas, S. (2014). CAMP: Collection of sequences and structures of antimicrobial peptides. Nucleic acids research, 42(D1), D1154-D1158. https://academic.oup.com/nar/article-abstract/42/D1/D1154/1055481Wang, M., Tan, G., Eljaszewicz, A., Meng, Y., Wawrzyniak, P., Acharya, S., Altunbulakli, C., Westermann, P., Dreher, A., & Yan, L. (2019). Laundry detergents and detergent residue after rinsing directly disrupt tight junction barrier integrity in human bronchial epithelial cells. Journal of Allergy and Clinical Immunology, 143(5), 1892-1903. https://www.sciencedirect.com/science/article/pii/S0091674918316658Xu, B., Dong, Q., Yu, C., Chen, H., Zhao, Y., Zhang, B., Yu, P., & Chen, M. (2024). Advances in Research on the Activity Evaluation, Mechanism and Structure-Activity Relationships of Natural Antioxidant Peptides. Antioxidants, 13(4), Article 4. https://doi.org/10.3390/antiox13040479Xu, C., Liu, Y., Li, K., Zhang, J., Wei, B., & Wang, H. (2024). Absorption of food-derived peptides: Mechanisms, influencing factors, and enhancement strategies. Food Research International, 197, 115190. https://doi.org/10.1016/j.foodres.2024.115190You, H., Zhang, Y., Wu, T., Li, J., Wang, L., Yu, Z., Liu, J., Liu, X., & Ding, L. (2022). Identification of dipeptidyl peptidase IV inhibitory peptides from rapeseed proteins. LWT, 160, 113255. https://doi.org/10.1016/j.lwt.2022.113255Zaky, A. A., Simal-Gandara, J., Eun, J.-B., Shim, J.-H., & Abd El-Aty, A. M. (2022). Bioactivities, Applications, Safety, and Health Benefits of Bioactive Peptides From Food and By-Products: A Review. Frontiers in Nutrition, 8. https://doi.org/10.3389/fnut.2021.815640Zou, T.-B., He, T.-P., Li, H.-B., Tang, H.-W., & Xia, E.-Q. (2016). The structure-activity relationship of the antioxidant peptides from natural proteins. Molecules, 21(1), 72.Publication50.000.000LICENSElicense.txtlicense.txttext/plain; charset=utf-814837https://bibliotecadigital.udea.edu.co/bitstreams/eee20164-ceef-453d-995e-23c2763c44fb/downloadb76e7a76e24cf2f94b3ce0ae5ed275d0MD53falseAnonymousREADORIGINALCorreaJessica_2025_PeptidosBioactivosChachafruto.pdfCorreaJessica_2025_PeptidosBioactivosChachafruto.pdfapplication/pdf8005710https://bibliotecadigital.udea.edu.co/bitstreams/4892f761-c08e-4f78-8e5e-266677bbc636/downloadeda9bd84ef28856cae93fe8f3c8d40a7MD54trueAnonymousREAD2027-06-11CC-LICENSElicense_rdflicense_rdfapplication/rdf+xml; charset=utf-81160https://bibliotecadigital.udea.edu.co/bitstreams/34903405-cdb1-4013-9ed2-2fa0900b43cf/download5643bfd9bcf29d560eeec56d584edaa9MD55falseAnonymousREADTEXTCorreaJessica_2025_PeptidosBioactivosChachafruto.pdf.txtCorreaJessica_2025_PeptidosBioactivosChachafruto.pdf.txtExtracted texttext/plain103080https://bibliotecadigital.udea.edu.co/bitstreams/f5efba3f-25ef-4bf8-a184-146d7364472a/download99e72a1a43b2739615cf0c0e4948a244MD56falseAnonymousREAD2027-06-11THUMBNAILCorreaJessica_2025_PeptidosBioactivosChachafruto.pdf.jpgCorreaJessica_2025_PeptidosBioactivosChachafruto.pdf.jpgGenerated Thumbnailimage/jpeg6786https://bibliotecadigital.udea.edu.co/bitstreams/2ba93c2c-6b19-4979-a6e6-73f892952903/download33f380f87cb81bf13f3577cf27d80ba9MD57falseAnonymousREAD2027-06-1110495/46332oai:bibliotecadigital.udea.edu.co:10495/463322025-06-12 04:01:04.11http://creativecommons.org/licenses/by-nc-sa/4.0/Attribution-NonCommercial-ShareAlike 4.0 Internationalembargo2027-06-11https://bibliotecadigital.udea.edu.coRepositorio Institucional de la Universidad de Antioquiaaplicacionbibliotecadigitalbiblioteca@udea.edu.coTEEgT0JSQSAoVEFMIFkgQ09NTyBTRSBERUZJTkUgTcOBUyBBREVMQU5URSkgU0UgT1RPUkdBIEJBSk8gTE9TIFRFUk1JTk9TIERFIEVTVEEgTElDRU5DSUEgUMOaQkxJQ0EgREUgQ1JFQVRJVkUgQ09NTU9OUyAo4oCcTFBDQ+KAnSBPIOKAnExJQ0VOQ0lB4oCdKS4gTEEgT0JSQSBFU1TDgSBQUk9URUdJREEgUE9SIERFUkVDSE9TIERFIEFVVE9SIFkvVSBPVFJBUyBMRVlFUyBBUExJQ0FCTEVTLiBRVUVEQSBQUk9ISUJJRE8gQ1VBTFFVSUVSIFVTTyBRVUUgU0UgSEFHQSBERSBMQSBPQlJBIFFVRSBOTyBDVUVOVEUgQ09OIExBIEFVVE9SSVpBQ0nDk04gUEVSVElORU5URSBERSBDT05GT1JNSURBRCBDT04gTE9TIFTDiVJNSU5PUyBERSBFU1RBIExJQ0VOQ0lBIFkgREUgTEEgTEVZIERFIERFUkVDSE8gREUgQVVUT1IuCgpNRURJQU5URSBFTCBFSkVSQ0lDSU8gREUgQ1VBTFFVSUVSQSBERSBMT1MgREVSRUNIT1MgUVVFIFNFIE9UT1JHQU4gRU4gRVNUQSBMSUNFTkNJQSwgVVNURUQgQUNFUFRBIFkgQUNVRVJEQSBRVUVEQVIgT0JMSUdBRE8gRU4gTE9TIFRFUk1JTk9TIFFVRSBTRSBTRcORQUxBTiBFTiBFTExBLiBFTCBMSUNFTkNJQU5URSBDT05DRURFIEEgVVNURUQgTE9TIERFUkVDSE9TIENPTlRFTklET1MgRU4gRVNUQSBMSUNFTkNJQSBDT05ESUNJT05BRE9TIEEgTEEgQUNFUFRBQ0nDk04gREUgU1VTIFRFUk1JTk9TIFkgQ09ORElDSU9ORVMuIAoKMS4gRGVmaW5pY2lvbmVzCmEuIE9icmEgQ29sZWN0aXZhIGVzIHVuYSBvYnJhLCB0YWwgY29tbyB1bmEgcHVibGljYWNpw7NuIHBlcmnDs2RpY2EsIHVuYSBhbnRvbG9nw61hLCBvIHVuYSBlbmNpY2xvcGVkaWEsIGVuIGxhIHF1ZSBsYSBvYnJhIGVuIHN1IHRvdGFsaWRhZCwgc2luIG1vZGlmaWNhY2nDs24gYWxndW5hLCBqdW50byBjb24gdW4gZ3J1cG8gZGUgb3RyYXMgY29udHJpYnVjaW9uZXMgcXVlIGNvbnN0aXR1eWVuIG9icmFzIHNlcGFyYWRhcyBlIGluZGVwZW5kaWVudGVzIGVuIHPDrSBtaXNtYXMsIHNlIGludGVncmFuIGVuIHVuIHRvZG8gY29sZWN0aXZvLiBVbmEgT2JyYSBxdWUgY29uc3RpdHV5ZSB1bmEgb2JyYSBjb2xlY3RpdmEgbm8gc2UgY29uc2lkZXJhcsOhIHVuYSBPYnJhIERlcml2YWRhIChjb21vIHNlIGRlZmluZSBhYmFqbykgcGFyYSBsb3MgcHJvcMOzc2l0b3MgZGUgZXN0YSBsaWNlbmNpYS4gYXF1ZWxsYSBwcm9kdWNpZGEgcG9yIHVuIGdydXBvIGRlIGF1dG9yZXMsIGVuIHF1ZSBsYSBPYnJhIHNlIGVuY3VlbnRyYSBzaW4gbW9kaWZpY2FjaW9uZXMsIGp1bnRvIGNvbiB1bmEgY2llcnRhIGNhbnRpZGFkIGRlIG90cmFzIGNvbnRyaWJ1Y2lvbmVzLCBxdWUgY29uc3RpdHV5ZW4gZW4gc8OtIG1pc21vcyB0cmFiYWpvcyBzZXBhcmFkb3MgZSBpbmRlcGVuZGllbnRlcywgcXVlIHNvbiBpbnRlZ3JhZG9zIGFsIHRvZG8gY29sZWN0aXZvLCB0YWxlcyBjb21vIHB1YmxpY2FjaW9uZXMgcGVyacOzZGljYXMsIGFudG9sb2fDrWFzIG8gZW5jaWNsb3BlZGlhcy4KYi4gT2JyYSBEZXJpdmFkYSBzaWduaWZpY2EgdW5hIG9icmEgYmFzYWRhIGVuIGxhIG9icmEgb2JqZXRvIGRlIGVzdGEgbGljZW5jaWEgbyBlbiDDqXN0YSB5IG90cmFzIG9icmFzIHByZWV4aXN0ZW50ZXMsIHRhbGVzIGNvbW8gdHJhZHVjY2lvbmVzLCBhcnJlZ2xvcyBtdXNpY2FsZXMsIGRyYW1hdGl6YWNpb25lcywg4oCcZmljY2lvbmFsaXphY2lvbmVz4oCdLCB2ZXJzaW9uZXMgcGFyYSBjaW5lLCDigJxncmFiYWNpb25lcyBkZSBzb25pZG/igJ0sIHJlcHJvZHVjY2lvbmVzIGRlIGFydGUsIHJlc8O6bWVuZXMsIGNvbmRlbnNhY2lvbmVzLCBvIGN1YWxxdWllciBvdHJhIGVuIGxhIHF1ZSBsYSBvYnJhIHB1ZWRhIHNlciB0cmFuc2Zvcm1hZGEsIGNhbWJpYWRhIG8gYWRhcHRhZGEsIGV4Y2VwdG8gYXF1ZWxsYXMgcXVlIGNvbnN0aXR1eWFuIHVuYSBvYnJhIGNvbGVjdGl2YSwgbGFzIHF1ZSBubyBzZXLDoW4gY29uc2lkZXJhZGFzIHVuYSBvYnJhIGRlcml2YWRhIHBhcmEgZWZlY3RvcyBkZSBlc3RhIGxpY2VuY2lhLiAoUGFyYSBldml0YXIgZHVkYXMsIGVuIGVsIGNhc28gZGUgcXVlIGxhIE9icmEgc2VhIHVuYSBjb21wb3NpY2nDs24gbXVzaWNhbCBvIHVuYSBncmFiYWNpw7NuIHNvbm9yYSwgcGFyYSBsb3MgZWZlY3RvcyBkZSBlc3RhIExpY2VuY2lhIGxhIHNpbmNyb25pemFjacOzbiB0ZW1wb3JhbCBkZSBsYSBPYnJhIGNvbiB1bmEgaW1hZ2VuIGVuIG1vdmltaWVudG8gc2UgY29uc2lkZXJhcsOhIHVuYSBPYnJhIERlcml2YWRhIHBhcmEgbG9zIGZpbmVzIGRlIGVzdGEgbGljZW5jaWEpLgpjLiBMaWNlbmNpYW50ZSwgZXMgZWwgaW5kaXZpZHVvIG8gbGEgZW50aWRhZCB0aXR1bGFyIGRlIGxvcyBkZXJlY2hvcyBkZSBhdXRvciBxdWUgb2ZyZWNlIGxhIE9icmEgZW4gY29uZm9ybWlkYWQgY29uIGxhcyBjb25kaWNpb25lcyBkZSBlc3RhIExpY2VuY2lhLgpkLiBBdXRvciBvcmlnaW5hbCwgZXMgZWwgaW5kaXZpZHVvIHF1ZSBjcmXDsyBsYSBPYnJhLgplLiBPYnJhLCBlcyBhcXVlbGxhIG9icmEgc3VzY2VwdGlibGUgZGUgcHJvdGVjY2nDs24gcG9yIGVsIHLDqWdpbWVuIGRlIERlcmVjaG8gZGUgQXV0b3IgeSBxdWUgZXMgb2ZyZWNpZGEgZW4gbG9zIHTDqXJtaW5vcyBkZSBlc3RhIGxpY2VuY2lhCmYuIFVzdGVkLCBlcyBlbCBpbmRpdmlkdW8gbyBsYSBlbnRpZGFkIHF1ZSBlamVyY2l0YSBsb3MgZGVyZWNob3Mgb3RvcmdhZG9zIGFsIGFtcGFybyBkZSBlc3RhIExpY2VuY2lhIHkgcXVlIGNvbiBhbnRlcmlvcmlkYWQgbm8gaGEgdmlvbGFkbyBsYXMgY29uZGljaW9uZXMgZGUgbGEgbWlzbWEgcmVzcGVjdG8gYSBsYSBPYnJhLCBvIHF1ZSBoYXlhIG9idGVuaWRvIGF1dG9yaXphY2nDs24gZXhwcmVzYSBwb3IgcGFydGUgZGVsIExpY2VuY2lhbnRlIHBhcmEgZWplcmNlciBsb3MgZGVyZWNob3MgYWwgYW1wYXJvIGRlIGVzdGEgTGljZW5jaWEgcGVzZSBhIHVuYSB2aW9sYWNpw7NuIGFudGVyaW9yLgoJICAKMi4gRGVyZWNob3MgZGUgVXNvcyBIb25yYWRvcyB5IGV4Y2VwY2lvbmVzIExlZ2FsZXMuCk5hZGEgZW4gZXN0YSBMaWNlbmNpYSBwb2Ryw6Egc2VyIGludGVycHJldGFkbyBjb21vIHVuYSBkaXNtaW51Y2nDs24sIGxpbWl0YWNpw7NuIG8gcmVzdHJpY2Npw7NuIGRlIGxvcyBkZXJlY2hvcyBkZXJpdmFkb3MgZGVsIHVzbyBob25yYWRvIHkgb3RyYXMgbGltaXRhY2lvbmVzIG8gZXhjZXBjaW9uZXMgYSBsb3MgZGVyZWNob3MgZGVsIGF1dG9yIGJham8gZWwgcsOpZ2ltZW4gbGVnYWwgdmlnZW50ZSBvIGRlcml2YWRvIGRlIGN1YWxxdWllciBvdHJhIG5vcm1hIHF1ZSBzZSBsZSBhcGxpcXVlLgogIAozLiBDb25jZXNpw7NuIGRlIGxhIExpY2VuY2lhLgpCYWpvIGxvcyB0w6lybWlub3MgeSBjb25kaWNpb25lcyBkZSBlc3RhIExpY2VuY2lhLCBlbCBMaWNlbmNpYW50ZSBvdG9yZ2EgYSBVc3RlZCB1bmEgbGljZW5jaWEgbXVuZGlhbCwgbGlicmUgZGUgcmVnYWzDrWFzLCBubyBleGNsdXNpdmEgeSBwZXJwZXR1YSAoZHVyYW50ZSB0b2RvIGVsIHBlcsOtb2RvIGRlIHZpZ2VuY2lhIGRlIGxvcyBkZXJlY2hvcyBkZSBhdXRvcikgcGFyYSBlamVyY2VyIGVzdG9zIGRlcmVjaG9zIHNvYnJlIGxhIE9icmEgdGFsIHkgY29tbyBzZSBpbmRpY2EgYSBjb250aW51YWNpw7NuOgphLiBSZXByb2R1Y2lyIGxhIE9icmEsIGluY29ycG9yYXIgbGEgT2JyYSBlbiB1bmEgbyBtw6FzIE9icmFzIENvbGVjdGl2YXMsIHkgcmVwcm9kdWNpciBsYSBPYnJhIGluY29ycG9yYWRhIGVuIGxhcyBPYnJhcyBDb2xlY3RpdmFzLgpiLiBEaXN0cmlidWlyIGNvcGlhcyBvIGZvbm9ncmFtYXMgZGUgbGFzIE9icmFzLCBleGhpYmlybGFzIHDDumJsaWNhbWVudGUsIGVqZWN1dGFybGFzIHDDumJsaWNhbWVudGUgeS9vIHBvbmVybGFzIGEgZGlzcG9zaWNpw7NuIHDDumJsaWNhLCBpbmNsdXnDqW5kb2xhcyBjb21vIGluY29ycG9yYWRhcyBlbiBPYnJhcyBDb2xlY3RpdmFzLCBzZWfDum4gY29ycmVzcG9uZGEuCmMuIERpc3RyaWJ1aXIgY29waWFzIGRlIGxhcyBPYnJhcyBEZXJpdmFkYXMgcXVlIHNlIGdlbmVyZW4sIGV4aGliaXJsYXMgcMO6YmxpY2FtZW50ZSwgZWplY3V0YXJsYXMgcMO6YmxpY2FtZW50ZSB5L28gcG9uZXJsYXMgYSBkaXNwb3NpY2nDs24gcMO6YmxpY2EuCgpMb3MgZGVyZWNob3MgbWVuY2lvbmFkb3MgYW50ZXJpb3JtZW50ZSBwdWVkZW4gc2VyIGVqZXJjaWRvcyBlbiB0b2RvcyBsb3MgbWVkaW9zIHkgZm9ybWF0b3MsIGFjdHVhbG1lbnRlIGNvbm9jaWRvcyBvIHF1ZSBzZSBpbnZlbnRlbiBlbiBlbCBmdXR1cm8uIExvcyBkZXJlY2hvcyBhbnRlcyBtZW5jaW9uYWRvcyBpbmNsdXllbiBlbCBkZXJlY2hvIGEgcmVhbGl6YXIgZGljaGFzIG1vZGlmaWNhY2lvbmVzIGVuIGxhIG1lZGlkYSBxdWUgc2VhbiB0w6ljbmljYW1lbnRlIG5lY2VzYXJpYXMgcGFyYSBlamVyY2VyIGxvcyBkZXJlY2hvcyBlbiBvdHJvIG1lZGlvIG8gZm9ybWF0b3MsIHBlcm8gZGUgb3RyYSBtYW5lcmEgdXN0ZWQgbm8gZXN0w6EgYXV0b3JpemFkbyBwYXJhIHJlYWxpemFyIG9icmFzIGRlcml2YWRhcy4gVG9kb3MgbG9zIGRlcmVjaG9zIG5vIG90b3JnYWRvcyBleHByZXNhbWVudGUgcG9yIGVsIExpY2VuY2lhbnRlIHF1ZWRhbiBwb3IgZXN0ZSBtZWRpbyByZXNlcnZhZG9zLCBpbmNsdXllbmRvIHBlcm8gc2luIGxpbWl0YXJzZSBhIGFxdWVsbG9zIHF1ZSBzZSBtZW5jaW9uYW4gZW4gbGFzIHNlY2Npb25lcyA0KGQpIHkgNChlKS4KICAgIAo0LiBSZXN0cmljY2lvbmVzLgpMYSBsaWNlbmNpYSBvdG9yZ2FkYSBlbiBsYSBhbnRlcmlvciBTZWNjacOzbiAzIGVzdMOhIGV4cHJlc2FtZW50ZSBzdWpldGEgeSBsaW1pdGFkYSBwb3IgbGFzIHNpZ3VpZW50ZXMgcmVzdHJpY2Npb25lczoKYS4gVXN0ZWQgcHVlZGUgZGlzdHJpYnVpciwgZXhoaWJpciBww7pibGljYW1lbnRlLCBlamVjdXRhciBww7pibGljYW1lbnRlLCBvIHBvbmVyIGEgZGlzcG9zaWNpw7NuIHDDumJsaWNhIGxhIE9icmEgc8OzbG8gYmFqbyBsYXMgY29uZGljaW9uZXMgZGUgZXN0YSBMaWNlbmNpYSwgeSBVc3RlZCBkZWJlIGluY2x1aXIgdW5hIGNvcGlhIGRlIGVzdGEgbGljZW5jaWEgbyBkZWwgSWRlbnRpZmljYWRvciBVbml2ZXJzYWwgZGUgUmVjdXJzb3MgZGUgbGEgbWlzbWEgY29uIGNhZGEgY29waWEgZGUgbGEgT2JyYSBxdWUgZGlzdHJpYnV5YSwgZXhoaWJhIHDDumJsaWNhbWVudGUsIGVqZWN1dGUgcMO6YmxpY2FtZW50ZSBvIHBvbmdhIGEgZGlzcG9zaWNpw7NuIHDDumJsaWNhLiBObyBlcyBwb3NpYmxlIG9mcmVjZXIgbyBpbXBvbmVyIG5pbmd1bmEgY29uZGljacOzbiBzb2JyZSBsYSBPYnJhIHF1ZSBhbHRlcmUgbyBsaW1pdGUgbGFzIGNvbmRpY2lvbmVzIGRlIGVzdGEgTGljZW5jaWEgbyBlbCBlamVyY2ljaW8gZGUgbG9zIGRlcmVjaG9zIGRlIGxvcyBkZXN0aW5hdGFyaW9zIG90b3JnYWRvcyBlbiBlc3RlIGRvY3VtZW50by4gTm8gZXMgcG9zaWJsZSBzdWJsaWNlbmNpYXIgbGEgT2JyYS4gVXN0ZWQgZGViZSBtYW50ZW5lciBpbnRhY3RvcyB0b2RvcyBsb3MgYXZpc29zIHF1ZSBoYWdhbiByZWZlcmVuY2lhIGEgZXN0YSBMaWNlbmNpYSB5IGEgbGEgY2zDoXVzdWxhIGRlIGxpbWl0YWNpw7NuIGRlIGdhcmFudMOtYXMuIFVzdGVkIG5vIHB1ZWRlIGRpc3RyaWJ1aXIsIGV4aGliaXIgcMO6YmxpY2FtZW50ZSwgZWplY3V0YXIgcMO6YmxpY2FtZW50ZSwgbyBwb25lciBhIGRpc3Bvc2ljacOzbiBww7pibGljYSBsYSBPYnJhIGNvbiBhbGd1bmEgbWVkaWRhIHRlY25vbMOzZ2ljYSBxdWUgY29udHJvbGUgZWwgYWNjZXNvIG8gbGEgdXRpbGl6YWNpw7NuIGRlIGVsbGEgZGUgdW5hIGZvcm1hIHF1ZSBzZWEgaW5jb25zaXN0ZW50ZSBjb24gbGFzIGNvbmRpY2lvbmVzIGRlIGVzdGEgTGljZW5jaWEuIExvIGFudGVyaW9yIHNlIGFwbGljYSBhIGxhIE9icmEgaW5jb3Jwb3JhZGEgYSB1bmEgT2JyYSBDb2xlY3RpdmEsIHBlcm8gZXN0byBubyBleGlnZSBxdWUgbGEgT2JyYSBDb2xlY3RpdmEgYXBhcnRlIGRlIGxhIG9icmEgbWlzbWEgcXVlZGUgc3VqZXRhIGEgbGFzIGNvbmRpY2lvbmVzIGRlIGVzdGEgTGljZW5jaWEuIFNpIFVzdGVkIGNyZWEgdW5hIE9icmEgQ29sZWN0aXZhLCBwcmV2aW8gYXZpc28gZGUgY3VhbHF1aWVyIExpY2VuY2lhbnRlIGRlYmUsIGVuIGxhIG1lZGlkYSBkZSBsbyBwb3NpYmxlLCBlbGltaW5hciBkZSBsYSBPYnJhIENvbGVjdGl2YSBjdWFscXVpZXIgcmVmZXJlbmNpYSBhIGRpY2hvIExpY2VuY2lhbnRlIG8gYWwgQXV0b3IgT3JpZ2luYWwsIHNlZ8O6biBsbyBzb2xpY2l0YWRvIHBvciBlbCBMaWNlbmNpYW50ZSB5IGNvbmZvcm1lIGxvIGV4aWdlIGxhIGNsw6F1c3VsYSA0KGMpLgpiLiBVc3RlZCBubyBwdWVkZSBlamVyY2VyIG5pbmd1bm8gZGUgbG9zIGRlcmVjaG9zIHF1ZSBsZSBoYW4gc2lkbyBvdG9yZ2Fkb3MgZW4gbGEgU2VjY2nDs24gMyBwcmVjZWRlbnRlIGRlIG1vZG8gcXVlIGVzdMOpbiBwcmluY2lwYWxtZW50ZSBkZXN0aW5hZG9zIG8gZGlyZWN0YW1lbnRlIGRpcmlnaWRvcyBhIGNvbnNlZ3VpciB1biBwcm92ZWNobyBjb21lcmNpYWwgbyB1bmEgY29tcGVuc2FjacOzbiBtb25ldGFyaWEgcHJpdmFkYS4gRWwgaW50ZXJjYW1iaW8gZGUgbGEgT2JyYSBwb3Igb3RyYXMgb2JyYXMgcHJvdGVnaWRhcyBwb3IgZGVyZWNob3MgZGUgYXV0b3IsIHlhIHNlYSBhIHRyYXbDqXMgZGUgdW4gc2lzdGVtYSBwYXJhIGNvbXBhcnRpciBhcmNoaXZvcyBkaWdpdGFsZXMgKGRpZ2l0YWwgZmlsZS1zaGFyaW5nKSBvIGRlIGN1YWxxdWllciBvdHJhIG1hbmVyYSBubyBzZXLDoSBjb25zaWRlcmFkbyBjb21vIGVzdGFyIGRlc3RpbmFkbyBwcmluY2lwYWxtZW50ZSBvIGRpcmlnaWRvIGRpcmVjdGFtZW50ZSBhIGNvbnNlZ3VpciB1biBwcm92ZWNobyBjb21lcmNpYWwgbyB1bmEgY29tcGVuc2FjacOzbiBtb25ldGFyaWEgcHJpdmFkYSwgc2llbXByZSBxdWUgbm8gc2UgcmVhbGljZSB1biBwYWdvIG1lZGlhbnRlIHVuYSBjb21wZW5zYWNpw7NuIG1vbmV0YXJpYSBlbiByZWxhY2nDs24gY29uIGVsIGludGVyY2FtYmlvIGRlIG9icmFzIHByb3RlZ2lkYXMgcG9yIGVsIGRlcmVjaG8gZGUgYXV0b3IuCmMuIFNpIHVzdGVkIGRpc3RyaWJ1eWUsIGV4aGliZSBww7pibGljYW1lbnRlLCBlamVjdXRhIHDDumJsaWNhbWVudGUgbyBlamVjdXRhIHDDumJsaWNhbWVudGUgZW4gZm9ybWEgZGlnaXRhbCBsYSBPYnJhIG8gY3VhbHF1aWVyIE9icmEgRGVyaXZhZGEgdSBPYnJhIENvbGVjdGl2YSwgVXN0ZWQgZGViZSBtYW50ZW5lciBpbnRhY3RhIHRvZGEgbGEgaW5mb3JtYWNpw7NuIGRlIGRlcmVjaG8gZGUgYXV0b3IgZGUgbGEgT2JyYSB5IHByb3BvcmNpb25hciwgZGUgZm9ybWEgcmF6b25hYmxlIHNlZ8O6biBlbCBtZWRpbyBvIG1hbmVyYSBxdWUgVXN0ZWQgZXN0w6kgdXRpbGl6YW5kbzogKGkpIGVsIG5vbWJyZSBkZWwgQXV0b3IgT3JpZ2luYWwgc2kgZXN0w6EgcHJvdmlzdG8gKG8gc2V1ZMOzbmltbywgc2kgZnVlcmUgYXBsaWNhYmxlKSwgeS9vIChpaSkgZWwgbm9tYnJlIGRlIGxhIHBhcnRlIG8gbGFzIHBhcnRlcyBxdWUgZWwgQXV0b3IgT3JpZ2luYWwgeS9vIGVsIExpY2VuY2lhbnRlIGh1YmllcmVuIGRlc2lnbmFkbyBwYXJhIGxhIGF0cmlidWNpw7NuICh2LmcuLCB1biBpbnN0aXR1dG8gcGF0cm9jaW5hZG9yLCBlZGl0b3JpYWwsIHB1YmxpY2FjacOzbikgZW4gbGEgaW5mb3JtYWNpw7NuIGRlIGxvcyBkZXJlY2hvcyBkZSBhdXRvciBkZWwgTGljZW5jaWFudGUsIHTDqXJtaW5vcyBkZSBzZXJ2aWNpb3MgbyBkZSBvdHJhcyBmb3JtYXMgcmF6b25hYmxlczsgZWwgdMOtdHVsbyBkZSBsYSBPYnJhIHNpIGVzdMOhIHByb3Zpc3RvOyBlbiBsYSBtZWRpZGEgZGUgbG8gcmF6b25hYmxlbWVudGUgZmFjdGlibGUgeSwgc2kgZXN0w6EgcHJvdmlzdG8sIGVsIElkZW50aWZpY2Fkb3IgVW5pZm9ybWUgZGUgUmVjdXJzb3MgKFVuaWZvcm0gUmVzb3VyY2UgSWRlbnRpZmllcikgcXVlIGVsIExpY2VuY2lhbnRlIGVzcGVjaWZpY2EgcGFyYSBzZXIgYXNvY2lhZG8gY29uIGxhIE9icmEsIHNhbHZvIHF1ZSB0YWwgVVJJIG5vIHNlIHJlZmllcmEgYSBsYSBub3RhIHNvYnJlIGxvcyBkZXJlY2hvcyBkZSBhdXRvciBvIGEgbGEgaW5mb3JtYWNpw7NuIHNvYnJlIGVsIGxpY2VuY2lhbWllbnRvIGRlIGxhIE9icmE7IHkgZW4gZWwgY2FzbyBkZSB1bmEgT2JyYSBEZXJpdmFkYSwgYXRyaWJ1aXIgZWwgY3LDqWRpdG8gaWRlbnRpZmljYW5kbyBlbCB1c28gZGUgbGEgT2JyYSBlbiBsYSBPYnJhIERlcml2YWRhICh2LmcuLCAiVHJhZHVjY2nDs24gRnJhbmNlc2EgZGUgbGEgT2JyYSBkZWwgQXV0b3IgT3JpZ2luYWwsIiBvICJHdWnDs24gQ2luZW1hdG9ncsOhZmljbyBiYXNhZG8gZW4gbGEgT2JyYSBvcmlnaW5hbCBkZWwgQXV0b3IgT3JpZ2luYWwiKS4gVGFsIGNyw6lkaXRvIHB1ZWRlIHNlciBpbXBsZW1lbnRhZG8gZGUgY3VhbHF1aWVyIGZvcm1hIHJhem9uYWJsZTsgZW4gZWwgY2Fzbywgc2luIGVtYmFyZ28sIGRlIE9icmFzIERlcml2YWRhcyB1IE9icmFzIENvbGVjdGl2YXMsIHRhbCBjcsOpZGl0byBhcGFyZWNlcsOhLCBjb21vIG3DrW5pbW8sIGRvbmRlIGFwYXJlY2UgZWwgY3LDqWRpdG8gZGUgY3VhbHF1aWVyIG90cm8gYXV0b3IgY29tcGFyYWJsZSB5IGRlIHVuYSBtYW5lcmEsIGFsIG1lbm9zLCB0YW4gZGVzdGFjYWRhIGNvbW8gZWwgY3LDqWRpdG8gZGUgb3RybyBhdXRvciBjb21wYXJhYmxlLiAgCmQuIFBhcmEgZXZpdGFyIHRvZGEgY29uZnVzacOzbiwgZWwgTGljZW5jaWFudGUgYWNsYXJhIHF1ZSwgY3VhbmRvIGxhIG9icmEgZXMgdW5hIGNvbXBvc2ljacOzbiBtdXNpY2FsOgoKaS4gUmVnYWzDrWFzIHBvciBpbnRlcnByZXRhY2nDs24geSBlamVjdWNpw7NuIGJham8gbGljZW5jaWFzIGdlbmVyYWxlcy4gRWwgTGljZW5jaWFudGUgc2UgcmVzZXJ2YSBlbCBkZXJlY2hvIGV4Y2x1c2l2byBkZSBhdXRvcml6YXIgbGEgZWplY3VjacOzbiBww7pibGljYSBvIGxhIGVqZWN1Y2nDs24gcMO6YmxpY2EgZGlnaXRhbCBkZSBsYSBvYnJhIHkgZGUgcmVjb2xlY3Rhciwgc2VhIGluZGl2aWR1YWxtZW50ZSBvIGEgdHJhdsOpcyBkZSB1bmEgc29jaWVkYWQgZGUgZ2VzdGnDs24gY29sZWN0aXZhIGRlIGRlcmVjaG9zIGRlIGF1dG9yIHkgZGVyZWNob3MgY29uZXhvcyAocG9yIGVqZW1wbG8sIFNBWUNPKSwgbGFzIHJlZ2Fsw61hcyBwb3IgbGEgZWplY3VjacOzbiBww7pibGljYSBvIHBvciBsYSBlamVjdWNpw7NuIHDDumJsaWNhIGRpZ2l0YWwgZGUgbGEgb2JyYSAocG9yIGVqZW1wbG8gV2ViY2FzdCkgbGljZW5jaWFkYSBiYWpvIGxpY2VuY2lhcyBnZW5lcmFsZXMsIHNpIGxhIGludGVycHJldGFjacOzbiBvIGVqZWN1Y2nDs24gZGUgbGEgb2JyYSBlc3TDoSBwcmltb3JkaWFsbWVudGUgb3JpZW50YWRhIHBvciBvIGRpcmlnaWRhIGEgbGEgb2J0ZW5jacOzbiBkZSB1bmEgdmVudGFqYSBjb21lcmNpYWwgbyB1bmEgY29tcGVuc2FjacOzbiBtb25ldGFyaWEgcHJpdmFkYS4KaWkuIFJlZ2Fsw61hcyBwb3IgRm9ub2dyYW1hcy4gRWwgTGljZW5jaWFudGUgc2UgcmVzZXJ2YSBlbCBkZXJlY2hvIGV4Y2x1c2l2byBkZSByZWNvbGVjdGFyLCBpbmRpdmlkdWFsbWVudGUgbyBhIHRyYXbDqXMgZGUgdW5hIHNvY2llZGFkIGRlIGdlc3Rpw7NuIGNvbGVjdGl2YSBkZSBkZXJlY2hvcyBkZSBhdXRvciB5IGRlcmVjaG9zIGNvbmV4b3MgKHBvciBlamVtcGxvLCBsb3MgY29uc2FncmFkb3MgcG9yIGxhIFNBWUNPKSwgdW5hIGFnZW5jaWEgZGUgZGVyZWNob3MgbXVzaWNhbGVzIG8gYWxnw7puIGFnZW50ZSBkZXNpZ25hZG8sIGxhcyByZWdhbMOtYXMgcG9yIGN1YWxxdWllciBmb25vZ3JhbWEgcXVlIFVzdGVkIGNyZWUgYSBwYXJ0aXIgZGUgbGEgb2JyYSAo4oCcdmVyc2nDs24gY292ZXLigJ0pIHkgZGlzdHJpYnV5YSwgZW4gbG9zIHTDqXJtaW5vcyBkZWwgcsOpZ2ltZW4gZGUgZGVyZWNob3MgZGUgYXV0b3IsIHNpIGxhIGNyZWFjacOzbiBvIGRpc3RyaWJ1Y2nDs24gZGUgZXNhIHZlcnNpw7NuIGNvdmVyIGVzdMOhIHByaW1vcmRpYWxtZW50ZSBkZXN0aW5hZGEgbyBkaXJpZ2lkYSBhIG9idGVuZXIgdW5hIHZlbnRhamEgY29tZXJjaWFsIG8gdW5hIGNvbXBlbnNhY2nDs24gbW9uZXRhcmlhIHByaXZhZGEuCiAgICAgIAplLiBHZXN0acOzbiBkZSBEZXJlY2hvcyBkZSBBdXRvciBzb2JyZSBJbnRlcnByZXRhY2lvbmVzIHkgRWplY3VjaW9uZXMgRGlnaXRhbGVzIChXZWJDYXN0aW5nKS4gUGFyYSBldml0YXIgdG9kYSBjb25mdXNpw7NuLCBlbCBMaWNlbmNpYW50ZSBhY2xhcmEgcXVlLCBjdWFuZG8gbGEgb2JyYSBzZWEgdW4gZm9ub2dyYW1hLCBlbCBMaWNlbmNpYW50ZSBzZSByZXNlcnZhIGVsIGRlcmVjaG8gZXhjbHVzaXZvIGRlIGF1dG9yaXphciBsYSBlamVjdWNpw7NuIHDDumJsaWNhIGRpZ2l0YWwgZGUgbGEgb2JyYSAocG9yIGVqZW1wbG8sIHdlYmNhc3QpIHkgZGUgcmVjb2xlY3RhciwgaW5kaXZpZHVhbG1lbnRlIG8gYSB0cmF2w6lzIGRlIHVuYSBzb2NpZWRhZCBkZSBnZXN0acOzbiBjb2xlY3RpdmEgZGUgZGVyZWNob3MgZGUgYXV0b3IgeSBkZXJlY2hvcyBjb25leG9zIChwb3IgZWplbXBsbywgQUNJTlBSTyksIGxhcyByZWdhbMOtYXMgcG9yIGxhIGVqZWN1Y2nDs24gcMO6YmxpY2EgZGlnaXRhbCBkZSBsYSBvYnJhIChwb3IgZWplbXBsbywgd2ViY2FzdCksIHN1amV0YSBhIGxhcyBkaXNwb3NpY2lvbmVzIGFwbGljYWJsZXMgZGVsIHLDqWdpbWVuIGRlIERlcmVjaG8gZGUgQXV0b3IsIHNpIGVzdGEgZWplY3VjacOzbiBww7pibGljYSBkaWdpdGFsIGVzdMOhIHByaW1vcmRpYWxtZW50ZSBkaXJpZ2lkYSBhIG9idGVuZXIgdW5hIHZlbnRhamEgY29tZXJjaWFsIG8gdW5hIGNvbXBlbnNhY2nDs24gbW9uZXRhcmlhIHByaXZhZGEuCiAgCjUuIFJlcHJlc2VudGFjaW9uZXMsIEdhcmFudMOtYXMgeSBMaW1pdGFjaW9uZXMgZGUgUmVzcG9uc2FiaWxpZGFkLgpBIE1FTk9TIFFVRSBMQVMgUEFSVEVTIExPIEFDT1JEQVJBTiBERSBPVFJBIEZPUk1BIFBPUiBFU0NSSVRPLCBFTCBMSUNFTkNJQU5URSBPRlJFQ0UgTEEgT0JSQSAoRU4gRUwgRVNUQURPIEVOIEVMIFFVRSBTRSBFTkNVRU5UUkEpIOKAnFRBTCBDVUFM4oCdLCBTSU4gQlJJTkRBUiBHQVJBTlTDjUFTIERFIENMQVNFIEFMR1VOQSBSRVNQRUNUTyBERSBMQSBPQlJBLCBZQSBTRUEgRVhQUkVTQSwgSU1QTMONQ0lUQSwgTEVHQUwgTyBDVUFMUVVJRVJBIE9UUkEsIElOQ0xVWUVORE8sIFNJTiBMSU1JVEFSU0UgQSBFTExBUywgR0FSQU5Uw41BUyBERSBUSVRVTEFSSURBRCwgQ09NRVJDSUFCSUxJREFELCBBREFQVEFCSUxJREFEIE8gQURFQ1VBQ0nDk04gQSBQUk9Qw5NTSVRPIERFVEVSTUlOQURPLCBBVVNFTkNJQSBERSBJTkZSQUNDScOTTiwgREUgQVVTRU5DSUEgREUgREVGRUNUT1MgTEFURU5URVMgTyBERSBPVFJPIFRJUE8sIE8gTEEgUFJFU0VOQ0lBIE8gQVVTRU5DSUEgREUgRVJST1JFUywgU0VBTiBPIE5PIERFU0NVQlJJQkxFUyAoUFVFREFOIE8gTk8gU0VSIEVTVE9TIERFU0NVQklFUlRPUykuIEFMR1VOQVMgSlVSSVNESUNDSU9ORVMgTk8gUEVSTUlURU4gTEEgRVhDTFVTScOTTiBERSBHQVJBTlTDjUFTIElNUEzDjUNJVEFTLCBFTiBDVVlPIENBU08gRVNUQSBFWENMVVNJw5NOIFBVRURFIE5PIEFQTElDQVJTRSBBIFVTVEVELgogIAo2LiBMaW1pdGFjacOzbiBkZSByZXNwb25zYWJpbGlkYWQuCkEgTUVOT1MgUVVFIExPIEVYSUpBIEVYUFJFU0FNRU5URSBMQSBMRVkgQVBMSUNBQkxFLCBFTCBMSUNFTkNJQU5URSBOTyBTRVLDgSBSRVNQT05TQUJMRSBBTlRFIFVTVEVEIFBPUiBEQcORTyBBTEdVTk8sIFNFQSBQT1IgUkVTUE9OU0FCSUxJREFEIEVYVFJBQ09OVFJBQ1RVQUwsIFBSRUNPTlRSQUNUVUFMIE8gQ09OVFJBQ1RVQUwsIE9CSkVUSVZBIE8gU1VCSkVUSVZBLCBTRSBUUkFURSBERSBEQcORT1MgTU9SQUxFUyBPIFBBVFJJTU9OSUFMRVMsIERJUkVDVE9TIE8gSU5ESVJFQ1RPUywgUFJFVklTVE9TIE8gSU1QUkVWSVNUT1MgUFJPRFVDSURPUyBQT1IgRUwgVVNPIERFIEVTVEEgTElDRU5DSUEgTyBERSBMQSBPQlJBLCBBVU4gQ1VBTkRPIEVMIExJQ0VOQ0lBTlRFIEhBWUEgU0lETyBBRFZFUlRJRE8gREUgTEEgUE9TSUJJTElEQUQgREUgRElDSE9TIERBw5FPUy4gQUxHVU5BUyBMRVlFUyBOTyBQRVJNSVRFTiBMQSBFWENMVVNJw5NOIERFIENJRVJUQSBSRVNQT05TQUJJTElEQUQsIEVOIENVWU8gQ0FTTyBFU1RBIEVYQ0xVU0nDk04gUFVFREUgTk8gQVBMSUNBUlNFIEEgVVNURUQuCiAgCjcuIFTDqXJtaW5vLgkKYS4gRXN0YSBMaWNlbmNpYSB5IGxvcyBkZXJlY2hvcyBvdG9yZ2Fkb3MgZW4gdmlydHVkIGRlIGVsbGEgdGVybWluYXLDoW4gYXV0b23DoXRpY2FtZW50ZSBzaSBVc3RlZCBpbmZyaW5nZSBhbGd1bmEgY29uZGljacOzbiBlc3RhYmxlY2lkYSBlbiBlbGxhLiBTaW4gZW1iYXJnbywgbG9zIGluZGl2aWR1b3MgbyBlbnRpZGFkZXMgcXVlIGhhbiByZWNpYmlkbyBPYnJhcyBEZXJpdmFkYXMgbyBDb2xlY3RpdmFzIGRlIFVzdGVkIGRlIGNvbmZvcm1pZGFkIGNvbiBlc3RhIExpY2VuY2lhLCBubyB2ZXLDoW4gdGVybWluYWRhcyBzdXMgbGljZW5jaWFzLCBzaWVtcHJlIHF1ZSBlc3RvcyBpbmRpdmlkdW9zIG8gZW50aWRhZGVzIHNpZ2FuIGN1bXBsaWVuZG8gw61udGVncmFtZW50ZSBsYXMgY29uZGljaW9uZXMgZGUgZXN0YXMgbGljZW5jaWFzLiBMYXMgU2VjY2lvbmVzIDEsIDIsIDUsIDYsIDcsIHkgOCBzdWJzaXN0aXLDoW4gYSBjdWFscXVpZXIgdGVybWluYWNpw7NuIGRlIGVzdGEgTGljZW5jaWEuCmIuIFN1amV0YSBhIGxhcyBjb25kaWNpb25lcyB5IHTDqXJtaW5vcyBhbnRlcmlvcmVzLCBsYSBsaWNlbmNpYSBvdG9yZ2FkYSBhcXXDrSBlcyBwZXJwZXR1YSAoZHVyYW50ZSBlbCBwZXLDrW9kbyBkZSB2aWdlbmNpYSBkZSBsb3MgZGVyZWNob3MgZGUgYXV0b3IgZGUgbGEgb2JyYSkuIE5vIG9ic3RhbnRlIGxvIGFudGVyaW9yLCBlbCBMaWNlbmNpYW50ZSBzZSByZXNlcnZhIGVsIGRlcmVjaG8gYSBwdWJsaWNhciB5L28gZXN0cmVuYXIgbGEgT2JyYSBiYWpvIGNvbmRpY2lvbmVzIGRlIGxpY2VuY2lhIGRpZmVyZW50ZXMgbyBhIGRlamFyIGRlIGRpc3RyaWJ1aXJsYSBlbiBsb3MgdMOpcm1pbm9zIGRlIGVzdGEgTGljZW5jaWEgZW4gY3VhbHF1aWVyIG1vbWVudG87IGVuIGVsIGVudGVuZGlkbywgc2luIGVtYmFyZ28sIHF1ZSBlc2EgZWxlY2Npw7NuIG5vIHNlcnZpcsOhIHBhcmEgcmV2b2NhciBlc3RhIGxpY2VuY2lhIG8gcXVlIGRlYmEgc2VyIG90b3JnYWRhICwgYmFqbyBsb3MgdMOpcm1pbm9zIGRlIGVzdGEgbGljZW5jaWEpLCB5IGVzdGEgbGljZW5jaWEgY29udGludWFyw6EgZW4gcGxlbm8gdmlnb3IgeSBlZmVjdG8gYSBtZW5vcyBxdWUgc2VhIHRlcm1pbmFkYSBjb21vIHNlIGV4cHJlc2EgYXRyw6FzLiBMYSBMaWNlbmNpYSByZXZvY2FkYSBjb250aW51YXLDoSBzaWVuZG8gcGxlbmFtZW50ZSB2aWdlbnRlIHkgZWZlY3RpdmEgc2kgbm8gc2UgbGUgZGEgdMOpcm1pbm8gZW4gbGFzIGNvbmRpY2lvbmVzIGluZGljYWRhcyBhbnRlcmlvcm1lbnRlLgogIAo4LiBWYXJpb3MuCmEuIENhZGEgdmV6IHF1ZSBVc3RlZCBkaXN0cmlidXlhIG8gcG9uZ2EgYSBkaXNwb3NpY2nDs24gcMO6YmxpY2EgbGEgT2JyYSBvIHVuYSBPYnJhIENvbGVjdGl2YSwgZWwgTGljZW5jaWFudGUgb2ZyZWNlcsOhIGFsIGRlc3RpbmF0YXJpbyB1bmEgbGljZW5jaWEgZW4gbG9zIG1pc21vcyB0w6lybWlub3MgeSBjb25kaWNpb25lcyBxdWUgbGEgbGljZW5jaWEgb3RvcmdhZGEgYSBVc3RlZCBiYWpvIGVzdGEgTGljZW5jaWEuCmIuIFNpIGFsZ3VuYSBkaXNwb3NpY2nDs24gZGUgZXN0YSBMaWNlbmNpYSByZXN1bHRhIGludmFsaWRhZGEgbyBubyBleGlnaWJsZSwgc2Vnw7puIGxhIGxlZ2lzbGFjacOzbiB2aWdlbnRlLCBlc3RvIG5vIGFmZWN0YXLDoSBuaSBsYSB2YWxpZGV6IG5pIGxhIGFwbGljYWJpbGlkYWQgZGVsIHJlc3RvIGRlIGNvbmRpY2lvbmVzIGRlIGVzdGEgTGljZW5jaWEgeSwgc2luIGFjY2nDs24gYWRpY2lvbmFsIHBvciBwYXJ0ZSBkZSBsb3Mgc3VqZXRvcyBkZSBlc3RlIGFjdWVyZG8sIGFxdcOpbGxhIHNlIGVudGVuZGVyw6EgcmVmb3JtYWRhIGxvIG3DrW5pbW8gbmVjZXNhcmlvIHBhcmEgaGFjZXIgcXVlIGRpY2hhIGRpc3Bvc2ljacOzbiBzZWEgdsOhbGlkYSB5IGV4aWdpYmxlLgpjLiBOaW5nw7puIHTDqXJtaW5vIG8gZGlzcG9zaWNpw7NuIGRlIGVzdGEgTGljZW5jaWEgc2UgZXN0aW1hcsOhIHJlbnVuY2lhZGEgeSBuaW5ndW5hIHZpb2xhY2nDs24gZGUgZWxsYSBzZXLDoSBjb25zZW50aWRhIGEgbWVub3MgcXVlIGVzYSByZW51bmNpYSBvIGNvbnNlbnRpbWllbnRvIHNlYSBvdG9yZ2FkbyBwb3IgZXNjcml0byB5IGZpcm1hZG8gcG9yIGxhIHBhcnRlIHF1ZSByZW51bmNpZSBvIGNvbnNpZW50YS4KZC4gRXN0YSBMaWNlbmNpYSByZWZsZWphIGVsIGFjdWVyZG8gcGxlbm8gZW50cmUgbGFzIHBhcnRlcyByZXNwZWN0byBhIGxhIE9icmEgYXF1w60gbGljZW5jaWFkYS4gTm8gaGF5IGFycmVnbG9zLCBhY3VlcmRvcyBvIGRlY2xhcmFjaW9uZXMgcmVzcGVjdG8gYSBsYSBPYnJhIHF1ZSBubyBlc3TDqW4gZXNwZWNpZmljYWRvcyBlbiBlc3RlIGRvY3VtZW50by4gRWwgTGljZW5jaWFudGUgbm8gc2UgdmVyw6EgbGltaXRhZG8gcG9yIG5pbmd1bmEgZGlzcG9zaWNpw7NuIGFkaWNpb25hbCBxdWUgcHVlZGEgc3VyZ2lyIGVuIGFsZ3VuYSBjb211bmljYWNpw7NuIGVtYW5hZGEgZGUgVXN0ZWQuIEVzdGEgTGljZW5jaWEgbm8gcHVlZGUgc2VyIG1vZGlmaWNhZGEgc2luIGVsIGNvbnNlbnRpbWllbnRvIG11dHVvIHBvciBlc2NyaXRvIGRlbCBMaWNlbmNpYW50ZSB5IFVzdGVkLgo=