Condiciones meteorológicas que favorecen la ocurrencia de incendios en Suramérica Tropical

Los incendios tienen un impacto significativo en los ecosistemas terrestres, generando efectos ecológicos, económicos y socioambientales. Su actividad está influenciada por factores biofísicos como el clima y la meteorología, cuya relevancia varía regionalmente. A pesar de numerosas investigaciones...

Full description

Autores:
Acevedo Ortiz, Marley Yurani
Tipo de recurso:
Fecha de publicación:
2025
Institución:
Universidad de Antioquia
Repositorio:
Repositorio UdeA
Idioma:
spa
OAI Identifier:
oai:bibliotecadigital.udea.edu.co:10495/48486
Acceso en línea:
https://hdl.handle.net/10495/48486
Palabra clave:
MODIS (Spectroradiometer)
Incendios forestales
Forest fires
Meteorología
Meteorology
Prevención de incendios
Fire prevention
Grupo Intergubernamental de Expertos sobre el Cambio Climático (IPCC)
http://id.loc.gov/authorities/subjects/sh2007004873
ODS 13: Acción por el Clima. Adoptar medidas urgentes para combatir el cambio climático y sus efectos
Rights
openAccess
License
http://purl.org/coar/access_right/c_abf2
id UDEA2_1358364f9c2963ada658a73ae98c7bb7
oai_identifier_str oai:bibliotecadigital.udea.edu.co:10495/48486
network_acronym_str UDEA2
network_name_str Repositorio UdeA
repository_id_str
dc.title.spa.fl_str_mv Condiciones meteorológicas que favorecen la ocurrencia de incendios en Suramérica Tropical
title Condiciones meteorológicas que favorecen la ocurrencia de incendios en Suramérica Tropical
spellingShingle Condiciones meteorológicas que favorecen la ocurrencia de incendios en Suramérica Tropical
MODIS (Spectroradiometer)
Incendios forestales
Forest fires
Meteorología
Meteorology
Prevención de incendios
Fire prevention
Grupo Intergubernamental de Expertos sobre el Cambio Climático (IPCC)
http://id.loc.gov/authorities/subjects/sh2007004873
ODS 13: Acción por el Clima. Adoptar medidas urgentes para combatir el cambio climático y sus efectos
title_short Condiciones meteorológicas que favorecen la ocurrencia de incendios en Suramérica Tropical
title_full Condiciones meteorológicas que favorecen la ocurrencia de incendios en Suramérica Tropical
title_fullStr Condiciones meteorológicas que favorecen la ocurrencia de incendios en Suramérica Tropical
title_full_unstemmed Condiciones meteorológicas que favorecen la ocurrencia de incendios en Suramérica Tropical
title_sort Condiciones meteorológicas que favorecen la ocurrencia de incendios en Suramérica Tropical
dc.creator.fl_str_mv Acevedo Ortiz, Marley Yurani
dc.contributor.advisor.none.fl_str_mv Arias Gómez, Paola Andrea
Villa Garzón, Fernán Alonso
dc.contributor.author.none.fl_str_mv Acevedo Ortiz, Marley Yurani
dc.contributor.researchgroup.none.fl_str_mv Grupo de Ingeniería y Gestión Ambiental (GIGA)
dc.contributor.jury.none.fl_str_mv Gutiérrez Vélez, Víctor Hugo
Durán Quesada, Ana María
dc.subject.lcsh.none.fl_str_mv MODIS (Spectroradiometer)
topic MODIS (Spectroradiometer)
Incendios forestales
Forest fires
Meteorología
Meteorology
Prevención de incendios
Fire prevention
Grupo Intergubernamental de Expertos sobre el Cambio Climático (IPCC)
http://id.loc.gov/authorities/subjects/sh2007004873
ODS 13: Acción por el Clima. Adoptar medidas urgentes para combatir el cambio climático y sus efectos
dc.subject.lemb.none.fl_str_mv Incendios forestales
Forest fires
Meteorología
Meteorology
Prevención de incendios
Fire prevention
dc.subject.proposal.spa.fl_str_mv Grupo Intergubernamental de Expertos sobre el Cambio Climático (IPCC)
dc.subject.lcshuri.none.fl_str_mv http://id.loc.gov/authorities/subjects/sh2007004873
dc.subject.ods.none.fl_str_mv ODS 13: Acción por el Clima. Adoptar medidas urgentes para combatir el cambio climático y sus efectos
description Los incendios tienen un impacto significativo en los ecosistemas terrestres, generando efectos ecológicos, económicos y socioambientales. Su actividad está influenciada por factores biofísicos como el clima y la meteorología, cuya relevancia varía regionalmente. A pesar de numerosas investigaciones globales, existe un vacío en la literatura sobre la relación entre incendios y meteorología a escala regional, especialmente en el contexto del cambio climático, según el Sexto Informe de Evaluación del Panel Intergubernamental sobre Cambio Climático (IPCC por sus iniciales en inglés). En Suramérica, el uso de datos satelitales y análisis espaciales es limitado en comparación con otras regiones, lo que crea una brecha de conocimiento en estas temáticas. Este Trabajo de Investigación busca describir el comportamiento espacial y temporal de los incendios en Suramérica Tropical entre 2002 y 2022, identificar las condiciones meteorológicas asociadas a los incendios en las regiones noroeste de Suramérica (NWS), norte de Suramérica (NSA) y Orinoquía, y estimar un índice meteorológico de peligro de incendio según las coberturas de suelo en el norte y sur de la Orinoquía para los cuatro años con mayor actividad de incendios (2003, 2007, 2019 y 2020). Para ello, se utilizaron datos satelitales de MODIS y CHIRPS, así como el reanálisis ERA5-Land. Nuestros hallazgos muestran un ciclo bimodal en la actividad de incendios en NWS y NSA, con el 84.3% de los incendios registrados en NSA, principalmente en marzo sobre el noroeste (NSA1) y en agosto sobre el sureste (NSA4) de la región, así como en el norte de NWS (NWS1) en febrero y en el sur (NWS2) en septiembre. Las condiciones cálidas y secas, en conjunto con una baja humedad relativa y una alta velocidad del viento, aumentan la susceptibilidad al fuego. En la Orinoquía, en particular, el peligro de incendio es "Muy Alto" en los meses de febrero y marzo, disminuyendo en abril. Estos patrones pueden guiar estrategias de gestión del fuego, mitigando sus impactos.
publishDate 2025
dc.date.accessioned.none.fl_str_mv 2025-12-01T18:50:41Z
dc.date.issued.none.fl_str_mv 2025
dc.type.none.fl_str_mv Trabajo de grado - Maestría
dc.type.redcol.none.fl_str_mv http://purl.org/redcol/resource_type/TM
dc.type.content.none.fl_str_mv Text
dc.type.coarversion.none.fl_str_mv http://purl.org/coar/version/c_b1a7d7d4d402bcce
dc.type.driver.none.fl_str_mv info:eu-repo/semantics/masterThesis
dc.type.version.none.fl_str_mv info:eu-repo/semantics/draft
status_str draft
dc.identifier.citation.none.fl_str_mv M. Y. Acevedo-Ortiz, “Condiciones meteorológicas que favorecen la ocurrencia de incendios en Suramérica Tropical”, Tesis de maestría, Maestría en Gestión Ambiental, Universidad de Antioquia, Medellín, Antioquia, Colombia, 2025.
dc.identifier.uri.none.fl_str_mv https://hdl.handle.net/10495/48486
identifier_str_mv M. Y. Acevedo-Ortiz, “Condiciones meteorológicas que favorecen la ocurrencia de incendios en Suramérica Tropical”, Tesis de maestría, Maestría en Gestión Ambiental, Universidad de Antioquia, Medellín, Antioquia, Colombia, 2025.
url https://hdl.handle.net/10495/48486
dc.language.iso.none.fl_str_mv spa
language spa
dc.relation.references.none.fl_str_mv Abram, N.J., Henley, B.J., Sen Gupta, A., Lippmann, T.J.R., Clarke, H., Dowdy, A.J., Sharples, J.J., Nolan, R.H., Zhang, T., Wooster, M.J., Wurtzel, J.B., Meissner, K.J., Pitman, A.J., Ukkola, A.M., Murphy, B.P., Tapper, N.J., Boer, M.M., 2021. Connections of climate change and variability to large and extreme forest fires in southeast Australia. Commun. Earth Environ. 2, 1–17. https://doi.org/10.1038/s43247-020-00065-8
Alvares, C., Cegatta, Í., Vieira, L.A., Pavani, R., Mattos, E.M., Sentelhas, P., Stape, J., Soares, R.V., 2014. Forest fire danger: application of Monte Alegre Formula and assessment of the historic for Piracicaba, SP. Sci. For.
Anaya, J.A., Chuvieco, E., Palacios-Orueta, A., 2009. Aboveground biomass assessment in Colombia: A remote sensing approach. For. Ecol. Manag. 257, 1237–1246. https://doi.org/10.1016/j.foreco.2008.11.016
Andela, N., Morton, D.C., Schroeder, W., Chen, Y., Brando, P.M., Randerson, J.T., 2022. Tracking and classifying Amazon fire events in near real time. Sci. Adv. 8, eabd2713. https://doi.org/10.1126/sciadv.abd2713
Anderson, L.O., Burton, C., dos Reis, J.B.C., Pessôa, A.C.M., Bett, P., Carvalho, N.S., Junior, C.H.L.S., Williams, K., Selaya, G., Armenteras, D., Bilbao, B.A., Xaud, H.A.M., Rivera-Lombardi, R., Ferreira, J., Aragão, L.E.O.C., Jones, C.D., Wiltshire, A.J., 2022. An alert system for Seasonal Fire probability forecast for South American Protected Areas. Clim. Resil. Sustain. 1, e19. https://doi.org/10.1002/cli2.19
Aragão, L.E.O.C., Anderson, L.O., Fonseca, M.G., Rosan, T.M., Vedovato, L.B., Wagner, F.H., Silva, C.V.J., Silva Junior, C.H.L., Arai, E., Aguiar, A.P., Barlow, J., Berenguer, E., Deeter, M.N., Domingues, L.G., Gatti, L., Gloor, M., Malhi, Y., Marengo, J.A., Miller, J.B., Phillips, O.L., Saatchi, S., 2018. 21st Century drought-related fires counteract the decline of Amazon deforestation carbon emissions. Nat. Commun. 9, 536. https://doi.org/10.1038/s41467-017-02771-y
Archibald, S., Lehmann, C.E.R., Belcher, C.M., Bond, W.J., Bradstock, R.A., Daniau, A.-L., Dexter, K.G., Forrestel, E.J., Greve, M., He, T., Higgins, S.I., Hoffmann, W.A., Lamont, B.B., McGlinn, D.J., Moncrieff, G.R., Osborne, C.P., Pausas, J.G., Price, O., Ripley, B.S., Rogers, B.M., Schwilk, D.W., Simon, M.F., Turetsky, M.R., Van Der Werf, G.R., Zanne, A.E., 2018. Biological and geophysical feedbacks with fire in the Earth system. Environ. Res. Lett. 13, 033003. https://doi.org/10.1088/1748-9326/aa9ead
Argañaraz, J.P., Landi, M.A., Scavuzzo, C.M., Bellis, L.M., 2018. Determining fuel moisture thresholds to assess wildfire hazard: A contribution to an operational early warning system. PLOS ONE 13, e0204889. https://doi.org/10.1371/journal.pone.0204889
Arias, P.A., Martínez, J.A., Mejía, J.D., Pazos, M.J., Espinoza, J.C., Wongchuig-Correa, S., 2020. Changes in Normalized Difference Vegetation Index in the Orinoco and Amazon River Basins: Links to Tropical Atlantic Surface Temperatures. J. Clim. 33, 8537–8559. https://doi.org/10.1175/JCLI-D-19-0696.1
Armenteras, D., González, T.M., Vargas, J.O., Elizalde, M.C.M., Oliveras, I., 2020. Incendios en ecosistemas del norte de Suramérica: avances en la ecología del fuego tropical en Colombia, Ecuador y Perú. Caldasia 42, 1–16. https://doi.org/10.15446/caldasia.v42n1.77353
Armenteras, D., Meza, M.C., González, T.M., Oliveras, I., Balch, J.K., Retana, J., 2021. Fire threatens the diversity and structure of tropical gallery forests. Ecosphere 12, e03347. https://doi.org/10.1002/ecs2.3347
Armenteras, D., Retana, J., 2012. Dynamics, Patterns and Causes of Fires in Northwestern Amazonia. PLOS ONE 7, e35288. https://doi.org/10.1371/journal.pone.0035288
Armenteras, D., Retana-Alumbreros, J., Molowny-Horas, R., Roman-Cuesta, R.M., Gonzalez-Alonso, F., Morales-Rivas, M., 2011. Characterising fire spatial pattern interactions with climate and vegetation in Colombia. Agric. For. Meteorol. 151, 279–289. https://doi.org/10.1016/j.agrformet.2010.11.002
Baez-Villanueva, O.M., Zambrano-Bigiarini, M., Beck, H.E., McNamara, I., Ribbe, L., Nauditt, A., Birkel, C., Verbist, K., Giraldo-Osorio, J.D., Xuan Thinh, N., 2020. RF-MEP: A novel Random Forest method for merging gridded precipitation products and ground-based measurements. Remote Sens. Environ. 239, 111606. https://doi.org/10.1016/j.rse.2019.111606
Baez-Villanueva, O.M., Zambrano-Bigiarini, M., Ribbe, L., Nauditt, A., Giraldo-Osorio, J.D., Thinh, N.X., 2018. Temporal and spatial evaluation of satellite rainfall estimates over different regions in Latin-America. Atmospheric Res. 213, 34–50. https://doi.org/10.1016/j.atmosres.2018.05.011
Barcia-Sardiñas, S., Fontes-Leandro, M., Viera-González, E.Y., 2019. Los focos de calor y los incendios forestales en la provincia Cienfuegos, Cuba. Rev. Cuba. Meteorol. 25.
Barni, P.E., Rego, A.C.M., Silva, F. das C.F., Lopes, R.A.S., Xaud, H.A.M., Xaud, M.R., Barbosa, R.I., Fearnside, P.M., 2021. Logging Amazon forest increased the severity and spread of fires during the 2015–2016 El Niño. For. Ecol. Manag. 500, 119652. https://doi.org/10.1016/j.foreco.2021.119652
Barreto, J.S., Armenteras, D., 2020. Open Data and Machine Learning to Model the Occurrence of Fire in the Ecoregion of “Llanos Colombo–Venezolanos.” Remote Sens. 12, 3921. https://doi.org/10.3390/rs12233921
Barros-Rosa, L., de Arruda, P.H.Z., Machado, N.G., Pires-Oliveira, J.C., Eisenlohr, P.V., 2022. Fire probability mapping and prediction from environmental data: What a comprehensive savanna-forest transition can tell us. For. Ecol. Manag. 520, 120354. https://doi.org/10.1016/j.foreco.2022.120354
Bedia, J., Herrera, S., Gutiérrez, J.M., Benali, A., Brands, S., Mota, B., Moreno, J.M., 2015. Global patterns in the sensitivity of burned area to fire-weather: Implications for climate change. Agric. For. Meteorol. 214–215, 369–379. https://doi.org/10.1016/j.agrformet.2015.09.002
Bekar, İ., Pezzatti, G.B., Conedera, M., Vacik, H., Pausas, J.G., Dupire, S., Bugmann, H., 2023. Integrating burned area as a complementary performance measure for daily fire danger assessment: A large-scale test. Agric. For. Meteorol. 342, 109746. https://doi.org/10.1016/j.agrformet.2023.109746
Boer, M.M., Dios, V.R.D., Stefaniak, E.Z., Bradstock, R.A., 2021. A hydroclimatic model for the distribution of fire on Earth. Environ. Res. Commun. 3, 035001. https://doi.org/10.1088/2515-7620/abec1f
Bohórquez, L., Gómez, I., Santa, F., 2011. Methodology for the discrimination of areas affected by forest fires using satellite images and spatial statistics. Procedia Environ. Sci., Spatial Statistics 2011: Mapping Global Change 7, 389–394. https://doi.org/10.1016/j.proenv.2011.07.067
Bovolo, C.I., Wagner, T., Parkin, G., Hein-Griggs, D., Pereira, R., Jones, R., 2018. The Guiana Shield rainforests—overlooked guardians of South American climate. Environ. Res. Lett. 13, 074029. https://doi.org/10.1088/1748-9326/aacf60
Bowman, D.M.J.S., 2023. Detecting, Monitoring and Foreseeing Wildland Fire Requires Similar Multiscale Viewpoints as Meteorology and Climatology. Fire 6, 160. https://doi.org/10.3390/fire6040160
Bowman, D.M.J.S., Balch, J.K., Artaxo, P., Bond, W.J., Carlson, J.M., Cochrane, M.A., D’Antonio, C.M., DeFries, R.S., Doyle, J.C., Harrison, S.P., Johnston, F.H., Keeley, J.E., Krawchuk, M.A., Kull, C.A., Marston, J.B., Moritz, M.A., Prentice, I.C., Roos, C.I., Scott, A.C., Swetnam, T.W., van der Werf, G.R., Pyne, S.J., 2009. Fire in the Earth System. Science 324, 481–484. https://doi.org/10.1126/science.1163886
Bradley, A.V., Millington, A.C., 2006. Spatial and temporal scale issues in determining biomass burning regimes in Bolivia and Peru. International Journal of Remote Sensing 27, 2221–2253. https://doi.org/DOI: 10.1080/01431160500396550
Brando, P.M., Balch, J.K., Nepstad, D.C., Morton, D.C., Putz, F.E., Coe, M.T., Silvério, D., Macedo, M.N., Davidson, E.A., Nóbrega, C.C., Alencar, A., Soares-Filho, B.S., 2014. Abrupt increases in Amazonian tree mortality due to drought–fire interactions. Proc. Natl. Acad. Sci. 111, 6347–6352. https://doi.org/10.1073/pnas.1305499111
Builes-Jaramillo, A., Salas, H.D., Valencia, J., Florian, C., 2024. Orinoco revisited: Comprehensive analysis of the Orinoco River basin present and future hydroclimate. Atmósfera 38, 641–657. https://doi.org/10.20937/ATM.53359
Cansler, C.A., Kane, V.R., Hessburg, P.F., Kane, J.T., Jeronimo, S.M.A., Lutz, J.A., Povak, N.A., Churchill, D.J., Larson, A.J., 2022. Previous wildfires and management treatments moderate subsequent fire severity. For. Ecol. Manag. 504, 119764. https://doi.org/10.1016/j.foreco.2021.119764
Carrasco Rodríguez, Y., Ramos Rodríguez, M.P.R., Batista, A.C., Miranda Sierra, C.A.M., 2022. Uso del desempeño de los índices de peligro de incendio como herramienta para el pronóstico de ocurrencias. Ecovida 12.
Carvalho, N.S., Anderson, L.O., Nunes, C.A., Pessôa, A.C.M., Junior, C.H.L.S., Reis, J.B.C., Shimabukuro, Y.E., Berenguer, E., Barlow, J., Aragão, L.E.O.C., 2021. Spatio-temporal variation in dry season determines the Amazonian fire calendar. Environ. Res. Lett. 16, 125009. https://doi.org/10.1088/1748-9326/ac3aa3
Cavalcante, R.B.L., Souza, B.M., Ramos, S.J., Gastauer, M., NASCIMENTO Junior, W.R., Caldeira, C.F., Souza-Filho, P.W.M., 2021. Assessment of fire hazard weather indices in the eastern Amazon: a case study for different land uses. Acta Amaz. 51, 352–362. https://doi.org/10.1590/1809-4392202101172
Cerano-Paredes, J., Villanueva-Díaz, J., Vázquez-Selem, L., Cervantes-Martínez, R., Esquivel-Arriaga, G., Cruz, V.G. la, Fulé, P.Z., 2016. Historical fire regime and its relationship with climate in a forest of Pinus hartwegii to the north of Puebla State, Mexico. Rev. Bosque 37, 389–399.
Chen, C., Xu, T., Sun, F., Zhao, D., 2023. A fire danger index assessment method for short-term pre-warning of wildfires: A case study of Xiangxi, China. Saf. Sci. 167, 106287. https://doi.org/10.1016/j.ssci.2023.106287
Chen, Y., Randerson, J.T., Morton, D.C., DeFries, R.S., Collatz, G.J., Kasibhatla, P.S., Giglio, L., Jin, Y., Marlier, M.E., 2011. Forecasting Fire Season Severity in South America Using Sea Surface Temperature Anomalies. Science 334, 787–791. https://doi.org/10.1126/science.1209472
Chuvieco, E., Cifuentes, Y., Hantson, S., López, A.A., Ramo, R., Torres Esquivias, J.A., 2012. Comparación entre focos de calor MODIS y perímetros de área quemada en incendios mediterráneos. Rev. Teledetec. Rev. Asoc. Esp. Teledetec. 9–22.
Chuvieco, E., Pettinari, M.L., Koutsias, N., Forkel, M., Hantson, S., Turco, M., 2021. Human and climate drivers of global biomass burning variability. Sci. Total Environ. 779, 146361. https://doi.org/10.1016/j.scitotenv.2021.146361
Cisneros Vaca, C., Calahorrano, J., Manzano, M., 2024. Análisis espacial y temporal de incendios forestales en el Ecuador utilizando datos de sensores remotos. Colomb. For. 27, e20111. https://doi.org/10.14483/2256201X.20111
Collins, B.M., 2014. Fire weather and large fire potential in the northern Sierra Nevada. Agric. For. Meteorol. 189–190, 30–35. https://doi.org/10.1016/j.agrformet.2014.01.005
Correa, I.C., Arias, P.A., Vieira, S.C., Martínez, J.A., 2024. A drier Orinoco basin during the twenty-first century: the role of the Orinoco low-level jet. Clim. Dyn. 62, 2369–2398. https://doi.org/10.1007/s00382-023-07028-7
Cunill Camprubí, A., 2019. Obtención de mapas de humedad del combustible a partir de variables meteorológicas para la predicción del riesgo de incendios forestales a escala regional: nuevo enfoque a los actuales índices de peligro de incendio. Cuad. Soc. Esp. Cienc. For. 205–214.
De Magalhães Neto, N., Evangelista, H., 2022. Human Activity Behind the Unprecedented 2020 Wildfire in Brazilian Wetlands (Pantanal). Front. Environ. Sci. 10. https://doi.org/10.3389/fenvs.2022.888578
Dong, L., Leung, L.R., Qian, Y., Zou, Y., Song, F., Chen, X., 2021. Meteorological Environments Associated With California Wildfires and Their Potential Roles in Wildfire Changes During 1984–2017. J. Geophys. Res. Atmospheres 126, e2020JD033180. https://doi.org/10.1029/2020JD033180
Dong, X., Li, F., Lin, Z., Harrison, S.P., Chen, Y., Kug, J.-S., 2021. Climate influence on the 2019 fires in Amazonia. Sci. Total Environ. 794, 148718. https://doi.org/10.1016/j.scitotenv.2021.148718
Dos Reis, M., Graça, P.M.L.D.A., Yanai, A.M., Ramos, C.J.P., Fearnside, P.M., 2021. Forest fires and deforestation in the central Amazon: Effects of landscape and climate on spatial and temporal dynamics. J. Environ. Manage. 288, 112310. https://doi.org/10.1016/j.jenvman.2021.112310
Ehsani, M.R., Arevalo, J., Risanto, C.B., Javadian, M., Devine, C.J., Arabzadeh, A., Venegas-Quiñones, H.L., Dell’Oro, A.P., Behrangi, A., 2020. 2019–2020 Australia Fire and Its Relationship to Hydroclimatological and Vegetation Variabilities. Water 12, 3067. https://doi.org/10.3390/w12113067
Fang, L., Yang, J., White, M., Liu, Z., 2018. Predicting Potential Fire Severity Using Vegetation, Topography and Surface Moisture Availability in a Eurasian Boreal Forest Landscape. Forests 9, 130. https://doi.org/10.3390/f9030130
Fernández-Guisuraga, J.M., Suárez-Seoane, S., García-Llamas, P., Calvo, L., 2021. Vegetation structure parameters determine high burn severity likelihood in different ecosystem types: A case study in a burned Mediterranean landscape. J. Environ. Manage. 288, 112462. https://doi.org/10.1016/j.jenvman.2021.112462
Filho, H. de O., Oliveira-Júnior, J.F. de, Silva, M.V. da, Jardim, A.M. da R.F., Shah, M., Gobo, J.P.A., Blanco, C.J.C., Pimentel, L.C.G., da Silva, C., da Silva, E.B., Machado, T. de B., Pereira, C.R., Modon Valappil, N.K., Hamza, V., Haq, M.A., Khan, I., Mohamed, A., Attia, E.-A., 2022. Dynamics of Fire Foci in the Amazon Rainforest and Their Consequences on Environmental Degradation. Sustainability 14, 9419. https://doi.org/10.3390/su14159419
Fiore, A.M., Naik, V., Leibensperger, E.M., 2015. Air Quality and Climate Connections. J. Air Waste Manag. Assoc. 65, 645–685. https://doi.org/10.1080/10962247.2015.1040526
Freeborn, P.H., Cochrane, M.A., Jolly, W.M., 2015. Relationships between fire danger and the daily number and daily growth of active incidents burning in the northern Rocky Mountains, USA. Int. J. Wildland Fire 24, 900–910. https://doi.org/10.1071/WF14152
Fréjaville, T., Curt, T., 2017. Seasonal changes in the human alteration of fire regimes beyond the climate forcing. Environ. Res. Lett. 12, 035006. https://doi.org/10.1088/1748-9326/aa5d23
Friedl, M., Sulla-Menashe, D., 2022. MODIS/Terra+Aqua Land Cover Type Yearly L3 Global 500m SIN Grid V061. https://doi.org/10.5067/MODIS/MCD12Q1.061
Funk, C., Peterson, P., Landsfeld, M., Pedreros, D., Verdin, J., Shukla, S., Husak, G., Rowland, J., Harrison, L., Hoell, A., Michaelsen, J., 2015. The climate hazards infrared precipitation with stations—a new environmental record for monitoring extremes. Sci. Data 2, 150066. https://doi.org/10.1038/sdata.2015.66
Gatti, L.V., Basso, L.S., Miller, J.B., Gloor, M., Gatti Domingues, L., Cassol, H.L.G., Tejada, G., Aragão, L.E.O.C., Nobre, C., Peters, W., Marani, L., Arai, E., Sanches, A.H., Corrêa, S.M., Anderson, L., Von Randow, C., Correia, C.S.C., Crispim, S.P., Neves, R.A.L., 2021. Amazonia as a carbon source linked to deforestation and climate change. Nature 595, 388–393. https://doi.org/10.1038/s41586-021-03629-6
Giglio, L., Justice, C., Boschetti, L., Roy, D., 2021a. MODIS/Terra+Aqua Burned Area Monthly L3 Global 500m SIN Grid V061. https://doi.org/10.5067/MODIS/MCD64A1.061
Giglio, L., Schroeder, W., Hall, J.V., 2021b. MODIS Collection 6 and Collection 6.1 Active Fire Product User’s Guide.
Giglio, L., Schroeder, W., Justice, C.O., 2016. The collection 6 MODIS active fire detection algorithm and fire products. Remote Sens. Environ. 178, 31–41. https://doi.org/10.1016/j.rse.2016.02.054
Gómez-González, S., González, M.E., Paula, S., Díaz-Hormazábal, I., Lara, A., Delgado-Baquerizo, M., 2019. Temperature and agriculture are largely associated with fire activity in Central Chile across different temporal periods. For. Ecol. Manag. 433, 535–543. https://doi.org/10.1016/j.foreco.2018.11.041
Gonzalez-Alonso, L., Val Martin, M., Kahn, R.A., 2019. Biomass-burning smoke heights over the Amazon observed from space. Atmospheric Chem. Phys. 19, 1685–1702. https://doi.org/10.5194/acp-19-1685-2019
Gutiérrez-Vélez, V.H., Uriarte, M., DeFries, R., Pinedo-Vásquez, M., Fernandes, K., Ceccato, P., Baethgen, W., Padoch, C., 2014. Land cover change interacts with drought severity to change fire regimes in Western Amazonia. Ecol. Appl. 24, 1323–1340. https://doi.org/10.1890/13-2101.1
Hassan, N.A., Hashim, Z., Hashim, J.H., 2016. Impact of Climate Change on Air Quality and Public Health in Urban Areas. Asia Pac. J. Public Health 28, 38S-48S. https://doi.org/10.1177/1010539515592951
Hernández, A.J., Morales-Rincon, L.A., Wu, D., Mallia, D., Lin, J.C., Jimenez, R., 2019. Transboundary transport of biomass burning aerosols and photochemical pollution in the Orinoco River Basin. Atmos. Environ. 205, 1–8. https://doi.org/10.1016/j.atmosenv.2019.01.051
Hersbach, H., Bell, B., Berrisford, P., Hirahara, S., Horányi, A., Muñoz-Sabater, J., Nicolas, J., Peubey, C., Radu, R., Schepers, D., Simmons, A., Soci, C., Abdalla, S., Abellan, X., Balsamo, G., Bechtold, P., Biavati, G., Bidlot, J., Bonavita, M., De Chiara, G., Dahlgren, P., Dee, D., Diamantakis, M., Dragani, R., Flemming, J., Forbes, R., Fuentes, M., Geer, A., Haimberger, L., Healy, S., Hogan, R.J., Hólm, E., Janisková, M., Keeley, S., Laloyaux, P., Lopez, P., Lupu, C., Radnoti, G., de Rosnay, P., Rozum, I., Vamborg, F., Villaume, S., Thépaut, J.-N., 2020. The ERA5 global reanalysis. Q. J. R. Meteorol. Soc. 146, 1999–2049. https://doi.org/10.1002/qj.3803
Hessburg, P.F., Prichard, S.J., Hagmann, R.K., Povak, N.A., Lake, F.K., 2021. Wildfire and climate change adaptation of western North American forests: a case for intentional management. Ecol. Appl. 31, e02432. https://doi.org/10.1002/eap.2432
Hoeve, J.E.T., Remer, L.A., Correia, A.L., Jacobson, M.Z., 2012. Recent shift from forest to savanna burning in the Amazon Basin observed by satellite. Environ. Res. Lett. 7, 024020. https://doi.org/10.1088/1748-9326/7/2/024020
Holden, Z.A., Swanson, A., Luce, C.H., Jolly, W.M., Maneta, M., Oyler, J.W., Warren, D.A., Parsons, R., Affleck, D., 2018. Decreasing fire season precipitation increased recent western US forest wildfire activity. Proc. Natl. Acad. Sci. 115, E8349–E8357. https://doi.org/10.1073/pnas.1802316115
Holz, A., Kitzberger, T., Paritsis, J., Veblen, T.T., 2012. Ecological and climatic controls of modern wildfire activity patterns across southwestern South America. Ecosphere 3, art103. https://doi.org/10.1890/ES12-00234.1
Hoyos, N., Correa-Metrio, A., Sisa, A., Ramos-Fabiel, M.A., Espinosa, J.M., Restrepo, J.C., Escobar, J., 2017. The environmental envelope of fires in the Colombian Caribbean. Appl. Geogr. 84, 42–54. https://doi.org/10.1016/j.apgeog.2017.05.001
IPCC, 2021. Climate Change 2021: The Physical Science Basis: Working Group I Contribution to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change, 1st ed. Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA. https://doi.org/10.1017/9781009157896
Iturbide, M., Gutiérrez, J.M., Alves, L.M., Bedia, J., Cerezo-Mota, R., Cimadevilla, E., Cofiño, A.S., Di Luca, A., Faria, S.H., Gorodetskaya, I.V., Hauser, M., Herrera, S., Hennessy, K., Hewitt, H.T., Jones, R.G., Krakovska, S., Manzanas, R., Martínez-Castro, D., Narisma, G.T., Nurhati, I.S., Pinto, I., Seneviratne, S.I., van den Hurk, B., Vera, C.S., 2020. An update of IPCC climate reference regions for subcontinental analysis of climate model data: definition and aggregated datasets. Earth Syst. Sci. Data 12, 2959–2970. https://doi.org/10.5194/essd-12-2959-2020
Jain, P., Flannigan, M.D., 2017. Comparison of methods for spatial interpolation of fire weather in Alberta, Canada. Can. J. For. Res. 47, 1646–1658. https://doi.org/10.1139/cjfr-2017-0101
Jiménez, J.C., Marengo, J.A., Alves, L.M., Sulca, J.C., Takahashi, K., Ferrett, S., Collins, M., 2021. The role of ENSO flavours and TNA on recent droughts over Amazon forests and the Northeast Brazil region. Int. J. Climatol. 41, 3761–3780. https://doi.org/10.1002/joc.6453
Kambezidis, H.D., Kalliampakos, G.K., 2016. Fire-Risk Assessment in Northern Greece Using a Modified Fosberg Fire-Weather Index That Includes Forest Coverage. Int. J. Atmospheric Sci. 2016, 1–8. https://doi.org/10.1155/2016/8108691
Leal, A., Gassón, R., Behling, H., Sánchez, F., 2019. Human-made fires and forest clearance as evidence for late Holocene landscape domestication in the Orinoco Llanos (Venezuela). Veg. Hist. Archaeobotany 28, 545–557. https://doi.org/10.1007/s00334-019-00713-w
Lemos, N.S.A., Cunha, J.M., 2021. Analysis of fire risk in the Amazon: a systematic review. Rev. Ambiente Água 16, e2706. https://doi.org/10.4136/ambi-agua.2706
Littell, J.S., McKenzie, D., Peterson, D.L., Westerling, A.L., 2009. Climate and wildfire area burned in western U.S. ecoprovinces, 1916–2003. Ecol. Appl. 19, 1003–1021. https://doi.org/10.1890/07-1183.1
López Guevara, B., 2021. Análisis espacio-temporal de incendios del norte y centro de Suramérica: 2009-2019. Agric. Habitat 4. https://doi.org/10.22490/26653176.4542
Maillard, O., Vides-Almonacid, R., Flores-Valencia, M., Coronado, R., Vogt, P., Vicente-Serrano, S.M., Azurduy, H., Anívarro, R., Cuellar, R.L., 2020. Relationship of Forest Cover Fragmentation and Drought with the Occurrence of Forest Fires in the Department of Santa Cruz, Bolivia. Forests 11, 910. https://doi.org/10.3390/f11090910
Marengo, J.A., Cunha, A.P., Cuartas, L.A., Deusdará Leal, K.R., Broedel, E., Seluchi, M.E., Michelin, C.M., De Praga Baião, C.F., Chuchón Angulo, E., Almeida, E.K., Kazmierczak, M.L., Mateus, N.P.A., Silva, R.C., Bender, F., 2021. Extreme Drought in the Brazilian Pantanal in 2019–2020: Characterization, Causes, and Impacts. Front. Water 3. https://doi.org/10.3389/frwa.2021.639204
Marengo, J.A., Jimenez, J.C., Espinoza, J.-C., Cunha, A.P., Aragão, L.E.O., 2022. Increased climate pressure on the agricultural frontier in the Eastern Amazonia–Cerrado transition zone. Sci. Rep. 12, 457. https://doi.org/10.1038/s41598-021-04241-4
Martínez, C., 2021. Análisis de índices de riesgo de incendio forestal y su aplicabilidad en el Uruguay. Universidad de la República, Montevideo-Uruguay.
Martínez, J.A., Arias, P.A., Junquas, C., Espinoza, J.C., Condom, T., Dominguez, F., Morales, J.S., 2022. The Orinoco Low-Level Jet and the Cross-Equatorial Moisture Transport Over Tropical South America: Lessons From Seasonal WRF Simulations. J. Geophys. Res. Atmospheres 127, e2021JD035603. https://doi.org/10.1029/2021JD035603
Mbanze, A.A., Batista, A.C., Tetto, A.F., Romero, A.M., Mudekwe, J., 2017. DESEMPENHO DOS ÍNDICES DE NESTEROV E FÓRMULA DE MONTE ALEGRE NO DISTRITO DE LICHINGA, NORTE DE MOÇAMBIQUE. Ciênc. Florest. 27, 687–696. https://doi.org/10.5902/1980509827753
Méndez-Espinosa, J.F., Belalcazar, L.C., Morales Betancourt, R., 2019. Regional air quality impact of northern South America biomass burning emissions. Atmos. Environ. 203, 131–140. https://doi.org/10.1016/j.atmosenv.2019.01.042
Meza, M.C., 2023. Efectos de los incendios forestales sobre la resiliencia de bosques tropicales de tierras bajas (Trabajo de grado - Doctorado). Universidad Nacional de Colombia, Bogotá.
Montoya, E., Pedra-Méndez, J., García-Falcó, E., Gómez-Paccard, M., Giralt, S., Vegas-Vilarrúbia, T., Stauffer, F.W., Rull, V., 2019. Long-term vegetation dynamics of a tropical megadelta: Mid-Holocene palaeoecology of the Orinoco Delta (NE Venezuela). Quat. Sci. Rev. 221, 105874. https://doi.org/10.1016/j.quascirev.2019.105874
Morgan, W.T., Darbyshire, E., Spracklen, D.V., Artaxo, P., Coe, H., 2019. Non-deforestation drivers of fires are increasingly important sources of aerosol and carbon dioxide emissions across Amazonia. Sci. Rep. 9, 16975. https://doi.org/10.1038/s41598-019-53112-6
Myers, R., 2006. Convivir con el fuego-Manteniendo los ecosistemas y los medios de subsistencia mediante.
Nobre, C., Encalada, A., Anderson, E., Roca Alcazar, F.H., Bustamante, M., Mena, C., Peña-Claros, M., Poveda, G., Rodriguez, J.P., Saleska, S., Trumbore, S., Val, A.L., Villa Nova, L., Abramovay, R., Alencar, A., Rodríguez Alzza, A.C., Armenteras, D., Artaxo, P., Athayde, S., Barretto Filho, H.T., Barlow, J., Berenguer, E., Bortolotto, F., Costa, F.D.A., Costa, M.H., Cuvi, N., Fearnside, P.M., Ferreira, J., Flores, B.M., Frieri, S., Gatti, L.V., Guayasamin, J.M., Hecht, S., Hirota, M., Hoorn, C., Josse, C., Lapola, D.M., Larrea, C., Larrea-Alcazar, D.M., Lehm Ardaya, Z., Malhi, Y., Marengo, J.A., Melack, J., Moraes, R.M., Moutinho, P., Murmis, M.R., Neves, E.G., Paez, B., Painter, L., Ramos, A., Rosero-Peña, M.C., Schmink, M., Sist, P., Ter Steege, H., Val P, P., Van Der Voort, H., Varese, M., Zapata-Ríos, G., 2022. Relatório de Avaliação da Amazônia 2021. Sustainable Development Solutions Network (SDSN). https://doi.org/10.55161/PQVE6369
Nunes, J.R.S., 2005. FMA+ : um novo índice de perigo de incencios florestais para o estado do Paraná - Brasil.
Oliveira, J.G. de, Massi, K.G., Bortolozo, L.A.P., Cunha, A.P.M. do A., 2023. The influence of climate parameters on fires in the Paraíba do Sul River valley, southeast Brazil. Rev. Ambiente Água 18, e2923. https://doi.org/10.4136/ambi-agua.2923
Oliveira, U., Soares-Filho, B., Bustamante, M., Gomes, L., Ometto, J.P., Rajão, R., 2022. Determinants of Fire Impact in the Brazilian Biomes. Front. For. Glob. Change 5, 735017. https://doi.org/10.3389/ffgc.2022.735017
Oliveira-Júnior, J.F., Shah, M., Abbas, A., Correia Filho, W.L.F., da Silva Junior, C.A., de Barros Santiago, D., Teodoro, P.E., Mendes, D., de Souza, A., Aviv-Sharon, E., Silveira, V.R., Pimentel, L.C.G., da Silva, E.B., Haq, M.A., Khan, I., Mohamed, A., Attia, E.-A., 2022. Spatiotemporal Analysis of Fire Foci and Environmental Degradation in the Biomes of Northeastern Brazil. Sustainability 14, 6935. https://doi.org/10.3390/su14116935
Oliveira-Júnior, J.F.D., Mendes, D., Correia Filho, W.L.F., Silva Junior, C.A.D., Gois, G.D., Jardim, A.M.D.R.F., Silva, M.V.D., Lyra, G.B., Teodoro, P.E., Pimentel, L.C.G., Lima, M., Santiago, D.D.B., Rogério, J.P., Marinho, A.A.R., 2021. Fire foci in South America: Impact and causes, fire hazard and future scenarios. J. South Am. Earth Sci. 112, 103623. https://doi.org/10.1016/j.jsames.2021.103623
Pacheco, A. da P., Junior, J.A. da S., Ruiz-Armenteros, A.M., Henriques, R.F.F., 2021. Assessment of k-Nearest Neighbor and Random Forest Classifiers for Mapping Forest Fire Areas in Central Portugal Using Landsat-8, Sentinel-2, and Terra Imagery. Remote Sens. 13, 1345. https://doi.org/10.3390/rs13071345
Paredes-Trejo, F., Olivares, B.O., Movil-Fuentes, Y., Arevalo-Groening, J., Gil, A., 2023. Assessing the Spatiotemporal Patterns and Impacts of Droughts in the Orinoco River Basin Using Earth Observations Data and Surface Observations. Hydrology 10, 195. https://doi.org/10.3390/hydrology10100195
Piraquive-Bermúdez, D., Behling, H., 2022. Holocene Paleoecology in the Neotropical Savannas of Northern South America (Llanos of the Orinoquia Ecoregion, Colombia and Venezuela): What Do We Know and on What Should We Focus in the Future? Front. Ecol. Evol. 10, 824873. https://doi.org/10.3389/fevo.2022.824873
Porro, R., Porro, N.S.M., 2022. State-led social and environmental policy failure in a Brazilian forest frontier: Sustainable Development Project in Anapu, Pará. Land Use Policy 114, 105935. https://doi.org/10.1016/j.landusepol.2021.105935
Poveda, G., Waylen, P.R., Pulwarty, R.S., 2006. Annual and inter-annual variability of the present climate in northern South America and southern Mesoamerica. Palaeogeogr. Palaeoclimatol. Palaeoecol., Late Quaternary climates of tropical America and adjacent seas 234, 3–27. https://doi.org/10.1016/j.palaeo.2005.10.031
Prado, M.C., 2014. Diseño de un modelo SIG para la determinación de zonas en riesgo por incendios forestales en los cerros orientales de la ciudad de Bogotá. Universidad Nacional de Colombia, Bogotá, Colombia.
Ramírez, B.H., Cortés-B, R., Pinzón, O.P., Gómez, L., Jacquin, S., Hernández, E., Quimbayo, L.A., Bogotá-A, R.G., 2023. Cloud forests of the Orinoco River Basin (Colombia): Variation in vegetation and soil macrofauna composition along the hydrometeorological gradient. Biotropica 55, 489–503. https://doi.org/10.1111/btp.13203
Ramos, M.P., 2012. Desempeño de los Índices de Nesterov, Fórmula de Monte Alegre y Fórmula de Monte Alegre Alterada en la empresa forestal Macurije, Pinar del Río, Cuba. Universidad Federal de Paraná, Brasil. https://doi.org/10.13140/RG.2.2.12467.02086
Ramos, M.P., 2010. Manejo del fuego, Deborah Prats López. ed. Félix Varela, Vedado, La Habana, Cuba.
Ramos, M.P.R., Cabrera, E.B.P., Chancay, J.E.R., 2024. Estadísticas de incendios forestales en el cantón Loja, provincia Loja, Ecuador, en el periodo 2011 – 2020. Bosques Latid. Cero 14, 64–76. https://doi.org/10.54753/blc.v14i1.2076
Ranasinghe et al., 2021. Climate Change Information for Regional Impact and for Risk Assessment, in: Climate Change 2021: The Physical Science Basis: Working Group I Contribution to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge, pp. 1767–1926. https://doi.org/10.1017/9781009157896.014
Reichstein, M., Bahn, M., Ciais, P., Frank, D., Mahecha, M.D., Seneviratne, S.I., Zscheischler, J., Beer, C., Buchmann, N., Frank, D.C., Papale, D., Rammig, A., Smith, P., Thonicke, K., Van Der Velde, M., Vicca, S., Walz, A., Wattenbach, M., 2013. Climate extremes and the carbon cycle. Nature 500, 287–295. https://doi.org/10.1038/nature12350
Roces-Díaz, J.V., Santín, C., Martínez-Vilalta, J., Doerr, S.H., 2022. A global synthesis of fire effects on ecosystem services of forests and woodlands. Front. Ecol. Environ. 20, 170–178. https://doi.org/10.1002/fee.2349
Rodrigues, M., Resco de Dios, V., Sil, Â., Cunill Camprubí, À., Fernandes, P.M., 2024. VPD-based models of dead fine fuel moisture provide best estimates in a global dataset. Agric. For. Meteorol. 346, 109868. https://doi.org/10.1016/j.agrformet.2023.109868
Roman-Cuesta, R.M., Rejalaga-Noguera, L., Pinto-García, C., Retana, J., 2014. Pacific and Atlantic oceanic anomalies and their interaction with rainfall and fire in Bolivian biomes for the period 1992–2012. Clim. Change 127, 243–256. https://doi.org/10.1007/s10584-014-1246-5
Sabuco P, 2016. Análisis temporal y autocorrelación espacial de incendios forestales en Perú durante el periodo 2002-2012 empleando datos satelitales. Universidad Continental, Huancayo-Perú.
Senande-Rivera, M., Insua-Costa, D., Miguez-Macho, G., 2022. Spatial and temporal expansion of global wildland fire activity in response to climate change. Nat. Commun. 13, 1208. https://doi.org/10.1038/s41467-022-28835-2
Seneviratne et al., 2021. Weather and Climate Extreme Events in a Changing Climate, in: Climate Change 2021 – The Physical Science Basis: Working Group I Contribution to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge, pp. 1513–1766. https://doi.org/10.1017/9781009157896.013
Sharples, J.J., McRae, R.H.D., Weber, R.O., Gill, A.M., 2009. A simple index for assessing fire danger rating. Environ. Model. Softw. 24, 764–774. https://doi.org/10.1016/j.envsoft.2008.11.004
Shen, H., Tao, S., Chen, Yilin, Odman, M.T., Zou, Y., Huang, Y., Chen, H., Zhong, Q., Zhang, Y., Chen, Yuanchen, Su, S., Lin, N., Zhuo, S., Li, B., Wang, X., Liu, W., Liu, J., Pavur, G.K., Russell, A.G., 2019. Global Fire Forecasts Using Both Large-Scale Climate Indices and Local Meteorological Parameters. Glob. Biogeochem. Cycles 33, 1129–1145. https://doi.org/10.1029/2019GB006180
Silva, R.M. da, Lopes, A.G., Santos, C.A.G., 2023. Deforestation and fires in the Brazilian Amazon from 2001 to 2020: Impacts on rainfall variability and land surface temperature. J. Environ. Manage. 326, 116664. https://doi.org/10.1016/j.jenvman.2022.116664
Silva, G., 2005. La cuenca del río Orinoco: visión hidrográfica y balance hídrico. Rev. Geográfica Venez. 46, 75–108.
Silva Junior, C.A. da, Lima, M., Teodoro, P.E., Oliveira-Júnior, J.F. de, Rossi, F.S., Funatsu, B.M., Butturi, W., Lourençoni, T., Kraeski, A., Pelissari, T.D., Moratelli, F.A., Arvor, D., Luz, I.M. dos S., Teodoro, L.P.R., Dubreuil, V., Teixeira, V.M., 2022. Fires Drive Long-Term Environmental Degradation in the Amazon Basin. Remote Sens. 14, 338. https://doi.org/10.3390/rs14020338
Silveira, M.V.F., Silva-Junior, C.H.L., Anderson, L.O., Aragão, L.E.O.C., 2022. Amazon fires in the 21st century: The year of 2020 in evidence. Glob. Ecol. Biogeogr. 31, 2026–2040. https://doi.org/10.1111/geb.13577
Silvério, D.V., Oliveira, R.S., Flores, B.M., Brando, P.M., Almada, H.K., Furtado, M.T., Moreira, F.G., Heckenberger, M., Ono, K.Y., Macedo, M.N., 2022. Intensification of fire regimes and forest loss in the Território Indígena do Xingu. Environ. Res. Lett. 17, 045012. https://doi.org/10.1088/1748-9326/ac5713
Stefanidou, A., Gitas, I.Z., Stavrakoudis, D., Eftychidis, G., 2019. Midterm Fire Danger Prediction Using Satellite Imagery and Auxiliary Thematic Layers. Remote Sens. 11, 2786. https://doi.org/10.3390/rs11232786
Sun, Q., Miao, C., Hanel, M., Borthwick, A.G.L., Duan, Q., Ji, D., Li, H., 2019. Global heat stress on health, wildfires, and agricultural crops under different levels of climate warming. Environ. Int. 128, 125–136. https://doi.org/10.1016/j.envint.2019.04.025
Urrutia-Jalabert, R., González, M.E., González-Reyes, Á., Lara, A., Garreaud, R., 2018. Climate variability and forest fires in central and south-central Chile. Ecosphere 9, e02171. https://doi.org/10.1002/ecs2.2171
Valencia, S., Marín, D.E., Gómez, D., Hoyos, N., Salazar, J.F., Villegas, J.C., 2023. Spatio-temporal assessment of Gridded precipitation products across topographic and climatic gradients in Colombia. Atmospheric Res. 285, 106643. https://doi.org/10.1016/j.atmosres.2023.106643
Van Oldenborgh, G.J., Krikken, F., Lewis, S., Leach, N.J., Lehner, F., Saunders, K.R., van Weele, M., Haustein, K., Li, S., Wallom, D., Sparrow, S., Arrighi, J., Singh, R.K., van Aalst, M.K., Philip, S.Y., Vautard, R., Otto, F.E.L., 2021. Attribution of the Australian bushfire risk to anthropogenic climate change. Nat. Hazards Earth Syst. Sci. 21, 941–960. https://doi.org/10.5194/nhess-21-941-2021
Vedovato, L.B., Carvalho, L.C.S., Aragão, L.E.O.C., Bird, M., Phillips, O.L., Alvarez, P., Barlow, J., Bartholomew, D.C., Berenguer, E., Castro, W., Ferreira, J., França, F.M., Malhi, Y., Marimon, B., Marimon Júnior, B.H., Monteagudo, A., Oliveira, E.A., Pereira, L.O., Pontes-Lopes, A., Quesada, C.A., Silva, C.V.J., Silva Espejo, J.E., Silveira, M., Feldpausch, T.R., 2023. Ancient fires enhance Amazon forest drought resistance. Front. For. Glob. Change 6. https://doi.org/10.3389/ffgc.2023.1024101
Vega-Nieva, D.J., Briseño-Reyes, J., López-Serrano, P.-M., Corral-Rivas, J.J., Pompa-García, M., Cruz-López, M.I., Cuahutle, M., Ressl, R., Alvarado-Celestino, E., Burgan, R.E., 2024. Autoregressive Forecasting of the Number of Forest Fires Using an Accumulated MODIS-Based Fuel Dryness Index. Forests 15, 42. https://doi.org/10.3390/f15010042
Vega-Nieva, D.J., Nava-Miranda, M.G., Calleros-Flores, E., López-Serrano, P.M., Briseño-Reyes, J., López-Sánchez, C., Corral-Rivas, J.J., Montiel-Antuna, E., Cruz-Lopez, M.I., Ressl, R., Cuahtle, M., Alvarado-Celestino, E., González-Cabán, A., Cortes-Montaño, C., Pérez-Salicrup, D., Jardel-Pelaez, E., Jiménez, E., Arellano-Pérez, S., Álvarez-González, J.G., Ruiz-González, A.D., 2019. Temporal patterns of active fire density and its relationship with a satellite fuel greenness index by vegetation type and region in Mexico during 2003–2014. Fire Ecol. 15, 28. https://doi.org/10.1186/s42408-019-0042-z
Wang, S.S.-C., Wang, Y., 2020. Quantifying the effects of environmental factors on wildfire burned area in the south central US using integrated machine learning techniques. Atmospheric Chem. Phys. 20, 11065–11087. https://doi.org/10.5194/acp-20-11065-2020
Wang, Y., Huang, P., 2022. Potential fire risks in South America under anthropogenic forcing hidden by the Atlantic Multidecadal Oscillation. Nat. Commun. 13, 2437. https://doi.org/10.1038/s41467-022-30104-1
Wooster, M.J., Roberts, G.J., Giglio, L., Roy, D.P., Freeborn, P.H., Boschetti, L., Justice, C., Ichoku, C., Schroeder, W., Davies, D., Smith, A.M.S., Setzer, A., Csiszar, I., Strydom, T., Frost, P., Zhang, T., Xu, W., de Jong, M.C., Johnston, J.M., Ellison, L., Vadrevu, K., Sparks, A.M., Nguyen, H., McCarty, J., Tanpipat, V., Schmidt, C., San-Miguel-Ayanz, J., 2021. Satellite remote sensing of active fires: History and current status, applications and future requirements. Remote Sens. Environ. 267, 112694. https://doi.org/10.1016/j.rse.2021.112694
Xu, R., Yu, P., Abramson, M.J., Johnston, F.H., Samet, J.M., Bell, M.L., Haines, A., Ebi, K.L., Li, S., Guo, Y., 2020. Wildfires, Global Climate Change, and Human Health. N. Engl. J. Med. 383, 2173–2181. https://doi.org/10.1056/NEJMsr2028985
Yang, X., Zhao, C., Zhao, W., Fan, H., Yang, Y., 2023. Characterization of global fire activity and its spatiotemporal patterns for different land cover types from 2001 to 2020. Environ. Res. 227, 115746. https://doi.org/10.1016/j.envres.2023.115746
Ynouye-Francés, M., Ramos-Rodríguez, M.P., Martínez-Becerra, L.W., Cabrera-Reina, J.M., González-Rodríguez, R., Duany-Dangel, A., Ynouye-Francés, M., Ramos-Rodríguez, M.P., Martínez-Becerra, L.W., Cabrera-Reina, J.M., González-Rodríguez, R., Duany-Dangel, A., 2021. Causalidad de los incendios forestales en Pinar del Río, Cuba (1975-2018). Colomb. For. 24, 24–38. https://doi.org/10.14483/2256201x.16881
Yu, G., Feng, Y., Wang, J., Wright, D.B., 2023. Performance of Fire Danger Indices and Their Utility in Predicting Future Wildfire Danger Over the Conterminous United States. Earths Future 11, e2023EF003823. https://doi.org/10.1029/2023EF003823
Zacharakis, I., Tsihrintzis, V.A., 2023. Integrated wildfire danger models and factors: A review. Sci. Total Environ. 899, 165704. https://doi.org/10.1016/j.scitotenv.2023.165704
dc.rights.accessrights.none.fl_str_mv info:eu-repo/semantics/openAccess
dc.rights.coar.none.fl_str_mv http://purl.org/coar/access_right/c_abf2
eu_rights_str_mv openAccess
rights_invalid_str_mv http://purl.org/coar/access_right/c_abf2
dc.format.extent.none.fl_str_mv 132 páginas
dc.format.mimetype.none.fl_str_mv application/pdf
dc.publisher.none.fl_str_mv Universidad de Antioquia
dc.publisher.program.none.fl_str_mv Maestría en Gestión Ambiental
dc.publisher.department.none.fl_str_mv Departamento de Ingeniería Sanitaria y Ambiental
dc.publisher.place.none.fl_str_mv Medellín, Colombia
dc.publisher.faculty.none.fl_str_mv Facultad de Ingeniería
dc.publisher.branch.none.fl_str_mv Campus Medellín - Ciudad Universitaria
publisher.none.fl_str_mv Universidad de Antioquia
institution Universidad de Antioquia
bitstream.url.fl_str_mv https://bibliotecadigital.udea.edu.co/bitstreams/b8e96d84-25c2-4d91-807f-0165a1c999be/download
https://bibliotecadigital.udea.edu.co/bitstreams/db5121ad-85ac-4a76-a486-f984888a9853/download
https://bibliotecadigital.udea.edu.co/bitstreams/2f72a00d-5778-4012-b85e-d45c8dea7656/download
https://bibliotecadigital.udea.edu.co/bitstreams/02d3b9c7-db0e-4ad9-8f83-bdc832eddafe/download
bitstream.checksum.fl_str_mv ea1c53ee8a833fc6b1fabae45b7c5664
b76e7a76e24cf2f94b3ce0ae5ed275d0
48bd0256a5a87e76f107be844822d19d
fd1fa1dfa3eaad6460688ed02ebee3b9
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
MD5
repository.name.fl_str_mv Repositorio Institucional de la Universidad de Antioquia
repository.mail.fl_str_mv aplicacionbibliotecadigitalbiblioteca@udea.edu.co
_version_ 1851052558050656256
spelling Arias Gómez, Paola AndreaVilla Garzón, Fernán AlonsoAcevedo Ortiz, Marley YuraniGrupo de Ingeniería y Gestión Ambiental (GIGA)Gutiérrez Vélez, Víctor HugoDurán Quesada, Ana María2025-12-01T18:50:41Z2025M. Y. Acevedo-Ortiz, “Condiciones meteorológicas que favorecen la ocurrencia de incendios en Suramérica Tropical”, Tesis de maestría, Maestría en Gestión Ambiental, Universidad de Antioquia, Medellín, Antioquia, Colombia, 2025.https://hdl.handle.net/10495/48486Los incendios tienen un impacto significativo en los ecosistemas terrestres, generando efectos ecológicos, económicos y socioambientales. Su actividad está influenciada por factores biofísicos como el clima y la meteorología, cuya relevancia varía regionalmente. A pesar de numerosas investigaciones globales, existe un vacío en la literatura sobre la relación entre incendios y meteorología a escala regional, especialmente en el contexto del cambio climático, según el Sexto Informe de Evaluación del Panel Intergubernamental sobre Cambio Climático (IPCC por sus iniciales en inglés). En Suramérica, el uso de datos satelitales y análisis espaciales es limitado en comparación con otras regiones, lo que crea una brecha de conocimiento en estas temáticas. Este Trabajo de Investigación busca describir el comportamiento espacial y temporal de los incendios en Suramérica Tropical entre 2002 y 2022, identificar las condiciones meteorológicas asociadas a los incendios en las regiones noroeste de Suramérica (NWS), norte de Suramérica (NSA) y Orinoquía, y estimar un índice meteorológico de peligro de incendio según las coberturas de suelo en el norte y sur de la Orinoquía para los cuatro años con mayor actividad de incendios (2003, 2007, 2019 y 2020). Para ello, se utilizaron datos satelitales de MODIS y CHIRPS, así como el reanálisis ERA5-Land. Nuestros hallazgos muestran un ciclo bimodal en la actividad de incendios en NWS y NSA, con el 84.3% de los incendios registrados en NSA, principalmente en marzo sobre el noroeste (NSA1) y en agosto sobre el sureste (NSA4) de la región, así como en el norte de NWS (NWS1) en febrero y en el sur (NWS2) en septiembre. Las condiciones cálidas y secas, en conjunto con una baja humedad relativa y una alta velocidad del viento, aumentan la susceptibilidad al fuego. En la Orinoquía, en particular, el peligro de incendio es "Muy Alto" en los meses de febrero y marzo, disminuyendo en abril. Estos patrones pueden guiar estrategias de gestión del fuego, mitigando sus impactos.COL0008619MaestríaMagíster en Gestión Ambiental132 páginasapplication/pdfspaUniversidad de AntioquiaMaestría en Gestión AmbientalDepartamento de Ingeniería Sanitaria y AmbientalMedellín, ColombiaFacultad de IngenieríaCampus Medellín - Ciudad UniversitariaMODIS (Spectroradiometer)Incendios forestalesForest firesMeteorologíaMeteorologyPrevención de incendiosFire preventionGrupo Intergubernamental de Expertos sobre el Cambio Climático (IPCC)http://id.loc.gov/authorities/subjects/sh2007004873ODS 13: Acción por el Clima. Adoptar medidas urgentes para combatir el cambio climático y sus efectosCondiciones meteorológicas que favorecen la ocurrencia de incendios en Suramérica TropicalTrabajo de grado - Maestríahttp://purl.org/redcol/resource_type/TMTexthttp://purl.org/coar/version/c_b1a7d7d4d402bcceinfo:eu-repo/semantics/masterThesisinfo:eu-repo/semantics/draftAbram, N.J., Henley, B.J., Sen Gupta, A., Lippmann, T.J.R., Clarke, H., Dowdy, A.J., Sharples, J.J., Nolan, R.H., Zhang, T., Wooster, M.J., Wurtzel, J.B., Meissner, K.J., Pitman, A.J., Ukkola, A.M., Murphy, B.P., Tapper, N.J., Boer, M.M., 2021. Connections of climate change and variability to large and extreme forest fires in southeast Australia. Commun. Earth Environ. 2, 1–17. https://doi.org/10.1038/s43247-020-00065-8Alvares, C., Cegatta, Í., Vieira, L.A., Pavani, R., Mattos, E.M., Sentelhas, P., Stape, J., Soares, R.V., 2014. Forest fire danger: application of Monte Alegre Formula and assessment of the historic for Piracicaba, SP. Sci. For.Anaya, J.A., Chuvieco, E., Palacios-Orueta, A., 2009. Aboveground biomass assessment in Colombia: A remote sensing approach. For. Ecol. Manag. 257, 1237–1246. https://doi.org/10.1016/j.foreco.2008.11.016Andela, N., Morton, D.C., Schroeder, W., Chen, Y., Brando, P.M., Randerson, J.T., 2022. Tracking and classifying Amazon fire events in near real time. Sci. Adv. 8, eabd2713. https://doi.org/10.1126/sciadv.abd2713Anderson, L.O., Burton, C., dos Reis, J.B.C., Pessôa, A.C.M., Bett, P., Carvalho, N.S., Junior, C.H.L.S., Williams, K., Selaya, G., Armenteras, D., Bilbao, B.A., Xaud, H.A.M., Rivera-Lombardi, R., Ferreira, J., Aragão, L.E.O.C., Jones, C.D., Wiltshire, A.J., 2022. An alert system for Seasonal Fire probability forecast for South American Protected Areas. Clim. Resil. Sustain. 1, e19. https://doi.org/10.1002/cli2.19Aragão, L.E.O.C., Anderson, L.O., Fonseca, M.G., Rosan, T.M., Vedovato, L.B., Wagner, F.H., Silva, C.V.J., Silva Junior, C.H.L., Arai, E., Aguiar, A.P., Barlow, J., Berenguer, E., Deeter, M.N., Domingues, L.G., Gatti, L., Gloor, M., Malhi, Y., Marengo, J.A., Miller, J.B., Phillips, O.L., Saatchi, S., 2018. 21st Century drought-related fires counteract the decline of Amazon deforestation carbon emissions. Nat. Commun. 9, 536. https://doi.org/10.1038/s41467-017-02771-yArchibald, S., Lehmann, C.E.R., Belcher, C.M., Bond, W.J., Bradstock, R.A., Daniau, A.-L., Dexter, K.G., Forrestel, E.J., Greve, M., He, T., Higgins, S.I., Hoffmann, W.A., Lamont, B.B., McGlinn, D.J., Moncrieff, G.R., Osborne, C.P., Pausas, J.G., Price, O., Ripley, B.S., Rogers, B.M., Schwilk, D.W., Simon, M.F., Turetsky, M.R., Van Der Werf, G.R., Zanne, A.E., 2018. Biological and geophysical feedbacks with fire in the Earth system. Environ. Res. Lett. 13, 033003. https://doi.org/10.1088/1748-9326/aa9eadArgañaraz, J.P., Landi, M.A., Scavuzzo, C.M., Bellis, L.M., 2018. Determining fuel moisture thresholds to assess wildfire hazard: A contribution to an operational early warning system. PLOS ONE 13, e0204889. https://doi.org/10.1371/journal.pone.0204889Arias, P.A., Martínez, J.A., Mejía, J.D., Pazos, M.J., Espinoza, J.C., Wongchuig-Correa, S., 2020. Changes in Normalized Difference Vegetation Index in the Orinoco and Amazon River Basins: Links to Tropical Atlantic Surface Temperatures. J. Clim. 33, 8537–8559. https://doi.org/10.1175/JCLI-D-19-0696.1Armenteras, D., González, T.M., Vargas, J.O., Elizalde, M.C.M., Oliveras, I., 2020. Incendios en ecosistemas del norte de Suramérica: avances en la ecología del fuego tropical en Colombia, Ecuador y Perú. Caldasia 42, 1–16. https://doi.org/10.15446/caldasia.v42n1.77353Armenteras, D., Meza, M.C., González, T.M., Oliveras, I., Balch, J.K., Retana, J., 2021. Fire threatens the diversity and structure of tropical gallery forests. Ecosphere 12, e03347. https://doi.org/10.1002/ecs2.3347Armenteras, D., Retana, J., 2012. Dynamics, Patterns and Causes of Fires in Northwestern Amazonia. PLOS ONE 7, e35288. https://doi.org/10.1371/journal.pone.0035288Armenteras, D., Retana-Alumbreros, J., Molowny-Horas, R., Roman-Cuesta, R.M., Gonzalez-Alonso, F., Morales-Rivas, M., 2011. Characterising fire spatial pattern interactions with climate and vegetation in Colombia. Agric. For. Meteorol. 151, 279–289. https://doi.org/10.1016/j.agrformet.2010.11.002Baez-Villanueva, O.M., Zambrano-Bigiarini, M., Beck, H.E., McNamara, I., Ribbe, L., Nauditt, A., Birkel, C., Verbist, K., Giraldo-Osorio, J.D., Xuan Thinh, N., 2020. RF-MEP: A novel Random Forest method for merging gridded precipitation products and ground-based measurements. Remote Sens. Environ. 239, 111606. https://doi.org/10.1016/j.rse.2019.111606Baez-Villanueva, O.M., Zambrano-Bigiarini, M., Ribbe, L., Nauditt, A., Giraldo-Osorio, J.D., Thinh, N.X., 2018. Temporal and spatial evaluation of satellite rainfall estimates over different regions in Latin-America. Atmospheric Res. 213, 34–50. https://doi.org/10.1016/j.atmosres.2018.05.011Barcia-Sardiñas, S., Fontes-Leandro, M., Viera-González, E.Y., 2019. Los focos de calor y los incendios forestales en la provincia Cienfuegos, Cuba. Rev. Cuba. Meteorol. 25.Barni, P.E., Rego, A.C.M., Silva, F. das C.F., Lopes, R.A.S., Xaud, H.A.M., Xaud, M.R., Barbosa, R.I., Fearnside, P.M., 2021. Logging Amazon forest increased the severity and spread of fires during the 2015–2016 El Niño. For. Ecol. Manag. 500, 119652. https://doi.org/10.1016/j.foreco.2021.119652Barreto, J.S., Armenteras, D., 2020. Open Data and Machine Learning to Model the Occurrence of Fire in the Ecoregion of “Llanos Colombo–Venezolanos.” Remote Sens. 12, 3921. https://doi.org/10.3390/rs12233921Barros-Rosa, L., de Arruda, P.H.Z., Machado, N.G., Pires-Oliveira, J.C., Eisenlohr, P.V., 2022. Fire probability mapping and prediction from environmental data: What a comprehensive savanna-forest transition can tell us. For. Ecol. Manag. 520, 120354. https://doi.org/10.1016/j.foreco.2022.120354Bedia, J., Herrera, S., Gutiérrez, J.M., Benali, A., Brands, S., Mota, B., Moreno, J.M., 2015. Global patterns in the sensitivity of burned area to fire-weather: Implications for climate change. Agric. For. Meteorol. 214–215, 369–379. https://doi.org/10.1016/j.agrformet.2015.09.002Bekar, İ., Pezzatti, G.B., Conedera, M., Vacik, H., Pausas, J.G., Dupire, S., Bugmann, H., 2023. Integrating burned area as a complementary performance measure for daily fire danger assessment: A large-scale test. Agric. For. Meteorol. 342, 109746. https://doi.org/10.1016/j.agrformet.2023.109746Boer, M.M., Dios, V.R.D., Stefaniak, E.Z., Bradstock, R.A., 2021. A hydroclimatic model for the distribution of fire on Earth. Environ. Res. Commun. 3, 035001. https://doi.org/10.1088/2515-7620/abec1fBohórquez, L., Gómez, I., Santa, F., 2011. Methodology for the discrimination of areas affected by forest fires using satellite images and spatial statistics. Procedia Environ. Sci., Spatial Statistics 2011: Mapping Global Change 7, 389–394. https://doi.org/10.1016/j.proenv.2011.07.067Bovolo, C.I., Wagner, T., Parkin, G., Hein-Griggs, D., Pereira, R., Jones, R., 2018. The Guiana Shield rainforests—overlooked guardians of South American climate. Environ. Res. Lett. 13, 074029. https://doi.org/10.1088/1748-9326/aacf60Bowman, D.M.J.S., 2023. Detecting, Monitoring and Foreseeing Wildland Fire Requires Similar Multiscale Viewpoints as Meteorology and Climatology. Fire 6, 160. https://doi.org/10.3390/fire6040160Bowman, D.M.J.S., Balch, J.K., Artaxo, P., Bond, W.J., Carlson, J.M., Cochrane, M.A., D’Antonio, C.M., DeFries, R.S., Doyle, J.C., Harrison, S.P., Johnston, F.H., Keeley, J.E., Krawchuk, M.A., Kull, C.A., Marston, J.B., Moritz, M.A., Prentice, I.C., Roos, C.I., Scott, A.C., Swetnam, T.W., van der Werf, G.R., Pyne, S.J., 2009. Fire in the Earth System. Science 324, 481–484. https://doi.org/10.1126/science.1163886Bradley, A.V., Millington, A.C., 2006. Spatial and temporal scale issues in determining biomass burning regimes in Bolivia and Peru. International Journal of Remote Sensing 27, 2221–2253. https://doi.org/DOI: 10.1080/01431160500396550Brando, P.M., Balch, J.K., Nepstad, D.C., Morton, D.C., Putz, F.E., Coe, M.T., Silvério, D., Macedo, M.N., Davidson, E.A., Nóbrega, C.C., Alencar, A., Soares-Filho, B.S., 2014. Abrupt increases in Amazonian tree mortality due to drought–fire interactions. Proc. Natl. Acad. Sci. 111, 6347–6352. https://doi.org/10.1073/pnas.1305499111Builes-Jaramillo, A., Salas, H.D., Valencia, J., Florian, C., 2024. Orinoco revisited: Comprehensive analysis of the Orinoco River basin present and future hydroclimate. Atmósfera 38, 641–657. https://doi.org/10.20937/ATM.53359Cansler, C.A., Kane, V.R., Hessburg, P.F., Kane, J.T., Jeronimo, S.M.A., Lutz, J.A., Povak, N.A., Churchill, D.J., Larson, A.J., 2022. Previous wildfires and management treatments moderate subsequent fire severity. For. Ecol. Manag. 504, 119764. https://doi.org/10.1016/j.foreco.2021.119764Carrasco Rodríguez, Y., Ramos Rodríguez, M.P.R., Batista, A.C., Miranda Sierra, C.A.M., 2022. Uso del desempeño de los índices de peligro de incendio como herramienta para el pronóstico de ocurrencias. Ecovida 12.Carvalho, N.S., Anderson, L.O., Nunes, C.A., Pessôa, A.C.M., Junior, C.H.L.S., Reis, J.B.C., Shimabukuro, Y.E., Berenguer, E., Barlow, J., Aragão, L.E.O.C., 2021. Spatio-temporal variation in dry season determines the Amazonian fire calendar. Environ. Res. Lett. 16, 125009. https://doi.org/10.1088/1748-9326/ac3aa3Cavalcante, R.B.L., Souza, B.M., Ramos, S.J., Gastauer, M., NASCIMENTO Junior, W.R., Caldeira, C.F., Souza-Filho, P.W.M., 2021. Assessment of fire hazard weather indices in the eastern Amazon: a case study for different land uses. Acta Amaz. 51, 352–362. https://doi.org/10.1590/1809-4392202101172Cerano-Paredes, J., Villanueva-Díaz, J., Vázquez-Selem, L., Cervantes-Martínez, R., Esquivel-Arriaga, G., Cruz, V.G. la, Fulé, P.Z., 2016. Historical fire regime and its relationship with climate in a forest of Pinus hartwegii to the north of Puebla State, Mexico. Rev. Bosque 37, 389–399.Chen, C., Xu, T., Sun, F., Zhao, D., 2023. A fire danger index assessment method for short-term pre-warning of wildfires: A case study of Xiangxi, China. Saf. Sci. 167, 106287. https://doi.org/10.1016/j.ssci.2023.106287Chen, Y., Randerson, J.T., Morton, D.C., DeFries, R.S., Collatz, G.J., Kasibhatla, P.S., Giglio, L., Jin, Y., Marlier, M.E., 2011. Forecasting Fire Season Severity in South America Using Sea Surface Temperature Anomalies. Science 334, 787–791. https://doi.org/10.1126/science.1209472Chuvieco, E., Cifuentes, Y., Hantson, S., López, A.A., Ramo, R., Torres Esquivias, J.A., 2012. Comparación entre focos de calor MODIS y perímetros de área quemada en incendios mediterráneos. Rev. Teledetec. Rev. Asoc. Esp. Teledetec. 9–22.Chuvieco, E., Pettinari, M.L., Koutsias, N., Forkel, M., Hantson, S., Turco, M., 2021. Human and climate drivers of global biomass burning variability. Sci. Total Environ. 779, 146361. https://doi.org/10.1016/j.scitotenv.2021.146361Cisneros Vaca, C., Calahorrano, J., Manzano, M., 2024. Análisis espacial y temporal de incendios forestales en el Ecuador utilizando datos de sensores remotos. Colomb. For. 27, e20111. https://doi.org/10.14483/2256201X.20111Collins, B.M., 2014. Fire weather and large fire potential in the northern Sierra Nevada. Agric. For. Meteorol. 189–190, 30–35. https://doi.org/10.1016/j.agrformet.2014.01.005Correa, I.C., Arias, P.A., Vieira, S.C., Martínez, J.A., 2024. A drier Orinoco basin during the twenty-first century: the role of the Orinoco low-level jet. Clim. Dyn. 62, 2369–2398. https://doi.org/10.1007/s00382-023-07028-7Cunill Camprubí, A., 2019. Obtención de mapas de humedad del combustible a partir de variables meteorológicas para la predicción del riesgo de incendios forestales a escala regional: nuevo enfoque a los actuales índices de peligro de incendio. Cuad. Soc. Esp. Cienc. For. 205–214.De Magalhães Neto, N., Evangelista, H., 2022. Human Activity Behind the Unprecedented 2020 Wildfire in Brazilian Wetlands (Pantanal). Front. Environ. Sci. 10. https://doi.org/10.3389/fenvs.2022.888578Dong, L., Leung, L.R., Qian, Y., Zou, Y., Song, F., Chen, X., 2021. Meteorological Environments Associated With California Wildfires and Their Potential Roles in Wildfire Changes During 1984–2017. J. Geophys. Res. Atmospheres 126, e2020JD033180. https://doi.org/10.1029/2020JD033180Dong, X., Li, F., Lin, Z., Harrison, S.P., Chen, Y., Kug, J.-S., 2021. Climate influence on the 2019 fires in Amazonia. Sci. Total Environ. 794, 148718. https://doi.org/10.1016/j.scitotenv.2021.148718Dos Reis, M., Graça, P.M.L.D.A., Yanai, A.M., Ramos, C.J.P., Fearnside, P.M., 2021. Forest fires and deforestation in the central Amazon: Effects of landscape and climate on spatial and temporal dynamics. J. Environ. Manage. 288, 112310. https://doi.org/10.1016/j.jenvman.2021.112310Ehsani, M.R., Arevalo, J., Risanto, C.B., Javadian, M., Devine, C.J., Arabzadeh, A., Venegas-Quiñones, H.L., Dell’Oro, A.P., Behrangi, A., 2020. 2019–2020 Australia Fire and Its Relationship to Hydroclimatological and Vegetation Variabilities. Water 12, 3067. https://doi.org/10.3390/w12113067Fang, L., Yang, J., White, M., Liu, Z., 2018. Predicting Potential Fire Severity Using Vegetation, Topography and Surface Moisture Availability in a Eurasian Boreal Forest Landscape. Forests 9, 130. https://doi.org/10.3390/f9030130Fernández-Guisuraga, J.M., Suárez-Seoane, S., García-Llamas, P., Calvo, L., 2021. Vegetation structure parameters determine high burn severity likelihood in different ecosystem types: A case study in a burned Mediterranean landscape. J. Environ. Manage. 288, 112462. https://doi.org/10.1016/j.jenvman.2021.112462Filho, H. de O., Oliveira-Júnior, J.F. de, Silva, M.V. da, Jardim, A.M. da R.F., Shah, M., Gobo, J.P.A., Blanco, C.J.C., Pimentel, L.C.G., da Silva, C., da Silva, E.B., Machado, T. de B., Pereira, C.R., Modon Valappil, N.K., Hamza, V., Haq, M.A., Khan, I., Mohamed, A., Attia, E.-A., 2022. Dynamics of Fire Foci in the Amazon Rainforest and Their Consequences on Environmental Degradation. Sustainability 14, 9419. https://doi.org/10.3390/su14159419Fiore, A.M., Naik, V., Leibensperger, E.M., 2015. Air Quality and Climate Connections. J. Air Waste Manag. Assoc. 65, 645–685. https://doi.org/10.1080/10962247.2015.1040526Freeborn, P.H., Cochrane, M.A., Jolly, W.M., 2015. Relationships between fire danger and the daily number and daily growth of active incidents burning in the northern Rocky Mountains, USA. Int. J. Wildland Fire 24, 900–910. https://doi.org/10.1071/WF14152Fréjaville, T., Curt, T., 2017. Seasonal changes in the human alteration of fire regimes beyond the climate forcing. Environ. Res. Lett. 12, 035006. https://doi.org/10.1088/1748-9326/aa5d23Friedl, M., Sulla-Menashe, D., 2022. MODIS/Terra+Aqua Land Cover Type Yearly L3 Global 500m SIN Grid V061. https://doi.org/10.5067/MODIS/MCD12Q1.061Funk, C., Peterson, P., Landsfeld, M., Pedreros, D., Verdin, J., Shukla, S., Husak, G., Rowland, J., Harrison, L., Hoell, A., Michaelsen, J., 2015. The climate hazards infrared precipitation with stations—a new environmental record for monitoring extremes. Sci. Data 2, 150066. https://doi.org/10.1038/sdata.2015.66Gatti, L.V., Basso, L.S., Miller, J.B., Gloor, M., Gatti Domingues, L., Cassol, H.L.G., Tejada, G., Aragão, L.E.O.C., Nobre, C., Peters, W., Marani, L., Arai, E., Sanches, A.H., Corrêa, S.M., Anderson, L., Von Randow, C., Correia, C.S.C., Crispim, S.P., Neves, R.A.L., 2021. Amazonia as a carbon source linked to deforestation and climate change. Nature 595, 388–393. https://doi.org/10.1038/s41586-021-03629-6Giglio, L., Justice, C., Boschetti, L., Roy, D., 2021a. MODIS/Terra+Aqua Burned Area Monthly L3 Global 500m SIN Grid V061. https://doi.org/10.5067/MODIS/MCD64A1.061Giglio, L., Schroeder, W., Hall, J.V., 2021b. MODIS Collection 6 and Collection 6.1 Active Fire Product User’s Guide.Giglio, L., Schroeder, W., Justice, C.O., 2016. The collection 6 MODIS active fire detection algorithm and fire products. Remote Sens. Environ. 178, 31–41. https://doi.org/10.1016/j.rse.2016.02.054Gómez-González, S., González, M.E., Paula, S., Díaz-Hormazábal, I., Lara, A., Delgado-Baquerizo, M., 2019. Temperature and agriculture are largely associated with fire activity in Central Chile across different temporal periods. For. Ecol. Manag. 433, 535–543. https://doi.org/10.1016/j.foreco.2018.11.041Gonzalez-Alonso, L., Val Martin, M., Kahn, R.A., 2019. Biomass-burning smoke heights over the Amazon observed from space. Atmospheric Chem. Phys. 19, 1685–1702. https://doi.org/10.5194/acp-19-1685-2019Gutiérrez-Vélez, V.H., Uriarte, M., DeFries, R., Pinedo-Vásquez, M., Fernandes, K., Ceccato, P., Baethgen, W., Padoch, C., 2014. Land cover change interacts with drought severity to change fire regimes in Western Amazonia. Ecol. Appl. 24, 1323–1340. https://doi.org/10.1890/13-2101.1Hassan, N.A., Hashim, Z., Hashim, J.H., 2016. Impact of Climate Change on Air Quality and Public Health in Urban Areas. Asia Pac. J. Public Health 28, 38S-48S. https://doi.org/10.1177/1010539515592951Hernández, A.J., Morales-Rincon, L.A., Wu, D., Mallia, D., Lin, J.C., Jimenez, R., 2019. Transboundary transport of biomass burning aerosols and photochemical pollution in the Orinoco River Basin. Atmos. Environ. 205, 1–8. https://doi.org/10.1016/j.atmosenv.2019.01.051Hersbach, H., Bell, B., Berrisford, P., Hirahara, S., Horányi, A., Muñoz-Sabater, J., Nicolas, J., Peubey, C., Radu, R., Schepers, D., Simmons, A., Soci, C., Abdalla, S., Abellan, X., Balsamo, G., Bechtold, P., Biavati, G., Bidlot, J., Bonavita, M., De Chiara, G., Dahlgren, P., Dee, D., Diamantakis, M., Dragani, R., Flemming, J., Forbes, R., Fuentes, M., Geer, A., Haimberger, L., Healy, S., Hogan, R.J., Hólm, E., Janisková, M., Keeley, S., Laloyaux, P., Lopez, P., Lupu, C., Radnoti, G., de Rosnay, P., Rozum, I., Vamborg, F., Villaume, S., Thépaut, J.-N., 2020. The ERA5 global reanalysis. Q. J. R. Meteorol. Soc. 146, 1999–2049. https://doi.org/10.1002/qj.3803Hessburg, P.F., Prichard, S.J., Hagmann, R.K., Povak, N.A., Lake, F.K., 2021. Wildfire and climate change adaptation of western North American forests: a case for intentional management. Ecol. Appl. 31, e02432. https://doi.org/10.1002/eap.2432Hoeve, J.E.T., Remer, L.A., Correia, A.L., Jacobson, M.Z., 2012. Recent shift from forest to savanna burning in the Amazon Basin observed by satellite. Environ. Res. Lett. 7, 024020. https://doi.org/10.1088/1748-9326/7/2/024020Holden, Z.A., Swanson, A., Luce, C.H., Jolly, W.M., Maneta, M., Oyler, J.W., Warren, D.A., Parsons, R., Affleck, D., 2018. Decreasing fire season precipitation increased recent western US forest wildfire activity. Proc. Natl. Acad. Sci. 115, E8349–E8357. https://doi.org/10.1073/pnas.1802316115Holz, A., Kitzberger, T., Paritsis, J., Veblen, T.T., 2012. Ecological and climatic controls of modern wildfire activity patterns across southwestern South America. Ecosphere 3, art103. https://doi.org/10.1890/ES12-00234.1Hoyos, N., Correa-Metrio, A., Sisa, A., Ramos-Fabiel, M.A., Espinosa, J.M., Restrepo, J.C., Escobar, J., 2017. The environmental envelope of fires in the Colombian Caribbean. Appl. Geogr. 84, 42–54. https://doi.org/10.1016/j.apgeog.2017.05.001IPCC, 2021. Climate Change 2021: The Physical Science Basis: Working Group I Contribution to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change, 1st ed. Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA. https://doi.org/10.1017/9781009157896Iturbide, M., Gutiérrez, J.M., Alves, L.M., Bedia, J., Cerezo-Mota, R., Cimadevilla, E., Cofiño, A.S., Di Luca, A., Faria, S.H., Gorodetskaya, I.V., Hauser, M., Herrera, S., Hennessy, K., Hewitt, H.T., Jones, R.G., Krakovska, S., Manzanas, R., Martínez-Castro, D., Narisma, G.T., Nurhati, I.S., Pinto, I., Seneviratne, S.I., van den Hurk, B., Vera, C.S., 2020. An update of IPCC climate reference regions for subcontinental analysis of climate model data: definition and aggregated datasets. Earth Syst. Sci. Data 12, 2959–2970. https://doi.org/10.5194/essd-12-2959-2020Jain, P., Flannigan, M.D., 2017. Comparison of methods for spatial interpolation of fire weather in Alberta, Canada. Can. J. For. Res. 47, 1646–1658. https://doi.org/10.1139/cjfr-2017-0101Jiménez, J.C., Marengo, J.A., Alves, L.M., Sulca, J.C., Takahashi, K., Ferrett, S., Collins, M., 2021. The role of ENSO flavours and TNA on recent droughts over Amazon forests and the Northeast Brazil region. Int. J. Climatol. 41, 3761–3780. https://doi.org/10.1002/joc.6453Kambezidis, H.D., Kalliampakos, G.K., 2016. Fire-Risk Assessment in Northern Greece Using a Modified Fosberg Fire-Weather Index That Includes Forest Coverage. Int. J. Atmospheric Sci. 2016, 1–8. https://doi.org/10.1155/2016/8108691Leal, A., Gassón, R., Behling, H., Sánchez, F., 2019. Human-made fires and forest clearance as evidence for late Holocene landscape domestication in the Orinoco Llanos (Venezuela). Veg. Hist. Archaeobotany 28, 545–557. https://doi.org/10.1007/s00334-019-00713-wLemos, N.S.A., Cunha, J.M., 2021. Analysis of fire risk in the Amazon: a systematic review. Rev. Ambiente Água 16, e2706. https://doi.org/10.4136/ambi-agua.2706Littell, J.S., McKenzie, D., Peterson, D.L., Westerling, A.L., 2009. Climate and wildfire area burned in western U.S. ecoprovinces, 1916–2003. Ecol. Appl. 19, 1003–1021. https://doi.org/10.1890/07-1183.1López Guevara, B., 2021. Análisis espacio-temporal de incendios del norte y centro de Suramérica: 2009-2019. Agric. Habitat 4. https://doi.org/10.22490/26653176.4542Maillard, O., Vides-Almonacid, R., Flores-Valencia, M., Coronado, R., Vogt, P., Vicente-Serrano, S.M., Azurduy, H., Anívarro, R., Cuellar, R.L., 2020. Relationship of Forest Cover Fragmentation and Drought with the Occurrence of Forest Fires in the Department of Santa Cruz, Bolivia. Forests 11, 910. https://doi.org/10.3390/f11090910Marengo, J.A., Cunha, A.P., Cuartas, L.A., Deusdará Leal, K.R., Broedel, E., Seluchi, M.E., Michelin, C.M., De Praga Baião, C.F., Chuchón Angulo, E., Almeida, E.K., Kazmierczak, M.L., Mateus, N.P.A., Silva, R.C., Bender, F., 2021. Extreme Drought in the Brazilian Pantanal in 2019–2020: Characterization, Causes, and Impacts. Front. Water 3. https://doi.org/10.3389/frwa.2021.639204Marengo, J.A., Jimenez, J.C., Espinoza, J.-C., Cunha, A.P., Aragão, L.E.O., 2022. Increased climate pressure on the agricultural frontier in the Eastern Amazonia–Cerrado transition zone. Sci. Rep. 12, 457. https://doi.org/10.1038/s41598-021-04241-4Martínez, C., 2021. Análisis de índices de riesgo de incendio forestal y su aplicabilidad en el Uruguay. Universidad de la República, Montevideo-Uruguay.Martínez, J.A., Arias, P.A., Junquas, C., Espinoza, J.C., Condom, T., Dominguez, F., Morales, J.S., 2022. The Orinoco Low-Level Jet and the Cross-Equatorial Moisture Transport Over Tropical South America: Lessons From Seasonal WRF Simulations. J. Geophys. Res. Atmospheres 127, e2021JD035603. https://doi.org/10.1029/2021JD035603Mbanze, A.A., Batista, A.C., Tetto, A.F., Romero, A.M., Mudekwe, J., 2017. DESEMPENHO DOS ÍNDICES DE NESTEROV E FÓRMULA DE MONTE ALEGRE NO DISTRITO DE LICHINGA, NORTE DE MOÇAMBIQUE. Ciênc. Florest. 27, 687–696. https://doi.org/10.5902/1980509827753Méndez-Espinosa, J.F., Belalcazar, L.C., Morales Betancourt, R., 2019. Regional air quality impact of northern South America biomass burning emissions. Atmos. Environ. 203, 131–140. https://doi.org/10.1016/j.atmosenv.2019.01.042Meza, M.C., 2023. Efectos de los incendios forestales sobre la resiliencia de bosques tropicales de tierras bajas (Trabajo de grado - Doctorado). Universidad Nacional de Colombia, Bogotá.Montoya, E., Pedra-Méndez, J., García-Falcó, E., Gómez-Paccard, M., Giralt, S., Vegas-Vilarrúbia, T., Stauffer, F.W., Rull, V., 2019. Long-term vegetation dynamics of a tropical megadelta: Mid-Holocene palaeoecology of the Orinoco Delta (NE Venezuela). Quat. Sci. Rev. 221, 105874. https://doi.org/10.1016/j.quascirev.2019.105874Morgan, W.T., Darbyshire, E., Spracklen, D.V., Artaxo, P., Coe, H., 2019. Non-deforestation drivers of fires are increasingly important sources of aerosol and carbon dioxide emissions across Amazonia. Sci. Rep. 9, 16975. https://doi.org/10.1038/s41598-019-53112-6Myers, R., 2006. Convivir con el fuego-Manteniendo los ecosistemas y los medios de subsistencia mediante.Nobre, C., Encalada, A., Anderson, E., Roca Alcazar, F.H., Bustamante, M., Mena, C., Peña-Claros, M., Poveda, G., Rodriguez, J.P., Saleska, S., Trumbore, S., Val, A.L., Villa Nova, L., Abramovay, R., Alencar, A., Rodríguez Alzza, A.C., Armenteras, D., Artaxo, P., Athayde, S., Barretto Filho, H.T., Barlow, J., Berenguer, E., Bortolotto, F., Costa, F.D.A., Costa, M.H., Cuvi, N., Fearnside, P.M., Ferreira, J., Flores, B.M., Frieri, S., Gatti, L.V., Guayasamin, J.M., Hecht, S., Hirota, M., Hoorn, C., Josse, C., Lapola, D.M., Larrea, C., Larrea-Alcazar, D.M., Lehm Ardaya, Z., Malhi, Y., Marengo, J.A., Melack, J., Moraes, R.M., Moutinho, P., Murmis, M.R., Neves, E.G., Paez, B., Painter, L., Ramos, A., Rosero-Peña, M.C., Schmink, M., Sist, P., Ter Steege, H., Val P, P., Van Der Voort, H., Varese, M., Zapata-Ríos, G., 2022. Relatório de Avaliação da Amazônia 2021. Sustainable Development Solutions Network (SDSN). https://doi.org/10.55161/PQVE6369Nunes, J.R.S., 2005. FMA+ : um novo índice de perigo de incencios florestais para o estado do Paraná - Brasil.Oliveira, J.G. de, Massi, K.G., Bortolozo, L.A.P., Cunha, A.P.M. do A., 2023. The influence of climate parameters on fires in the Paraíba do Sul River valley, southeast Brazil. Rev. Ambiente Água 18, e2923. https://doi.org/10.4136/ambi-agua.2923Oliveira, U., Soares-Filho, B., Bustamante, M., Gomes, L., Ometto, J.P., Rajão, R., 2022. Determinants of Fire Impact in the Brazilian Biomes. Front. For. Glob. Change 5, 735017. https://doi.org/10.3389/ffgc.2022.735017Oliveira-Júnior, J.F., Shah, M., Abbas, A., Correia Filho, W.L.F., da Silva Junior, C.A., de Barros Santiago, D., Teodoro, P.E., Mendes, D., de Souza, A., Aviv-Sharon, E., Silveira, V.R., Pimentel, L.C.G., da Silva, E.B., Haq, M.A., Khan, I., Mohamed, A., Attia, E.-A., 2022. Spatiotemporal Analysis of Fire Foci and Environmental Degradation in the Biomes of Northeastern Brazil. Sustainability 14, 6935. https://doi.org/10.3390/su14116935Oliveira-Júnior, J.F.D., Mendes, D., Correia Filho, W.L.F., Silva Junior, C.A.D., Gois, G.D., Jardim, A.M.D.R.F., Silva, M.V.D., Lyra, G.B., Teodoro, P.E., Pimentel, L.C.G., Lima, M., Santiago, D.D.B., Rogério, J.P., Marinho, A.A.R., 2021. Fire foci in South America: Impact and causes, fire hazard and future scenarios. J. South Am. Earth Sci. 112, 103623. https://doi.org/10.1016/j.jsames.2021.103623Pacheco, A. da P., Junior, J.A. da S., Ruiz-Armenteros, A.M., Henriques, R.F.F., 2021. Assessment of k-Nearest Neighbor and Random Forest Classifiers for Mapping Forest Fire Areas in Central Portugal Using Landsat-8, Sentinel-2, and Terra Imagery. Remote Sens. 13, 1345. https://doi.org/10.3390/rs13071345Paredes-Trejo, F., Olivares, B.O., Movil-Fuentes, Y., Arevalo-Groening, J., Gil, A., 2023. Assessing the Spatiotemporal Patterns and Impacts of Droughts in the Orinoco River Basin Using Earth Observations Data and Surface Observations. Hydrology 10, 195. https://doi.org/10.3390/hydrology10100195Piraquive-Bermúdez, D., Behling, H., 2022. Holocene Paleoecology in the Neotropical Savannas of Northern South America (Llanos of the Orinoquia Ecoregion, Colombia and Venezuela): What Do We Know and on What Should We Focus in the Future? Front. Ecol. Evol. 10, 824873. https://doi.org/10.3389/fevo.2022.824873Porro, R., Porro, N.S.M., 2022. State-led social and environmental policy failure in a Brazilian forest frontier: Sustainable Development Project in Anapu, Pará. Land Use Policy 114, 105935. https://doi.org/10.1016/j.landusepol.2021.105935Poveda, G., Waylen, P.R., Pulwarty, R.S., 2006. Annual and inter-annual variability of the present climate in northern South America and southern Mesoamerica. Palaeogeogr. Palaeoclimatol. Palaeoecol., Late Quaternary climates of tropical America and adjacent seas 234, 3–27. https://doi.org/10.1016/j.palaeo.2005.10.031Prado, M.C., 2014. Diseño de un modelo SIG para la determinación de zonas en riesgo por incendios forestales en los cerros orientales de la ciudad de Bogotá. Universidad Nacional de Colombia, Bogotá, Colombia.Ramírez, B.H., Cortés-B, R., Pinzón, O.P., Gómez, L., Jacquin, S., Hernández, E., Quimbayo, L.A., Bogotá-A, R.G., 2023. Cloud forests of the Orinoco River Basin (Colombia): Variation in vegetation and soil macrofauna composition along the hydrometeorological gradient. Biotropica 55, 489–503. https://doi.org/10.1111/btp.13203Ramos, M.P., 2012. Desempeño de los Índices de Nesterov, Fórmula de Monte Alegre y Fórmula de Monte Alegre Alterada en la empresa forestal Macurije, Pinar del Río, Cuba. Universidad Federal de Paraná, Brasil. https://doi.org/10.13140/RG.2.2.12467.02086Ramos, M.P., 2010. Manejo del fuego, Deborah Prats López. ed. Félix Varela, Vedado, La Habana, Cuba.Ramos, M.P.R., Cabrera, E.B.P., Chancay, J.E.R., 2024. Estadísticas de incendios forestales en el cantón Loja, provincia Loja, Ecuador, en el periodo 2011 – 2020. Bosques Latid. Cero 14, 64–76. https://doi.org/10.54753/blc.v14i1.2076Ranasinghe et al., 2021. Climate Change Information for Regional Impact and for Risk Assessment, in: Climate Change 2021: The Physical Science Basis: Working Group I Contribution to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge, pp. 1767–1926. https://doi.org/10.1017/9781009157896.014Reichstein, M., Bahn, M., Ciais, P., Frank, D., Mahecha, M.D., Seneviratne, S.I., Zscheischler, J., Beer, C., Buchmann, N., Frank, D.C., Papale, D., Rammig, A., Smith, P., Thonicke, K., Van Der Velde, M., Vicca, S., Walz, A., Wattenbach, M., 2013. Climate extremes and the carbon cycle. Nature 500, 287–295. https://doi.org/10.1038/nature12350Roces-Díaz, J.V., Santín, C., Martínez-Vilalta, J., Doerr, S.H., 2022. A global synthesis of fire effects on ecosystem services of forests and woodlands. Front. Ecol. Environ. 20, 170–178. https://doi.org/10.1002/fee.2349Rodrigues, M., Resco de Dios, V., Sil, Â., Cunill Camprubí, À., Fernandes, P.M., 2024. VPD-based models of dead fine fuel moisture provide best estimates in a global dataset. Agric. For. Meteorol. 346, 109868. https://doi.org/10.1016/j.agrformet.2023.109868Roman-Cuesta, R.M., Rejalaga-Noguera, L., Pinto-García, C., Retana, J., 2014. Pacific and Atlantic oceanic anomalies and their interaction with rainfall and fire in Bolivian biomes for the period 1992–2012. Clim. Change 127, 243–256. https://doi.org/10.1007/s10584-014-1246-5Sabuco P, 2016. Análisis temporal y autocorrelación espacial de incendios forestales en Perú durante el periodo 2002-2012 empleando datos satelitales. Universidad Continental, Huancayo-Perú.Senande-Rivera, M., Insua-Costa, D., Miguez-Macho, G., 2022. Spatial and temporal expansion of global wildland fire activity in response to climate change. Nat. Commun. 13, 1208. https://doi.org/10.1038/s41467-022-28835-2Seneviratne et al., 2021. Weather and Climate Extreme Events in a Changing Climate, in: Climate Change 2021 – The Physical Science Basis: Working Group I Contribution to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge, pp. 1513–1766. https://doi.org/10.1017/9781009157896.013Sharples, J.J., McRae, R.H.D., Weber, R.O., Gill, A.M., 2009. A simple index for assessing fire danger rating. Environ. Model. Softw. 24, 764–774. https://doi.org/10.1016/j.envsoft.2008.11.004Shen, H., Tao, S., Chen, Yilin, Odman, M.T., Zou, Y., Huang, Y., Chen, H., Zhong, Q., Zhang, Y., Chen, Yuanchen, Su, S., Lin, N., Zhuo, S., Li, B., Wang, X., Liu, W., Liu, J., Pavur, G.K., Russell, A.G., 2019. Global Fire Forecasts Using Both Large-Scale Climate Indices and Local Meteorological Parameters. Glob. Biogeochem. Cycles 33, 1129–1145. https://doi.org/10.1029/2019GB006180Silva, R.M. da, Lopes, A.G., Santos, C.A.G., 2023. Deforestation and fires in the Brazilian Amazon from 2001 to 2020: Impacts on rainfall variability and land surface temperature. J. Environ. Manage. 326, 116664. https://doi.org/10.1016/j.jenvman.2022.116664Silva, G., 2005. La cuenca del río Orinoco: visión hidrográfica y balance hídrico. Rev. Geográfica Venez. 46, 75–108.Silva Junior, C.A. da, Lima, M., Teodoro, P.E., Oliveira-Júnior, J.F. de, Rossi, F.S., Funatsu, B.M., Butturi, W., Lourençoni, T., Kraeski, A., Pelissari, T.D., Moratelli, F.A., Arvor, D., Luz, I.M. dos S., Teodoro, L.P.R., Dubreuil, V., Teixeira, V.M., 2022. Fires Drive Long-Term Environmental Degradation in the Amazon Basin. Remote Sens. 14, 338. https://doi.org/10.3390/rs14020338Silveira, M.V.F., Silva-Junior, C.H.L., Anderson, L.O., Aragão, L.E.O.C., 2022. Amazon fires in the 21st century: The year of 2020 in evidence. Glob. Ecol. Biogeogr. 31, 2026–2040. https://doi.org/10.1111/geb.13577Silvério, D.V., Oliveira, R.S., Flores, B.M., Brando, P.M., Almada, H.K., Furtado, M.T., Moreira, F.G., Heckenberger, M., Ono, K.Y., Macedo, M.N., 2022. Intensification of fire regimes and forest loss in the Território Indígena do Xingu. Environ. Res. Lett. 17, 045012. https://doi.org/10.1088/1748-9326/ac5713Stefanidou, A., Gitas, I.Z., Stavrakoudis, D., Eftychidis, G., 2019. Midterm Fire Danger Prediction Using Satellite Imagery and Auxiliary Thematic Layers. Remote Sens. 11, 2786. https://doi.org/10.3390/rs11232786Sun, Q., Miao, C., Hanel, M., Borthwick, A.G.L., Duan, Q., Ji, D., Li, H., 2019. Global heat stress on health, wildfires, and agricultural crops under different levels of climate warming. Environ. Int. 128, 125–136. https://doi.org/10.1016/j.envint.2019.04.025Urrutia-Jalabert, R., González, M.E., González-Reyes, Á., Lara, A., Garreaud, R., 2018. Climate variability and forest fires in central and south-central Chile. Ecosphere 9, e02171. https://doi.org/10.1002/ecs2.2171Valencia, S., Marín, D.E., Gómez, D., Hoyos, N., Salazar, J.F., Villegas, J.C., 2023. Spatio-temporal assessment of Gridded precipitation products across topographic and climatic gradients in Colombia. Atmospheric Res. 285, 106643. https://doi.org/10.1016/j.atmosres.2023.106643Van Oldenborgh, G.J., Krikken, F., Lewis, S., Leach, N.J., Lehner, F., Saunders, K.R., van Weele, M., Haustein, K., Li, S., Wallom, D., Sparrow, S., Arrighi, J., Singh, R.K., van Aalst, M.K., Philip, S.Y., Vautard, R., Otto, F.E.L., 2021. Attribution of the Australian bushfire risk to anthropogenic climate change. Nat. Hazards Earth Syst. Sci. 21, 941–960. https://doi.org/10.5194/nhess-21-941-2021Vedovato, L.B., Carvalho, L.C.S., Aragão, L.E.O.C., Bird, M., Phillips, O.L., Alvarez, P., Barlow, J., Bartholomew, D.C., Berenguer, E., Castro, W., Ferreira, J., França, F.M., Malhi, Y., Marimon, B., Marimon Júnior, B.H., Monteagudo, A., Oliveira, E.A., Pereira, L.O., Pontes-Lopes, A., Quesada, C.A., Silva, C.V.J., Silva Espejo, J.E., Silveira, M., Feldpausch, T.R., 2023. Ancient fires enhance Amazon forest drought resistance. Front. For. Glob. Change 6. https://doi.org/10.3389/ffgc.2023.1024101Vega-Nieva, D.J., Briseño-Reyes, J., López-Serrano, P.-M., Corral-Rivas, J.J., Pompa-García, M., Cruz-López, M.I., Cuahutle, M., Ressl, R., Alvarado-Celestino, E., Burgan, R.E., 2024. Autoregressive Forecasting of the Number of Forest Fires Using an Accumulated MODIS-Based Fuel Dryness Index. Forests 15, 42. https://doi.org/10.3390/f15010042Vega-Nieva, D.J., Nava-Miranda, M.G., Calleros-Flores, E., López-Serrano, P.M., Briseño-Reyes, J., López-Sánchez, C., Corral-Rivas, J.J., Montiel-Antuna, E., Cruz-Lopez, M.I., Ressl, R., Cuahtle, M., Alvarado-Celestino, E., González-Cabán, A., Cortes-Montaño, C., Pérez-Salicrup, D., Jardel-Pelaez, E., Jiménez, E., Arellano-Pérez, S., Álvarez-González, J.G., Ruiz-González, A.D., 2019. Temporal patterns of active fire density and its relationship with a satellite fuel greenness index by vegetation type and region in Mexico during 2003–2014. Fire Ecol. 15, 28. https://doi.org/10.1186/s42408-019-0042-zWang, S.S.-C., Wang, Y., 2020. Quantifying the effects of environmental factors on wildfire burned area in the south central US using integrated machine learning techniques. Atmospheric Chem. Phys. 20, 11065–11087. https://doi.org/10.5194/acp-20-11065-2020Wang, Y., Huang, P., 2022. Potential fire risks in South America under anthropogenic forcing hidden by the Atlantic Multidecadal Oscillation. Nat. Commun. 13, 2437. https://doi.org/10.1038/s41467-022-30104-1Wooster, M.J., Roberts, G.J., Giglio, L., Roy, D.P., Freeborn, P.H., Boschetti, L., Justice, C., Ichoku, C., Schroeder, W., Davies, D., Smith, A.M.S., Setzer, A., Csiszar, I., Strydom, T., Frost, P., Zhang, T., Xu, W., de Jong, M.C., Johnston, J.M., Ellison, L., Vadrevu, K., Sparks, A.M., Nguyen, H., McCarty, J., Tanpipat, V., Schmidt, C., San-Miguel-Ayanz, J., 2021. Satellite remote sensing of active fires: History and current status, applications and future requirements. Remote Sens. Environ. 267, 112694. https://doi.org/10.1016/j.rse.2021.112694Xu, R., Yu, P., Abramson, M.J., Johnston, F.H., Samet, J.M., Bell, M.L., Haines, A., Ebi, K.L., Li, S., Guo, Y., 2020. Wildfires, Global Climate Change, and Human Health. N. Engl. J. Med. 383, 2173–2181. https://doi.org/10.1056/NEJMsr2028985Yang, X., Zhao, C., Zhao, W., Fan, H., Yang, Y., 2023. Characterization of global fire activity and its spatiotemporal patterns for different land cover types from 2001 to 2020. Environ. Res. 227, 115746. https://doi.org/10.1016/j.envres.2023.115746Ynouye-Francés, M., Ramos-Rodríguez, M.P., Martínez-Becerra, L.W., Cabrera-Reina, J.M., González-Rodríguez, R., Duany-Dangel, A., Ynouye-Francés, M., Ramos-Rodríguez, M.P., Martínez-Becerra, L.W., Cabrera-Reina, J.M., González-Rodríguez, R., Duany-Dangel, A., 2021. Causalidad de los incendios forestales en Pinar del Río, Cuba (1975-2018). Colomb. For. 24, 24–38. https://doi.org/10.14483/2256201x.16881Yu, G., Feng, Y., Wang, J., Wright, D.B., 2023. Performance of Fire Danger Indices and Their Utility in Predicting Future Wildfire Danger Over the Conterminous United States. Earths Future 11, e2023EF003823. https://doi.org/10.1029/2023EF003823Zacharakis, I., Tsihrintzis, V.A., 2023. Integrated wildfire danger models and factors: A review. Sci. Total Environ. 899, 165704. https://doi.org/10.1016/j.scitotenv.2023.165704info:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2PublicationORIGINALAcevedo_Marley_2025_Meteorologia_Incendios_Suramerica.pdfAcevedo_Marley_2025_Meteorologia_Incendios_Suramerica.pdfapplication/pdf20637051https://bibliotecadigital.udea.edu.co/bitstreams/b8e96d84-25c2-4d91-807f-0165a1c999be/downloadea1c53ee8a833fc6b1fabae45b7c5664MD53trueAnonymousREADLICENSElicense.txtlicense.txttext/plain; charset=utf-814837https://bibliotecadigital.udea.edu.co/bitstreams/db5121ad-85ac-4a76-a486-f984888a9853/downloadb76e7a76e24cf2f94b3ce0ae5ed275d0MD54falseAnonymousREADTEXTAcevedo_Marley_2025_Meteorologia_Incendios_Suramerica.pdf.txtAcevedo_Marley_2025_Meteorologia_Incendios_Suramerica.pdf.txtExtracted texttext/plain101631https://bibliotecadigital.udea.edu.co/bitstreams/2f72a00d-5778-4012-b85e-d45c8dea7656/download48bd0256a5a87e76f107be844822d19dMD55falseAnonymousREADTHUMBNAILAcevedo_Marley_2025_Meteorologia_Incendios_Suramerica.pdf.jpgAcevedo_Marley_2025_Meteorologia_Incendios_Suramerica.pdf.jpgGenerated Thumbnailimage/jpeg6230https://bibliotecadigital.udea.edu.co/bitstreams/02d3b9c7-db0e-4ad9-8f83-bdc832eddafe/downloadfd1fa1dfa3eaad6460688ed02ebee3b9MD56falseAnonymousREAD10495/48486oai:bibliotecadigital.udea.edu.co:10495/484862025-12-02 04:09:01.255open.accesshttps://bibliotecadigital.udea.edu.coRepositorio Institucional de la Universidad de Antioquiaaplicacionbibliotecadigitalbiblioteca@udea.edu.coTEEgT0JSQSAoVEFMIFkgQ09NTyBTRSBERUZJTkUgTcOBUyBBREVMQU5URSkgU0UgT1RPUkdBIEJBSk8gTE9TIFRFUk1JTk9TIERFIEVTVEEgTElDRU5DSUEgUMOaQkxJQ0EgREUgQ1JFQVRJVkUgQ09NTU9OUyAo4oCcTFBDQ+KAnSBPIOKAnExJQ0VOQ0lB4oCdKS4gTEEgT0JSQSBFU1TDgSBQUk9URUdJREEgUE9SIERFUkVDSE9TIERFIEFVVE9SIFkvVSBPVFJBUyBMRVlFUyBBUExJQ0FCTEVTLiBRVUVEQSBQUk9ISUJJRE8gQ1VBTFFVSUVSIFVTTyBRVUUgU0UgSEFHQSBERSBMQSBPQlJBIFFVRSBOTyBDVUVOVEUgQ09OIExBIEFVVE9SSVpBQ0nDk04gUEVSVElORU5URSBERSBDT05GT1JNSURBRCBDT04gTE9TIFTDiVJNSU5PUyBERSBFU1RBIExJQ0VOQ0lBIFkgREUgTEEgTEVZIERFIERFUkVDSE8gREUgQVVUT1IuCgpNRURJQU5URSBFTCBFSkVSQ0lDSU8gREUgQ1VBTFFVSUVSQSBERSBMT1MgREVSRUNIT1MgUVVFIFNFIE9UT1JHQU4gRU4gRVNUQSBMSUNFTkNJQSwgVVNURUQgQUNFUFRBIFkgQUNVRVJEQSBRVUVEQVIgT0JMSUdBRE8gRU4gTE9TIFRFUk1JTk9TIFFVRSBTRSBTRcORQUxBTiBFTiBFTExBLiBFTCBMSUNFTkNJQU5URSBDT05DRURFIEEgVVNURUQgTE9TIERFUkVDSE9TIENPTlRFTklET1MgRU4gRVNUQSBMSUNFTkNJQSBDT05ESUNJT05BRE9TIEEgTEEgQUNFUFRBQ0nDk04gREUgU1VTIFRFUk1JTk9TIFkgQ09ORElDSU9ORVMuIAoKMS4gRGVmaW5pY2lvbmVzCmEuIE9icmEgQ29sZWN0aXZhIGVzIHVuYSBvYnJhLCB0YWwgY29tbyB1bmEgcHVibGljYWNpw7NuIHBlcmnDs2RpY2EsIHVuYSBhbnRvbG9nw61hLCBvIHVuYSBlbmNpY2xvcGVkaWEsIGVuIGxhIHF1ZSBsYSBvYnJhIGVuIHN1IHRvdGFsaWRhZCwgc2luIG1vZGlmaWNhY2nDs24gYWxndW5hLCBqdW50byBjb24gdW4gZ3J1cG8gZGUgb3RyYXMgY29udHJpYnVjaW9uZXMgcXVlIGNvbnN0aXR1eWVuIG9icmFzIHNlcGFyYWRhcyBlIGluZGVwZW5kaWVudGVzIGVuIHPDrSBtaXNtYXMsIHNlIGludGVncmFuIGVuIHVuIHRvZG8gY29sZWN0aXZvLiBVbmEgT2JyYSBxdWUgY29uc3RpdHV5ZSB1bmEgb2JyYSBjb2xlY3RpdmEgbm8gc2UgY29uc2lkZXJhcsOhIHVuYSBPYnJhIERlcml2YWRhIChjb21vIHNlIGRlZmluZSBhYmFqbykgcGFyYSBsb3MgcHJvcMOzc2l0b3MgZGUgZXN0YSBsaWNlbmNpYS4gYXF1ZWxsYSBwcm9kdWNpZGEgcG9yIHVuIGdydXBvIGRlIGF1dG9yZXMsIGVuIHF1ZSBsYSBPYnJhIHNlIGVuY3VlbnRyYSBzaW4gbW9kaWZpY2FjaW9uZXMsIGp1bnRvIGNvbiB1bmEgY2llcnRhIGNhbnRpZGFkIGRlIG90cmFzIGNvbnRyaWJ1Y2lvbmVzLCBxdWUgY29uc3RpdHV5ZW4gZW4gc8OtIG1pc21vcyB0cmFiYWpvcyBzZXBhcmFkb3MgZSBpbmRlcGVuZGllbnRlcywgcXVlIHNvbiBpbnRlZ3JhZG9zIGFsIHRvZG8gY29sZWN0aXZvLCB0YWxlcyBjb21vIHB1YmxpY2FjaW9uZXMgcGVyacOzZGljYXMsIGFudG9sb2fDrWFzIG8gZW5jaWNsb3BlZGlhcy4KYi4gT2JyYSBEZXJpdmFkYSBzaWduaWZpY2EgdW5hIG9icmEgYmFzYWRhIGVuIGxhIG9icmEgb2JqZXRvIGRlIGVzdGEgbGljZW5jaWEgbyBlbiDDqXN0YSB5IG90cmFzIG9icmFzIHByZWV4aXN0ZW50ZXMsIHRhbGVzIGNvbW8gdHJhZHVjY2lvbmVzLCBhcnJlZ2xvcyBtdXNpY2FsZXMsIGRyYW1hdGl6YWNpb25lcywg4oCcZmljY2lvbmFsaXphY2lvbmVz4oCdLCB2ZXJzaW9uZXMgcGFyYSBjaW5lLCDigJxncmFiYWNpb25lcyBkZSBzb25pZG/igJ0sIHJlcHJvZHVjY2lvbmVzIGRlIGFydGUsIHJlc8O6bWVuZXMsIGNvbmRlbnNhY2lvbmVzLCBvIGN1YWxxdWllciBvdHJhIGVuIGxhIHF1ZSBsYSBvYnJhIHB1ZWRhIHNlciB0cmFuc2Zvcm1hZGEsIGNhbWJpYWRhIG8gYWRhcHRhZGEsIGV4Y2VwdG8gYXF1ZWxsYXMgcXVlIGNvbnN0aXR1eWFuIHVuYSBvYnJhIGNvbGVjdGl2YSwgbGFzIHF1ZSBubyBzZXLDoW4gY29uc2lkZXJhZGFzIHVuYSBvYnJhIGRlcml2YWRhIHBhcmEgZWZlY3RvcyBkZSBlc3RhIGxpY2VuY2lhLiAoUGFyYSBldml0YXIgZHVkYXMsIGVuIGVsIGNhc28gZGUgcXVlIGxhIE9icmEgc2VhIHVuYSBjb21wb3NpY2nDs24gbXVzaWNhbCBvIHVuYSBncmFiYWNpw7NuIHNvbm9yYSwgcGFyYSBsb3MgZWZlY3RvcyBkZSBlc3RhIExpY2VuY2lhIGxhIHNpbmNyb25pemFjacOzbiB0ZW1wb3JhbCBkZSBsYSBPYnJhIGNvbiB1bmEgaW1hZ2VuIGVuIG1vdmltaWVudG8gc2UgY29uc2lkZXJhcsOhIHVuYSBPYnJhIERlcml2YWRhIHBhcmEgbG9zIGZpbmVzIGRlIGVzdGEgbGljZW5jaWEpLgpjLiBMaWNlbmNpYW50ZSwgZXMgZWwgaW5kaXZpZHVvIG8gbGEgZW50aWRhZCB0aXR1bGFyIGRlIGxvcyBkZXJlY2hvcyBkZSBhdXRvciBxdWUgb2ZyZWNlIGxhIE9icmEgZW4gY29uZm9ybWlkYWQgY29uIGxhcyBjb25kaWNpb25lcyBkZSBlc3RhIExpY2VuY2lhLgpkLiBBdXRvciBvcmlnaW5hbCwgZXMgZWwgaW5kaXZpZHVvIHF1ZSBjcmXDsyBsYSBPYnJhLgplLiBPYnJhLCBlcyBhcXVlbGxhIG9icmEgc3VzY2VwdGlibGUgZGUgcHJvdGVjY2nDs24gcG9yIGVsIHLDqWdpbWVuIGRlIERlcmVjaG8gZGUgQXV0b3IgeSBxdWUgZXMgb2ZyZWNpZGEgZW4gbG9zIHTDqXJtaW5vcyBkZSBlc3RhIGxpY2VuY2lhCmYuIFVzdGVkLCBlcyBlbCBpbmRpdmlkdW8gbyBsYSBlbnRpZGFkIHF1ZSBlamVyY2l0YSBsb3MgZGVyZWNob3Mgb3RvcmdhZG9zIGFsIGFtcGFybyBkZSBlc3RhIExpY2VuY2lhIHkgcXVlIGNvbiBhbnRlcmlvcmlkYWQgbm8gaGEgdmlvbGFkbyBsYXMgY29uZGljaW9uZXMgZGUgbGEgbWlzbWEgcmVzcGVjdG8gYSBsYSBPYnJhLCBvIHF1ZSBoYXlhIG9idGVuaWRvIGF1dG9yaXphY2nDs24gZXhwcmVzYSBwb3IgcGFydGUgZGVsIExpY2VuY2lhbnRlIHBhcmEgZWplcmNlciBsb3MgZGVyZWNob3MgYWwgYW1wYXJvIGRlIGVzdGEgTGljZW5jaWEgcGVzZSBhIHVuYSB2aW9sYWNpw7NuIGFudGVyaW9yLgoJICAKMi4gRGVyZWNob3MgZGUgVXNvcyBIb25yYWRvcyB5IGV4Y2VwY2lvbmVzIExlZ2FsZXMuCk5hZGEgZW4gZXN0YSBMaWNlbmNpYSBwb2Ryw6Egc2VyIGludGVycHJldGFkbyBjb21vIHVuYSBkaXNtaW51Y2nDs24sIGxpbWl0YWNpw7NuIG8gcmVzdHJpY2Npw7NuIGRlIGxvcyBkZXJlY2hvcyBkZXJpdmFkb3MgZGVsIHVzbyBob25yYWRvIHkgb3RyYXMgbGltaXRhY2lvbmVzIG8gZXhjZXBjaW9uZXMgYSBsb3MgZGVyZWNob3MgZGVsIGF1dG9yIGJham8gZWwgcsOpZ2ltZW4gbGVnYWwgdmlnZW50ZSBvIGRlcml2YWRvIGRlIGN1YWxxdWllciBvdHJhIG5vcm1hIHF1ZSBzZSBsZSBhcGxpcXVlLgogIAozLiBDb25jZXNpw7NuIGRlIGxhIExpY2VuY2lhLgpCYWpvIGxvcyB0w6lybWlub3MgeSBjb25kaWNpb25lcyBkZSBlc3RhIExpY2VuY2lhLCBlbCBMaWNlbmNpYW50ZSBvdG9yZ2EgYSBVc3RlZCB1bmEgbGljZW5jaWEgbXVuZGlhbCwgbGlicmUgZGUgcmVnYWzDrWFzLCBubyBleGNsdXNpdmEgeSBwZXJwZXR1YSAoZHVyYW50ZSB0b2RvIGVsIHBlcsOtb2RvIGRlIHZpZ2VuY2lhIGRlIGxvcyBkZXJlY2hvcyBkZSBhdXRvcikgcGFyYSBlamVyY2VyIGVzdG9zIGRlcmVjaG9zIHNvYnJlIGxhIE9icmEgdGFsIHkgY29tbyBzZSBpbmRpY2EgYSBjb250aW51YWNpw7NuOgphLiBSZXByb2R1Y2lyIGxhIE9icmEsIGluY29ycG9yYXIgbGEgT2JyYSBlbiB1bmEgbyBtw6FzIE9icmFzIENvbGVjdGl2YXMsIHkgcmVwcm9kdWNpciBsYSBPYnJhIGluY29ycG9yYWRhIGVuIGxhcyBPYnJhcyBDb2xlY3RpdmFzLgpiLiBEaXN0cmlidWlyIGNvcGlhcyBvIGZvbm9ncmFtYXMgZGUgbGFzIE9icmFzLCBleGhpYmlybGFzIHDDumJsaWNhbWVudGUsIGVqZWN1dGFybGFzIHDDumJsaWNhbWVudGUgeS9vIHBvbmVybGFzIGEgZGlzcG9zaWNpw7NuIHDDumJsaWNhLCBpbmNsdXnDqW5kb2xhcyBjb21vIGluY29ycG9yYWRhcyBlbiBPYnJhcyBDb2xlY3RpdmFzLCBzZWfDum4gY29ycmVzcG9uZGEuCmMuIERpc3RyaWJ1aXIgY29waWFzIGRlIGxhcyBPYnJhcyBEZXJpdmFkYXMgcXVlIHNlIGdlbmVyZW4sIGV4aGliaXJsYXMgcMO6YmxpY2FtZW50ZSwgZWplY3V0YXJsYXMgcMO6YmxpY2FtZW50ZSB5L28gcG9uZXJsYXMgYSBkaXNwb3NpY2nDs24gcMO6YmxpY2EuCgpMb3MgZGVyZWNob3MgbWVuY2lvbmFkb3MgYW50ZXJpb3JtZW50ZSBwdWVkZW4gc2VyIGVqZXJjaWRvcyBlbiB0b2RvcyBsb3MgbWVkaW9zIHkgZm9ybWF0b3MsIGFjdHVhbG1lbnRlIGNvbm9jaWRvcyBvIHF1ZSBzZSBpbnZlbnRlbiBlbiBlbCBmdXR1cm8uIExvcyBkZXJlY2hvcyBhbnRlcyBtZW5jaW9uYWRvcyBpbmNsdXllbiBlbCBkZXJlY2hvIGEgcmVhbGl6YXIgZGljaGFzIG1vZGlmaWNhY2lvbmVzIGVuIGxhIG1lZGlkYSBxdWUgc2VhbiB0w6ljbmljYW1lbnRlIG5lY2VzYXJpYXMgcGFyYSBlamVyY2VyIGxvcyBkZXJlY2hvcyBlbiBvdHJvIG1lZGlvIG8gZm9ybWF0b3MsIHBlcm8gZGUgb3RyYSBtYW5lcmEgdXN0ZWQgbm8gZXN0w6EgYXV0b3JpemFkbyBwYXJhIHJlYWxpemFyIG9icmFzIGRlcml2YWRhcy4gVG9kb3MgbG9zIGRlcmVjaG9zIG5vIG90b3JnYWRvcyBleHByZXNhbWVudGUgcG9yIGVsIExpY2VuY2lhbnRlIHF1ZWRhbiBwb3IgZXN0ZSBtZWRpbyByZXNlcnZhZG9zLCBpbmNsdXllbmRvIHBlcm8gc2luIGxpbWl0YXJzZSBhIGFxdWVsbG9zIHF1ZSBzZSBtZW5jaW9uYW4gZW4gbGFzIHNlY2Npb25lcyA0KGQpIHkgNChlKS4KICAgIAo0LiBSZXN0cmljY2lvbmVzLgpMYSBsaWNlbmNpYSBvdG9yZ2FkYSBlbiBsYSBhbnRlcmlvciBTZWNjacOzbiAzIGVzdMOhIGV4cHJlc2FtZW50ZSBzdWpldGEgeSBsaW1pdGFkYSBwb3IgbGFzIHNpZ3VpZW50ZXMgcmVzdHJpY2Npb25lczoKYS4gVXN0ZWQgcHVlZGUgZGlzdHJpYnVpciwgZXhoaWJpciBww7pibGljYW1lbnRlLCBlamVjdXRhciBww7pibGljYW1lbnRlLCBvIHBvbmVyIGEgZGlzcG9zaWNpw7NuIHDDumJsaWNhIGxhIE9icmEgc8OzbG8gYmFqbyBsYXMgY29uZGljaW9uZXMgZGUgZXN0YSBMaWNlbmNpYSwgeSBVc3RlZCBkZWJlIGluY2x1aXIgdW5hIGNvcGlhIGRlIGVzdGEgbGljZW5jaWEgbyBkZWwgSWRlbnRpZmljYWRvciBVbml2ZXJzYWwgZGUgUmVjdXJzb3MgZGUgbGEgbWlzbWEgY29uIGNhZGEgY29waWEgZGUgbGEgT2JyYSBxdWUgZGlzdHJpYnV5YSwgZXhoaWJhIHDDumJsaWNhbWVudGUsIGVqZWN1dGUgcMO6YmxpY2FtZW50ZSBvIHBvbmdhIGEgZGlzcG9zaWNpw7NuIHDDumJsaWNhLiBObyBlcyBwb3NpYmxlIG9mcmVjZXIgbyBpbXBvbmVyIG5pbmd1bmEgY29uZGljacOzbiBzb2JyZSBsYSBPYnJhIHF1ZSBhbHRlcmUgbyBsaW1pdGUgbGFzIGNvbmRpY2lvbmVzIGRlIGVzdGEgTGljZW5jaWEgbyBlbCBlamVyY2ljaW8gZGUgbG9zIGRlcmVjaG9zIGRlIGxvcyBkZXN0aW5hdGFyaW9zIG90b3JnYWRvcyBlbiBlc3RlIGRvY3VtZW50by4gTm8gZXMgcG9zaWJsZSBzdWJsaWNlbmNpYXIgbGEgT2JyYS4gVXN0ZWQgZGViZSBtYW50ZW5lciBpbnRhY3RvcyB0b2RvcyBsb3MgYXZpc29zIHF1ZSBoYWdhbiByZWZlcmVuY2lhIGEgZXN0YSBMaWNlbmNpYSB5IGEgbGEgY2zDoXVzdWxhIGRlIGxpbWl0YWNpw7NuIGRlIGdhcmFudMOtYXMuIFVzdGVkIG5vIHB1ZWRlIGRpc3RyaWJ1aXIsIGV4aGliaXIgcMO6YmxpY2FtZW50ZSwgZWplY3V0YXIgcMO6YmxpY2FtZW50ZSwgbyBwb25lciBhIGRpc3Bvc2ljacOzbiBww7pibGljYSBsYSBPYnJhIGNvbiBhbGd1bmEgbWVkaWRhIHRlY25vbMOzZ2ljYSBxdWUgY29udHJvbGUgZWwgYWNjZXNvIG8gbGEgdXRpbGl6YWNpw7NuIGRlIGVsbGEgZGUgdW5hIGZvcm1hIHF1ZSBzZWEgaW5jb25zaXN0ZW50ZSBjb24gbGFzIGNvbmRpY2lvbmVzIGRlIGVzdGEgTGljZW5jaWEuIExvIGFudGVyaW9yIHNlIGFwbGljYSBhIGxhIE9icmEgaW5jb3Jwb3JhZGEgYSB1bmEgT2JyYSBDb2xlY3RpdmEsIHBlcm8gZXN0byBubyBleGlnZSBxdWUgbGEgT2JyYSBDb2xlY3RpdmEgYXBhcnRlIGRlIGxhIG9icmEgbWlzbWEgcXVlZGUgc3VqZXRhIGEgbGFzIGNvbmRpY2lvbmVzIGRlIGVzdGEgTGljZW5jaWEuIFNpIFVzdGVkIGNyZWEgdW5hIE9icmEgQ29sZWN0aXZhLCBwcmV2aW8gYXZpc28gZGUgY3VhbHF1aWVyIExpY2VuY2lhbnRlIGRlYmUsIGVuIGxhIG1lZGlkYSBkZSBsbyBwb3NpYmxlLCBlbGltaW5hciBkZSBsYSBPYnJhIENvbGVjdGl2YSBjdWFscXVpZXIgcmVmZXJlbmNpYSBhIGRpY2hvIExpY2VuY2lhbnRlIG8gYWwgQXV0b3IgT3JpZ2luYWwsIHNlZ8O6biBsbyBzb2xpY2l0YWRvIHBvciBlbCBMaWNlbmNpYW50ZSB5IGNvbmZvcm1lIGxvIGV4aWdlIGxhIGNsw6F1c3VsYSA0KGMpLgpiLiBVc3RlZCBubyBwdWVkZSBlamVyY2VyIG5pbmd1bm8gZGUgbG9zIGRlcmVjaG9zIHF1ZSBsZSBoYW4gc2lkbyBvdG9yZ2Fkb3MgZW4gbGEgU2VjY2nDs24gMyBwcmVjZWRlbnRlIGRlIG1vZG8gcXVlIGVzdMOpbiBwcmluY2lwYWxtZW50ZSBkZXN0aW5hZG9zIG8gZGlyZWN0YW1lbnRlIGRpcmlnaWRvcyBhIGNvbnNlZ3VpciB1biBwcm92ZWNobyBjb21lcmNpYWwgbyB1bmEgY29tcGVuc2FjacOzbiBtb25ldGFyaWEgcHJpdmFkYS4gRWwgaW50ZXJjYW1iaW8gZGUgbGEgT2JyYSBwb3Igb3RyYXMgb2JyYXMgcHJvdGVnaWRhcyBwb3IgZGVyZWNob3MgZGUgYXV0b3IsIHlhIHNlYSBhIHRyYXbDqXMgZGUgdW4gc2lzdGVtYSBwYXJhIGNvbXBhcnRpciBhcmNoaXZvcyBkaWdpdGFsZXMgKGRpZ2l0YWwgZmlsZS1zaGFyaW5nKSBvIGRlIGN1YWxxdWllciBvdHJhIG1hbmVyYSBubyBzZXLDoSBjb25zaWRlcmFkbyBjb21vIGVzdGFyIGRlc3RpbmFkbyBwcmluY2lwYWxtZW50ZSBvIGRpcmlnaWRvIGRpcmVjdGFtZW50ZSBhIGNvbnNlZ3VpciB1biBwcm92ZWNobyBjb21lcmNpYWwgbyB1bmEgY29tcGVuc2FjacOzbiBtb25ldGFyaWEgcHJpdmFkYSwgc2llbXByZSBxdWUgbm8gc2UgcmVhbGljZSB1biBwYWdvIG1lZGlhbnRlIHVuYSBjb21wZW5zYWNpw7NuIG1vbmV0YXJpYSBlbiByZWxhY2nDs24gY29uIGVsIGludGVyY2FtYmlvIGRlIG9icmFzIHByb3RlZ2lkYXMgcG9yIGVsIGRlcmVjaG8gZGUgYXV0b3IuCmMuIFNpIHVzdGVkIGRpc3RyaWJ1eWUsIGV4aGliZSBww7pibGljYW1lbnRlLCBlamVjdXRhIHDDumJsaWNhbWVudGUgbyBlamVjdXRhIHDDumJsaWNhbWVudGUgZW4gZm9ybWEgZGlnaXRhbCBsYSBPYnJhIG8gY3VhbHF1aWVyIE9icmEgRGVyaXZhZGEgdSBPYnJhIENvbGVjdGl2YSwgVXN0ZWQgZGViZSBtYW50ZW5lciBpbnRhY3RhIHRvZGEgbGEgaW5mb3JtYWNpw7NuIGRlIGRlcmVjaG8gZGUgYXV0b3IgZGUgbGEgT2JyYSB5IHByb3BvcmNpb25hciwgZGUgZm9ybWEgcmF6b25hYmxlIHNlZ8O6biBlbCBtZWRpbyBvIG1hbmVyYSBxdWUgVXN0ZWQgZXN0w6kgdXRpbGl6YW5kbzogKGkpIGVsIG5vbWJyZSBkZWwgQXV0b3IgT3JpZ2luYWwgc2kgZXN0w6EgcHJvdmlzdG8gKG8gc2V1ZMOzbmltbywgc2kgZnVlcmUgYXBsaWNhYmxlKSwgeS9vIChpaSkgZWwgbm9tYnJlIGRlIGxhIHBhcnRlIG8gbGFzIHBhcnRlcyBxdWUgZWwgQXV0b3IgT3JpZ2luYWwgeS9vIGVsIExpY2VuY2lhbnRlIGh1YmllcmVuIGRlc2lnbmFkbyBwYXJhIGxhIGF0cmlidWNpw7NuICh2LmcuLCB1biBpbnN0aXR1dG8gcGF0cm9jaW5hZG9yLCBlZGl0b3JpYWwsIHB1YmxpY2FjacOzbikgZW4gbGEgaW5mb3JtYWNpw7NuIGRlIGxvcyBkZXJlY2hvcyBkZSBhdXRvciBkZWwgTGljZW5jaWFudGUsIHTDqXJtaW5vcyBkZSBzZXJ2aWNpb3MgbyBkZSBvdHJhcyBmb3JtYXMgcmF6b25hYmxlczsgZWwgdMOtdHVsbyBkZSBsYSBPYnJhIHNpIGVzdMOhIHByb3Zpc3RvOyBlbiBsYSBtZWRpZGEgZGUgbG8gcmF6b25hYmxlbWVudGUgZmFjdGlibGUgeSwgc2kgZXN0w6EgcHJvdmlzdG8sIGVsIElkZW50aWZpY2Fkb3IgVW5pZm9ybWUgZGUgUmVjdXJzb3MgKFVuaWZvcm0gUmVzb3VyY2UgSWRlbnRpZmllcikgcXVlIGVsIExpY2VuY2lhbnRlIGVzcGVjaWZpY2EgcGFyYSBzZXIgYXNvY2lhZG8gY29uIGxhIE9icmEsIHNhbHZvIHF1ZSB0YWwgVVJJIG5vIHNlIHJlZmllcmEgYSBsYSBub3RhIHNvYnJlIGxvcyBkZXJlY2hvcyBkZSBhdXRvciBvIGEgbGEgaW5mb3JtYWNpw7NuIHNvYnJlIGVsIGxpY2VuY2lhbWllbnRvIGRlIGxhIE9icmE7IHkgZW4gZWwgY2FzbyBkZSB1bmEgT2JyYSBEZXJpdmFkYSwgYXRyaWJ1aXIgZWwgY3LDqWRpdG8gaWRlbnRpZmljYW5kbyBlbCB1c28gZGUgbGEgT2JyYSBlbiBsYSBPYnJhIERlcml2YWRhICh2LmcuLCAiVHJhZHVjY2nDs24gRnJhbmNlc2EgZGUgbGEgT2JyYSBkZWwgQXV0b3IgT3JpZ2luYWwsIiBvICJHdWnDs24gQ2luZW1hdG9ncsOhZmljbyBiYXNhZG8gZW4gbGEgT2JyYSBvcmlnaW5hbCBkZWwgQXV0b3IgT3JpZ2luYWwiKS4gVGFsIGNyw6lkaXRvIHB1ZWRlIHNlciBpbXBsZW1lbnRhZG8gZGUgY3VhbHF1aWVyIGZvcm1hIHJhem9uYWJsZTsgZW4gZWwgY2Fzbywgc2luIGVtYmFyZ28sIGRlIE9icmFzIERlcml2YWRhcyB1IE9icmFzIENvbGVjdGl2YXMsIHRhbCBjcsOpZGl0byBhcGFyZWNlcsOhLCBjb21vIG3DrW5pbW8sIGRvbmRlIGFwYXJlY2UgZWwgY3LDqWRpdG8gZGUgY3VhbHF1aWVyIG90cm8gYXV0b3IgY29tcGFyYWJsZSB5IGRlIHVuYSBtYW5lcmEsIGFsIG1lbm9zLCB0YW4gZGVzdGFjYWRhIGNvbW8gZWwgY3LDqWRpdG8gZGUgb3RybyBhdXRvciBjb21wYXJhYmxlLiAgCmQuIFBhcmEgZXZpdGFyIHRvZGEgY29uZnVzacOzbiwgZWwgTGljZW5jaWFudGUgYWNsYXJhIHF1ZSwgY3VhbmRvIGxhIG9icmEgZXMgdW5hIGNvbXBvc2ljacOzbiBtdXNpY2FsOgoKaS4gUmVnYWzDrWFzIHBvciBpbnRlcnByZXRhY2nDs24geSBlamVjdWNpw7NuIGJham8gbGljZW5jaWFzIGdlbmVyYWxlcy4gRWwgTGljZW5jaWFudGUgc2UgcmVzZXJ2YSBlbCBkZXJlY2hvIGV4Y2x1c2l2byBkZSBhdXRvcml6YXIgbGEgZWplY3VjacOzbiBww7pibGljYSBvIGxhIGVqZWN1Y2nDs24gcMO6YmxpY2EgZGlnaXRhbCBkZSBsYSBvYnJhIHkgZGUgcmVjb2xlY3Rhciwgc2VhIGluZGl2aWR1YWxtZW50ZSBvIGEgdHJhdsOpcyBkZSB1bmEgc29jaWVkYWQgZGUgZ2VzdGnDs24gY29sZWN0aXZhIGRlIGRlcmVjaG9zIGRlIGF1dG9yIHkgZGVyZWNob3MgY29uZXhvcyAocG9yIGVqZW1wbG8sIFNBWUNPKSwgbGFzIHJlZ2Fsw61hcyBwb3IgbGEgZWplY3VjacOzbiBww7pibGljYSBvIHBvciBsYSBlamVjdWNpw7NuIHDDumJsaWNhIGRpZ2l0YWwgZGUgbGEgb2JyYSAocG9yIGVqZW1wbG8gV2ViY2FzdCkgbGljZW5jaWFkYSBiYWpvIGxpY2VuY2lhcyBnZW5lcmFsZXMsIHNpIGxhIGludGVycHJldGFjacOzbiBvIGVqZWN1Y2nDs24gZGUgbGEgb2JyYSBlc3TDoSBwcmltb3JkaWFsbWVudGUgb3JpZW50YWRhIHBvciBvIGRpcmlnaWRhIGEgbGEgb2J0ZW5jacOzbiBkZSB1bmEgdmVudGFqYSBjb21lcmNpYWwgbyB1bmEgY29tcGVuc2FjacOzbiBtb25ldGFyaWEgcHJpdmFkYS4KaWkuIFJlZ2Fsw61hcyBwb3IgRm9ub2dyYW1hcy4gRWwgTGljZW5jaWFudGUgc2UgcmVzZXJ2YSBlbCBkZXJlY2hvIGV4Y2x1c2l2byBkZSByZWNvbGVjdGFyLCBpbmRpdmlkdWFsbWVudGUgbyBhIHRyYXbDqXMgZGUgdW5hIHNvY2llZGFkIGRlIGdlc3Rpw7NuIGNvbGVjdGl2YSBkZSBkZXJlY2hvcyBkZSBhdXRvciB5IGRlcmVjaG9zIGNvbmV4b3MgKHBvciBlamVtcGxvLCBsb3MgY29uc2FncmFkb3MgcG9yIGxhIFNBWUNPKSwgdW5hIGFnZW5jaWEgZGUgZGVyZWNob3MgbXVzaWNhbGVzIG8gYWxnw7puIGFnZW50ZSBkZXNpZ25hZG8sIGxhcyByZWdhbMOtYXMgcG9yIGN1YWxxdWllciBmb25vZ3JhbWEgcXVlIFVzdGVkIGNyZWUgYSBwYXJ0aXIgZGUgbGEgb2JyYSAo4oCcdmVyc2nDs24gY292ZXLigJ0pIHkgZGlzdHJpYnV5YSwgZW4gbG9zIHTDqXJtaW5vcyBkZWwgcsOpZ2ltZW4gZGUgZGVyZWNob3MgZGUgYXV0b3IsIHNpIGxhIGNyZWFjacOzbiBvIGRpc3RyaWJ1Y2nDs24gZGUgZXNhIHZlcnNpw7NuIGNvdmVyIGVzdMOhIHByaW1vcmRpYWxtZW50ZSBkZXN0aW5hZGEgbyBkaXJpZ2lkYSBhIG9idGVuZXIgdW5hIHZlbnRhamEgY29tZXJjaWFsIG8gdW5hIGNvbXBlbnNhY2nDs24gbW9uZXRhcmlhIHByaXZhZGEuCiAgICAgIAplLiBHZXN0acOzbiBkZSBEZXJlY2hvcyBkZSBBdXRvciBzb2JyZSBJbnRlcnByZXRhY2lvbmVzIHkgRWplY3VjaW9uZXMgRGlnaXRhbGVzIChXZWJDYXN0aW5nKS4gUGFyYSBldml0YXIgdG9kYSBjb25mdXNpw7NuLCBlbCBMaWNlbmNpYW50ZSBhY2xhcmEgcXVlLCBjdWFuZG8gbGEgb2JyYSBzZWEgdW4gZm9ub2dyYW1hLCBlbCBMaWNlbmNpYW50ZSBzZSByZXNlcnZhIGVsIGRlcmVjaG8gZXhjbHVzaXZvIGRlIGF1dG9yaXphciBsYSBlamVjdWNpw7NuIHDDumJsaWNhIGRpZ2l0YWwgZGUgbGEgb2JyYSAocG9yIGVqZW1wbG8sIHdlYmNhc3QpIHkgZGUgcmVjb2xlY3RhciwgaW5kaXZpZHVhbG1lbnRlIG8gYSB0cmF2w6lzIGRlIHVuYSBzb2NpZWRhZCBkZSBnZXN0acOzbiBjb2xlY3RpdmEgZGUgZGVyZWNob3MgZGUgYXV0b3IgeSBkZXJlY2hvcyBjb25leG9zIChwb3IgZWplbXBsbywgQUNJTlBSTyksIGxhcyByZWdhbMOtYXMgcG9yIGxhIGVqZWN1Y2nDs24gcMO6YmxpY2EgZGlnaXRhbCBkZSBsYSBvYnJhIChwb3IgZWplbXBsbywgd2ViY2FzdCksIHN1amV0YSBhIGxhcyBkaXNwb3NpY2lvbmVzIGFwbGljYWJsZXMgZGVsIHLDqWdpbWVuIGRlIERlcmVjaG8gZGUgQXV0b3IsIHNpIGVzdGEgZWplY3VjacOzbiBww7pibGljYSBkaWdpdGFsIGVzdMOhIHByaW1vcmRpYWxtZW50ZSBkaXJpZ2lkYSBhIG9idGVuZXIgdW5hIHZlbnRhamEgY29tZXJjaWFsIG8gdW5hIGNvbXBlbnNhY2nDs24gbW9uZXRhcmlhIHByaXZhZGEuCiAgCjUuIFJlcHJlc2VudGFjaW9uZXMsIEdhcmFudMOtYXMgeSBMaW1pdGFjaW9uZXMgZGUgUmVzcG9uc2FiaWxpZGFkLgpBIE1FTk9TIFFVRSBMQVMgUEFSVEVTIExPIEFDT1JEQVJBTiBERSBPVFJBIEZPUk1BIFBPUiBFU0NSSVRPLCBFTCBMSUNFTkNJQU5URSBPRlJFQ0UgTEEgT0JSQSAoRU4gRUwgRVNUQURPIEVOIEVMIFFVRSBTRSBFTkNVRU5UUkEpIOKAnFRBTCBDVUFM4oCdLCBTSU4gQlJJTkRBUiBHQVJBTlTDjUFTIERFIENMQVNFIEFMR1VOQSBSRVNQRUNUTyBERSBMQSBPQlJBLCBZQSBTRUEgRVhQUkVTQSwgSU1QTMONQ0lUQSwgTEVHQUwgTyBDVUFMUVVJRVJBIE9UUkEsIElOQ0xVWUVORE8sIFNJTiBMSU1JVEFSU0UgQSBFTExBUywgR0FSQU5Uw41BUyBERSBUSVRVTEFSSURBRCwgQ09NRVJDSUFCSUxJREFELCBBREFQVEFCSUxJREFEIE8gQURFQ1VBQ0nDk04gQSBQUk9Qw5NTSVRPIERFVEVSTUlOQURPLCBBVVNFTkNJQSBERSBJTkZSQUNDScOTTiwgREUgQVVTRU5DSUEgREUgREVGRUNUT1MgTEFURU5URVMgTyBERSBPVFJPIFRJUE8sIE8gTEEgUFJFU0VOQ0lBIE8gQVVTRU5DSUEgREUgRVJST1JFUywgU0VBTiBPIE5PIERFU0NVQlJJQkxFUyAoUFVFREFOIE8gTk8gU0VSIEVTVE9TIERFU0NVQklFUlRPUykuIEFMR1VOQVMgSlVSSVNESUNDSU9ORVMgTk8gUEVSTUlURU4gTEEgRVhDTFVTScOTTiBERSBHQVJBTlTDjUFTIElNUEzDjUNJVEFTLCBFTiBDVVlPIENBU08gRVNUQSBFWENMVVNJw5NOIFBVRURFIE5PIEFQTElDQVJTRSBBIFVTVEVELgogIAo2LiBMaW1pdGFjacOzbiBkZSByZXNwb25zYWJpbGlkYWQuCkEgTUVOT1MgUVVFIExPIEVYSUpBIEVYUFJFU0FNRU5URSBMQSBMRVkgQVBMSUNBQkxFLCBFTCBMSUNFTkNJQU5URSBOTyBTRVLDgSBSRVNQT05TQUJMRSBBTlRFIFVTVEVEIFBPUiBEQcORTyBBTEdVTk8sIFNFQSBQT1IgUkVTUE9OU0FCSUxJREFEIEVYVFJBQ09OVFJBQ1RVQUwsIFBSRUNPTlRSQUNUVUFMIE8gQ09OVFJBQ1RVQUwsIE9CSkVUSVZBIE8gU1VCSkVUSVZBLCBTRSBUUkFURSBERSBEQcORT1MgTU9SQUxFUyBPIFBBVFJJTU9OSUFMRVMsIERJUkVDVE9TIE8gSU5ESVJFQ1RPUywgUFJFVklTVE9TIE8gSU1QUkVWSVNUT1MgUFJPRFVDSURPUyBQT1IgRUwgVVNPIERFIEVTVEEgTElDRU5DSUEgTyBERSBMQSBPQlJBLCBBVU4gQ1VBTkRPIEVMIExJQ0VOQ0lBTlRFIEhBWUEgU0lETyBBRFZFUlRJRE8gREUgTEEgUE9TSUJJTElEQUQgREUgRElDSE9TIERBw5FPUy4gQUxHVU5BUyBMRVlFUyBOTyBQRVJNSVRFTiBMQSBFWENMVVNJw5NOIERFIENJRVJUQSBSRVNQT05TQUJJTElEQUQsIEVOIENVWU8gQ0FTTyBFU1RBIEVYQ0xVU0nDk04gUFVFREUgTk8gQVBMSUNBUlNFIEEgVVNURUQuCiAgCjcuIFTDqXJtaW5vLgkKYS4gRXN0YSBMaWNlbmNpYSB5IGxvcyBkZXJlY2hvcyBvdG9yZ2Fkb3MgZW4gdmlydHVkIGRlIGVsbGEgdGVybWluYXLDoW4gYXV0b23DoXRpY2FtZW50ZSBzaSBVc3RlZCBpbmZyaW5nZSBhbGd1bmEgY29uZGljacOzbiBlc3RhYmxlY2lkYSBlbiBlbGxhLiBTaW4gZW1iYXJnbywgbG9zIGluZGl2aWR1b3MgbyBlbnRpZGFkZXMgcXVlIGhhbiByZWNpYmlkbyBPYnJhcyBEZXJpdmFkYXMgbyBDb2xlY3RpdmFzIGRlIFVzdGVkIGRlIGNvbmZvcm1pZGFkIGNvbiBlc3RhIExpY2VuY2lhLCBubyB2ZXLDoW4gdGVybWluYWRhcyBzdXMgbGljZW5jaWFzLCBzaWVtcHJlIHF1ZSBlc3RvcyBpbmRpdmlkdW9zIG8gZW50aWRhZGVzIHNpZ2FuIGN1bXBsaWVuZG8gw61udGVncmFtZW50ZSBsYXMgY29uZGljaW9uZXMgZGUgZXN0YXMgbGljZW5jaWFzLiBMYXMgU2VjY2lvbmVzIDEsIDIsIDUsIDYsIDcsIHkgOCBzdWJzaXN0aXLDoW4gYSBjdWFscXVpZXIgdGVybWluYWNpw7NuIGRlIGVzdGEgTGljZW5jaWEuCmIuIFN1amV0YSBhIGxhcyBjb25kaWNpb25lcyB5IHTDqXJtaW5vcyBhbnRlcmlvcmVzLCBsYSBsaWNlbmNpYSBvdG9yZ2FkYSBhcXXDrSBlcyBwZXJwZXR1YSAoZHVyYW50ZSBlbCBwZXLDrW9kbyBkZSB2aWdlbmNpYSBkZSBsb3MgZGVyZWNob3MgZGUgYXV0b3IgZGUgbGEgb2JyYSkuIE5vIG9ic3RhbnRlIGxvIGFudGVyaW9yLCBlbCBMaWNlbmNpYW50ZSBzZSByZXNlcnZhIGVsIGRlcmVjaG8gYSBwdWJsaWNhciB5L28gZXN0cmVuYXIgbGEgT2JyYSBiYWpvIGNvbmRpY2lvbmVzIGRlIGxpY2VuY2lhIGRpZmVyZW50ZXMgbyBhIGRlamFyIGRlIGRpc3RyaWJ1aXJsYSBlbiBsb3MgdMOpcm1pbm9zIGRlIGVzdGEgTGljZW5jaWEgZW4gY3VhbHF1aWVyIG1vbWVudG87IGVuIGVsIGVudGVuZGlkbywgc2luIGVtYmFyZ28sIHF1ZSBlc2EgZWxlY2Npw7NuIG5vIHNlcnZpcsOhIHBhcmEgcmV2b2NhciBlc3RhIGxpY2VuY2lhIG8gcXVlIGRlYmEgc2VyIG90b3JnYWRhICwgYmFqbyBsb3MgdMOpcm1pbm9zIGRlIGVzdGEgbGljZW5jaWEpLCB5IGVzdGEgbGljZW5jaWEgY29udGludWFyw6EgZW4gcGxlbm8gdmlnb3IgeSBlZmVjdG8gYSBtZW5vcyBxdWUgc2VhIHRlcm1pbmFkYSBjb21vIHNlIGV4cHJlc2EgYXRyw6FzLiBMYSBMaWNlbmNpYSByZXZvY2FkYSBjb250aW51YXLDoSBzaWVuZG8gcGxlbmFtZW50ZSB2aWdlbnRlIHkgZWZlY3RpdmEgc2kgbm8gc2UgbGUgZGEgdMOpcm1pbm8gZW4gbGFzIGNvbmRpY2lvbmVzIGluZGljYWRhcyBhbnRlcmlvcm1lbnRlLgogIAo4LiBWYXJpb3MuCmEuIENhZGEgdmV6IHF1ZSBVc3RlZCBkaXN0cmlidXlhIG8gcG9uZ2EgYSBkaXNwb3NpY2nDs24gcMO6YmxpY2EgbGEgT2JyYSBvIHVuYSBPYnJhIENvbGVjdGl2YSwgZWwgTGljZW5jaWFudGUgb2ZyZWNlcsOhIGFsIGRlc3RpbmF0YXJpbyB1bmEgbGljZW5jaWEgZW4gbG9zIG1pc21vcyB0w6lybWlub3MgeSBjb25kaWNpb25lcyBxdWUgbGEgbGljZW5jaWEgb3RvcmdhZGEgYSBVc3RlZCBiYWpvIGVzdGEgTGljZW5jaWEuCmIuIFNpIGFsZ3VuYSBkaXNwb3NpY2nDs24gZGUgZXN0YSBMaWNlbmNpYSByZXN1bHRhIGludmFsaWRhZGEgbyBubyBleGlnaWJsZSwgc2Vnw7puIGxhIGxlZ2lzbGFjacOzbiB2aWdlbnRlLCBlc3RvIG5vIGFmZWN0YXLDoSBuaSBsYSB2YWxpZGV6IG5pIGxhIGFwbGljYWJpbGlkYWQgZGVsIHJlc3RvIGRlIGNvbmRpY2lvbmVzIGRlIGVzdGEgTGljZW5jaWEgeSwgc2luIGFjY2nDs24gYWRpY2lvbmFsIHBvciBwYXJ0ZSBkZSBsb3Mgc3VqZXRvcyBkZSBlc3RlIGFjdWVyZG8sIGFxdcOpbGxhIHNlIGVudGVuZGVyw6EgcmVmb3JtYWRhIGxvIG3DrW5pbW8gbmVjZXNhcmlvIHBhcmEgaGFjZXIgcXVlIGRpY2hhIGRpc3Bvc2ljacOzbiBzZWEgdsOhbGlkYSB5IGV4aWdpYmxlLgpjLiBOaW5nw7puIHTDqXJtaW5vIG8gZGlzcG9zaWNpw7NuIGRlIGVzdGEgTGljZW5jaWEgc2UgZXN0aW1hcsOhIHJlbnVuY2lhZGEgeSBuaW5ndW5hIHZpb2xhY2nDs24gZGUgZWxsYSBzZXLDoSBjb25zZW50aWRhIGEgbWVub3MgcXVlIGVzYSByZW51bmNpYSBvIGNvbnNlbnRpbWllbnRvIHNlYSBvdG9yZ2FkbyBwb3IgZXNjcml0byB5IGZpcm1hZG8gcG9yIGxhIHBhcnRlIHF1ZSByZW51bmNpZSBvIGNvbnNpZW50YS4KZC4gRXN0YSBMaWNlbmNpYSByZWZsZWphIGVsIGFjdWVyZG8gcGxlbm8gZW50cmUgbGFzIHBhcnRlcyByZXNwZWN0byBhIGxhIE9icmEgYXF1w60gbGljZW5jaWFkYS4gTm8gaGF5IGFycmVnbG9zLCBhY3VlcmRvcyBvIGRlY2xhcmFjaW9uZXMgcmVzcGVjdG8gYSBsYSBPYnJhIHF1ZSBubyBlc3TDqW4gZXNwZWNpZmljYWRvcyBlbiBlc3RlIGRvY3VtZW50by4gRWwgTGljZW5jaWFudGUgbm8gc2UgdmVyw6EgbGltaXRhZG8gcG9yIG5pbmd1bmEgZGlzcG9zaWNpw7NuIGFkaWNpb25hbCBxdWUgcHVlZGEgc3VyZ2lyIGVuIGFsZ3VuYSBjb211bmljYWNpw7NuIGVtYW5hZGEgZGUgVXN0ZWQuIEVzdGEgTGljZW5jaWEgbm8gcHVlZGUgc2VyIG1vZGlmaWNhZGEgc2luIGVsIGNvbnNlbnRpbWllbnRvIG11dHVvIHBvciBlc2NyaXRvIGRlbCBMaWNlbmNpYW50ZSB5IFVzdGVkLgo=