Microwave‐assisted synthesis of MgH2 nanoparticles for hydrogen storage applications

ABSTRACT: Magnesium’s high storage capacity, with a theoretical value of about 7.6 wt.%, makes it a via- ble candidate for hydrogen storage. However, slow kinetics and strong thermodynamic stability lead to a rather high desorption temperature, usually above 350 °C. It has been demonstrated that nan...

Full description

Autores:
Aguirre Ocampo, Robinson
Arias Velandia, Julián
Lenis Rodas, Julián Andrés
Bolívar Osorio, Francisco Javier
Echeverría Echeverría, Félix
Correa, Esteban
Zuleta Gil, Alejandro Alberto
Bello, Sindy
Arrieta, Carlos
Tipo de recurso:
Article of investigation
Fecha de publicación:
2025
Institución:
Universidad de Antioquia
Repositorio:
Repositorio UdeA
Idioma:
eng
OAI Identifier:
oai:bibliotecadigital.udea.edu.co:10495/45121
Acceso en línea:
https://hdl.handle.net/10495/45121
Palabra clave:
Nanopartículas
Nanoparticles
Microondas
Microwaves
Magnesium hydride
Hydrogen storage
Particle synthesis
https://id.nlm.nih.gov/mesh/D053758
https://id.nlm.nih.gov/mesh/D008872
Rights
openAccess
License
https://creativecommons.org/licenses/by/4.0/
id UDEA2_1334836442724df4cfaf565ed36ee46d
oai_identifier_str oai:bibliotecadigital.udea.edu.co:10495/45121
network_acronym_str UDEA2
network_name_str Repositorio UdeA
repository_id_str
dc.title.spa.fl_str_mv Microwave‐assisted synthesis of MgH2 nanoparticles for hydrogen storage applications
title Microwave‐assisted synthesis of MgH2 nanoparticles for hydrogen storage applications
spellingShingle Microwave‐assisted synthesis of MgH2 nanoparticles for hydrogen storage applications
Nanopartículas
Nanoparticles
Microondas
Microwaves
Magnesium hydride
Hydrogen storage
Particle synthesis
https://id.nlm.nih.gov/mesh/D053758
https://id.nlm.nih.gov/mesh/D008872
title_short Microwave‐assisted synthesis of MgH2 nanoparticles for hydrogen storage applications
title_full Microwave‐assisted synthesis of MgH2 nanoparticles for hydrogen storage applications
title_fullStr Microwave‐assisted synthesis of MgH2 nanoparticles for hydrogen storage applications
title_full_unstemmed Microwave‐assisted synthesis of MgH2 nanoparticles for hydrogen storage applications
title_sort Microwave‐assisted synthesis of MgH2 nanoparticles for hydrogen storage applications
dc.creator.fl_str_mv Aguirre Ocampo, Robinson
Arias Velandia, Julián
Lenis Rodas, Julián Andrés
Bolívar Osorio, Francisco Javier
Echeverría Echeverría, Félix
Correa, Esteban
Zuleta Gil, Alejandro Alberto
Bello, Sindy
Arrieta, Carlos
dc.contributor.author.none.fl_str_mv Aguirre Ocampo, Robinson
Arias Velandia, Julián
Lenis Rodas, Julián Andrés
Bolívar Osorio, Francisco Javier
Echeverría Echeverría, Félix
Correa, Esteban
Zuleta Gil, Alejandro Alberto
Bello, Sindy
Arrieta, Carlos
dc.contributor.researchgroup.spa.fl_str_mv Centro de Investigación Innovación y Desarrollo de Materiales (CIDEMAT)
dc.subject.decs.none.fl_str_mv Nanopartículas
Nanoparticles
Microondas
Microwaves
topic Nanopartículas
Nanoparticles
Microondas
Microwaves
Magnesium hydride
Hydrogen storage
Particle synthesis
https://id.nlm.nih.gov/mesh/D053758
https://id.nlm.nih.gov/mesh/D008872
dc.subject.proposal.spa.fl_str_mv Magnesium hydride
Hydrogen storage
Particle synthesis
dc.subject.meshuri.none.fl_str_mv https://id.nlm.nih.gov/mesh/D053758
https://id.nlm.nih.gov/mesh/D008872
description ABSTRACT: Magnesium’s high storage capacity, with a theoretical value of about 7.6 wt.%, makes it a via- ble candidate for hydrogen storage. However, slow kinetics and strong thermodynamic stability lead to a rather high desorption temperature, usually above 350 °C. It has been demonstrated that nanosizing magnesium-based materials is a successful strategy for simultaneously improving the kinetic and ther- modynamic characteristics of MgH2 during hydrogen absorption and desorption. MgH2 nanoparticles were obtained by microwave assisted synthesis. To the best of our knowledge, synthesis of MgH2 nanoparticles by this method has not been reported. It was possible to produce MgH2 nanoparticles smaller than 20 nm. MgO and Mg(OH)2 were also present in the produced nanoparticles, although these compounds may enhance the processes involved in the release and absorption of hydrogen.
publishDate 2025
dc.date.accessioned.none.fl_str_mv 2025-02-21T17:01:33Z
dc.date.available.none.fl_str_mv 2025-02-21T17:01:33Z
dc.date.issued.none.fl_str_mv 2025
dc.type.spa.fl_str_mv Artículo de investigación
dc.type.coar.spa.fl_str_mv http://purl.org/coar/resource_type/c_2df8fbb1
dc.type.redcol.spa.fl_str_mv https://purl.org/redcol/resource_type/ART
dc.type.coarversion.spa.fl_str_mv http://purl.org/coar/version/c_970fb48d4fbd8a85
dc.type.driver.spa.fl_str_mv info:eu-repo/semantics/article
dc.type.version.spa.fl_str_mv info:eu-repo/semantics/publishedVersion
format http://purl.org/coar/resource_type/c_2df8fbb1
status_str publishedVersion
dc.identifier.citation.spa.fl_str_mv Ocampo, R.A., Arias-Velandia, J., Lenis, J.A. et al. Microwave-assisted synthesis of MgH2 nanoparticles for hydrogen storage applications. J Nanopart Res 27, 52 (2025). https://doi.org/10.1007/s11051-025-06217-1
dc.identifier.issn.none.fl_str_mv 1388-0764
dc.identifier.uri.none.fl_str_mv https://hdl.handle.net/10495/45121
dc.identifier.doi.none.fl_str_mv 10.1007/s11051-025-06217-1
dc.identifier.eissn.none.fl_str_mv 1572-896X
identifier_str_mv Ocampo, R.A., Arias-Velandia, J., Lenis, J.A. et al. Microwave-assisted synthesis of MgH2 nanoparticles for hydrogen storage applications. J Nanopart Res 27, 52 (2025). https://doi.org/10.1007/s11051-025-06217-1
1388-0764
10.1007/s11051-025-06217-1
1572-896X
url https://hdl.handle.net/10495/45121
dc.language.iso.spa.fl_str_mv eng
language eng
dc.relation.ispartofjournalabbrev.spa.fl_str_mv J. Nanopart. Res.
dc.relation.citationendpage.spa.fl_str_mv 14
dc.relation.citationissue.spa.fl_str_mv 52
dc.relation.citationstartpage.spa.fl_str_mv 1
dc.relation.citationvolume.spa.fl_str_mv 27
dc.relation.ispartofjournal.spa.fl_str_mv Journal of Nanoparticle Research
dc.rights.uri.spa.fl_str_mv https://creativecommons.org/licenses/by/4.0/
dc.rights.uri.*.fl_str_mv http://creativecommons.org/licenses/by/2.5/co/
dc.rights.accessrights.spa.fl_str_mv info:eu-repo/semantics/openAccess
dc.rights.coar.spa.fl_str_mv http://purl.org/coar/access_right/c_abf2
rights_invalid_str_mv https://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/2.5/co/
http://purl.org/coar/access_right/c_abf2
eu_rights_str_mv openAccess
dc.format.extent.spa.fl_str_mv 14 páginas
dc.format.mimetype.spa.fl_str_mv application/pdf
dc.publisher.spa.fl_str_mv Springer
dc.publisher.place.spa.fl_str_mv Reino Unido
institution Universidad de Antioquia
bitstream.url.fl_str_mv https://bibliotecadigital.udea.edu.co/bitstreams/ca9aad51-244c-48ff-8b79-9def0c91225a/download
https://bibliotecadigital.udea.edu.co/bitstreams/66ee03b0-cca1-4cf2-9224-92f990cd3ae9/download
https://bibliotecadigital.udea.edu.co/bitstreams/21b6e064-51c0-4214-bec7-e75ae893e38a/download
https://bibliotecadigital.udea.edu.co/bitstreams/c3f8b38b-f4f2-4eb8-a213-f9621e580d89/download
https://bibliotecadigital.udea.edu.co/bitstreams/6b2cb3b4-4818-4bac-9ff6-b76fe033f648/download
bitstream.checksum.fl_str_mv 8a4605be74aa9ea9d79846c1fba20a33
1646d1f6b96dbbbc38035efc9239ac9c
abccb6cf57590760e5472d741138b8d6
a0c661a839b9e8c199795ba725ffa818
eddb203589681932d0916a1a38cd8c17
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
MD5
MD5
repository.name.fl_str_mv Repositorio Institucional de la Universidad de Antioquia
repository.mail.fl_str_mv aplicacionbibliotecadigitalbiblioteca@udea.edu.co
_version_ 1851052309975400448
spelling Aguirre Ocampo, RobinsonArias Velandia, JuliánLenis Rodas, Julián AndrésBolívar Osorio, Francisco JavierEcheverría Echeverría, FélixCorrea, EstebanZuleta Gil, Alejandro AlbertoBello, SindyArrieta, CarlosCentro de Investigación Innovación y Desarrollo de Materiales (CIDEMAT)2025-02-21T17:01:33Z2025-02-21T17:01:33Z2025Ocampo, R.A., Arias-Velandia, J., Lenis, J.A. et al. Microwave-assisted synthesis of MgH2 nanoparticles for hydrogen storage applications. J Nanopart Res 27, 52 (2025). https://doi.org/10.1007/s11051-025-06217-11388-0764https://hdl.handle.net/10495/4512110.1007/s11051-025-06217-11572-896XABSTRACT: Magnesium’s high storage capacity, with a theoretical value of about 7.6 wt.%, makes it a via- ble candidate for hydrogen storage. However, slow kinetics and strong thermodynamic stability lead to a rather high desorption temperature, usually above 350 °C. It has been demonstrated that nanosizing magnesium-based materials is a successful strategy for simultaneously improving the kinetic and ther- modynamic characteristics of MgH2 during hydrogen absorption and desorption. MgH2 nanoparticles were obtained by microwave assisted synthesis. To the best of our knowledge, synthesis of MgH2 nanoparticles by this method has not been reported. It was possible to produce MgH2 nanoparticles smaller than 20 nm. MgO and Mg(OH)2 were also present in the produced nanoparticles, although these compounds may enhance the processes involved in the release and absorption of hydrogen.Universidad de Antioquia. Vicerrectoría de investigación. Comité para el Desarrollo de la Investigación - CODIColombia. Ministerio de Ciencia, Tecnología e Innovación - MinCienciasSistema General de Regalías de ColombiaUniversidad Pontifcia Bolivariana. Centro de Investigación para el Desarrollo de la Innovación - CIDIUniversidad de Medellín. Centro de Investigación en Ingenierías - CEINCOL000792714 páginasapplication/pdfengSpringerReino Unidohttps://creativecommons.org/licenses/by/4.0/http://creativecommons.org/licenses/by/2.5/co/info:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2Microwave‐assisted synthesis of MgH2 nanoparticles for hydrogen storage applicationsArtículo de investigaciónhttp://purl.org/coar/resource_type/c_2df8fbb1https://purl.org/redcol/resource_type/ARThttp://purl.org/coar/version/c_970fb48d4fbd8a85info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionNanopartículasNanoparticlesMicroondasMicrowavesMagnesium hydrideHydrogen storageParticle synthesishttps://id.nlm.nih.gov/mesh/D053758https://id.nlm.nih.gov/mesh/D008872J. Nanopart. Res.1452127Journal of Nanoparticle ResearchBPIN 2022000100089UPB 822C06/23-35RoR:03bp5hc83RoR:03fd5ne08RoR:05x7bg352RoR:04vh21716RoR:030kw0b65PublicationLICENSElicense.txtlicense.txttext/plain; charset=utf-81748https://bibliotecadigital.udea.edu.co/bitstreams/ca9aad51-244c-48ff-8b79-9def0c91225a/download8a4605be74aa9ea9d79846c1fba20a33MD53falseAnonymousREADCC-LICENSElicense_rdflicense_rdfapplication/rdf+xml; charset=utf-8927https://bibliotecadigital.udea.edu.co/bitstreams/66ee03b0-cca1-4cf2-9224-92f990cd3ae9/download1646d1f6b96dbbbc38035efc9239ac9cMD52falseAnonymousREADORIGINALAguirreRobinson_2025_Synthesis_MgH2_Hydrogen.pdfAguirreRobinson_2025_Synthesis_MgH2_Hydrogen.pdfArtículo de investigaciónapplication/pdf3439068https://bibliotecadigital.udea.edu.co/bitstreams/21b6e064-51c0-4214-bec7-e75ae893e38a/downloadabccb6cf57590760e5472d741138b8d6MD51trueAnonymousREADTEXTAguirreRobinson_2025_Synthesis_MgH2_Hydrogen.pdf.txtAguirreRobinson_2025_Synthesis_MgH2_Hydrogen.pdf.txtExtracted texttext/plain47618https://bibliotecadigital.udea.edu.co/bitstreams/c3f8b38b-f4f2-4eb8-a213-f9621e580d89/downloada0c661a839b9e8c199795ba725ffa818MD54falseAnonymousREADTHUMBNAILAguirreRobinson_2025_Synthesis_MgH2_Hydrogen.pdf.jpgAguirreRobinson_2025_Synthesis_MgH2_Hydrogen.pdf.jpgGenerated Thumbnailimage/jpeg13714https://bibliotecadigital.udea.edu.co/bitstreams/6b2cb3b4-4818-4bac-9ff6-b76fe033f648/downloadeddb203589681932d0916a1a38cd8c17MD55falseAnonymousREAD10495/45121oai:bibliotecadigital.udea.edu.co:10495/451212025-03-26 20:19:49.669https://creativecommons.org/licenses/by/4.0/open.accesshttps://bibliotecadigital.udea.edu.coRepositorio Institucional de la Universidad de Antioquiaaplicacionbibliotecadigitalbiblioteca@udea.edu.coTk9URTogUExBQ0UgWU9VUiBPV04gTElDRU5TRSBIRVJFClRoaXMgc2FtcGxlIGxpY2Vuc2UgaXMgcHJvdmlkZWQgZm9yIGluZm9ybWF0aW9uYWwgcHVycG9zZXMgb25seS4KCk5PTi1FWENMVVNJVkUgRElTVFJJQlVUSU9OIExJQ0VOU0UKCkJ5IHNpZ25pbmcgYW5kIHN1Ym1pdHRpbmcgdGhpcyBsaWNlbnNlLCB5b3UgKHRoZSBhdXRob3Iocykgb3IgY29weXJpZ2h0Cm93bmVyKSBncmFudHMgdG8gRFNwYWNlIFVuaXZlcnNpdHkgKERTVSkgdGhlIG5vbi1leGNsdXNpdmUgcmlnaHQgdG8gcmVwcm9kdWNlLAp0cmFuc2xhdGUgKGFzIGRlZmluZWQgYmVsb3cpLCBhbmQvb3IgZGlzdHJpYnV0ZSB5b3VyIHN1Ym1pc3Npb24gKGluY2x1ZGluZwp0aGUgYWJzdHJhY3QpIHdvcmxkd2lkZSBpbiBwcmludCBhbmQgZWxlY3Ryb25pYyBmb3JtYXQgYW5kIGluIGFueSBtZWRpdW0sCmluY2x1ZGluZyBidXQgbm90IGxpbWl0ZWQgdG8gYXVkaW8gb3IgdmlkZW8uCgpZb3UgYWdyZWUgdGhhdCBEU1UgbWF5LCB3aXRob3V0IGNoYW5naW5nIHRoZSBjb250ZW50LCB0cmFuc2xhdGUgdGhlCnN1Ym1pc3Npb24gdG8gYW55IG1lZGl1bSBvciBmb3JtYXQgZm9yIHRoZSBwdXJwb3NlIG9mIHByZXNlcnZhdGlvbi4KCllvdSBhbHNvIGFncmVlIHRoYXQgRFNVIG1heSBrZWVwIG1vcmUgdGhhbiBvbmUgY29weSBvZiB0aGlzIHN1Ym1pc3Npb24gZm9yCnB1cnBvc2VzIG9mIHNlY3VyaXR5LCBiYWNrLXVwIGFuZCBwcmVzZXJ2YXRpb24uCgpZb3UgcmVwcmVzZW50IHRoYXQgdGhlIHN1Ym1pc3Npb24gaXMgeW91ciBvcmlnaW5hbCB3b3JrLCBhbmQgdGhhdCB5b3UgaGF2ZQp0aGUgcmlnaHQgdG8gZ3JhbnQgdGhlIHJpZ2h0cyBjb250YWluZWQgaW4gdGhpcyBsaWNlbnNlLiBZb3UgYWxzbyByZXByZXNlbnQKdGhhdCB5b3VyIHN1Ym1pc3Npb24gZG9lcyBub3QsIHRvIHRoZSBiZXN0IG9mIHlvdXIga25vd2xlZGdlLCBpbmZyaW5nZSB1cG9uCmFueW9uZSdzIGNvcHlyaWdodC4KCklmIHRoZSBzdWJtaXNzaW9uIGNvbnRhaW5zIG1hdGVyaWFsIGZvciB3aGljaCB5b3UgZG8gbm90IGhvbGQgY29weXJpZ2h0LAp5b3UgcmVwcmVzZW50IHRoYXQgeW91IGhhdmUgb2J0YWluZWQgdGhlIHVucmVzdHJpY3RlZCBwZXJtaXNzaW9uIG9mIHRoZQpjb3B5cmlnaHQgb3duZXIgdG8gZ3JhbnQgRFNVIHRoZSByaWdodHMgcmVxdWlyZWQgYnkgdGhpcyBsaWNlbnNlLCBhbmQgdGhhdApzdWNoIHRoaXJkLXBhcnR5IG93bmVkIG1hdGVyaWFsIGlzIGNsZWFybHkgaWRlbnRpZmllZCBhbmQgYWNrbm93bGVkZ2VkCndpdGhpbiB0aGUgdGV4dCBvciBjb250ZW50IG9mIHRoZSBzdWJtaXNzaW9uLgoKSUYgVEhFIFNVQk1JU1NJT04gSVMgQkFTRUQgVVBPTiBXT1JLIFRIQVQgSEFTIEJFRU4gU1BPTlNPUkVEIE9SIFNVUFBPUlRFRApCWSBBTiBBR0VOQ1kgT1IgT1JHQU5JWkFUSU9OIE9USEVSIFRIQU4gRFNVLCBZT1UgUkVQUkVTRU5UIFRIQVQgWU9VIEhBVkUKRlVMRklMTEVEIEFOWSBSSUdIVCBPRiBSRVZJRVcgT1IgT1RIRVIgT0JMSUdBVElPTlMgUkVRVUlSRUQgQlkgU1VDSApDT05UUkFDVCBPUiBBR1JFRU1FTlQuCgpEU1Ugd2lsbCBjbGVhcmx5IGlkZW50aWZ5IHlvdXIgbmFtZShzKSBhcyB0aGUgYXV0aG9yKHMpIG9yIG93bmVyKHMpIG9mIHRoZQpzdWJtaXNzaW9uLCBhbmQgd2lsbCBub3QgbWFrZSBhbnkgYWx0ZXJhdGlvbiwgb3RoZXIgdGhhbiBhcyBhbGxvd2VkIGJ5IHRoaXMKbGljZW5zZSwgdG8geW91ciBzdWJtaXNzaW9uLgo=