End-to-End Parkinson’s Disease Detection Using a Deep Convolutional Recurrent Network
ABSTRACT : Deep Learning (DL) has enabled the development of accurate computational models to evaluate and monitor the neurological state of different disorders including Parkinson’s Disease (PD). Although researchers have used different DL architectures including Convolutional Neural Networks (CNN)...
- Autores:
-
Ríos Urrego, Cristian David
Moreno Acevedo, Santiago Andrés
Nöth, Elmar
Orozco Arroyave, Juan Rafael
- Tipo de recurso:
- http://purl.org/coar/resource_type/c_5794
- Fecha de publicación:
- 2022
- Institución:
- Universidad de Antioquia
- Repositorio:
- Repositorio UdeA
- Idioma:
- eng
- OAI Identifier:
- oai:bibliotecadigital.udea.edu.co:10495/34247
- Acceso en línea:
- https://hdl.handle.net/10495/34247
- Palabra clave:
- Parkinson Disease
Enfermedad de Parkinson
Speech Recognition Software
Software de Reconocimiento del Habla
Memoria a Corto Plazo
Memory, Short-Term
Redes neurales (computadores)
Neural networks (Computer science)
- Rights
- openAccess
- License
- https://creativecommons.org/licenses/by-nc-nd/4.0/
| id |
UDEA2_10d931316d9f29a4d2a52cdf3f2b8e66 |
|---|---|
| oai_identifier_str |
oai:bibliotecadigital.udea.edu.co:10495/34247 |
| network_acronym_str |
UDEA2 |
| network_name_str |
Repositorio UdeA |
| repository_id_str |
|
| dc.title.spa.fl_str_mv |
End-to-End Parkinson’s Disease Detection Using a Deep Convolutional Recurrent Network |
| title |
End-to-End Parkinson’s Disease Detection Using a Deep Convolutional Recurrent Network |
| spellingShingle |
End-to-End Parkinson’s Disease Detection Using a Deep Convolutional Recurrent Network Parkinson Disease Enfermedad de Parkinson Speech Recognition Software Software de Reconocimiento del Habla Memoria a Corto Plazo Memory, Short-Term Redes neurales (computadores) Neural networks (Computer science) |
| title_short |
End-to-End Parkinson’s Disease Detection Using a Deep Convolutional Recurrent Network |
| title_full |
End-to-End Parkinson’s Disease Detection Using a Deep Convolutional Recurrent Network |
| title_fullStr |
End-to-End Parkinson’s Disease Detection Using a Deep Convolutional Recurrent Network |
| title_full_unstemmed |
End-to-End Parkinson’s Disease Detection Using a Deep Convolutional Recurrent Network |
| title_sort |
End-to-End Parkinson’s Disease Detection Using a Deep Convolutional Recurrent Network |
| dc.creator.fl_str_mv |
Ríos Urrego, Cristian David Moreno Acevedo, Santiago Andrés Nöth, Elmar Orozco Arroyave, Juan Rafael |
| dc.contributor.author.none.fl_str_mv |
Ríos Urrego, Cristian David Moreno Acevedo, Santiago Andrés Nöth, Elmar Orozco Arroyave, Juan Rafael |
| dc.contributor.researchgroup.spa.fl_str_mv |
Grupo de Investigación en Telecomunicaciones Aplicadas (GITA) |
| dc.subject.decs.none.fl_str_mv |
Parkinson Disease Enfermedad de Parkinson Speech Recognition Software Software de Reconocimiento del Habla Memoria a Corto Plazo Memory, Short-Term |
| topic |
Parkinson Disease Enfermedad de Parkinson Speech Recognition Software Software de Reconocimiento del Habla Memoria a Corto Plazo Memory, Short-Term Redes neurales (computadores) Neural networks (Computer science) |
| dc.subject.lemb.none.fl_str_mv |
Redes neurales (computadores) Neural networks (Computer science) |
| description |
ABSTRACT : Deep Learning (DL) has enabled the development of accurate computational models to evaluate and monitor the neurological state of different disorders including Parkinson’s Disease (PD). Although researchers have used different DL architectures including Convolutional Neural Networks (CNN), Recurrent Neural Networks (RNN) with Long Short-Term Memory (LSTM) units, fully connected networks, combinations of them, and others, but few works have correctly analyzed and optimized the input size of the network and how the network processes the information. This study proposes the classification of patients suffering from PD vs. healthy subjects using a 1D CNN followed by an LSTM. We show how the network behaves when its input and the kernel size in different layers are modified. In addition, we evaluate how the network discriminates between PD patients and healthy controls based on several speech tasks. The fusion of tasks yielded the best results in the classification experiments and showed promising results when classifying patients in different stages of the disease, which suggests the introduced approach is suitable to monitor the disease progression. |
| publishDate |
2022 |
| dc.date.issued.none.fl_str_mv |
2022 |
| dc.date.accessioned.none.fl_str_mv |
2023-03-27T16:47:23Z |
| dc.date.available.none.fl_str_mv |
2023-03-27T16:47:23Z |
| dc.type.spa.fl_str_mv |
Documento de conferencia |
| dc.type.coar.fl_str_mv |
http://purl.org/coar/resource_type/c_c94f |
| dc.type.coar.spa.fl_str_mv |
http://purl.org/coar/resource_type/c_5794 |
| dc.type.redcol.spa.fl_str_mv |
https://purl.org/redcol/resource_type/EC |
| dc.type.coarversion.spa.fl_str_mv |
http://purl.org/coar/version/c_970fb48d4fbd8a85 |
| dc.type.driver.spa.fl_str_mv |
info:eu-repo/semantics/conferenceObject |
| dc.type.version.spa.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
| format |
http://purl.org/coar/resource_type/c_5794 |
| status_str |
publishedVersion |
| dc.identifier.citation.spa.fl_str_mv |
Ríos-Urrego, C.D., Moreno-Acevedo, S.A., Nöth, E., Orozco-Arroyave, J.R. (2022). End-to-End Parkinson’s Disease Detection Using a Deep Convolutional Recurrent Network. In: Sojka, P., Horák, A., Kopeček, I., Pala, K. (eds) Text, Speech, and Dialogue. TSD 2022. Lecture Notes in Computer Science(), vol 13502. Springer, Cham. https://doi.org/10.1007/978-3-031-16270-1_27 |
| dc.identifier.isbn.none.fl_str_mv |
978-3-031-16270-1 |
| dc.identifier.issn.none.fl_str_mv |
0302-9743 |
| dc.identifier.uri.none.fl_str_mv |
https://hdl.handle.net/10495/34247 |
| dc.identifier.doi.none.fl_str_mv |
10.1007/978-3-031-16270-1_27 |
| dc.identifier.eissn.none.fl_str_mv |
1611-3349 |
| identifier_str_mv |
Ríos-Urrego, C.D., Moreno-Acevedo, S.A., Nöth, E., Orozco-Arroyave, J.R. (2022). End-to-End Parkinson’s Disease Detection Using a Deep Convolutional Recurrent Network. In: Sojka, P., Horák, A., Kopeček, I., Pala, K. (eds) Text, Speech, and Dialogue. TSD 2022. Lecture Notes in Computer Science(), vol 13502. Springer, Cham. https://doi.org/10.1007/978-3-031-16270-1_27 978-3-031-16270-1 0302-9743 10.1007/978-3-031-16270-1_27 1611-3349 |
| url |
https://hdl.handle.net/10495/34247 |
| dc.language.iso.spa.fl_str_mv |
eng |
| language |
eng |
| dc.relation.ispartofjournalabbrev.spa.fl_str_mv |
Lect. Notes Comput. Sci. |
| dc.relation.citationendpage.spa.fl_str_mv |
319 |
| dc.relation.citationstartpage.spa.fl_str_mv |
308 |
| dc.relation.citationvolume.spa.fl_str_mv |
13502 |
| dc.relation.conferencedate.spa.fl_str_mv |
2022-09-06-/2022-09-09 |
| dc.relation.conferenceplace.spa.fl_str_mv |
Brno, República Checa |
| dc.relation.ispartofjournal.spa.fl_str_mv |
Lecture Notes in Computer Science |
| dc.rights.uri.spa.fl_str_mv |
https://creativecommons.org/licenses/by-nc-nd/4.0/ |
| dc.rights.uri.*.fl_str_mv |
http://creativecommons.org/licenses/by/2.5/co/ |
| dc.rights.accessrights.spa.fl_str_mv |
info:eu-repo/semantics/openAccess |
| dc.rights.coar.spa.fl_str_mv |
http://purl.org/coar/access_right/c_abf2 |
| rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-nd/4.0/ http://creativecommons.org/licenses/by/2.5/co/ http://purl.org/coar/access_right/c_abf2 |
| eu_rights_str_mv |
openAccess |
| dc.format.extent.spa.fl_str_mv |
12 |
| dc.format.mimetype.spa.fl_str_mv |
application/pdf |
| dc.publisher.spa.fl_str_mv |
Springer |
| institution |
Universidad de Antioquia |
| bitstream.url.fl_str_mv |
https://bibliotecadigital.udea.edu.co/bitstreams/4b56a9a3-f22f-4cd0-bc14-b7ef5b119da2/download https://bibliotecadigital.udea.edu.co/bitstreams/7f7659d9-c943-4214-8970-b1a2d05381c8/download https://bibliotecadigital.udea.edu.co/bitstreams/4cfe613d-e346-42bc-8440-bc25d6836823/download https://bibliotecadigital.udea.edu.co/bitstreams/6e4bffd4-3814-4001-8a69-5496418c8331/download https://bibliotecadigital.udea.edu.co/bitstreams/75b41ec8-03c3-4207-9a56-6a9f20feba52/download |
| bitstream.checksum.fl_str_mv |
71f99703157a22780da289b4358f635e 1646d1f6b96dbbbc38035efc9239ac9c 8a4605be74aa9ea9d79846c1fba20a33 f3fdcd70298eed06086dc51410ea71e2 2b1b39319046b4bb4cc8ad73231d8ede |
| bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 MD5 MD5 MD5 |
| repository.name.fl_str_mv |
Repositorio Institucional de la Universidad de Antioquia |
| repository.mail.fl_str_mv |
aplicacionbibliotecadigitalbiblioteca@udea.edu.co |
| _version_ |
1851052379507523584 |
| spelling |
Ríos Urrego, Cristian DavidMoreno Acevedo, Santiago AndrésNöth, ElmarOrozco Arroyave, Juan RafaelGrupo de Investigación en Telecomunicaciones Aplicadas (GITA)2023-03-27T16:47:23Z2023-03-27T16:47:23Z2022Ríos-Urrego, C.D., Moreno-Acevedo, S.A., Nöth, E., Orozco-Arroyave, J.R. (2022). End-to-End Parkinson’s Disease Detection Using a Deep Convolutional Recurrent Network. In: Sojka, P., Horák, A., Kopeček, I., Pala, K. (eds) Text, Speech, and Dialogue. TSD 2022. Lecture Notes in Computer Science(), vol 13502. Springer, Cham. https://doi.org/10.1007/978-3-031-16270-1_27978-3-031-16270-10302-9743https://hdl.handle.net/10495/3424710.1007/978-3-031-16270-1_271611-3349ABSTRACT : Deep Learning (DL) has enabled the development of accurate computational models to evaluate and monitor the neurological state of different disorders including Parkinson’s Disease (PD). Although researchers have used different DL architectures including Convolutional Neural Networks (CNN), Recurrent Neural Networks (RNN) with Long Short-Term Memory (LSTM) units, fully connected networks, combinations of them, and others, but few works have correctly analyzed and optimized the input size of the network and how the network processes the information. This study proposes the classification of patients suffering from PD vs. healthy subjects using a 1D CNN followed by an LSTM. We show how the network behaves when its input and the kernel size in different layers are modified. In addition, we evaluate how the network discriminates between PD patients and healthy controls based on several speech tasks. The fusion of tasks yielded the best results in the classification experiments and showed promising results when classifying patients in different stages of the disease, which suggests the introduced approach is suitable to monitor the disease progression.COL004444812application/pdfengSpringerhttps://creativecommons.org/licenses/by-nc-nd/4.0/http://creativecommons.org/licenses/by/2.5/co/info:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2End-to-End Parkinson’s Disease Detection Using a Deep Convolutional Recurrent NetworkDocumento de conferenciahttp://purl.org/coar/resource_type/c_5794http://purl.org/coar/resource_type/c_c94fhttps://purl.org/redcol/resource_type/EChttp://purl.org/coar/version/c_970fb48d4fbd8a85info:eu-repo/semantics/conferenceObjectinfo:eu-repo/semantics/publishedVersionParkinson DiseaseEnfermedad de ParkinsonSpeech Recognition SoftwareSoftware de Reconocimiento del HablaMemoria a Corto PlazoMemory, Short-TermRedes neurales (computadores)Neural networks (Computer science)Lect. Notes Comput. Sci.319308135022022-09-06-/2022-09-09Brno, República ChecaLecture Notes in Computer SciencePublicationORIGINALRiosCristian_2022_EndtoEndParkinsonsDisease.pdfRiosCristian_2022_EndtoEndParkinsonsDisease.pdfDocumento de conferenciaapplication/pdf1322718https://bibliotecadigital.udea.edu.co/bitstreams/4b56a9a3-f22f-4cd0-bc14-b7ef5b119da2/download71f99703157a22780da289b4358f635eMD51trueAnonymousREADCC-LICENSElicense_rdflicense_rdfapplication/rdf+xml; charset=utf-8927https://bibliotecadigital.udea.edu.co/bitstreams/7f7659d9-c943-4214-8970-b1a2d05381c8/download1646d1f6b96dbbbc38035efc9239ac9cMD52falseAnonymousREADLICENSElicense.txtlicense.txttext/plain; charset=utf-81748https://bibliotecadigital.udea.edu.co/bitstreams/4cfe613d-e346-42bc-8440-bc25d6836823/download8a4605be74aa9ea9d79846c1fba20a33MD53falseAnonymousREADTEXTRiosCristian_2022_EndtoEndParkinsonsDisease.pdf.txtRiosCristian_2022_EndtoEndParkinsonsDisease.pdf.txtExtracted texttext/plain37103https://bibliotecadigital.udea.edu.co/bitstreams/6e4bffd4-3814-4001-8a69-5496418c8331/downloadf3fdcd70298eed06086dc51410ea71e2MD54falseAnonymousREADTHUMBNAILRiosCristian_2022_EndtoEndParkinsonsDisease.pdf.jpgRiosCristian_2022_EndtoEndParkinsonsDisease.pdf.jpgGenerated Thumbnailimage/jpeg10970https://bibliotecadigital.udea.edu.co/bitstreams/75b41ec8-03c3-4207-9a56-6a9f20feba52/download2b1b39319046b4bb4cc8ad73231d8edeMD55falseAnonymousREAD10495/34247oai:bibliotecadigital.udea.edu.co:10495/342472025-03-26 21:22:32.905https://creativecommons.org/licenses/by-nc-nd/4.0/open.accesshttps://bibliotecadigital.udea.edu.coRepositorio Institucional de la Universidad de Antioquiaaplicacionbibliotecadigitalbiblioteca@udea.edu.coTk9URTogUExBQ0UgWU9VUiBPV04gTElDRU5TRSBIRVJFClRoaXMgc2FtcGxlIGxpY2Vuc2UgaXMgcHJvdmlkZWQgZm9yIGluZm9ybWF0aW9uYWwgcHVycG9zZXMgb25seS4KCk5PTi1FWENMVVNJVkUgRElTVFJJQlVUSU9OIExJQ0VOU0UKCkJ5IHNpZ25pbmcgYW5kIHN1Ym1pdHRpbmcgdGhpcyBsaWNlbnNlLCB5b3UgKHRoZSBhdXRob3Iocykgb3IgY29weXJpZ2h0Cm93bmVyKSBncmFudHMgdG8gRFNwYWNlIFVuaXZlcnNpdHkgKERTVSkgdGhlIG5vbi1leGNsdXNpdmUgcmlnaHQgdG8gcmVwcm9kdWNlLAp0cmFuc2xhdGUgKGFzIGRlZmluZWQgYmVsb3cpLCBhbmQvb3IgZGlzdHJpYnV0ZSB5b3VyIHN1Ym1pc3Npb24gKGluY2x1ZGluZwp0aGUgYWJzdHJhY3QpIHdvcmxkd2lkZSBpbiBwcmludCBhbmQgZWxlY3Ryb25pYyBmb3JtYXQgYW5kIGluIGFueSBtZWRpdW0sCmluY2x1ZGluZyBidXQgbm90IGxpbWl0ZWQgdG8gYXVkaW8gb3IgdmlkZW8uCgpZb3UgYWdyZWUgdGhhdCBEU1UgbWF5LCB3aXRob3V0IGNoYW5naW5nIHRoZSBjb250ZW50LCB0cmFuc2xhdGUgdGhlCnN1Ym1pc3Npb24gdG8gYW55IG1lZGl1bSBvciBmb3JtYXQgZm9yIHRoZSBwdXJwb3NlIG9mIHByZXNlcnZhdGlvbi4KCllvdSBhbHNvIGFncmVlIHRoYXQgRFNVIG1heSBrZWVwIG1vcmUgdGhhbiBvbmUgY29weSBvZiB0aGlzIHN1Ym1pc3Npb24gZm9yCnB1cnBvc2VzIG9mIHNlY3VyaXR5LCBiYWNrLXVwIGFuZCBwcmVzZXJ2YXRpb24uCgpZb3UgcmVwcmVzZW50IHRoYXQgdGhlIHN1Ym1pc3Npb24gaXMgeW91ciBvcmlnaW5hbCB3b3JrLCBhbmQgdGhhdCB5b3UgaGF2ZQp0aGUgcmlnaHQgdG8gZ3JhbnQgdGhlIHJpZ2h0cyBjb250YWluZWQgaW4gdGhpcyBsaWNlbnNlLiBZb3UgYWxzbyByZXByZXNlbnQKdGhhdCB5b3VyIHN1Ym1pc3Npb24gZG9lcyBub3QsIHRvIHRoZSBiZXN0IG9mIHlvdXIga25vd2xlZGdlLCBpbmZyaW5nZSB1cG9uCmFueW9uZSdzIGNvcHlyaWdodC4KCklmIHRoZSBzdWJtaXNzaW9uIGNvbnRhaW5zIG1hdGVyaWFsIGZvciB3aGljaCB5b3UgZG8gbm90IGhvbGQgY29weXJpZ2h0LAp5b3UgcmVwcmVzZW50IHRoYXQgeW91IGhhdmUgb2J0YWluZWQgdGhlIHVucmVzdHJpY3RlZCBwZXJtaXNzaW9uIG9mIHRoZQpjb3B5cmlnaHQgb3duZXIgdG8gZ3JhbnQgRFNVIHRoZSByaWdodHMgcmVxdWlyZWQgYnkgdGhpcyBsaWNlbnNlLCBhbmQgdGhhdApzdWNoIHRoaXJkLXBhcnR5IG93bmVkIG1hdGVyaWFsIGlzIGNsZWFybHkgaWRlbnRpZmllZCBhbmQgYWNrbm93bGVkZ2VkCndpdGhpbiB0aGUgdGV4dCBvciBjb250ZW50IG9mIHRoZSBzdWJtaXNzaW9uLgoKSUYgVEhFIFNVQk1JU1NJT04gSVMgQkFTRUQgVVBPTiBXT1JLIFRIQVQgSEFTIEJFRU4gU1BPTlNPUkVEIE9SIFNVUFBPUlRFRApCWSBBTiBBR0VOQ1kgT1IgT1JHQU5JWkFUSU9OIE9USEVSIFRIQU4gRFNVLCBZT1UgUkVQUkVTRU5UIFRIQVQgWU9VIEhBVkUKRlVMRklMTEVEIEFOWSBSSUdIVCBPRiBSRVZJRVcgT1IgT1RIRVIgT0JMSUdBVElPTlMgUkVRVUlSRUQgQlkgU1VDSApDT05UUkFDVCBPUiBBR1JFRU1FTlQuCgpEU1Ugd2lsbCBjbGVhcmx5IGlkZW50aWZ5IHlvdXIgbmFtZShzKSBhcyB0aGUgYXV0aG9yKHMpIG9yIG93bmVyKHMpIG9mIHRoZQpzdWJtaXNzaW9uLCBhbmQgd2lsbCBub3QgbWFrZSBhbnkgYWx0ZXJhdGlvbiwgb3RoZXIgdGhhbiBhcyBhbGxvd2VkIGJ5IHRoaXMKbGljZW5zZSwgdG8geW91ciBzdWJtaXNzaW9uLgo= |
