End-to-End Parkinson’s Disease Detection Using a Deep Convolutional Recurrent Network

ABSTRACT : Deep Learning (DL) has enabled the development of accurate computational models to evaluate and monitor the neurological state of different disorders including Parkinson’s Disease (PD). Although researchers have used different DL architectures including Convolutional Neural Networks (CNN)...

Full description

Autores:
Ríos Urrego, Cristian David
Moreno Acevedo, Santiago Andrés
Nöth, Elmar
Orozco Arroyave, Juan Rafael
Tipo de recurso:
http://purl.org/coar/resource_type/c_5794
Fecha de publicación:
2022
Institución:
Universidad de Antioquia
Repositorio:
Repositorio UdeA
Idioma:
eng
OAI Identifier:
oai:bibliotecadigital.udea.edu.co:10495/34247
Acceso en línea:
https://hdl.handle.net/10495/34247
Palabra clave:
Parkinson Disease
Enfermedad de Parkinson
Speech Recognition Software
Software de Reconocimiento del Habla
Memoria a Corto Plazo
Memory, Short-Term
Redes neurales (computadores)
Neural networks (Computer science)
Rights
openAccess
License
https://creativecommons.org/licenses/by-nc-nd/4.0/
id UDEA2_10d931316d9f29a4d2a52cdf3f2b8e66
oai_identifier_str oai:bibliotecadigital.udea.edu.co:10495/34247
network_acronym_str UDEA2
network_name_str Repositorio UdeA
repository_id_str
dc.title.spa.fl_str_mv End-to-End Parkinson’s Disease Detection Using a Deep Convolutional Recurrent Network
title End-to-End Parkinson’s Disease Detection Using a Deep Convolutional Recurrent Network
spellingShingle End-to-End Parkinson’s Disease Detection Using a Deep Convolutional Recurrent Network
Parkinson Disease
Enfermedad de Parkinson
Speech Recognition Software
Software de Reconocimiento del Habla
Memoria a Corto Plazo
Memory, Short-Term
Redes neurales (computadores)
Neural networks (Computer science)
title_short End-to-End Parkinson’s Disease Detection Using a Deep Convolutional Recurrent Network
title_full End-to-End Parkinson’s Disease Detection Using a Deep Convolutional Recurrent Network
title_fullStr End-to-End Parkinson’s Disease Detection Using a Deep Convolutional Recurrent Network
title_full_unstemmed End-to-End Parkinson’s Disease Detection Using a Deep Convolutional Recurrent Network
title_sort End-to-End Parkinson’s Disease Detection Using a Deep Convolutional Recurrent Network
dc.creator.fl_str_mv Ríos Urrego, Cristian David
Moreno Acevedo, Santiago Andrés
Nöth, Elmar
Orozco Arroyave, Juan Rafael
dc.contributor.author.none.fl_str_mv Ríos Urrego, Cristian David
Moreno Acevedo, Santiago Andrés
Nöth, Elmar
Orozco Arroyave, Juan Rafael
dc.contributor.researchgroup.spa.fl_str_mv Grupo de Investigación en Telecomunicaciones Aplicadas (GITA)
dc.subject.decs.none.fl_str_mv Parkinson Disease
Enfermedad de Parkinson
Speech Recognition Software
Software de Reconocimiento del Habla
Memoria a Corto Plazo
Memory, Short-Term
topic Parkinson Disease
Enfermedad de Parkinson
Speech Recognition Software
Software de Reconocimiento del Habla
Memoria a Corto Plazo
Memory, Short-Term
Redes neurales (computadores)
Neural networks (Computer science)
dc.subject.lemb.none.fl_str_mv Redes neurales (computadores)
Neural networks (Computer science)
description ABSTRACT : Deep Learning (DL) has enabled the development of accurate computational models to evaluate and monitor the neurological state of different disorders including Parkinson’s Disease (PD). Although researchers have used different DL architectures including Convolutional Neural Networks (CNN), Recurrent Neural Networks (RNN) with Long Short-Term Memory (LSTM) units, fully connected networks, combinations of them, and others, but few works have correctly analyzed and optimized the input size of the network and how the network processes the information. This study proposes the classification of patients suffering from PD vs. healthy subjects using a 1D CNN followed by an LSTM. We show how the network behaves when its input and the kernel size in different layers are modified. In addition, we evaluate how the network discriminates between PD patients and healthy controls based on several speech tasks. The fusion of tasks yielded the best results in the classification experiments and showed promising results when classifying patients in different stages of the disease, which suggests the introduced approach is suitable to monitor the disease progression.
publishDate 2022
dc.date.issued.none.fl_str_mv 2022
dc.date.accessioned.none.fl_str_mv 2023-03-27T16:47:23Z
dc.date.available.none.fl_str_mv 2023-03-27T16:47:23Z
dc.type.spa.fl_str_mv Documento de conferencia
dc.type.coar.fl_str_mv http://purl.org/coar/resource_type/c_c94f
dc.type.coar.spa.fl_str_mv http://purl.org/coar/resource_type/c_5794
dc.type.redcol.spa.fl_str_mv https://purl.org/redcol/resource_type/EC
dc.type.coarversion.spa.fl_str_mv http://purl.org/coar/version/c_970fb48d4fbd8a85
dc.type.driver.spa.fl_str_mv info:eu-repo/semantics/conferenceObject
dc.type.version.spa.fl_str_mv info:eu-repo/semantics/publishedVersion
format http://purl.org/coar/resource_type/c_5794
status_str publishedVersion
dc.identifier.citation.spa.fl_str_mv Ríos-Urrego, C.D., Moreno-Acevedo, S.A., Nöth, E., Orozco-Arroyave, J.R. (2022). End-to-End Parkinson’s Disease Detection Using a Deep Convolutional Recurrent Network. In: Sojka, P., Horák, A., Kopeček, I., Pala, K. (eds) Text, Speech, and Dialogue. TSD 2022. Lecture Notes in Computer Science(), vol 13502. Springer, Cham. https://doi.org/10.1007/978-3-031-16270-1_27
dc.identifier.isbn.none.fl_str_mv 978-3-031-16270-1
dc.identifier.issn.none.fl_str_mv 0302-9743
dc.identifier.uri.none.fl_str_mv https://hdl.handle.net/10495/34247
dc.identifier.doi.none.fl_str_mv 10.1007/978-3-031-16270-1_27
dc.identifier.eissn.none.fl_str_mv 1611-3349
identifier_str_mv Ríos-Urrego, C.D., Moreno-Acevedo, S.A., Nöth, E., Orozco-Arroyave, J.R. (2022). End-to-End Parkinson’s Disease Detection Using a Deep Convolutional Recurrent Network. In: Sojka, P., Horák, A., Kopeček, I., Pala, K. (eds) Text, Speech, and Dialogue. TSD 2022. Lecture Notes in Computer Science(), vol 13502. Springer, Cham. https://doi.org/10.1007/978-3-031-16270-1_27
978-3-031-16270-1
0302-9743
10.1007/978-3-031-16270-1_27
1611-3349
url https://hdl.handle.net/10495/34247
dc.language.iso.spa.fl_str_mv eng
language eng
dc.relation.ispartofjournalabbrev.spa.fl_str_mv Lect. Notes Comput. Sci.
dc.relation.citationendpage.spa.fl_str_mv 319
dc.relation.citationstartpage.spa.fl_str_mv 308
dc.relation.citationvolume.spa.fl_str_mv 13502
dc.relation.conferencedate.spa.fl_str_mv 2022-09-06-/2022-09-09
dc.relation.conferenceplace.spa.fl_str_mv Brno, República Checa
dc.relation.ispartofjournal.spa.fl_str_mv Lecture Notes in Computer Science
dc.rights.uri.spa.fl_str_mv https://creativecommons.org/licenses/by-nc-nd/4.0/
dc.rights.uri.*.fl_str_mv http://creativecommons.org/licenses/by/2.5/co/
dc.rights.accessrights.spa.fl_str_mv info:eu-repo/semantics/openAccess
dc.rights.coar.spa.fl_str_mv http://purl.org/coar/access_right/c_abf2
rights_invalid_str_mv https://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by/2.5/co/
http://purl.org/coar/access_right/c_abf2
eu_rights_str_mv openAccess
dc.format.extent.spa.fl_str_mv 12
dc.format.mimetype.spa.fl_str_mv application/pdf
dc.publisher.spa.fl_str_mv Springer
institution Universidad de Antioquia
bitstream.url.fl_str_mv https://bibliotecadigital.udea.edu.co/bitstreams/4b56a9a3-f22f-4cd0-bc14-b7ef5b119da2/download
https://bibliotecadigital.udea.edu.co/bitstreams/7f7659d9-c943-4214-8970-b1a2d05381c8/download
https://bibliotecadigital.udea.edu.co/bitstreams/4cfe613d-e346-42bc-8440-bc25d6836823/download
https://bibliotecadigital.udea.edu.co/bitstreams/6e4bffd4-3814-4001-8a69-5496418c8331/download
https://bibliotecadigital.udea.edu.co/bitstreams/75b41ec8-03c3-4207-9a56-6a9f20feba52/download
bitstream.checksum.fl_str_mv 71f99703157a22780da289b4358f635e
1646d1f6b96dbbbc38035efc9239ac9c
8a4605be74aa9ea9d79846c1fba20a33
f3fdcd70298eed06086dc51410ea71e2
2b1b39319046b4bb4cc8ad73231d8ede
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
MD5
MD5
repository.name.fl_str_mv Repositorio Institucional de la Universidad de Antioquia
repository.mail.fl_str_mv aplicacionbibliotecadigitalbiblioteca@udea.edu.co
_version_ 1851052379507523584
spelling Ríos Urrego, Cristian DavidMoreno Acevedo, Santiago AndrésNöth, ElmarOrozco Arroyave, Juan RafaelGrupo de Investigación en Telecomunicaciones Aplicadas (GITA)2023-03-27T16:47:23Z2023-03-27T16:47:23Z2022Ríos-Urrego, C.D., Moreno-Acevedo, S.A., Nöth, E., Orozco-Arroyave, J.R. (2022). End-to-End Parkinson’s Disease Detection Using a Deep Convolutional Recurrent Network. In: Sojka, P., Horák, A., Kopeček, I., Pala, K. (eds) Text, Speech, and Dialogue. TSD 2022. Lecture Notes in Computer Science(), vol 13502. Springer, Cham. https://doi.org/10.1007/978-3-031-16270-1_27978-3-031-16270-10302-9743https://hdl.handle.net/10495/3424710.1007/978-3-031-16270-1_271611-3349ABSTRACT : Deep Learning (DL) has enabled the development of accurate computational models to evaluate and monitor the neurological state of different disorders including Parkinson’s Disease (PD). Although researchers have used different DL architectures including Convolutional Neural Networks (CNN), Recurrent Neural Networks (RNN) with Long Short-Term Memory (LSTM) units, fully connected networks, combinations of them, and others, but few works have correctly analyzed and optimized the input size of the network and how the network processes the information. This study proposes the classification of patients suffering from PD vs. healthy subjects using a 1D CNN followed by an LSTM. We show how the network behaves when its input and the kernel size in different layers are modified. In addition, we evaluate how the network discriminates between PD patients and healthy controls based on several speech tasks. The fusion of tasks yielded the best results in the classification experiments and showed promising results when classifying patients in different stages of the disease, which suggests the introduced approach is suitable to monitor the disease progression.COL004444812application/pdfengSpringerhttps://creativecommons.org/licenses/by-nc-nd/4.0/http://creativecommons.org/licenses/by/2.5/co/info:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2End-to-End Parkinson’s Disease Detection Using a Deep Convolutional Recurrent NetworkDocumento de conferenciahttp://purl.org/coar/resource_type/c_5794http://purl.org/coar/resource_type/c_c94fhttps://purl.org/redcol/resource_type/EChttp://purl.org/coar/version/c_970fb48d4fbd8a85info:eu-repo/semantics/conferenceObjectinfo:eu-repo/semantics/publishedVersionParkinson DiseaseEnfermedad de ParkinsonSpeech Recognition SoftwareSoftware de Reconocimiento del HablaMemoria a Corto PlazoMemory, Short-TermRedes neurales (computadores)Neural networks (Computer science)Lect. Notes Comput. Sci.319308135022022-09-06-/2022-09-09Brno, República ChecaLecture Notes in Computer SciencePublicationORIGINALRiosCristian_2022_EndtoEndParkinsonsDisease.pdfRiosCristian_2022_EndtoEndParkinsonsDisease.pdfDocumento de conferenciaapplication/pdf1322718https://bibliotecadigital.udea.edu.co/bitstreams/4b56a9a3-f22f-4cd0-bc14-b7ef5b119da2/download71f99703157a22780da289b4358f635eMD51trueAnonymousREADCC-LICENSElicense_rdflicense_rdfapplication/rdf+xml; charset=utf-8927https://bibliotecadigital.udea.edu.co/bitstreams/7f7659d9-c943-4214-8970-b1a2d05381c8/download1646d1f6b96dbbbc38035efc9239ac9cMD52falseAnonymousREADLICENSElicense.txtlicense.txttext/plain; charset=utf-81748https://bibliotecadigital.udea.edu.co/bitstreams/4cfe613d-e346-42bc-8440-bc25d6836823/download8a4605be74aa9ea9d79846c1fba20a33MD53falseAnonymousREADTEXTRiosCristian_2022_EndtoEndParkinsonsDisease.pdf.txtRiosCristian_2022_EndtoEndParkinsonsDisease.pdf.txtExtracted texttext/plain37103https://bibliotecadigital.udea.edu.co/bitstreams/6e4bffd4-3814-4001-8a69-5496418c8331/downloadf3fdcd70298eed06086dc51410ea71e2MD54falseAnonymousREADTHUMBNAILRiosCristian_2022_EndtoEndParkinsonsDisease.pdf.jpgRiosCristian_2022_EndtoEndParkinsonsDisease.pdf.jpgGenerated Thumbnailimage/jpeg10970https://bibliotecadigital.udea.edu.co/bitstreams/75b41ec8-03c3-4207-9a56-6a9f20feba52/download2b1b39319046b4bb4cc8ad73231d8edeMD55falseAnonymousREAD10495/34247oai:bibliotecadigital.udea.edu.co:10495/342472025-03-26 21:22:32.905https://creativecommons.org/licenses/by-nc-nd/4.0/open.accesshttps://bibliotecadigital.udea.edu.coRepositorio Institucional de la Universidad de Antioquiaaplicacionbibliotecadigitalbiblioteca@udea.edu.coTk9URTogUExBQ0UgWU9VUiBPV04gTElDRU5TRSBIRVJFClRoaXMgc2FtcGxlIGxpY2Vuc2UgaXMgcHJvdmlkZWQgZm9yIGluZm9ybWF0aW9uYWwgcHVycG9zZXMgb25seS4KCk5PTi1FWENMVVNJVkUgRElTVFJJQlVUSU9OIExJQ0VOU0UKCkJ5IHNpZ25pbmcgYW5kIHN1Ym1pdHRpbmcgdGhpcyBsaWNlbnNlLCB5b3UgKHRoZSBhdXRob3Iocykgb3IgY29weXJpZ2h0Cm93bmVyKSBncmFudHMgdG8gRFNwYWNlIFVuaXZlcnNpdHkgKERTVSkgdGhlIG5vbi1leGNsdXNpdmUgcmlnaHQgdG8gcmVwcm9kdWNlLAp0cmFuc2xhdGUgKGFzIGRlZmluZWQgYmVsb3cpLCBhbmQvb3IgZGlzdHJpYnV0ZSB5b3VyIHN1Ym1pc3Npb24gKGluY2x1ZGluZwp0aGUgYWJzdHJhY3QpIHdvcmxkd2lkZSBpbiBwcmludCBhbmQgZWxlY3Ryb25pYyBmb3JtYXQgYW5kIGluIGFueSBtZWRpdW0sCmluY2x1ZGluZyBidXQgbm90IGxpbWl0ZWQgdG8gYXVkaW8gb3IgdmlkZW8uCgpZb3UgYWdyZWUgdGhhdCBEU1UgbWF5LCB3aXRob3V0IGNoYW5naW5nIHRoZSBjb250ZW50LCB0cmFuc2xhdGUgdGhlCnN1Ym1pc3Npb24gdG8gYW55IG1lZGl1bSBvciBmb3JtYXQgZm9yIHRoZSBwdXJwb3NlIG9mIHByZXNlcnZhdGlvbi4KCllvdSBhbHNvIGFncmVlIHRoYXQgRFNVIG1heSBrZWVwIG1vcmUgdGhhbiBvbmUgY29weSBvZiB0aGlzIHN1Ym1pc3Npb24gZm9yCnB1cnBvc2VzIG9mIHNlY3VyaXR5LCBiYWNrLXVwIGFuZCBwcmVzZXJ2YXRpb24uCgpZb3UgcmVwcmVzZW50IHRoYXQgdGhlIHN1Ym1pc3Npb24gaXMgeW91ciBvcmlnaW5hbCB3b3JrLCBhbmQgdGhhdCB5b3UgaGF2ZQp0aGUgcmlnaHQgdG8gZ3JhbnQgdGhlIHJpZ2h0cyBjb250YWluZWQgaW4gdGhpcyBsaWNlbnNlLiBZb3UgYWxzbyByZXByZXNlbnQKdGhhdCB5b3VyIHN1Ym1pc3Npb24gZG9lcyBub3QsIHRvIHRoZSBiZXN0IG9mIHlvdXIga25vd2xlZGdlLCBpbmZyaW5nZSB1cG9uCmFueW9uZSdzIGNvcHlyaWdodC4KCklmIHRoZSBzdWJtaXNzaW9uIGNvbnRhaW5zIG1hdGVyaWFsIGZvciB3aGljaCB5b3UgZG8gbm90IGhvbGQgY29weXJpZ2h0LAp5b3UgcmVwcmVzZW50IHRoYXQgeW91IGhhdmUgb2J0YWluZWQgdGhlIHVucmVzdHJpY3RlZCBwZXJtaXNzaW9uIG9mIHRoZQpjb3B5cmlnaHQgb3duZXIgdG8gZ3JhbnQgRFNVIHRoZSByaWdodHMgcmVxdWlyZWQgYnkgdGhpcyBsaWNlbnNlLCBhbmQgdGhhdApzdWNoIHRoaXJkLXBhcnR5IG93bmVkIG1hdGVyaWFsIGlzIGNsZWFybHkgaWRlbnRpZmllZCBhbmQgYWNrbm93bGVkZ2VkCndpdGhpbiB0aGUgdGV4dCBvciBjb250ZW50IG9mIHRoZSBzdWJtaXNzaW9uLgoKSUYgVEhFIFNVQk1JU1NJT04gSVMgQkFTRUQgVVBPTiBXT1JLIFRIQVQgSEFTIEJFRU4gU1BPTlNPUkVEIE9SIFNVUFBPUlRFRApCWSBBTiBBR0VOQ1kgT1IgT1JHQU5JWkFUSU9OIE9USEVSIFRIQU4gRFNVLCBZT1UgUkVQUkVTRU5UIFRIQVQgWU9VIEhBVkUKRlVMRklMTEVEIEFOWSBSSUdIVCBPRiBSRVZJRVcgT1IgT1RIRVIgT0JMSUdBVElPTlMgUkVRVUlSRUQgQlkgU1VDSApDT05UUkFDVCBPUiBBR1JFRU1FTlQuCgpEU1Ugd2lsbCBjbGVhcmx5IGlkZW50aWZ5IHlvdXIgbmFtZShzKSBhcyB0aGUgYXV0aG9yKHMpIG9yIG93bmVyKHMpIG9mIHRoZQpzdWJtaXNzaW9uLCBhbmQgd2lsbCBub3QgbWFrZSBhbnkgYWx0ZXJhdGlvbiwgb3RoZXIgdGhhbiBhcyBhbGxvd2VkIGJ5IHRoaXMKbGljZW5zZSwgdG8geW91ciBzdWJtaXNzaW9uLgo=