Predicción de costo para adquirir nuevos clientes
RESUMEN : El presente proyecto tiene como objetivo principal predecir el costo de adquisición de nuevos clientes (CAC) en la cadena de supermercados FOODMART. Para lograr esto, se empleó una base de datos real proporcionada por la empresa que contiene información detallada de 60.000 facturas de clie...
- Autores:
-
Montoya Vallejo, Juan Pablo
- Tipo de recurso:
- Tesis
- Fecha de publicación:
- 2023
- Institución:
- Universidad de Antioquia
- Repositorio:
- Repositorio UdeA
- Idioma:
- spa
- OAI Identifier:
- oai:bibliotecadigital.udea.edu.co:10495/35665
- Acceso en línea:
- https://hdl.handle.net/10495/35665
- Palabra clave:
- Aprendizaje supervisado (aprendizaje automático)
Supervised learning (Machine learning)
Relaciones con los clientes
Costo de adquisición de clientes
Experiencia de usuario
- Rights
- openAccess
- License
- https://creativecommons.org/licenses/by-nc-sa/4.0/
| id |
UDEA2_0fa814e5f27be47c01d7f3d24f7a12ed |
|---|---|
| oai_identifier_str |
oai:bibliotecadigital.udea.edu.co:10495/35665 |
| network_acronym_str |
UDEA2 |
| network_name_str |
Repositorio UdeA |
| repository_id_str |
|
| dc.title.spa.fl_str_mv |
Predicción de costo para adquirir nuevos clientes |
| dc.title.translated.spa.fl_str_mv |
Customer adquisition prediction |
| title |
Predicción de costo para adquirir nuevos clientes |
| spellingShingle |
Predicción de costo para adquirir nuevos clientes Aprendizaje supervisado (aprendizaje automático) Supervised learning (Machine learning) Relaciones con los clientes Costo de adquisición de clientes Experiencia de usuario |
| title_short |
Predicción de costo para adquirir nuevos clientes |
| title_full |
Predicción de costo para adquirir nuevos clientes |
| title_fullStr |
Predicción de costo para adquirir nuevos clientes |
| title_full_unstemmed |
Predicción de costo para adquirir nuevos clientes |
| title_sort |
Predicción de costo para adquirir nuevos clientes |
| dc.creator.fl_str_mv |
Montoya Vallejo, Juan Pablo |
| dc.contributor.advisor.none.fl_str_mv |
Rodríguez Colina, Sebastián |
| dc.contributor.author.none.fl_str_mv |
Montoya Vallejo, Juan Pablo |
| dc.subject.lemb.none.fl_str_mv |
Aprendizaje supervisado (aprendizaje automático) Supervised learning (Machine learning) Relaciones con los clientes |
| topic |
Aprendizaje supervisado (aprendizaje automático) Supervised learning (Machine learning) Relaciones con los clientes Costo de adquisición de clientes Experiencia de usuario |
| dc.subject.proposal.spa.fl_str_mv |
Costo de adquisición de clientes Experiencia de usuario |
| description |
RESUMEN : El presente proyecto tiene como objetivo principal predecir el costo de adquisición de nuevos clientes (CAC) en la cadena de supermercados FOODMART. Para lograr esto, se empleó una base de datos real proporcionada por la empresa que contiene información detallada de 60.000 facturas de clientes, incluyendo ingresos, promociones, almacenamiento, ventas y costo de publicidad. En aras del objetivo principal, se aplicaron técnicas de análisis exploratorio de datos y preprocesamiento para preparar los datos, se entrenaron y validaron un modelo de regresión lineal y dos de random forest. Dichos modelos se evaluaron mediante la métrica de desempeño error absoluto medio. Finalmente, se compararon los resultados obtenidos y se realizó un análisis crítico del proyecto, incluyendo recomendaciones para futuros trabajos derivados de la puesta en producción del modelo. Además, se implementó una aplicación que permite realizar predicciones en tiempo real del costo de adquisición de nuevos clientes utilizando el modelo entrenado, a través de una interfaz diseñada con React y un backend con Fast API. |
| publishDate |
2023 |
| dc.date.accessioned.none.fl_str_mv |
2023-06-27T19:48:56Z |
| dc.date.available.none.fl_str_mv |
2023-06-27T19:48:56Z |
| dc.date.issued.none.fl_str_mv |
2023 |
| dc.type.spa.fl_str_mv |
Tesis/Trabajo de grado - Monografía - Especialización |
| dc.type.coar.spa.fl_str_mv |
http://purl.org/coar/resource_type/c_46ec |
| dc.type.redcol.spa.fl_str_mv |
http://purl.org/redcol/resource_type/COther |
| dc.type.coarversion.spa.fl_str_mv |
http://purl.org/coar/version/c_b1a7d7d4d402bcce |
| dc.type.driver.spa.fl_str_mv |
info:eu-repo/semantics/other |
| dc.type.version.spa.fl_str_mv |
info:eu-repo/semantics/draft |
| format |
http://purl.org/coar/resource_type/c_46ec |
| status_str |
draft |
| dc.identifier.uri.none.fl_str_mv |
https://hdl.handle.net/10495/35665 |
| url |
https://hdl.handle.net/10495/35665 |
| dc.language.iso.spa.fl_str_mv |
spa |
| language |
spa |
| dc.rights.uri.spa.fl_str_mv |
https://creativecommons.org/licenses/by-nc-sa/4.0/ |
| dc.rights.uri.*.fl_str_mv |
http://creativecommons.org/licenses/by-nc-nd/2.5/co/ |
| dc.rights.accessrights.spa.fl_str_mv |
info:eu-repo/semantics/openAccess |
| dc.rights.coar.spa.fl_str_mv |
http://purl.org/coar/access_right/c_abf2 |
| rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-sa/4.0/ http://creativecommons.org/licenses/by-nc-nd/2.5/co/ http://purl.org/coar/access_right/c_abf2 |
| eu_rights_str_mv |
openAccess |
| dc.format.extent.spa.fl_str_mv |
36 |
| dc.format.mimetype.spa.fl_str_mv |
application/pdf |
| dc.publisher.spa.fl_str_mv |
Universidad de Antioquia |
| dc.publisher.place.spa.fl_str_mv |
Medellín, Colombia |
| dc.publisher.faculty.spa.fl_str_mv |
Facultad de Ingeniería. Especialización en Analítica y Ciencia de Datos |
| institution |
Universidad de Antioquia |
| bitstream.url.fl_str_mv |
https://bibliotecadigital.udea.edu.co/bitstreams/5fb2a6f8-3556-48ff-94c3-2d2997524a8c/download https://bibliotecadigital.udea.edu.co/bitstreams/55e22be8-0ba0-428c-bc7c-c0c85c383875/download https://bibliotecadigital.udea.edu.co/bitstreams/f6dfa067-f9bc-49f6-8f98-01d9df872035/download https://bibliotecadigital.udea.edu.co/bitstreams/4c602d39-77ff-4c81-8136-5084c9e8d9f3/download https://bibliotecadigital.udea.edu.co/bitstreams/80933b25-0db5-4ddc-845e-b252232e337c/download |
| bitstream.checksum.fl_str_mv |
b88b088d9957e670ce3b3fbe2eedbc13 8a4605be74aa9ea9d79846c1fba20a33 fba82f96aec46e75480f6156bd07b4ea df8060b3167ed8141b752c035ef3cd44 06f94949427351ebd078c5337db05ce6 |
| bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 MD5 MD5 MD5 |
| repository.name.fl_str_mv |
Repositorio Institucional de la Universidad de Antioquia |
| repository.mail.fl_str_mv |
aplicacionbibliotecadigitalbiblioteca@udea.edu.co |
| _version_ |
1851052279836180480 |
| spelling |
Rodríguez Colina, SebastiánMontoya Vallejo, Juan Pablo2023-06-27T19:48:56Z2023-06-27T19:48:56Z2023https://hdl.handle.net/10495/35665RESUMEN : El presente proyecto tiene como objetivo principal predecir el costo de adquisición de nuevos clientes (CAC) en la cadena de supermercados FOODMART. Para lograr esto, se empleó una base de datos real proporcionada por la empresa que contiene información detallada de 60.000 facturas de clientes, incluyendo ingresos, promociones, almacenamiento, ventas y costo de publicidad. En aras del objetivo principal, se aplicaron técnicas de análisis exploratorio de datos y preprocesamiento para preparar los datos, se entrenaron y validaron un modelo de regresión lineal y dos de random forest. Dichos modelos se evaluaron mediante la métrica de desempeño error absoluto medio. Finalmente, se compararon los resultados obtenidos y se realizó un análisis crítico del proyecto, incluyendo recomendaciones para futuros trabajos derivados de la puesta en producción del modelo. Además, se implementó una aplicación que permite realizar predicciones en tiempo real del costo de adquisición de nuevos clientes utilizando el modelo entrenado, a través de una interfaz diseñada con React y un backend con Fast API.ABSTRACT : The main objective of this project is to predict the cost of customer acquisition (CAC) in the FOODMART supermarket chain. In order to achieve this, a real database provided by the company was used, which contains detailed information from 60,000 sales bills including incomes, promotions, storage, sales, and advertising costs. Taking into account the last point, data exploration and preprocessing techniques were applied to prepare the data, regression models such as linear regression and random forest were trained and validated using machine learning concepts. The models were evaluated using performance metrics such as mean squared error. Therefore, obtained results were compared, and a critical analysis of the project was conducted, including recommendations for future work resulting from the deployment of the best model. Furthermore, An application that allows real-time predictions of CAC using the trained model was implemented using the trained model, through a user interface designed with React and a backend with FastAPI.EspecializaciónEspecialista en Analítica y Ciencia de Datos36application/pdfspaUniversidad de AntioquiaMedellín, ColombiaFacultad de Ingeniería. Especialización en Analítica y Ciencia de Datoshttps://creativecommons.org/licenses/by-nc-sa/4.0/http://creativecommons.org/licenses/by-nc-nd/2.5/co/info:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2Predicción de costo para adquirir nuevos clientesCustomer adquisition predictionTesis/Trabajo de grado - Monografía - Especializaciónhttp://purl.org/coar/resource_type/c_46echttp://purl.org/redcol/resource_type/COtherhttp://purl.org/coar/version/c_b1a7d7d4d402bcceinfo:eu-repo/semantics/otherinfo:eu-repo/semantics/draftAprendizaje supervisado (aprendizaje automático)Supervised learning (Machine learning)Relaciones con los clientesCosto de adquisición de clientesExperiencia de usuarioPublicationCC-LICENSElicense_rdflicense_rdfapplication/rdf+xml; charset=utf-8823https://bibliotecadigital.udea.edu.co/bitstreams/5fb2a6f8-3556-48ff-94c3-2d2997524a8c/downloadb88b088d9957e670ce3b3fbe2eedbc13MD55falseAnonymousREADLICENSElicense.txtlicense.txttext/plain; charset=utf-81748https://bibliotecadigital.udea.edu.co/bitstreams/55e22be8-0ba0-428c-bc7c-c0c85c383875/download8a4605be74aa9ea9d79846c1fba20a33MD56falseAnonymousREADORIGINALMontoyaJuan_2023_PrediccionCostoAdquisicion.pdfMontoyaJuan_2023_PrediccionCostoAdquisicion.pdfTrabajo de grado de especializaciónapplication/pdf1351270https://bibliotecadigital.udea.edu.co/bitstreams/f6dfa067-f9bc-49f6-8f98-01d9df872035/downloadfba82f96aec46e75480f6156bd07b4eaMD57trueAnonymousREADTEXTMontoyaJuan_2023_PrediccionCostoAdquisicion.pdf.txtMontoyaJuan_2023_PrediccionCostoAdquisicion.pdf.txtExtracted texttext/plain53905https://bibliotecadigital.udea.edu.co/bitstreams/4c602d39-77ff-4c81-8136-5084c9e8d9f3/downloaddf8060b3167ed8141b752c035ef3cd44MD58falseAnonymousREADTHUMBNAILMontoyaJuan_2023_PrediccionCostoAdquisicion.pdf.jpgMontoyaJuan_2023_PrediccionCostoAdquisicion.pdf.jpgGenerated Thumbnailimage/jpeg6462https://bibliotecadigital.udea.edu.co/bitstreams/80933b25-0db5-4ddc-845e-b252232e337c/download06f94949427351ebd078c5337db05ce6MD59falseAnonymousREAD10495/35665oai:bibliotecadigital.udea.edu.co:10495/356652025-03-26 19:48:14.776https://creativecommons.org/licenses/by-nc-sa/4.0/open.accesshttps://bibliotecadigital.udea.edu.coRepositorio Institucional de la Universidad de Antioquiaaplicacionbibliotecadigitalbiblioteca@udea.edu.coTk9URTogUExBQ0UgWU9VUiBPV04gTElDRU5TRSBIRVJFClRoaXMgc2FtcGxlIGxpY2Vuc2UgaXMgcHJvdmlkZWQgZm9yIGluZm9ybWF0aW9uYWwgcHVycG9zZXMgb25seS4KCk5PTi1FWENMVVNJVkUgRElTVFJJQlVUSU9OIExJQ0VOU0UKCkJ5IHNpZ25pbmcgYW5kIHN1Ym1pdHRpbmcgdGhpcyBsaWNlbnNlLCB5b3UgKHRoZSBhdXRob3Iocykgb3IgY29weXJpZ2h0Cm93bmVyKSBncmFudHMgdG8gRFNwYWNlIFVuaXZlcnNpdHkgKERTVSkgdGhlIG5vbi1leGNsdXNpdmUgcmlnaHQgdG8gcmVwcm9kdWNlLAp0cmFuc2xhdGUgKGFzIGRlZmluZWQgYmVsb3cpLCBhbmQvb3IgZGlzdHJpYnV0ZSB5b3VyIHN1Ym1pc3Npb24gKGluY2x1ZGluZwp0aGUgYWJzdHJhY3QpIHdvcmxkd2lkZSBpbiBwcmludCBhbmQgZWxlY3Ryb25pYyBmb3JtYXQgYW5kIGluIGFueSBtZWRpdW0sCmluY2x1ZGluZyBidXQgbm90IGxpbWl0ZWQgdG8gYXVkaW8gb3IgdmlkZW8uCgpZb3UgYWdyZWUgdGhhdCBEU1UgbWF5LCB3aXRob3V0IGNoYW5naW5nIHRoZSBjb250ZW50LCB0cmFuc2xhdGUgdGhlCnN1Ym1pc3Npb24gdG8gYW55IG1lZGl1bSBvciBmb3JtYXQgZm9yIHRoZSBwdXJwb3NlIG9mIHByZXNlcnZhdGlvbi4KCllvdSBhbHNvIGFncmVlIHRoYXQgRFNVIG1heSBrZWVwIG1vcmUgdGhhbiBvbmUgY29weSBvZiB0aGlzIHN1Ym1pc3Npb24gZm9yCnB1cnBvc2VzIG9mIHNlY3VyaXR5LCBiYWNrLXVwIGFuZCBwcmVzZXJ2YXRpb24uCgpZb3UgcmVwcmVzZW50IHRoYXQgdGhlIHN1Ym1pc3Npb24gaXMgeW91ciBvcmlnaW5hbCB3b3JrLCBhbmQgdGhhdCB5b3UgaGF2ZQp0aGUgcmlnaHQgdG8gZ3JhbnQgdGhlIHJpZ2h0cyBjb250YWluZWQgaW4gdGhpcyBsaWNlbnNlLiBZb3UgYWxzbyByZXByZXNlbnQKdGhhdCB5b3VyIHN1Ym1pc3Npb24gZG9lcyBub3QsIHRvIHRoZSBiZXN0IG9mIHlvdXIga25vd2xlZGdlLCBpbmZyaW5nZSB1cG9uCmFueW9uZSdzIGNvcHlyaWdodC4KCklmIHRoZSBzdWJtaXNzaW9uIGNvbnRhaW5zIG1hdGVyaWFsIGZvciB3aGljaCB5b3UgZG8gbm90IGhvbGQgY29weXJpZ2h0LAp5b3UgcmVwcmVzZW50IHRoYXQgeW91IGhhdmUgb2J0YWluZWQgdGhlIHVucmVzdHJpY3RlZCBwZXJtaXNzaW9uIG9mIHRoZQpjb3B5cmlnaHQgb3duZXIgdG8gZ3JhbnQgRFNVIHRoZSByaWdodHMgcmVxdWlyZWQgYnkgdGhpcyBsaWNlbnNlLCBhbmQgdGhhdApzdWNoIHRoaXJkLXBhcnR5IG93bmVkIG1hdGVyaWFsIGlzIGNsZWFybHkgaWRlbnRpZmllZCBhbmQgYWNrbm93bGVkZ2VkCndpdGhpbiB0aGUgdGV4dCBvciBjb250ZW50IG9mIHRoZSBzdWJtaXNzaW9uLgoKSUYgVEhFIFNVQk1JU1NJT04gSVMgQkFTRUQgVVBPTiBXT1JLIFRIQVQgSEFTIEJFRU4gU1BPTlNPUkVEIE9SIFNVUFBPUlRFRApCWSBBTiBBR0VOQ1kgT1IgT1JHQU5JWkFUSU9OIE9USEVSIFRIQU4gRFNVLCBZT1UgUkVQUkVTRU5UIFRIQVQgWU9VIEhBVkUKRlVMRklMTEVEIEFOWSBSSUdIVCBPRiBSRVZJRVcgT1IgT1RIRVIgT0JMSUdBVElPTlMgUkVRVUlSRUQgQlkgU1VDSApDT05UUkFDVCBPUiBBR1JFRU1FTlQuCgpEU1Ugd2lsbCBjbGVhcmx5IGlkZW50aWZ5IHlvdXIgbmFtZShzKSBhcyB0aGUgYXV0aG9yKHMpIG9yIG93bmVyKHMpIG9mIHRoZQpzdWJtaXNzaW9uLCBhbmQgd2lsbCBub3QgbWFrZSBhbnkgYWx0ZXJhdGlvbiwgb3RoZXIgdGhhbiBhcyBhbGxvd2VkIGJ5IHRoaXMKbGljZW5zZSwgdG8geW91ciBzdWJtaXNzaW9uLgo= |
