Immobilization of silver nanoparticles at varying concentrations on segments of polyvinyl chloride manufactured endotracheal tubes
ABSTRACT: Ventilator-associated pneumonia (VAP) remains a significant challenge in intensive care units, representing a primary medical device-associated infection with alarming incidence rates. Patients undergoing mechanical ventilation are particularly vulnerable to VAP due to bacterial accumulati...
- Autores:
-
Murillo Arias, Yesenia Andrea
Ossa Orozco, Claudia Patricia
Ramírez García, René
Gonzáles Agudelo, Marco Antonio
Marín Pareja, Nathalia
- Tipo de recurso:
- Article of investigation
- Fecha de publicación:
- 2024
- Institución:
- Universidad de Antioquia
- Repositorio:
- Repositorio UdeA
- Idioma:
- eng
- OAI Identifier:
- oai:bibliotecadigital.udea.edu.co:10495/41747
- Acceso en línea:
- https://hdl.handle.net/10495/41747
- Palabra clave:
- Polyvinyl chloride
Intubación Intratraqueal
Intubation, Intratracheal
Neumonía Asociada al Ventilador
Pneumonia, Ventilator-Associated
Antiinfecciosos
Anti-Infective Agents
Nanopartículas de plata
Silver nanoparticles
http://id.loc.gov/authorities/subjects/sh85104742
https://id.nlm.nih.gov/mesh/D007442
https://id.nlm.nih.gov/mesh/D053717
https://id.nlm.nih.gov/mesh/D000890
- Rights
- openAccess
- License
- http://creativecommons.org/licenses/by-nc-nd/2.5/co/
| id |
UDEA2_0e4c81b0764258fae7672f18a77d397e |
|---|---|
| oai_identifier_str |
oai:bibliotecadigital.udea.edu.co:10495/41747 |
| network_acronym_str |
UDEA2 |
| network_name_str |
Repositorio UdeA |
| repository_id_str |
|
| dc.title.spa.fl_str_mv |
Immobilization of silver nanoparticles at varying concentrations on segments of polyvinyl chloride manufactured endotracheal tubes |
| title |
Immobilization of silver nanoparticles at varying concentrations on segments of polyvinyl chloride manufactured endotracheal tubes |
| spellingShingle |
Immobilization of silver nanoparticles at varying concentrations on segments of polyvinyl chloride manufactured endotracheal tubes Polyvinyl chloride Intubación Intratraqueal Intubation, Intratracheal Neumonía Asociada al Ventilador Pneumonia, Ventilator-Associated Antiinfecciosos Anti-Infective Agents Nanopartículas de plata Silver nanoparticles http://id.loc.gov/authorities/subjects/sh85104742 https://id.nlm.nih.gov/mesh/D007442 https://id.nlm.nih.gov/mesh/D053717 https://id.nlm.nih.gov/mesh/D000890 |
| title_short |
Immobilization of silver nanoparticles at varying concentrations on segments of polyvinyl chloride manufactured endotracheal tubes |
| title_full |
Immobilization of silver nanoparticles at varying concentrations on segments of polyvinyl chloride manufactured endotracheal tubes |
| title_fullStr |
Immobilization of silver nanoparticles at varying concentrations on segments of polyvinyl chloride manufactured endotracheal tubes |
| title_full_unstemmed |
Immobilization of silver nanoparticles at varying concentrations on segments of polyvinyl chloride manufactured endotracheal tubes |
| title_sort |
Immobilization of silver nanoparticles at varying concentrations on segments of polyvinyl chloride manufactured endotracheal tubes |
| dc.creator.fl_str_mv |
Murillo Arias, Yesenia Andrea Ossa Orozco, Claudia Patricia Ramírez García, René Gonzáles Agudelo, Marco Antonio Marín Pareja, Nathalia |
| dc.contributor.author.none.fl_str_mv |
Murillo Arias, Yesenia Andrea Ossa Orozco, Claudia Patricia Ramírez García, René Gonzáles Agudelo, Marco Antonio Marín Pareja, Nathalia |
| dc.contributor.researchgroup.spa.fl_str_mv |
Grupo de Investigación en Biomateriales |
| dc.subject.lcsh.none.fl_str_mv |
Polyvinyl chloride |
| topic |
Polyvinyl chloride Intubación Intratraqueal Intubation, Intratracheal Neumonía Asociada al Ventilador Pneumonia, Ventilator-Associated Antiinfecciosos Anti-Infective Agents Nanopartículas de plata Silver nanoparticles http://id.loc.gov/authorities/subjects/sh85104742 https://id.nlm.nih.gov/mesh/D007442 https://id.nlm.nih.gov/mesh/D053717 https://id.nlm.nih.gov/mesh/D000890 |
| dc.subject.decs.none.fl_str_mv |
Intubación Intratraqueal Intubation, Intratracheal Neumonía Asociada al Ventilador Pneumonia, Ventilator-Associated Antiinfecciosos Anti-Infective Agents |
| dc.subject.proposal.spa.fl_str_mv |
Nanopartículas de plata Silver nanoparticles |
| dc.subject.lcshuri.none.fl_str_mv |
http://id.loc.gov/authorities/subjects/sh85104742 |
| dc.subject.meshuri.none.fl_str_mv |
https://id.nlm.nih.gov/mesh/D007442 https://id.nlm.nih.gov/mesh/D053717 https://id.nlm.nih.gov/mesh/D000890 |
| description |
ABSTRACT: Ventilator-associated pneumonia (VAP) remains a significant challenge in intensive care units, representing a primary medical device-associated infection with alarming incidence rates. Patients undergoing mechanical ventilation are particularly vulnerable to VAP due to bacterial accumulation on the endotracheal tube cuff, which can lead to biofilm formation and subsequent migration into the lower respiratory tract, resulting in pneumonia. Currently, various strategies are being explored to mitigate VAP incidence. These approaches encompass innovations in endotracheal tube design, tracheal secretion aspiration systems, material surface modifications, and others. However, a fully effective solution to prevent biofilm formation has not yet been developed. Despite ongoing efforts to address VAP through innovations in endotracheal tube design and other preventive measures, a comprehensive solution to effectively prevent biofilm formation has remained elusive. In this study, we have researched the potential of surface modification processes to mitigate bacterial colonization on endotracheal tubes manufactured from polyvinyl chloride (PVC). Specifically, we explored the introduction of silver nanoparticles (AgNPs) at varying concentrations as a strategy to prevent bacterial adherence and biofilm formation. We successfully validated the chemical modification of the surface and subsequent nanoparticle immobilization. This result was accomplished by scrutinizing physicochemical alterations through wetting studies, Fourier Transform infrared spectroscopy (FTIR), and scanning electron microscopy (SEM). Through examination of physicochemical alterations using Fourier-transform infrared spectroscopy (FTIR), wetting studies, and scanning electron microscopy (SEM), we successfully validated the efficacy of the surface modification process proposed and confirmed the immobilization of AgNPs. We conducted mechanical strength assays, revealing that the surface modification process with silver nanoparticles did not compromise the mechanical integrity of the material. Additionally, we conducted antimicrobial efficacy and in vitro cytotoxicity assessments of the modified endotracheal tubes. Our findings indicate that the material modified with a 100 % concentration of silver nanoparticles exhibited promising results in reducing bacterial colonization, particularly against Klebsiella pneumoniae and Pseudomonas aeruginosa strains. It is worth mentioning that we observed no cytotoxic effects on L929 cells, underscoring the safety profile of the modified material for potential clinical application. In conclusion, our study highlights the potential of surface modification with silver nanoparticles as a promising strategy to mitigate bacterial colonization on endotracheal tubes and reduce the risk of VAP in mechanically ventilated patients. These findings contribute to ongoing efforts to enhance patient safety and improve outcomes in critical care settings. Further research and clinical trials are warranted to validate the effectiveness and long term benefits of this innovative approach in preventing VAP and minimizing associated morbidity and mortality |
| publishDate |
2024 |
| dc.date.accessioned.none.fl_str_mv |
2024-09-03T21:03:22Z |
| dc.date.available.none.fl_str_mv |
2024-09-03T21:03:22Z |
| dc.date.issued.none.fl_str_mv |
2024 |
| dc.type.spa.fl_str_mv |
Artículo de investigación |
| dc.type.coar.spa.fl_str_mv |
http://purl.org/coar/resource_type/c_2df8fbb1 |
| dc.type.redcol.spa.fl_str_mv |
https://purl.org/redcol/resource_type/ART |
| dc.type.coarversion.spa.fl_str_mv |
http://purl.org/coar/version/c_970fb48d4fbd8a85 |
| dc.type.driver.spa.fl_str_mv |
info:eu-repo/semantics/article |
| dc.type.version.spa.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
| format |
http://purl.org/coar/resource_type/c_2df8fbb1 |
| status_str |
publishedVersion |
| dc.identifier.uri.none.fl_str_mv |
https://hdl.handle.net/10495/41747 |
| dc.identifier.doi.none.fl_str_mv |
10.1016/j.mtcomm.2024.110109 |
| dc.identifier.eissn.none.fl_str_mv |
2352-4928 |
| url |
https://hdl.handle.net/10495/41747 |
| identifier_str_mv |
10.1016/j.mtcomm.2024.110109 2352-4928 |
| dc.language.iso.spa.fl_str_mv |
eng |
| language |
eng |
| dc.relation.ispartofjournalabbrev.spa.fl_str_mv |
Mater. Today. Commun. |
| dc.relation.citationendpage.spa.fl_str_mv |
10 |
| dc.relation.citationstartpage.spa.fl_str_mv |
1 |
| dc.relation.citationvolume.spa.fl_str_mv |
41 |
| dc.relation.ispartofjournal.spa.fl_str_mv |
Materials Today Communications |
| dc.rights.uri.*.fl_str_mv |
http://creativecommons.org/licenses/by-nc-nd/2.5/co/ |
| dc.rights.uri.spa.fl_str_mv |
https://creativecommons.org/licenses/by-nd/4.0/ |
| dc.rights.accessrights.spa.fl_str_mv |
info:eu-repo/semantics/openAccess |
| dc.rights.coar.spa.fl_str_mv |
http://purl.org/coar/access_right/c_abf2 |
| rights_invalid_str_mv |
http://creativecommons.org/licenses/by-nc-nd/2.5/co/ https://creativecommons.org/licenses/by-nd/4.0/ http://purl.org/coar/access_right/c_abf2 |
| eu_rights_str_mv |
openAccess |
| dc.format.extent.spa.fl_str_mv |
10 páginas |
| dc.format.mimetype.spa.fl_str_mv |
application/pdf |
| dc.publisher.spa.fl_str_mv |
Elsevier |
| dc.publisher.place.spa.fl_str_mv |
Oxford, Inglaterra |
| institution |
Universidad de Antioquia |
| bitstream.url.fl_str_mv |
https://bibliotecadigital.udea.edu.co/bitstreams/81ec91e8-02ca-4116-a63d-f5ea111837c8/download https://bibliotecadigital.udea.edu.co/bitstreams/ca5fce80-eed1-49df-8aea-e839e3629e23/download https://bibliotecadigital.udea.edu.co/bitstreams/2eef7564-1b4c-44ac-b434-15adb5e91fe7/download https://bibliotecadigital.udea.edu.co/bitstreams/5de722cf-1154-466c-9e42-22603ebd704e/download https://bibliotecadigital.udea.edu.co/bitstreams/40870b1c-208a-4077-acd8-e549212d30fc/download |
| bitstream.checksum.fl_str_mv |
31a529b5de1dabb9553885c06c050334 b88b088d9957e670ce3b3fbe2eedbc13 8a4605be74aa9ea9d79846c1fba20a33 638e0cd08a8eed1ab511f2da3722c46d 48d221f97654dc910097eb247bf8e982 |
| bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 MD5 MD5 MD5 |
| repository.name.fl_str_mv |
Repositorio Institucional de la Universidad de Antioquia |
| repository.mail.fl_str_mv |
aplicacionbibliotecadigitalbiblioteca@udea.edu.co |
| _version_ |
1851052647499431936 |
| spelling |
Murillo Arias, Yesenia AndreaOssa Orozco, Claudia PatriciaRamírez García, RenéGonzáles Agudelo, Marco AntonioMarín Pareja, NathaliaGrupo de Investigación en Biomateriales2024-09-03T21:03:22Z2024-09-03T21:03:22Z2024https://hdl.handle.net/10495/4174710.1016/j.mtcomm.2024.1101092352-4928ABSTRACT: Ventilator-associated pneumonia (VAP) remains a significant challenge in intensive care units, representing a primary medical device-associated infection with alarming incidence rates. Patients undergoing mechanical ventilation are particularly vulnerable to VAP due to bacterial accumulation on the endotracheal tube cuff, which can lead to biofilm formation and subsequent migration into the lower respiratory tract, resulting in pneumonia. Currently, various strategies are being explored to mitigate VAP incidence. These approaches encompass innovations in endotracheal tube design, tracheal secretion aspiration systems, material surface modifications, and others. However, a fully effective solution to prevent biofilm formation has not yet been developed. Despite ongoing efforts to address VAP through innovations in endotracheal tube design and other preventive measures, a comprehensive solution to effectively prevent biofilm formation has remained elusive. In this study, we have researched the potential of surface modification processes to mitigate bacterial colonization on endotracheal tubes manufactured from polyvinyl chloride (PVC). Specifically, we explored the introduction of silver nanoparticles (AgNPs) at varying concentrations as a strategy to prevent bacterial adherence and biofilm formation. We successfully validated the chemical modification of the surface and subsequent nanoparticle immobilization. This result was accomplished by scrutinizing physicochemical alterations through wetting studies, Fourier Transform infrared spectroscopy (FTIR), and scanning electron microscopy (SEM). Through examination of physicochemical alterations using Fourier-transform infrared spectroscopy (FTIR), wetting studies, and scanning electron microscopy (SEM), we successfully validated the efficacy of the surface modification process proposed and confirmed the immobilization of AgNPs. We conducted mechanical strength assays, revealing that the surface modification process with silver nanoparticles did not compromise the mechanical integrity of the material. Additionally, we conducted antimicrobial efficacy and in vitro cytotoxicity assessments of the modified endotracheal tubes. Our findings indicate that the material modified with a 100 % concentration of silver nanoparticles exhibited promising results in reducing bacterial colonization, particularly against Klebsiella pneumoniae and Pseudomonas aeruginosa strains. It is worth mentioning that we observed no cytotoxic effects on L929 cells, underscoring the safety profile of the modified material for potential clinical application. In conclusion, our study highlights the potential of surface modification with silver nanoparticles as a promising strategy to mitigate bacterial colonization on endotracheal tubes and reduce the risk of VAP in mechanically ventilated patients. These findings contribute to ongoing efforts to enhance patient safety and improve outcomes in critical care settings. Further research and clinical trials are warranted to validate the effectiveness and long term benefits of this innovative approach in preventing VAP and minimizing associated morbidity and mortalityCOL005504910 páginasapplication/pdfengElsevierOxford, Inglaterrahttp://creativecommons.org/licenses/by-nc-nd/2.5/co/https://creativecommons.org/licenses/by-nd/4.0/info:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2Polyvinyl chlorideIntubación IntratraquealIntubation, IntratrachealNeumonía Asociada al VentiladorPneumonia, Ventilator-AssociatedAntiinfecciososAnti-Infective AgentsNanopartículas de plataSilver nanoparticleshttp://id.loc.gov/authorities/subjects/sh85104742https://id.nlm.nih.gov/mesh/D007442https://id.nlm.nih.gov/mesh/D053717https://id.nlm.nih.gov/mesh/D000890Immobilization of silver nanoparticles at varying concentrations on segments of polyvinyl chloride manufactured endotracheal tubesArtículo de investigaciónhttp://purl.org/coar/resource_type/c_2df8fbb1https://purl.org/redcol/resource_type/ARThttp://purl.org/coar/version/c_970fb48d4fbd8a85info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionMater. Today. Commun.10141Materials Today CommunicationsPublicationORIGINALMurilloYesenia_2024_Immobilization_Silver_Nanoparticles.pdfMurilloYesenia_2024_Immobilization_Silver_Nanoparticles.pdfArtículo de investigaciónapplication/pdf8240661https://bibliotecadigital.udea.edu.co/bitstreams/81ec91e8-02ca-4116-a63d-f5ea111837c8/download31a529b5de1dabb9553885c06c050334MD51trueAnonymousREADCC-LICENSElicense_rdflicense_rdfapplication/rdf+xml; charset=utf-8823https://bibliotecadigital.udea.edu.co/bitstreams/ca5fce80-eed1-49df-8aea-e839e3629e23/downloadb88b088d9957e670ce3b3fbe2eedbc13MD52falseAnonymousREADLICENSElicense.txtlicense.txttext/plain; charset=utf-81748https://bibliotecadigital.udea.edu.co/bitstreams/2eef7564-1b4c-44ac-b434-15adb5e91fe7/download8a4605be74aa9ea9d79846c1fba20a33MD53falseAnonymousREADTEXTMurilloYesenia_2024_Immobilization_Silver_Nanoparticles.pdf.txtMurilloYesenia_2024_Immobilization_Silver_Nanoparticles.pdf.txtExtracted texttext/plain65204https://bibliotecadigital.udea.edu.co/bitstreams/5de722cf-1154-466c-9e42-22603ebd704e/download638e0cd08a8eed1ab511f2da3722c46dMD54falseAnonymousREADTHUMBNAILMurilloYesenia_2024_Immobilization_Silver_Nanoparticles.pdf.jpgMurilloYesenia_2024_Immobilization_Silver_Nanoparticles.pdf.jpgGenerated Thumbnailimage/jpeg13856https://bibliotecadigital.udea.edu.co/bitstreams/40870b1c-208a-4077-acd8-e549212d30fc/download48d221f97654dc910097eb247bf8e982MD55falseAnonymousREAD10495/41747oai:bibliotecadigital.udea.edu.co:10495/417472025-03-27 01:36:49.459http://creativecommons.org/licenses/by-nc-nd/2.5/co/open.accesshttps://bibliotecadigital.udea.edu.coRepositorio Institucional de la Universidad de Antioquiaaplicacionbibliotecadigitalbiblioteca@udea.edu.coTk9URTogUExBQ0UgWU9VUiBPV04gTElDRU5TRSBIRVJFClRoaXMgc2FtcGxlIGxpY2Vuc2UgaXMgcHJvdmlkZWQgZm9yIGluZm9ybWF0aW9uYWwgcHVycG9zZXMgb25seS4KCk5PTi1FWENMVVNJVkUgRElTVFJJQlVUSU9OIExJQ0VOU0UKCkJ5IHNpZ25pbmcgYW5kIHN1Ym1pdHRpbmcgdGhpcyBsaWNlbnNlLCB5b3UgKHRoZSBhdXRob3Iocykgb3IgY29weXJpZ2h0Cm93bmVyKSBncmFudHMgdG8gRFNwYWNlIFVuaXZlcnNpdHkgKERTVSkgdGhlIG5vbi1leGNsdXNpdmUgcmlnaHQgdG8gcmVwcm9kdWNlLAp0cmFuc2xhdGUgKGFzIGRlZmluZWQgYmVsb3cpLCBhbmQvb3IgZGlzdHJpYnV0ZSB5b3VyIHN1Ym1pc3Npb24gKGluY2x1ZGluZwp0aGUgYWJzdHJhY3QpIHdvcmxkd2lkZSBpbiBwcmludCBhbmQgZWxlY3Ryb25pYyBmb3JtYXQgYW5kIGluIGFueSBtZWRpdW0sCmluY2x1ZGluZyBidXQgbm90IGxpbWl0ZWQgdG8gYXVkaW8gb3IgdmlkZW8uCgpZb3UgYWdyZWUgdGhhdCBEU1UgbWF5LCB3aXRob3V0IGNoYW5naW5nIHRoZSBjb250ZW50LCB0cmFuc2xhdGUgdGhlCnN1Ym1pc3Npb24gdG8gYW55IG1lZGl1bSBvciBmb3JtYXQgZm9yIHRoZSBwdXJwb3NlIG9mIHByZXNlcnZhdGlvbi4KCllvdSBhbHNvIGFncmVlIHRoYXQgRFNVIG1heSBrZWVwIG1vcmUgdGhhbiBvbmUgY29weSBvZiB0aGlzIHN1Ym1pc3Npb24gZm9yCnB1cnBvc2VzIG9mIHNlY3VyaXR5LCBiYWNrLXVwIGFuZCBwcmVzZXJ2YXRpb24uCgpZb3UgcmVwcmVzZW50IHRoYXQgdGhlIHN1Ym1pc3Npb24gaXMgeW91ciBvcmlnaW5hbCB3b3JrLCBhbmQgdGhhdCB5b3UgaGF2ZQp0aGUgcmlnaHQgdG8gZ3JhbnQgdGhlIHJpZ2h0cyBjb250YWluZWQgaW4gdGhpcyBsaWNlbnNlLiBZb3UgYWxzbyByZXByZXNlbnQKdGhhdCB5b3VyIHN1Ym1pc3Npb24gZG9lcyBub3QsIHRvIHRoZSBiZXN0IG9mIHlvdXIga25vd2xlZGdlLCBpbmZyaW5nZSB1cG9uCmFueW9uZSdzIGNvcHlyaWdodC4KCklmIHRoZSBzdWJtaXNzaW9uIGNvbnRhaW5zIG1hdGVyaWFsIGZvciB3aGljaCB5b3UgZG8gbm90IGhvbGQgY29weXJpZ2h0LAp5b3UgcmVwcmVzZW50IHRoYXQgeW91IGhhdmUgb2J0YWluZWQgdGhlIHVucmVzdHJpY3RlZCBwZXJtaXNzaW9uIG9mIHRoZQpjb3B5cmlnaHQgb3duZXIgdG8gZ3JhbnQgRFNVIHRoZSByaWdodHMgcmVxdWlyZWQgYnkgdGhpcyBsaWNlbnNlLCBhbmQgdGhhdApzdWNoIHRoaXJkLXBhcnR5IG93bmVkIG1hdGVyaWFsIGlzIGNsZWFybHkgaWRlbnRpZmllZCBhbmQgYWNrbm93bGVkZ2VkCndpdGhpbiB0aGUgdGV4dCBvciBjb250ZW50IG9mIHRoZSBzdWJtaXNzaW9uLgoKSUYgVEhFIFNVQk1JU1NJT04gSVMgQkFTRUQgVVBPTiBXT1JLIFRIQVQgSEFTIEJFRU4gU1BPTlNPUkVEIE9SIFNVUFBPUlRFRApCWSBBTiBBR0VOQ1kgT1IgT1JHQU5JWkFUSU9OIE9USEVSIFRIQU4gRFNVLCBZT1UgUkVQUkVTRU5UIFRIQVQgWU9VIEhBVkUKRlVMRklMTEVEIEFOWSBSSUdIVCBPRiBSRVZJRVcgT1IgT1RIRVIgT0JMSUdBVElPTlMgUkVRVUlSRUQgQlkgU1VDSApDT05UUkFDVCBPUiBBR1JFRU1FTlQuCgpEU1Ugd2lsbCBjbGVhcmx5IGlkZW50aWZ5IHlvdXIgbmFtZShzKSBhcyB0aGUgYXV0aG9yKHMpIG9yIG93bmVyKHMpIG9mIHRoZQpzdWJtaXNzaW9uLCBhbmQgd2lsbCBub3QgbWFrZSBhbnkgYWx0ZXJhdGlvbiwgb3RoZXIgdGhhbiBhcyBhbGxvd2VkIGJ5IHRoaXMKbGljZW5zZSwgdG8geW91ciBzdWJtaXNzaW9uLgo= |
