Lactic acid production via cassava-flour-hydrolysate fermentation
ABSTRACT : Background: Lactic acid (LA) is a carboxylic acid widely used as preservative, acidulant, and/or f la-vouring in food industry; it is also used as a raw material for the production of lactate ester, propylene glycol, 2,3-pentanedione, propanoic acid, acrylic acid and acetaldehyde. In rece...
- Autores:
-
Quintero Mesa, Joan Esteban
Acosta Cárdenas, Alejandro
Mejía Gómez, Carlos Eduardo
Ríos Estepa, Rigoberto
Torres López, Ana María
- Tipo de recurso:
- Article of investigation
- Fecha de publicación:
- 2012
- Institución:
- Universidad de Antioquia
- Repositorio:
- Repositorio UdeA
- Idioma:
- eng
- OAI Identifier:
- oai:bibliotecadigital.udea.edu.co:10495/26468
- Acceso en línea:
- http://hdl.handle.net/10495/26468
https://revistas.udea.edu.co/index.php/vitae/article/view/11167
- Palabra clave:
- Ácido Láctico
Lactic Acid
Lactobacillus brevis
Harina de yuca
Cassava flour
cassava waste material
pH effect
https://id.nlm.nih.gov/mesh/D019344
https://id.nlm.nih.gov/mesh/D052196
- Rights
- openAccess
- License
- http://creativecommons.org/licenses/by-nc-sa/2.5/co/
| id |
UDEA2_0ca54777420aa31c8302b15d8f06bbbf |
|---|---|
| oai_identifier_str |
oai:bibliotecadigital.udea.edu.co:10495/26468 |
| network_acronym_str |
UDEA2 |
| network_name_str |
Repositorio UdeA |
| repository_id_str |
|
| dc.title.spa.fl_str_mv |
Lactic acid production via cassava-flour-hydrolysate fermentation |
| dc.title.translated.spa.fl_str_mv |
Producción de ácido láctico via fermentativa a partir de hidrolizado de harina de yuca |
| title |
Lactic acid production via cassava-flour-hydrolysate fermentation |
| spellingShingle |
Lactic acid production via cassava-flour-hydrolysate fermentation Ácido Láctico Lactic Acid Lactobacillus brevis Harina de yuca Cassava flour cassava waste material pH effect https://id.nlm.nih.gov/mesh/D019344 https://id.nlm.nih.gov/mesh/D052196 |
| title_short |
Lactic acid production via cassava-flour-hydrolysate fermentation |
| title_full |
Lactic acid production via cassava-flour-hydrolysate fermentation |
| title_fullStr |
Lactic acid production via cassava-flour-hydrolysate fermentation |
| title_full_unstemmed |
Lactic acid production via cassava-flour-hydrolysate fermentation |
| title_sort |
Lactic acid production via cassava-flour-hydrolysate fermentation |
| dc.creator.fl_str_mv |
Quintero Mesa, Joan Esteban Acosta Cárdenas, Alejandro Mejía Gómez, Carlos Eduardo Ríos Estepa, Rigoberto Torres López, Ana María |
| dc.contributor.author.none.fl_str_mv |
Quintero Mesa, Joan Esteban Acosta Cárdenas, Alejandro Mejía Gómez, Carlos Eduardo Ríos Estepa, Rigoberto Torres López, Ana María |
| dc.contributor.researchgroup.spa.fl_str_mv |
Grupo de Biotransformación Bioprocesos |
| dc.subject.decs.none.fl_str_mv |
Ácido Láctico Lactic Acid Lactobacillus brevis |
| topic |
Ácido Láctico Lactic Acid Lactobacillus brevis Harina de yuca Cassava flour cassava waste material pH effect https://id.nlm.nih.gov/mesh/D019344 https://id.nlm.nih.gov/mesh/D052196 |
| dc.subject.lemb.none.fl_str_mv |
Harina de yuca Cassava flour |
| dc.subject.proposal.spa.fl_str_mv |
cassava waste material pH effect |
| dc.subject.meshuri.none.fl_str_mv |
https://id.nlm.nih.gov/mesh/D019344 https://id.nlm.nih.gov/mesh/D052196 |
| description |
ABSTRACT : Background: Lactic acid (LA) is a carboxylic acid widely used as preservative, acidulant, and/or f la-vouring in food industry; it is also used as a raw material for the production of lactate ester, propylene glycol, 2,3-pentanedione, propanoic acid, acrylic acid and acetaldehyde. In recent years, the demand for LA production has dramatically increased due to its application as a monomer for poly-lactic acid synthesis, a biodegradable polymer used as a plastic in many industrial applications. LA can be produ-ced either by fermentation or chemical synthesis; the former route has received considerable interest, due to environmental concerns and the limited nature of petrochemical feedstocks; thus, 90% of LA produced worldwide is obtained by fermentation, this process comprises the bioconversion of a sugar solution (carbohydrates) into LA in the presence of a microorganism. Objectives: This work is aimed at studying the effect of pH control and culture media composition on the LA production using renewable sources from the agroindustry sector. Methods: A Lactobacillus brevis strain is used to perform lab scale experiments under aerobic and anaerobic conditions, using three different culture media compositions: a high nutritional content medium (MRS), as a reference, a low nutritional content medium with glucose as the only carbon source (GM), and a potential low nutritional content medium with cassava f lour as carbon source (HY1). Results: The higher LA production is accomplished under anaerobic conditions, 17.6 ± 0.1, 12.6 ± 0.2 y 13.6 ± 0.2 g LA/L, for MRS, GM and HY1 medium, respectively. The effect of pH on LA biosynthesis in a 5L bioreactor is also studied using the HY1 medium. For a fermentation time of 120 h, the highest LA concentration obtained was 24.3 ± 0.7g LA/L, productivity 0.20 g/L/h, YP/S 0.32g LA/g syrup, at pH 6.5. Conclusions: These results are comparable with those using expensive carbon sources such as glucose, and show cassava f lour as a promising low-cost substrate source for lab and eventually large scale LA biosynthesis. |
| publishDate |
2012 |
| dc.date.issued.none.fl_str_mv |
2012 |
| dc.date.accessioned.none.fl_str_mv |
2022-03-08T21:34:51Z |
| dc.date.available.none.fl_str_mv |
2022-03-08T21:34:51Z |
| dc.type.spa.fl_str_mv |
Artículo de investigación |
| dc.type.coar.spa.fl_str_mv |
http://purl.org/coar/resource_type/c_2df8fbb1 |
| dc.type.redcol.spa.fl_str_mv |
https://purl.org/redcol/resource_type/ART |
| dc.type.coarversion.spa.fl_str_mv |
http://purl.org/coar/version/c_970fb48d4fbd8a85 |
| dc.type.driver.spa.fl_str_mv |
info:eu-repo/semantics/article |
| dc.type.version.spa.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
| format |
http://purl.org/coar/resource_type/c_2df8fbb1 |
| status_str |
publishedVersion |
| dc.identifier.citation.spa.fl_str_mv |
J. E. Quintero M., A. Acosta C. M., C. Mejía G., R. Ríos E., and A. M. Torres L., “Lactic Acid Production Via Cassava-Flour- Hydrolysate Fermentation”, Vitae, vol. 19, no. 3, pp. 287–293, Feb. 2012. |
| dc.identifier.issn.none.fl_str_mv |
0121-4004 |
| dc.identifier.uri.none.fl_str_mv |
http://hdl.handle.net/10495/26468 |
| dc.identifier.doi.none.fl_str_mv |
10.17533/udea.vitae.11167 |
| dc.identifier.eissn.none.fl_str_mv |
2145-2660 |
| dc.identifier.url.spa.fl_str_mv |
https://revistas.udea.edu.co/index.php/vitae/article/view/11167 |
| identifier_str_mv |
J. E. Quintero M., A. Acosta C. M., C. Mejía G., R. Ríos E., and A. M. Torres L., “Lactic Acid Production Via Cassava-Flour- Hydrolysate Fermentation”, Vitae, vol. 19, no. 3, pp. 287–293, Feb. 2012. 0121-4004 10.17533/udea.vitae.11167 2145-2660 |
| url |
http://hdl.handle.net/10495/26468 https://revistas.udea.edu.co/index.php/vitae/article/view/11167 |
| dc.language.iso.spa.fl_str_mv |
eng |
| language |
eng |
| dc.relation.ispartofjournalabbrev.spa.fl_str_mv |
Vitae |
| dc.relation.citationendpage.spa.fl_str_mv |
293 |
| dc.relation.citationissue.spa.fl_str_mv |
3 |
| dc.relation.citationstartpage.spa.fl_str_mv |
287 |
| dc.relation.citationvolume.spa.fl_str_mv |
19 |
| dc.relation.ispartofjournal.spa.fl_str_mv |
Vitae |
| dc.rights.uri.*.fl_str_mv |
http://creativecommons.org/licenses/by-nc-sa/2.5/co/ |
| dc.rights.uri.spa.fl_str_mv |
https://creativecommons.org/licenses/by-nc-sa/4.0/ |
| dc.rights.accessrights.spa.fl_str_mv |
info:eu-repo/semantics/openAccess |
| dc.rights.coar.spa.fl_str_mv |
http://purl.org/coar/access_right/c_abf2 |
| rights_invalid_str_mv |
http://creativecommons.org/licenses/by-nc-sa/2.5/co/ https://creativecommons.org/licenses/by-nc-sa/4.0/ http://purl.org/coar/access_right/c_abf2 |
| eu_rights_str_mv |
openAccess |
| dc.format.extent.spa.fl_str_mv |
7 páginas |
| dc.format.mimetype.spa.fl_str_mv |
application/pdf |
| dc.publisher.spa.fl_str_mv |
Universidad de Antioquia, Facultad de Ciencias Farmacéuticas y Alimentarias |
| dc.publisher.place.spa.fl_str_mv |
Medellín, Colombia |
| institution |
Universidad de Antioquia |
| bitstream.url.fl_str_mv |
https://bibliotecadigital.udea.edu.co/bitstreams/73de17a9-e795-466b-8fbe-7eb4668df6e7/download https://bibliotecadigital.udea.edu.co/bitstreams/6ff97e99-afbf-464f-9492-44e4b91cfdb2/download https://bibliotecadigital.udea.edu.co/bitstreams/9b837f07-af62-4f22-9f97-23d621b5e57e/download https://bibliotecadigital.udea.edu.co/bitstreams/2c248947-ff86-4c0b-8a06-85e3d5e03aed/download https://bibliotecadigital.udea.edu.co/bitstreams/c387c353-aeff-444a-94be-f11adf3918d4/download |
| bitstream.checksum.fl_str_mv |
8705c44410145a129ccbb91fc9870a65 e2060682c9c70d4d30c83c51448f4eed 8a4605be74aa9ea9d79846c1fba20a33 a7399211ad20f7ff303e1ce3c8dc2c7f abc30a57b6d88b0f51fb1c049235c30d |
| bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 MD5 MD5 MD5 |
| repository.name.fl_str_mv |
Repositorio Institucional de la Universidad de Antioquia |
| repository.mail.fl_str_mv |
aplicacionbibliotecadigitalbiblioteca@udea.edu.co |
| _version_ |
1851052556288000000 |
| spelling |
Quintero Mesa, Joan EstebanAcosta Cárdenas, AlejandroMejía Gómez, Carlos EduardoRíos Estepa, RigobertoTorres López, Ana MaríaGrupo de BiotransformaciónBioprocesos2022-03-08T21:34:51Z2022-03-08T21:34:51Z2012J. E. Quintero M., A. Acosta C. M., C. Mejía G., R. Ríos E., and A. M. Torres L., “Lactic Acid Production Via Cassava-Flour- Hydrolysate Fermentation”, Vitae, vol. 19, no. 3, pp. 287–293, Feb. 2012.0121-4004http://hdl.handle.net/10495/2646810.17533/udea.vitae.111672145-2660https://revistas.udea.edu.co/index.php/vitae/article/view/11167ABSTRACT : Background: Lactic acid (LA) is a carboxylic acid widely used as preservative, acidulant, and/or f la-vouring in food industry; it is also used as a raw material for the production of lactate ester, propylene glycol, 2,3-pentanedione, propanoic acid, acrylic acid and acetaldehyde. In recent years, the demand for LA production has dramatically increased due to its application as a monomer for poly-lactic acid synthesis, a biodegradable polymer used as a plastic in many industrial applications. LA can be produ-ced either by fermentation or chemical synthesis; the former route has received considerable interest, due to environmental concerns and the limited nature of petrochemical feedstocks; thus, 90% of LA produced worldwide is obtained by fermentation, this process comprises the bioconversion of a sugar solution (carbohydrates) into LA in the presence of a microorganism. Objectives: This work is aimed at studying the effect of pH control and culture media composition on the LA production using renewable sources from the agroindustry sector. Methods: A Lactobacillus brevis strain is used to perform lab scale experiments under aerobic and anaerobic conditions, using three different culture media compositions: a high nutritional content medium (MRS), as a reference, a low nutritional content medium with glucose as the only carbon source (GM), and a potential low nutritional content medium with cassava f lour as carbon source (HY1). Results: The higher LA production is accomplished under anaerobic conditions, 17.6 ± 0.1, 12.6 ± 0.2 y 13.6 ± 0.2 g LA/L, for MRS, GM and HY1 medium, respectively. The effect of pH on LA biosynthesis in a 5L bioreactor is also studied using the HY1 medium. For a fermentation time of 120 h, the highest LA concentration obtained was 24.3 ± 0.7g LA/L, productivity 0.20 g/L/h, YP/S 0.32g LA/g syrup, at pH 6.5. Conclusions: These results are comparable with those using expensive carbon sources such as glucose, and show cassava f lour as a promising low-cost substrate source for lab and eventually large scale LA biosynthesis.RESUMEN : Antecedentes: El ácido láctico (AL) es un ácido carboxílico utilizado en la industria alimentaria como conservante, acidulante y saborizante; también es usado como materia prima para la producción de éster de lactato, propilenglicol, 2,3-pentanodiona, ácido propanoico, ácido acrílico y acetaldehído. La demanda de AL ha aumentado debido a su aplicación como monómero en la síntesis de ácido poliláctico, un polímero biodegradable usado como plástico en aplicaciones industriales. El AL puede ser producido por fermentación o síntesis química; la primera ruta ha recibido mayor interés, debido a las preocupaciones ambientales y a la limitación en materias primas petroquímicas. El 90% del AL producido en el mundo se obtiene por fermentación, la cual involucra la bioconversión de una solución de azúcar en AL, en presencia de un microorganismo. Objetivos: En este trabajo se evalúa el efecto del pH y de medios de cultivos sobre la producción de AL a partir del cultivo de Lactobacillus brevis, usando fuentes renovables provenientes del sector agroindustrial. Métodos: El desarrollo experimental a escala de laboratorio considera la evaluación de tres medios de cultivo: uno de alto contenido nutricional (MRS), medio de referencia, uno de medio contenido nutricional, con glucosa como única fuente de carbono (GM), y un medio de cultivo de bajo contenido nutricional, con jarabe de yuca como fuente de carbono (HY1). Resultados: La más alta pro-ducción de AL se obtiene bajo condiciones anaeróbicas, 17,6 ± 0,1, 12,6 ± 0,2 y 13,6 ± 0.2 g AL/L, para los medios MRS, GM y HY1, respectivamente. El trabajo contempla el estudio del efecto del pH sobre la biosíntesis de AL en reactor de 5L, usando el medio de cultivo HY1. Para 120h de cultivo la más alta concentración de AL que se obtiene es 24,3 ± 0,7g AL/L, productividad 0,20 g/L/h, y un rendimiento de sustrato en producto (YP/S)de 0,32g AL/g jarabe, a pH 6,5. Conclusiones: Estos resultados son comparables con los obtenidos en otros trabajos usando glucosa como fuente de carbono, y permiten considerar al jarabe de yuca como un potencial sustrato de bajo costo y alta disponibilidad para la producción de AL a escala de laboratorio, y eventualmente a escala industrial.COL0066991COL00237157 páginasapplication/pdfengUniversidad de Antioquia, Facultad de Ciencias Farmacéuticas y AlimentariasMedellín, Colombiahttp://creativecommons.org/licenses/by-nc-sa/2.5/co/https://creativecommons.org/licenses/by-nc-sa/4.0/info:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2Lactic acid production via cassava-flour-hydrolysate fermentationProducción de ácido láctico via fermentativa a partir de hidrolizado de harina de yucaArtículo de investigaciónhttp://purl.org/coar/resource_type/c_2df8fbb1https://purl.org/redcol/resource_type/ARThttp://purl.org/coar/version/c_970fb48d4fbd8a85info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionÁcido LácticoLactic AcidLactobacillus brevisHarina de yucaCassava flourcassava waste materialpH effecthttps://id.nlm.nih.gov/mesh/D019344https://id.nlm.nih.gov/mesh/D052196Vitae293328719VitaePublicationORIGINALQuinteroJoan_2012_LacticAcidProduction.pdfQuinteroJoan_2012_LacticAcidProduction.pdfArtículo de investigaciónapplication/pdf209615https://bibliotecadigital.udea.edu.co/bitstreams/73de17a9-e795-466b-8fbe-7eb4668df6e7/download8705c44410145a129ccbb91fc9870a65MD51trueAnonymousREADCC-LICENSElicense_rdflicense_rdfapplication/rdf+xml; charset=utf-81051https://bibliotecadigital.udea.edu.co/bitstreams/6ff97e99-afbf-464f-9492-44e4b91cfdb2/downloade2060682c9c70d4d30c83c51448f4eedMD52falseAnonymousREADLICENSElicense.txtlicense.txttext/plain; charset=utf-81748https://bibliotecadigital.udea.edu.co/bitstreams/9b837f07-af62-4f22-9f97-23d621b5e57e/download8a4605be74aa9ea9d79846c1fba20a33MD53falseAnonymousREADTEXTQuinteroJoan_2012_LacticAcidProduction.pdf.txtQuinteroJoan_2012_LacticAcidProduction.pdf.txtExtracted texttext/plain29667https://bibliotecadigital.udea.edu.co/bitstreams/2c248947-ff86-4c0b-8a06-85e3d5e03aed/downloada7399211ad20f7ff303e1ce3c8dc2c7fMD54falseAnonymousREADTHUMBNAILQuinteroJoan_2012_LacticAcidProduction.pdf.jpgQuinteroJoan_2012_LacticAcidProduction.pdf.jpgGenerated Thumbnailimage/jpeg13263https://bibliotecadigital.udea.edu.co/bitstreams/c387c353-aeff-444a-94be-f11adf3918d4/downloadabc30a57b6d88b0f51fb1c049235c30dMD55falseAnonymousREAD10495/26468oai:bibliotecadigital.udea.edu.co:10495/264682025-03-27 00:15:54.698http://creativecommons.org/licenses/by-nc-sa/2.5/co/open.accesshttps://bibliotecadigital.udea.edu.coRepositorio Institucional de la Universidad de Antioquiaaplicacionbibliotecadigitalbiblioteca@udea.edu.coTk9URTogUExBQ0UgWU9VUiBPV04gTElDRU5TRSBIRVJFClRoaXMgc2FtcGxlIGxpY2Vuc2UgaXMgcHJvdmlkZWQgZm9yIGluZm9ybWF0aW9uYWwgcHVycG9zZXMgb25seS4KCk5PTi1FWENMVVNJVkUgRElTVFJJQlVUSU9OIExJQ0VOU0UKCkJ5IHNpZ25pbmcgYW5kIHN1Ym1pdHRpbmcgdGhpcyBsaWNlbnNlLCB5b3UgKHRoZSBhdXRob3Iocykgb3IgY29weXJpZ2h0Cm93bmVyKSBncmFudHMgdG8gRFNwYWNlIFVuaXZlcnNpdHkgKERTVSkgdGhlIG5vbi1leGNsdXNpdmUgcmlnaHQgdG8gcmVwcm9kdWNlLAp0cmFuc2xhdGUgKGFzIGRlZmluZWQgYmVsb3cpLCBhbmQvb3IgZGlzdHJpYnV0ZSB5b3VyIHN1Ym1pc3Npb24gKGluY2x1ZGluZwp0aGUgYWJzdHJhY3QpIHdvcmxkd2lkZSBpbiBwcmludCBhbmQgZWxlY3Ryb25pYyBmb3JtYXQgYW5kIGluIGFueSBtZWRpdW0sCmluY2x1ZGluZyBidXQgbm90IGxpbWl0ZWQgdG8gYXVkaW8gb3IgdmlkZW8uCgpZb3UgYWdyZWUgdGhhdCBEU1UgbWF5LCB3aXRob3V0IGNoYW5naW5nIHRoZSBjb250ZW50LCB0cmFuc2xhdGUgdGhlCnN1Ym1pc3Npb24gdG8gYW55IG1lZGl1bSBvciBmb3JtYXQgZm9yIHRoZSBwdXJwb3NlIG9mIHByZXNlcnZhdGlvbi4KCllvdSBhbHNvIGFncmVlIHRoYXQgRFNVIG1heSBrZWVwIG1vcmUgdGhhbiBvbmUgY29weSBvZiB0aGlzIHN1Ym1pc3Npb24gZm9yCnB1cnBvc2VzIG9mIHNlY3VyaXR5LCBiYWNrLXVwIGFuZCBwcmVzZXJ2YXRpb24uCgpZb3UgcmVwcmVzZW50IHRoYXQgdGhlIHN1Ym1pc3Npb24gaXMgeW91ciBvcmlnaW5hbCB3b3JrLCBhbmQgdGhhdCB5b3UgaGF2ZQp0aGUgcmlnaHQgdG8gZ3JhbnQgdGhlIHJpZ2h0cyBjb250YWluZWQgaW4gdGhpcyBsaWNlbnNlLiBZb3UgYWxzbyByZXByZXNlbnQKdGhhdCB5b3VyIHN1Ym1pc3Npb24gZG9lcyBub3QsIHRvIHRoZSBiZXN0IG9mIHlvdXIga25vd2xlZGdlLCBpbmZyaW5nZSB1cG9uCmFueW9uZSdzIGNvcHlyaWdodC4KCklmIHRoZSBzdWJtaXNzaW9uIGNvbnRhaW5zIG1hdGVyaWFsIGZvciB3aGljaCB5b3UgZG8gbm90IGhvbGQgY29weXJpZ2h0LAp5b3UgcmVwcmVzZW50IHRoYXQgeW91IGhhdmUgb2J0YWluZWQgdGhlIHVucmVzdHJpY3RlZCBwZXJtaXNzaW9uIG9mIHRoZQpjb3B5cmlnaHQgb3duZXIgdG8gZ3JhbnQgRFNVIHRoZSByaWdodHMgcmVxdWlyZWQgYnkgdGhpcyBsaWNlbnNlLCBhbmQgdGhhdApzdWNoIHRoaXJkLXBhcnR5IG93bmVkIG1hdGVyaWFsIGlzIGNsZWFybHkgaWRlbnRpZmllZCBhbmQgYWNrbm93bGVkZ2VkCndpdGhpbiB0aGUgdGV4dCBvciBjb250ZW50IG9mIHRoZSBzdWJtaXNzaW9uLgoKSUYgVEhFIFNVQk1JU1NJT04gSVMgQkFTRUQgVVBPTiBXT1JLIFRIQVQgSEFTIEJFRU4gU1BPTlNPUkVEIE9SIFNVUFBPUlRFRApCWSBBTiBBR0VOQ1kgT1IgT1JHQU5JWkFUSU9OIE9USEVSIFRIQU4gRFNVLCBZT1UgUkVQUkVTRU5UIFRIQVQgWU9VIEhBVkUKRlVMRklMTEVEIEFOWSBSSUdIVCBPRiBSRVZJRVcgT1IgT1RIRVIgT0JMSUdBVElPTlMgUkVRVUlSRUQgQlkgU1VDSApDT05UUkFDVCBPUiBBR1JFRU1FTlQuCgpEU1Ugd2lsbCBjbGVhcmx5IGlkZW50aWZ5IHlvdXIgbmFtZShzKSBhcyB0aGUgYXV0aG9yKHMpIG9yIG93bmVyKHMpIG9mIHRoZQpzdWJtaXNzaW9uLCBhbmQgd2lsbCBub3QgbWFrZSBhbnkgYWx0ZXJhdGlvbiwgb3RoZXIgdGhhbiBhcyBhbGxvd2VkIGJ5IHRoaXMKbGljZW5zZSwgdG8geW91ciBzdWJtaXNzaW9uLgo= |
