Lactic acid production via cassava-flour-hydrolysate fermentation

ABSTRACT : Background: Lactic acid (LA) is a carboxylic acid widely used as preservative, acidulant, and/or f la-vouring in food industry; it is also used as a raw material for the production of lactate ester, propylene glycol, 2,3-pentanedione, propanoic acid, acrylic acid and acetaldehyde. In rece...

Full description

Autores:
Quintero Mesa, Joan Esteban
Acosta Cárdenas, Alejandro
Mejía Gómez, Carlos Eduardo
Ríos Estepa, Rigoberto
Torres López, Ana María
Tipo de recurso:
Article of investigation
Fecha de publicación:
2012
Institución:
Universidad de Antioquia
Repositorio:
Repositorio UdeA
Idioma:
eng
OAI Identifier:
oai:bibliotecadigital.udea.edu.co:10495/26468
Acceso en línea:
http://hdl.handle.net/10495/26468
https://revistas.udea.edu.co/index.php/vitae/article/view/11167
Palabra clave:
Ácido Láctico
Lactic Acid
Lactobacillus brevis
Harina de yuca
Cassava flour
cassava waste material
pH effect
https://id.nlm.nih.gov/mesh/D019344
https://id.nlm.nih.gov/mesh/D052196
Rights
openAccess
License
http://creativecommons.org/licenses/by-nc-sa/2.5/co/
id UDEA2_0ca54777420aa31c8302b15d8f06bbbf
oai_identifier_str oai:bibliotecadigital.udea.edu.co:10495/26468
network_acronym_str UDEA2
network_name_str Repositorio UdeA
repository_id_str
dc.title.spa.fl_str_mv Lactic acid production via cassava-flour-hydrolysate fermentation
dc.title.translated.spa.fl_str_mv Producción de ácido láctico via fermentativa a partir de hidrolizado de harina de yuca
title Lactic acid production via cassava-flour-hydrolysate fermentation
spellingShingle Lactic acid production via cassava-flour-hydrolysate fermentation
Ácido Láctico
Lactic Acid
Lactobacillus brevis
Harina de yuca
Cassava flour
cassava waste material
pH effect
https://id.nlm.nih.gov/mesh/D019344
https://id.nlm.nih.gov/mesh/D052196
title_short Lactic acid production via cassava-flour-hydrolysate fermentation
title_full Lactic acid production via cassava-flour-hydrolysate fermentation
title_fullStr Lactic acid production via cassava-flour-hydrolysate fermentation
title_full_unstemmed Lactic acid production via cassava-flour-hydrolysate fermentation
title_sort Lactic acid production via cassava-flour-hydrolysate fermentation
dc.creator.fl_str_mv Quintero Mesa, Joan Esteban
Acosta Cárdenas, Alejandro
Mejía Gómez, Carlos Eduardo
Ríos Estepa, Rigoberto
Torres López, Ana María
dc.contributor.author.none.fl_str_mv Quintero Mesa, Joan Esteban
Acosta Cárdenas, Alejandro
Mejía Gómez, Carlos Eduardo
Ríos Estepa, Rigoberto
Torres López, Ana María
dc.contributor.researchgroup.spa.fl_str_mv Grupo de Biotransformación
Bioprocesos
dc.subject.decs.none.fl_str_mv Ácido Láctico
Lactic Acid
Lactobacillus brevis
topic Ácido Láctico
Lactic Acid
Lactobacillus brevis
Harina de yuca
Cassava flour
cassava waste material
pH effect
https://id.nlm.nih.gov/mesh/D019344
https://id.nlm.nih.gov/mesh/D052196
dc.subject.lemb.none.fl_str_mv Harina de yuca
Cassava flour
dc.subject.proposal.spa.fl_str_mv cassava waste material
pH effect
dc.subject.meshuri.none.fl_str_mv https://id.nlm.nih.gov/mesh/D019344
https://id.nlm.nih.gov/mesh/D052196
description ABSTRACT : Background: Lactic acid (LA) is a carboxylic acid widely used as preservative, acidulant, and/or f la-vouring in food industry; it is also used as a raw material for the production of lactate ester, propylene glycol, 2,3-pentanedione, propanoic acid, acrylic acid and acetaldehyde. In recent years, the demand for LA production has dramatically increased due to its application as a monomer for poly-lactic acid synthesis, a biodegradable polymer used as a plastic in many industrial applications. LA can be produ-ced either by fermentation or chemical synthesis; the former route has received considerable interest, due to environmental concerns and the limited nature of petrochemical feedstocks; thus, 90% of LA produced worldwide is obtained by fermentation, this process comprises the bioconversion of a sugar solution (carbohydrates) into LA in the presence of a microorganism. Objectives: This work is aimed at studying the effect of pH control and culture media composition on the LA production using renewable sources from the agroindustry sector. Methods: A Lactobacillus brevis strain is used to perform lab scale experiments under aerobic and anaerobic conditions, using three different culture media compositions: a high nutritional content medium (MRS), as a reference, a low nutritional content medium with glucose as the only carbon source (GM), and a potential low nutritional content medium with cassava f lour as carbon source (HY1). Results: The higher LA production is accomplished under anaerobic conditions, 17.6 ± 0.1, 12.6 ± 0.2 y 13.6 ± 0.2 g LA/L, for MRS, GM and HY1 medium, respectively. The effect of pH on LA biosynthesis in a 5L bioreactor is also studied using the HY1 medium. For a fermentation time of 120 h, the highest LA concentration obtained was 24.3 ± 0.7g LA/L, productivity 0.20 g/L/h, YP/S 0.32g LA/g syrup, at pH 6.5. Conclusions: These results are comparable with those using expensive carbon sources such as glucose, and show cassava f lour as a promising low-cost substrate source for lab and eventually large scale LA biosynthesis.
publishDate 2012
dc.date.issued.none.fl_str_mv 2012
dc.date.accessioned.none.fl_str_mv 2022-03-08T21:34:51Z
dc.date.available.none.fl_str_mv 2022-03-08T21:34:51Z
dc.type.spa.fl_str_mv Artículo de investigación
dc.type.coar.spa.fl_str_mv http://purl.org/coar/resource_type/c_2df8fbb1
dc.type.redcol.spa.fl_str_mv https://purl.org/redcol/resource_type/ART
dc.type.coarversion.spa.fl_str_mv http://purl.org/coar/version/c_970fb48d4fbd8a85
dc.type.driver.spa.fl_str_mv info:eu-repo/semantics/article
dc.type.version.spa.fl_str_mv info:eu-repo/semantics/publishedVersion
format http://purl.org/coar/resource_type/c_2df8fbb1
status_str publishedVersion
dc.identifier.citation.spa.fl_str_mv J. E. Quintero M., A. Acosta C. M., C. Mejía G., R. Ríos E., and A. M. Torres L., “Lactic Acid Production Via Cassava-Flour- Hydrolysate Fermentation”, Vitae, vol. 19, no. 3, pp. 287–293, Feb. 2012.
dc.identifier.issn.none.fl_str_mv 0121-4004
dc.identifier.uri.none.fl_str_mv http://hdl.handle.net/10495/26468
dc.identifier.doi.none.fl_str_mv 10.17533/udea.vitae.11167
dc.identifier.eissn.none.fl_str_mv 2145-2660
dc.identifier.url.spa.fl_str_mv https://revistas.udea.edu.co/index.php/vitae/article/view/11167
identifier_str_mv J. E. Quintero M., A. Acosta C. M., C. Mejía G., R. Ríos E., and A. M. Torres L., “Lactic Acid Production Via Cassava-Flour- Hydrolysate Fermentation”, Vitae, vol. 19, no. 3, pp. 287–293, Feb. 2012.
0121-4004
10.17533/udea.vitae.11167
2145-2660
url http://hdl.handle.net/10495/26468
https://revistas.udea.edu.co/index.php/vitae/article/view/11167
dc.language.iso.spa.fl_str_mv eng
language eng
dc.relation.ispartofjournalabbrev.spa.fl_str_mv Vitae
dc.relation.citationendpage.spa.fl_str_mv 293
dc.relation.citationissue.spa.fl_str_mv 3
dc.relation.citationstartpage.spa.fl_str_mv 287
dc.relation.citationvolume.spa.fl_str_mv 19
dc.relation.ispartofjournal.spa.fl_str_mv Vitae
dc.rights.uri.*.fl_str_mv http://creativecommons.org/licenses/by-nc-sa/2.5/co/
dc.rights.uri.spa.fl_str_mv https://creativecommons.org/licenses/by-nc-sa/4.0/
dc.rights.accessrights.spa.fl_str_mv info:eu-repo/semantics/openAccess
dc.rights.coar.spa.fl_str_mv http://purl.org/coar/access_right/c_abf2
rights_invalid_str_mv http://creativecommons.org/licenses/by-nc-sa/2.5/co/
https://creativecommons.org/licenses/by-nc-sa/4.0/
http://purl.org/coar/access_right/c_abf2
eu_rights_str_mv openAccess
dc.format.extent.spa.fl_str_mv 7 páginas
dc.format.mimetype.spa.fl_str_mv application/pdf
dc.publisher.spa.fl_str_mv Universidad de Antioquia, Facultad de Ciencias Farmacéuticas y Alimentarias
dc.publisher.place.spa.fl_str_mv Medellín, Colombia
institution Universidad de Antioquia
bitstream.url.fl_str_mv https://bibliotecadigital.udea.edu.co/bitstreams/73de17a9-e795-466b-8fbe-7eb4668df6e7/download
https://bibliotecadigital.udea.edu.co/bitstreams/6ff97e99-afbf-464f-9492-44e4b91cfdb2/download
https://bibliotecadigital.udea.edu.co/bitstreams/9b837f07-af62-4f22-9f97-23d621b5e57e/download
https://bibliotecadigital.udea.edu.co/bitstreams/2c248947-ff86-4c0b-8a06-85e3d5e03aed/download
https://bibliotecadigital.udea.edu.co/bitstreams/c387c353-aeff-444a-94be-f11adf3918d4/download
bitstream.checksum.fl_str_mv 8705c44410145a129ccbb91fc9870a65
e2060682c9c70d4d30c83c51448f4eed
8a4605be74aa9ea9d79846c1fba20a33
a7399211ad20f7ff303e1ce3c8dc2c7f
abc30a57b6d88b0f51fb1c049235c30d
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
MD5
MD5
repository.name.fl_str_mv Repositorio Institucional de la Universidad de Antioquia
repository.mail.fl_str_mv aplicacionbibliotecadigitalbiblioteca@udea.edu.co
_version_ 1851052556288000000
spelling Quintero Mesa, Joan EstebanAcosta Cárdenas, AlejandroMejía Gómez, Carlos EduardoRíos Estepa, RigobertoTorres López, Ana MaríaGrupo de BiotransformaciónBioprocesos2022-03-08T21:34:51Z2022-03-08T21:34:51Z2012J. E. Quintero M., A. Acosta C. M., C. Mejía G., R. Ríos E., and A. M. Torres L., “Lactic Acid Production Via Cassava-Flour- Hydrolysate Fermentation”, Vitae, vol. 19, no. 3, pp. 287–293, Feb. 2012.0121-4004http://hdl.handle.net/10495/2646810.17533/udea.vitae.111672145-2660https://revistas.udea.edu.co/index.php/vitae/article/view/11167ABSTRACT : Background: Lactic acid (LA) is a carboxylic acid widely used as preservative, acidulant, and/or f la-vouring in food industry; it is also used as a raw material for the production of lactate ester, propylene glycol, 2,3-pentanedione, propanoic acid, acrylic acid and acetaldehyde. In recent years, the demand for LA production has dramatically increased due to its application as a monomer for poly-lactic acid synthesis, a biodegradable polymer used as a plastic in many industrial applications. LA can be produ-ced either by fermentation or chemical synthesis; the former route has received considerable interest, due to environmental concerns and the limited nature of petrochemical feedstocks; thus, 90% of LA produced worldwide is obtained by fermentation, this process comprises the bioconversion of a sugar solution (carbohydrates) into LA in the presence of a microorganism. Objectives: This work is aimed at studying the effect of pH control and culture media composition on the LA production using renewable sources from the agroindustry sector. Methods: A Lactobacillus brevis strain is used to perform lab scale experiments under aerobic and anaerobic conditions, using three different culture media compositions: a high nutritional content medium (MRS), as a reference, a low nutritional content medium with glucose as the only carbon source (GM), and a potential low nutritional content medium with cassava f lour as carbon source (HY1). Results: The higher LA production is accomplished under anaerobic conditions, 17.6 ± 0.1, 12.6 ± 0.2 y 13.6 ± 0.2 g LA/L, for MRS, GM and HY1 medium, respectively. The effect of pH on LA biosynthesis in a 5L bioreactor is also studied using the HY1 medium. For a fermentation time of 120 h, the highest LA concentration obtained was 24.3 ± 0.7g LA/L, productivity 0.20 g/L/h, YP/S 0.32g LA/g syrup, at pH 6.5. Conclusions: These results are comparable with those using expensive carbon sources such as glucose, and show cassava f lour as a promising low-cost substrate source for lab and eventually large scale LA biosynthesis.RESUMEN : Antecedentes: El ácido láctico (AL) es un ácido carboxílico utilizado en la industria alimentaria como conservante, acidulante y saborizante; también es usado como materia prima para la producción de éster de lactato, propilenglicol, 2,3-pentanodiona, ácido propanoico, ácido acrílico y acetaldehído. La demanda de AL ha aumentado debido a su aplicación como monómero en la síntesis de ácido poliláctico, un polímero biodegradable usado como plástico en aplicaciones industriales. El AL puede ser producido por fermentación o síntesis química; la primera ruta ha recibido mayor interés, debido a las preocupaciones ambientales y a la limitación en materias primas petroquímicas. El 90% del AL producido en el mundo se obtiene por fermentación, la cual involucra la bioconversión de una solución de azúcar en AL, en presencia de un microorganismo. Objetivos: En este trabajo se evalúa el efecto del pH y de medios de cultivos sobre la producción de AL a partir del cultivo de Lactobacillus brevis, usando fuentes renovables provenientes del sector agroindustrial. Métodos: El desarrollo experimental a escala de laboratorio considera la evaluación de tres medios de cultivo: uno de alto contenido nutricional (MRS), medio de referencia, uno de medio contenido nutricional, con glucosa como única fuente de carbono (GM), y un medio de cultivo de bajo contenido nutricional, con jarabe de yuca como fuente de carbono (HY1). Resultados: La más alta pro-ducción de AL se obtiene bajo condiciones anaeróbicas, 17,6 ± 0,1, 12,6 ± 0,2 y 13,6 ± 0.2 g AL/L, para los medios MRS, GM y HY1, respectivamente. El trabajo contempla el estudio del efecto del pH sobre la biosíntesis de AL en reactor de 5L, usando el medio de cultivo HY1. Para 120h de cultivo la más alta concentración de AL que se obtiene es 24,3 ± 0,7g AL/L, productividad 0,20 g/L/h, y un rendimiento de sustrato en producto (YP/S)de 0,32g AL/g jarabe, a pH 6,5. Conclusiones: Estos resultados son comparables con los obtenidos en otros trabajos usando glucosa como fuente de carbono, y permiten considerar al jarabe de yuca como un potencial sustrato de bajo costo y alta disponibilidad para la producción de AL a escala de laboratorio, y eventualmente a escala industrial.COL0066991COL00237157 páginasapplication/pdfengUniversidad de Antioquia, Facultad de Ciencias Farmacéuticas y AlimentariasMedellín, Colombiahttp://creativecommons.org/licenses/by-nc-sa/2.5/co/https://creativecommons.org/licenses/by-nc-sa/4.0/info:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2Lactic acid production via cassava-flour-hydrolysate fermentationProducción de ácido láctico via fermentativa a partir de hidrolizado de harina de yucaArtículo de investigaciónhttp://purl.org/coar/resource_type/c_2df8fbb1https://purl.org/redcol/resource_type/ARThttp://purl.org/coar/version/c_970fb48d4fbd8a85info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionÁcido LácticoLactic AcidLactobacillus brevisHarina de yucaCassava flourcassava waste materialpH effecthttps://id.nlm.nih.gov/mesh/D019344https://id.nlm.nih.gov/mesh/D052196Vitae293328719VitaePublicationORIGINALQuinteroJoan_2012_LacticAcidProduction.pdfQuinteroJoan_2012_LacticAcidProduction.pdfArtículo de investigaciónapplication/pdf209615https://bibliotecadigital.udea.edu.co/bitstreams/73de17a9-e795-466b-8fbe-7eb4668df6e7/download8705c44410145a129ccbb91fc9870a65MD51trueAnonymousREADCC-LICENSElicense_rdflicense_rdfapplication/rdf+xml; charset=utf-81051https://bibliotecadigital.udea.edu.co/bitstreams/6ff97e99-afbf-464f-9492-44e4b91cfdb2/downloade2060682c9c70d4d30c83c51448f4eedMD52falseAnonymousREADLICENSElicense.txtlicense.txttext/plain; charset=utf-81748https://bibliotecadigital.udea.edu.co/bitstreams/9b837f07-af62-4f22-9f97-23d621b5e57e/download8a4605be74aa9ea9d79846c1fba20a33MD53falseAnonymousREADTEXTQuinteroJoan_2012_LacticAcidProduction.pdf.txtQuinteroJoan_2012_LacticAcidProduction.pdf.txtExtracted texttext/plain29667https://bibliotecadigital.udea.edu.co/bitstreams/2c248947-ff86-4c0b-8a06-85e3d5e03aed/downloada7399211ad20f7ff303e1ce3c8dc2c7fMD54falseAnonymousREADTHUMBNAILQuinteroJoan_2012_LacticAcidProduction.pdf.jpgQuinteroJoan_2012_LacticAcidProduction.pdf.jpgGenerated Thumbnailimage/jpeg13263https://bibliotecadigital.udea.edu.co/bitstreams/c387c353-aeff-444a-94be-f11adf3918d4/downloadabc30a57b6d88b0f51fb1c049235c30dMD55falseAnonymousREAD10495/26468oai:bibliotecadigital.udea.edu.co:10495/264682025-03-27 00:15:54.698http://creativecommons.org/licenses/by-nc-sa/2.5/co/open.accesshttps://bibliotecadigital.udea.edu.coRepositorio Institucional de la Universidad de Antioquiaaplicacionbibliotecadigitalbiblioteca@udea.edu.coTk9URTogUExBQ0UgWU9VUiBPV04gTElDRU5TRSBIRVJFClRoaXMgc2FtcGxlIGxpY2Vuc2UgaXMgcHJvdmlkZWQgZm9yIGluZm9ybWF0aW9uYWwgcHVycG9zZXMgb25seS4KCk5PTi1FWENMVVNJVkUgRElTVFJJQlVUSU9OIExJQ0VOU0UKCkJ5IHNpZ25pbmcgYW5kIHN1Ym1pdHRpbmcgdGhpcyBsaWNlbnNlLCB5b3UgKHRoZSBhdXRob3Iocykgb3IgY29weXJpZ2h0Cm93bmVyKSBncmFudHMgdG8gRFNwYWNlIFVuaXZlcnNpdHkgKERTVSkgdGhlIG5vbi1leGNsdXNpdmUgcmlnaHQgdG8gcmVwcm9kdWNlLAp0cmFuc2xhdGUgKGFzIGRlZmluZWQgYmVsb3cpLCBhbmQvb3IgZGlzdHJpYnV0ZSB5b3VyIHN1Ym1pc3Npb24gKGluY2x1ZGluZwp0aGUgYWJzdHJhY3QpIHdvcmxkd2lkZSBpbiBwcmludCBhbmQgZWxlY3Ryb25pYyBmb3JtYXQgYW5kIGluIGFueSBtZWRpdW0sCmluY2x1ZGluZyBidXQgbm90IGxpbWl0ZWQgdG8gYXVkaW8gb3IgdmlkZW8uCgpZb3UgYWdyZWUgdGhhdCBEU1UgbWF5LCB3aXRob3V0IGNoYW5naW5nIHRoZSBjb250ZW50LCB0cmFuc2xhdGUgdGhlCnN1Ym1pc3Npb24gdG8gYW55IG1lZGl1bSBvciBmb3JtYXQgZm9yIHRoZSBwdXJwb3NlIG9mIHByZXNlcnZhdGlvbi4KCllvdSBhbHNvIGFncmVlIHRoYXQgRFNVIG1heSBrZWVwIG1vcmUgdGhhbiBvbmUgY29weSBvZiB0aGlzIHN1Ym1pc3Npb24gZm9yCnB1cnBvc2VzIG9mIHNlY3VyaXR5LCBiYWNrLXVwIGFuZCBwcmVzZXJ2YXRpb24uCgpZb3UgcmVwcmVzZW50IHRoYXQgdGhlIHN1Ym1pc3Npb24gaXMgeW91ciBvcmlnaW5hbCB3b3JrLCBhbmQgdGhhdCB5b3UgaGF2ZQp0aGUgcmlnaHQgdG8gZ3JhbnQgdGhlIHJpZ2h0cyBjb250YWluZWQgaW4gdGhpcyBsaWNlbnNlLiBZb3UgYWxzbyByZXByZXNlbnQKdGhhdCB5b3VyIHN1Ym1pc3Npb24gZG9lcyBub3QsIHRvIHRoZSBiZXN0IG9mIHlvdXIga25vd2xlZGdlLCBpbmZyaW5nZSB1cG9uCmFueW9uZSdzIGNvcHlyaWdodC4KCklmIHRoZSBzdWJtaXNzaW9uIGNvbnRhaW5zIG1hdGVyaWFsIGZvciB3aGljaCB5b3UgZG8gbm90IGhvbGQgY29weXJpZ2h0LAp5b3UgcmVwcmVzZW50IHRoYXQgeW91IGhhdmUgb2J0YWluZWQgdGhlIHVucmVzdHJpY3RlZCBwZXJtaXNzaW9uIG9mIHRoZQpjb3B5cmlnaHQgb3duZXIgdG8gZ3JhbnQgRFNVIHRoZSByaWdodHMgcmVxdWlyZWQgYnkgdGhpcyBsaWNlbnNlLCBhbmQgdGhhdApzdWNoIHRoaXJkLXBhcnR5IG93bmVkIG1hdGVyaWFsIGlzIGNsZWFybHkgaWRlbnRpZmllZCBhbmQgYWNrbm93bGVkZ2VkCndpdGhpbiB0aGUgdGV4dCBvciBjb250ZW50IG9mIHRoZSBzdWJtaXNzaW9uLgoKSUYgVEhFIFNVQk1JU1NJT04gSVMgQkFTRUQgVVBPTiBXT1JLIFRIQVQgSEFTIEJFRU4gU1BPTlNPUkVEIE9SIFNVUFBPUlRFRApCWSBBTiBBR0VOQ1kgT1IgT1JHQU5JWkFUSU9OIE9USEVSIFRIQU4gRFNVLCBZT1UgUkVQUkVTRU5UIFRIQVQgWU9VIEhBVkUKRlVMRklMTEVEIEFOWSBSSUdIVCBPRiBSRVZJRVcgT1IgT1RIRVIgT0JMSUdBVElPTlMgUkVRVUlSRUQgQlkgU1VDSApDT05UUkFDVCBPUiBBR1JFRU1FTlQuCgpEU1Ugd2lsbCBjbGVhcmx5IGlkZW50aWZ5IHlvdXIgbmFtZShzKSBhcyB0aGUgYXV0aG9yKHMpIG9yIG93bmVyKHMpIG9mIHRoZQpzdWJtaXNzaW9uLCBhbmQgd2lsbCBub3QgbWFrZSBhbnkgYWx0ZXJhdGlvbiwgb3RoZXIgdGhhbiBhcyBhbGxvd2VkIGJ5IHRoaXMKbGljZW5zZSwgdG8geW91ciBzdWJtaXNzaW9uLgo=