Chitosan as a potential microencapsulation carrier for ascorbic acid stabilization in heterodisperse systems
ABSTRACT: Objective: The purpose of this work is to assess the ionotropic gelation of chitosan as a new method to encapsulate and increase the stability of ascorbic acid (AA). Methods: Chitosan was employed for the encapsulation of AA employing the technique of ionotropic gelation with sodium lauryl...
- Autores:
-
Rojas Camargo, John Jairo
Ciro Monsalve, Yhors Alexander
Zapata Retrepo, Sandra Catalina
- Tipo de recurso:
- Article of investigation
- Fecha de publicación:
- 2015
- Institución:
- Universidad de Antioquia
- Repositorio:
- Repositorio UdeA
- Idioma:
- eng
- OAI Identifier:
- oai:bibliotecadigital.udea.edu.co:10495/35699
- Acceso en línea:
- https://hdl.handle.net/10495/35699
https://journals.innovareacademics.in/index.php/ijpps/article/view/3647
- Palabra clave:
- Composición de Medicamentos
Drug Compounding
Ácido Ascórbico
Ascorbic Acid
Quitosano
Chitosan
Tensoactivos
Surface-Active Agents
- Rights
- openAccess
- License
- http://creativecommons.org/licenses/by/2.5/co/
| id |
UDEA2_0a85c3fd5b24053e6592b618b1d125a5 |
|---|---|
| oai_identifier_str |
oai:bibliotecadigital.udea.edu.co:10495/35699 |
| network_acronym_str |
UDEA2 |
| network_name_str |
Repositorio UdeA |
| repository_id_str |
|
| dc.title.spa.fl_str_mv |
Chitosan as a potential microencapsulation carrier for ascorbic acid stabilization in heterodisperse systems |
| title |
Chitosan as a potential microencapsulation carrier for ascorbic acid stabilization in heterodisperse systems |
| spellingShingle |
Chitosan as a potential microencapsulation carrier for ascorbic acid stabilization in heterodisperse systems Composición de Medicamentos Drug Compounding Ácido Ascórbico Ascorbic Acid Quitosano Chitosan Tensoactivos Surface-Active Agents |
| title_short |
Chitosan as a potential microencapsulation carrier for ascorbic acid stabilization in heterodisperse systems |
| title_full |
Chitosan as a potential microencapsulation carrier for ascorbic acid stabilization in heterodisperse systems |
| title_fullStr |
Chitosan as a potential microencapsulation carrier for ascorbic acid stabilization in heterodisperse systems |
| title_full_unstemmed |
Chitosan as a potential microencapsulation carrier for ascorbic acid stabilization in heterodisperse systems |
| title_sort |
Chitosan as a potential microencapsulation carrier for ascorbic acid stabilization in heterodisperse systems |
| dc.creator.fl_str_mv |
Rojas Camargo, John Jairo Ciro Monsalve, Yhors Alexander Zapata Retrepo, Sandra Catalina |
| dc.contributor.author.none.fl_str_mv |
Rojas Camargo, John Jairo Ciro Monsalve, Yhors Alexander Zapata Retrepo, Sandra Catalina |
| dc.contributor.researchgroup.spa.fl_str_mv |
Diseño y Formulación de Medicamentos Cosméticos y Afines |
| dc.subject.decs.none.fl_str_mv |
Composición de Medicamentos Drug Compounding Ácido Ascórbico Ascorbic Acid Quitosano Chitosan Tensoactivos Surface-Active Agents |
| topic |
Composición de Medicamentos Drug Compounding Ácido Ascórbico Ascorbic Acid Quitosano Chitosan Tensoactivos Surface-Active Agents |
| description |
ABSTRACT: Objective: The purpose of this work is to assess the ionotropic gelation of chitosan as a new method to encapsulate and increase the stability of ascorbic acid (AA). Methods: Chitosan was employed for the encapsulation of AA employing the technique of ionotropic gelation with sodium lauryl sulfate. The encapsulation process was made by two processes, homogenization and sonication-homogenization, respectively Ionotropic gelation was carried out by mixing chitosan and sodium lauryl sulphate solutions at 0.5, 1.0 and 1.5 % (w/v) concentrations with ~20 mg of AA. Results: The two processes rendered spherical microcapsules with a narrow particle size distribution and particle size (0.7-2.1 μm), but only sonication-homogenization rendered less cohesive microcapsules. The encapsulation efficiency depended on the processing conditions and levels of parent materials and ranged from ~14 to 90% and ~14 to 72% for sonication-homogenization and homogenization, respectively. In both processes, runs with the lowest levels of chitosan (0.5%) were selected as optimal due to the spherical morphology, high encapsulation efficiency and less cohesive behavior. The addition of AA microcapsules into heterodisperse systems such as emulsions, semisolid systems and aqueous dispersions improved their thermal stability at 45°C rendering a shelf life (t90) of 17.6, 21,1 and 3.3 days, respectively. Conversely, the products containing free AA had a shelf life of 1.8, 3.1 and 0.9 days, respectively. Conclusions: The ionotropic gelation of chitosan with sodium lauryl sulfate improved the functionality, stability and shelf life of AA in heterodisperse systems. |
| publishDate |
2015 |
| dc.date.issued.none.fl_str_mv |
2015 |
| dc.date.accessioned.none.fl_str_mv |
2023-06-28T19:48:25Z |
| dc.date.available.none.fl_str_mv |
2023-06-28T19:48:25Z |
| dc.type.spa.fl_str_mv |
Artículo de investigación |
| dc.type.coarversion.fl_str_mv |
http://purl.org/coar/version/c_970fb48d4fbd8a85 |
| dc.type.coar.spa.fl_str_mv |
http://purl.org/coar/resource_type/c_2df8fbb1 |
| dc.type.redcol.spa.fl_str_mv |
https://purl.org/redcol/resource_type/ART |
| dc.type.driver.spa.fl_str_mv |
info:eu-repo/semantics/article |
| dc.type.version.spa.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
| format |
http://purl.org/coar/resource_type/c_2df8fbb1 |
| status_str |
publishedVersion |
| dc.identifier.citation.spa.fl_str_mv |
Rojas, John. (2015). Chitosan as a potential microencapsulation carrier for ascorbic acid stabilization in heterodisperse systems. International Journal of Pharmacy and Pharmaceutical Sciences. 7. 69-72. |
| dc.identifier.issn.none.fl_str_mv |
0975-1491 |
| dc.identifier.uri.none.fl_str_mv |
https://hdl.handle.net/10495/35699 |
| dc.identifier.eissn.none.fl_str_mv |
2656-0097 |
| dc.identifier.url.spa.fl_str_mv |
https://journals.innovareacademics.in/index.php/ijpps/article/view/3647 |
| identifier_str_mv |
Rojas, John. (2015). Chitosan as a potential microencapsulation carrier for ascorbic acid stabilization in heterodisperse systems. International Journal of Pharmacy and Pharmaceutical Sciences. 7. 69-72. 0975-1491 2656-0097 |
| url |
https://hdl.handle.net/10495/35699 https://journals.innovareacademics.in/index.php/ijpps/article/view/3647 |
| dc.language.iso.spa.fl_str_mv |
eng |
| language |
eng |
| dc.relation.ispartofjournalabbrev.spa.fl_str_mv |
Int. J. Pharm. Pharm. Sci. |
| dc.relation.citationendpage.spa.fl_str_mv |
72 |
| dc.relation.citationissue.spa.fl_str_mv |
1 |
| dc.relation.citationstartpage.spa.fl_str_mv |
69 |
| dc.relation.citationvolume.spa.fl_str_mv |
7 |
| dc.relation.ispartofjournal.spa.fl_str_mv |
International Journal of Pharmacy and Pharmaceutical Sciences |
| dc.rights.uri.*.fl_str_mv |
http://creativecommons.org/licenses/by/2.5/co/ |
| dc.rights.uri.spa.fl_str_mv |
https://creativecommons.org/licenses/by/4.0/ |
| dc.rights.accessrights.spa.fl_str_mv |
info:eu-repo/semantics/openAccess |
| dc.rights.coar.spa.fl_str_mv |
http://purl.org/coar/access_right/c_abf2 |
| rights_invalid_str_mv |
http://creativecommons.org/licenses/by/2.5/co/ https://creativecommons.org/licenses/by/4.0/ http://purl.org/coar/access_right/c_abf2 |
| eu_rights_str_mv |
openAccess |
| dc.format.extent.spa.fl_str_mv |
4 |
| dc.format.mimetype.spa.fl_str_mv |
application/pdf |
| dc.publisher.spa.fl_str_mv |
IJPPS |
| dc.publisher.place.spa.fl_str_mv |
Bhopal, India |
| institution |
Universidad de Antioquia |
| bitstream.url.fl_str_mv |
https://bibliotecadigital.udea.edu.co/bitstreams/36980601-8d4d-43c4-a716-9c0ba0a20680/download https://bibliotecadigital.udea.edu.co/bitstreams/1e0ad328-5814-4aa6-b1ed-2aba97705462/download https://bibliotecadigital.udea.edu.co/bitstreams/4af09044-583c-46a3-b696-86607dc0b93f/download https://bibliotecadigital.udea.edu.co/bitstreams/3c3ff828-3b7a-4445-84b1-9dd5bb9bfdbb/download https://bibliotecadigital.udea.edu.co/bitstreams/ce8bfab7-aad6-4b4c-9364-dfd54f2d7214/download |
| bitstream.checksum.fl_str_mv |
1646d1f6b96dbbbc38035efc9239ac9c 8a4605be74aa9ea9d79846c1fba20a33 b2324ef423edfb7f06950aed987aa70e 5aad0ac86dabb39245483294b04ad92a b8a16d808d34a590eff3fc65b0eccfb9 |
| bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 MD5 MD5 MD5 |
| repository.name.fl_str_mv |
Repositorio Institucional de la Universidad de Antioquia |
| repository.mail.fl_str_mv |
aplicacionbibliotecadigitalbiblioteca@udea.edu.co |
| _version_ |
1851052112975233024 |
| spelling |
Rojas Camargo, John JairoCiro Monsalve, Yhors AlexanderZapata Retrepo, Sandra CatalinaDiseño y Formulación de Medicamentos Cosméticos y Afines2023-06-28T19:48:25Z2023-06-28T19:48:25Z2015Rojas, John. (2015). Chitosan as a potential microencapsulation carrier for ascorbic acid stabilization in heterodisperse systems. International Journal of Pharmacy and Pharmaceutical Sciences. 7. 69-72.0975-1491https://hdl.handle.net/10495/356992656-0097https://journals.innovareacademics.in/index.php/ijpps/article/view/3647ABSTRACT: Objective: The purpose of this work is to assess the ionotropic gelation of chitosan as a new method to encapsulate and increase the stability of ascorbic acid (AA). Methods: Chitosan was employed for the encapsulation of AA employing the technique of ionotropic gelation with sodium lauryl sulfate. The encapsulation process was made by two processes, homogenization and sonication-homogenization, respectively Ionotropic gelation was carried out by mixing chitosan and sodium lauryl sulphate solutions at 0.5, 1.0 and 1.5 % (w/v) concentrations with ~20 mg of AA. Results: The two processes rendered spherical microcapsules with a narrow particle size distribution and particle size (0.7-2.1 μm), but only sonication-homogenization rendered less cohesive microcapsules. The encapsulation efficiency depended on the processing conditions and levels of parent materials and ranged from ~14 to 90% and ~14 to 72% for sonication-homogenization and homogenization, respectively. In both processes, runs with the lowest levels of chitosan (0.5%) were selected as optimal due to the spherical morphology, high encapsulation efficiency and less cohesive behavior. The addition of AA microcapsules into heterodisperse systems such as emulsions, semisolid systems and aqueous dispersions improved their thermal stability at 45°C rendering a shelf life (t90) of 17.6, 21,1 and 3.3 days, respectively. Conversely, the products containing free AA had a shelf life of 1.8, 3.1 and 0.9 days, respectively. Conclusions: The ionotropic gelation of chitosan with sodium lauryl sulfate improved the functionality, stability and shelf life of AA in heterodisperse systems.COL00036234application/pdfengIJPPSBhopal, Indiahttp://creativecommons.org/licenses/by/2.5/co/https://creativecommons.org/licenses/by/4.0/info:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2Chitosan as a potential microencapsulation carrier for ascorbic acid stabilization in heterodisperse systemsArtículo de investigaciónhttp://purl.org/coar/resource_type/c_2df8fbb1https://purl.org/redcol/resource_type/ARTinfo:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/version/c_970fb48d4fbd8a85Composición de MedicamentosDrug CompoundingÁcido AscórbicoAscorbic AcidQuitosanoChitosanTensoactivosSurface-Active AgentsInt. J. Pharm. Pharm. Sci.721697International Journal of Pharmacy and Pharmaceutical SciencesPublicationCC-LICENSElicense_rdflicense_rdfapplication/rdf+xml; charset=utf-8927https://bibliotecadigital.udea.edu.co/bitstreams/36980601-8d4d-43c4-a716-9c0ba0a20680/download1646d1f6b96dbbbc38035efc9239ac9cMD52falseAnonymousREADLICENSElicense.txtlicense.txttext/plain; charset=utf-81748https://bibliotecadigital.udea.edu.co/bitstreams/1e0ad328-5814-4aa6-b1ed-2aba97705462/download8a4605be74aa9ea9d79846c1fba20a33MD53falseAnonymousREADORIGINALRojasJohn_2015_ChitosanPotentialMicroencapsulation.pdfRojasJohn_2015_ChitosanPotentialMicroencapsulation.pdfArtículo de investigaciónapplication/pdf414880https://bibliotecadigital.udea.edu.co/bitstreams/4af09044-583c-46a3-b696-86607dc0b93f/downloadb2324ef423edfb7f06950aed987aa70eMD51trueAnonymousREADTEXTRojasJohn_2015_ChitosanPotentialMicroencapsulation.pdf.txtRojasJohn_2015_ChitosanPotentialMicroencapsulation.pdf.txtExtracted texttext/plain23843https://bibliotecadigital.udea.edu.co/bitstreams/3c3ff828-3b7a-4445-84b1-9dd5bb9bfdbb/download5aad0ac86dabb39245483294b04ad92aMD58falseAnonymousREADTHUMBNAILRojasJohn_2015_ChitosanPotentialMicroencapsulation.pdf.jpgRojasJohn_2015_ChitosanPotentialMicroencapsulation.pdf.jpgGenerated Thumbnailimage/jpeg15892https://bibliotecadigital.udea.edu.co/bitstreams/ce8bfab7-aad6-4b4c-9364-dfd54f2d7214/downloadb8a16d808d34a590eff3fc65b0eccfb9MD59falseAnonymousREAD10495/35699oai:bibliotecadigital.udea.edu.co:10495/356992025-03-26 17:09:32.423http://creativecommons.org/licenses/by/2.5/co/open.accesshttps://bibliotecadigital.udea.edu.coRepositorio Institucional de la Universidad de Antioquiaaplicacionbibliotecadigitalbiblioteca@udea.edu.coTk9URTogUExBQ0UgWU9VUiBPV04gTElDRU5TRSBIRVJFClRoaXMgc2FtcGxlIGxpY2Vuc2UgaXMgcHJvdmlkZWQgZm9yIGluZm9ybWF0aW9uYWwgcHVycG9zZXMgb25seS4KCk5PTi1FWENMVVNJVkUgRElTVFJJQlVUSU9OIExJQ0VOU0UKCkJ5IHNpZ25pbmcgYW5kIHN1Ym1pdHRpbmcgdGhpcyBsaWNlbnNlLCB5b3UgKHRoZSBhdXRob3Iocykgb3IgY29weXJpZ2h0Cm93bmVyKSBncmFudHMgdG8gRFNwYWNlIFVuaXZlcnNpdHkgKERTVSkgdGhlIG5vbi1leGNsdXNpdmUgcmlnaHQgdG8gcmVwcm9kdWNlLAp0cmFuc2xhdGUgKGFzIGRlZmluZWQgYmVsb3cpLCBhbmQvb3IgZGlzdHJpYnV0ZSB5b3VyIHN1Ym1pc3Npb24gKGluY2x1ZGluZwp0aGUgYWJzdHJhY3QpIHdvcmxkd2lkZSBpbiBwcmludCBhbmQgZWxlY3Ryb25pYyBmb3JtYXQgYW5kIGluIGFueSBtZWRpdW0sCmluY2x1ZGluZyBidXQgbm90IGxpbWl0ZWQgdG8gYXVkaW8gb3IgdmlkZW8uCgpZb3UgYWdyZWUgdGhhdCBEU1UgbWF5LCB3aXRob3V0IGNoYW5naW5nIHRoZSBjb250ZW50LCB0cmFuc2xhdGUgdGhlCnN1Ym1pc3Npb24gdG8gYW55IG1lZGl1bSBvciBmb3JtYXQgZm9yIHRoZSBwdXJwb3NlIG9mIHByZXNlcnZhdGlvbi4KCllvdSBhbHNvIGFncmVlIHRoYXQgRFNVIG1heSBrZWVwIG1vcmUgdGhhbiBvbmUgY29weSBvZiB0aGlzIHN1Ym1pc3Npb24gZm9yCnB1cnBvc2VzIG9mIHNlY3VyaXR5LCBiYWNrLXVwIGFuZCBwcmVzZXJ2YXRpb24uCgpZb3UgcmVwcmVzZW50IHRoYXQgdGhlIHN1Ym1pc3Npb24gaXMgeW91ciBvcmlnaW5hbCB3b3JrLCBhbmQgdGhhdCB5b3UgaGF2ZQp0aGUgcmlnaHQgdG8gZ3JhbnQgdGhlIHJpZ2h0cyBjb250YWluZWQgaW4gdGhpcyBsaWNlbnNlLiBZb3UgYWxzbyByZXByZXNlbnQKdGhhdCB5b3VyIHN1Ym1pc3Npb24gZG9lcyBub3QsIHRvIHRoZSBiZXN0IG9mIHlvdXIga25vd2xlZGdlLCBpbmZyaW5nZSB1cG9uCmFueW9uZSdzIGNvcHlyaWdodC4KCklmIHRoZSBzdWJtaXNzaW9uIGNvbnRhaW5zIG1hdGVyaWFsIGZvciB3aGljaCB5b3UgZG8gbm90IGhvbGQgY29weXJpZ2h0LAp5b3UgcmVwcmVzZW50IHRoYXQgeW91IGhhdmUgb2J0YWluZWQgdGhlIHVucmVzdHJpY3RlZCBwZXJtaXNzaW9uIG9mIHRoZQpjb3B5cmlnaHQgb3duZXIgdG8gZ3JhbnQgRFNVIHRoZSByaWdodHMgcmVxdWlyZWQgYnkgdGhpcyBsaWNlbnNlLCBhbmQgdGhhdApzdWNoIHRoaXJkLXBhcnR5IG93bmVkIG1hdGVyaWFsIGlzIGNsZWFybHkgaWRlbnRpZmllZCBhbmQgYWNrbm93bGVkZ2VkCndpdGhpbiB0aGUgdGV4dCBvciBjb250ZW50IG9mIHRoZSBzdWJtaXNzaW9uLgoKSUYgVEhFIFNVQk1JU1NJT04gSVMgQkFTRUQgVVBPTiBXT1JLIFRIQVQgSEFTIEJFRU4gU1BPTlNPUkVEIE9SIFNVUFBPUlRFRApCWSBBTiBBR0VOQ1kgT1IgT1JHQU5JWkFUSU9OIE9USEVSIFRIQU4gRFNVLCBZT1UgUkVQUkVTRU5UIFRIQVQgWU9VIEhBVkUKRlVMRklMTEVEIEFOWSBSSUdIVCBPRiBSRVZJRVcgT1IgT1RIRVIgT0JMSUdBVElPTlMgUkVRVUlSRUQgQlkgU1VDSApDT05UUkFDVCBPUiBBR1JFRU1FTlQuCgpEU1Ugd2lsbCBjbGVhcmx5IGlkZW50aWZ5IHlvdXIgbmFtZShzKSBhcyB0aGUgYXV0aG9yKHMpIG9yIG93bmVyKHMpIG9mIHRoZQpzdWJtaXNzaW9uLCBhbmQgd2lsbCBub3QgbWFrZSBhbnkgYWx0ZXJhdGlvbiwgb3RoZXIgdGhhbiBhcyBhbGxvd2VkIGJ5IHRoaXMKbGljZW5zZSwgdG8geW91ciBzdWJtaXNzaW9uLgo= |
