Chitosan as a potential microencapsulation carrier for ascorbic acid stabilization in heterodisperse systems

ABSTRACT: Objective: The purpose of this work is to assess the ionotropic gelation of chitosan as a new method to encapsulate and increase the stability of ascorbic acid (AA). Methods: Chitosan was employed for the encapsulation of AA employing the technique of ionotropic gelation with sodium lauryl...

Full description

Autores:
Rojas Camargo, John Jairo
Ciro Monsalve, Yhors Alexander
Zapata Retrepo, Sandra Catalina
Tipo de recurso:
Article of investigation
Fecha de publicación:
2015
Institución:
Universidad de Antioquia
Repositorio:
Repositorio UdeA
Idioma:
eng
OAI Identifier:
oai:bibliotecadigital.udea.edu.co:10495/35699
Acceso en línea:
https://hdl.handle.net/10495/35699
https://journals.innovareacademics.in/index.php/ijpps/article/view/3647
Palabra clave:
Composición de Medicamentos
Drug Compounding
Ácido Ascórbico
Ascorbic Acid
Quitosano
Chitosan
Tensoactivos
Surface-Active Agents
Rights
openAccess
License
http://creativecommons.org/licenses/by/2.5/co/
id UDEA2_0a85c3fd5b24053e6592b618b1d125a5
oai_identifier_str oai:bibliotecadigital.udea.edu.co:10495/35699
network_acronym_str UDEA2
network_name_str Repositorio UdeA
repository_id_str
dc.title.spa.fl_str_mv Chitosan as a potential microencapsulation carrier for ascorbic acid stabilization in heterodisperse systems
title Chitosan as a potential microencapsulation carrier for ascorbic acid stabilization in heterodisperse systems
spellingShingle Chitosan as a potential microencapsulation carrier for ascorbic acid stabilization in heterodisperse systems
Composición de Medicamentos
Drug Compounding
Ácido Ascórbico
Ascorbic Acid
Quitosano
Chitosan
Tensoactivos
Surface-Active Agents
title_short Chitosan as a potential microencapsulation carrier for ascorbic acid stabilization in heterodisperse systems
title_full Chitosan as a potential microencapsulation carrier for ascorbic acid stabilization in heterodisperse systems
title_fullStr Chitosan as a potential microencapsulation carrier for ascorbic acid stabilization in heterodisperse systems
title_full_unstemmed Chitosan as a potential microencapsulation carrier for ascorbic acid stabilization in heterodisperse systems
title_sort Chitosan as a potential microencapsulation carrier for ascorbic acid stabilization in heterodisperse systems
dc.creator.fl_str_mv Rojas Camargo, John Jairo
Ciro Monsalve, Yhors Alexander
Zapata Retrepo, Sandra Catalina
dc.contributor.author.none.fl_str_mv Rojas Camargo, John Jairo
Ciro Monsalve, Yhors Alexander
Zapata Retrepo, Sandra Catalina
dc.contributor.researchgroup.spa.fl_str_mv Diseño y Formulación de Medicamentos Cosméticos y Afines
dc.subject.decs.none.fl_str_mv Composición de Medicamentos
Drug Compounding
Ácido Ascórbico
Ascorbic Acid
Quitosano
Chitosan
Tensoactivos
Surface-Active Agents
topic Composición de Medicamentos
Drug Compounding
Ácido Ascórbico
Ascorbic Acid
Quitosano
Chitosan
Tensoactivos
Surface-Active Agents
description ABSTRACT: Objective: The purpose of this work is to assess the ionotropic gelation of chitosan as a new method to encapsulate and increase the stability of ascorbic acid (AA). Methods: Chitosan was employed for the encapsulation of AA employing the technique of ionotropic gelation with sodium lauryl sulfate. The encapsulation process was made by two processes, homogenization and sonication-homogenization, respectively Ionotropic gelation was carried out by mixing chitosan and sodium lauryl sulphate solutions at 0.5, 1.0 and 1.5 % (w/v) concentrations with ~20 mg of AA. Results: The two processes rendered spherical microcapsules with a narrow particle size distribution and particle size (0.7-2.1 μm), but only sonication-homogenization rendered less cohesive microcapsules. The encapsulation efficiency depended on the processing conditions and levels of parent materials and ranged from ~14 to 90% and ~14 to 72% for sonication-homogenization and homogenization, respectively. In both processes, runs with the lowest levels of chitosan (0.5%) were selected as optimal due to the spherical morphology, high encapsulation efficiency and less cohesive behavior. The addition of AA microcapsules into heterodisperse systems such as emulsions, semisolid systems and aqueous dispersions improved their thermal stability at 45°C rendering a shelf life (t90) of 17.6, 21,1 and 3.3 days, respectively. Conversely, the products containing free AA had a shelf life of 1.8, 3.1 and 0.9 days, respectively. Conclusions: The ionotropic gelation of chitosan with sodium lauryl sulfate improved the functionality, stability and shelf life of AA in heterodisperse systems.
publishDate 2015
dc.date.issued.none.fl_str_mv 2015
dc.date.accessioned.none.fl_str_mv 2023-06-28T19:48:25Z
dc.date.available.none.fl_str_mv 2023-06-28T19:48:25Z
dc.type.spa.fl_str_mv Artículo de investigación
dc.type.coarversion.fl_str_mv http://purl.org/coar/version/c_970fb48d4fbd8a85
dc.type.coar.spa.fl_str_mv http://purl.org/coar/resource_type/c_2df8fbb1
dc.type.redcol.spa.fl_str_mv https://purl.org/redcol/resource_type/ART
dc.type.driver.spa.fl_str_mv info:eu-repo/semantics/article
dc.type.version.spa.fl_str_mv info:eu-repo/semantics/publishedVersion
format http://purl.org/coar/resource_type/c_2df8fbb1
status_str publishedVersion
dc.identifier.citation.spa.fl_str_mv Rojas, John. (2015). Chitosan as a potential microencapsulation carrier for ascorbic acid stabilization in heterodisperse systems. International Journal of Pharmacy and Pharmaceutical Sciences. 7. 69-72.
dc.identifier.issn.none.fl_str_mv 0975-1491
dc.identifier.uri.none.fl_str_mv https://hdl.handle.net/10495/35699
dc.identifier.eissn.none.fl_str_mv 2656-0097
dc.identifier.url.spa.fl_str_mv https://journals.innovareacademics.in/index.php/ijpps/article/view/3647
identifier_str_mv Rojas, John. (2015). Chitosan as a potential microencapsulation carrier for ascorbic acid stabilization in heterodisperse systems. International Journal of Pharmacy and Pharmaceutical Sciences. 7. 69-72.
0975-1491
2656-0097
url https://hdl.handle.net/10495/35699
https://journals.innovareacademics.in/index.php/ijpps/article/view/3647
dc.language.iso.spa.fl_str_mv eng
language eng
dc.relation.ispartofjournalabbrev.spa.fl_str_mv Int. J. Pharm. Pharm. Sci.
dc.relation.citationendpage.spa.fl_str_mv 72
dc.relation.citationissue.spa.fl_str_mv 1
dc.relation.citationstartpage.spa.fl_str_mv 69
dc.relation.citationvolume.spa.fl_str_mv 7
dc.relation.ispartofjournal.spa.fl_str_mv International Journal of Pharmacy and Pharmaceutical Sciences
dc.rights.uri.*.fl_str_mv http://creativecommons.org/licenses/by/2.5/co/
dc.rights.uri.spa.fl_str_mv https://creativecommons.org/licenses/by/4.0/
dc.rights.accessrights.spa.fl_str_mv info:eu-repo/semantics/openAccess
dc.rights.coar.spa.fl_str_mv http://purl.org/coar/access_right/c_abf2
rights_invalid_str_mv http://creativecommons.org/licenses/by/2.5/co/
https://creativecommons.org/licenses/by/4.0/
http://purl.org/coar/access_right/c_abf2
eu_rights_str_mv openAccess
dc.format.extent.spa.fl_str_mv 4
dc.format.mimetype.spa.fl_str_mv application/pdf
dc.publisher.spa.fl_str_mv IJPPS
dc.publisher.place.spa.fl_str_mv Bhopal, India
institution Universidad de Antioquia
bitstream.url.fl_str_mv https://bibliotecadigital.udea.edu.co/bitstreams/36980601-8d4d-43c4-a716-9c0ba0a20680/download
https://bibliotecadigital.udea.edu.co/bitstreams/1e0ad328-5814-4aa6-b1ed-2aba97705462/download
https://bibliotecadigital.udea.edu.co/bitstreams/4af09044-583c-46a3-b696-86607dc0b93f/download
https://bibliotecadigital.udea.edu.co/bitstreams/3c3ff828-3b7a-4445-84b1-9dd5bb9bfdbb/download
https://bibliotecadigital.udea.edu.co/bitstreams/ce8bfab7-aad6-4b4c-9364-dfd54f2d7214/download
bitstream.checksum.fl_str_mv 1646d1f6b96dbbbc38035efc9239ac9c
8a4605be74aa9ea9d79846c1fba20a33
b2324ef423edfb7f06950aed987aa70e
5aad0ac86dabb39245483294b04ad92a
b8a16d808d34a590eff3fc65b0eccfb9
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
MD5
MD5
repository.name.fl_str_mv Repositorio Institucional de la Universidad de Antioquia
repository.mail.fl_str_mv aplicacionbibliotecadigitalbiblioteca@udea.edu.co
_version_ 1851052112975233024
spelling Rojas Camargo, John JairoCiro Monsalve, Yhors AlexanderZapata Retrepo, Sandra CatalinaDiseño y Formulación de Medicamentos Cosméticos y Afines2023-06-28T19:48:25Z2023-06-28T19:48:25Z2015Rojas, John. (2015). Chitosan as a potential microencapsulation carrier for ascorbic acid stabilization in heterodisperse systems. International Journal of Pharmacy and Pharmaceutical Sciences. 7. 69-72.0975-1491https://hdl.handle.net/10495/356992656-0097https://journals.innovareacademics.in/index.php/ijpps/article/view/3647ABSTRACT: Objective: The purpose of this work is to assess the ionotropic gelation of chitosan as a new method to encapsulate and increase the stability of ascorbic acid (AA). Methods: Chitosan was employed for the encapsulation of AA employing the technique of ionotropic gelation with sodium lauryl sulfate. The encapsulation process was made by two processes, homogenization and sonication-homogenization, respectively Ionotropic gelation was carried out by mixing chitosan and sodium lauryl sulphate solutions at 0.5, 1.0 and 1.5 % (w/v) concentrations with ~20 mg of AA. Results: The two processes rendered spherical microcapsules with a narrow particle size distribution and particle size (0.7-2.1 μm), but only sonication-homogenization rendered less cohesive microcapsules. The encapsulation efficiency depended on the processing conditions and levels of parent materials and ranged from ~14 to 90% and ~14 to 72% for sonication-homogenization and homogenization, respectively. In both processes, runs with the lowest levels of chitosan (0.5%) were selected as optimal due to the spherical morphology, high encapsulation efficiency and less cohesive behavior. The addition of AA microcapsules into heterodisperse systems such as emulsions, semisolid systems and aqueous dispersions improved their thermal stability at 45°C rendering a shelf life (t90) of 17.6, 21,1 and 3.3 days, respectively. Conversely, the products containing free AA had a shelf life of 1.8, 3.1 and 0.9 days, respectively. Conclusions: The ionotropic gelation of chitosan with sodium lauryl sulfate improved the functionality, stability and shelf life of AA in heterodisperse systems.COL00036234application/pdfengIJPPSBhopal, Indiahttp://creativecommons.org/licenses/by/2.5/co/https://creativecommons.org/licenses/by/4.0/info:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2Chitosan as a potential microencapsulation carrier for ascorbic acid stabilization in heterodisperse systemsArtículo de investigaciónhttp://purl.org/coar/resource_type/c_2df8fbb1https://purl.org/redcol/resource_type/ARTinfo:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/version/c_970fb48d4fbd8a85Composición de MedicamentosDrug CompoundingÁcido AscórbicoAscorbic AcidQuitosanoChitosanTensoactivosSurface-Active AgentsInt. J. Pharm. Pharm. Sci.721697International Journal of Pharmacy and Pharmaceutical SciencesPublicationCC-LICENSElicense_rdflicense_rdfapplication/rdf+xml; charset=utf-8927https://bibliotecadigital.udea.edu.co/bitstreams/36980601-8d4d-43c4-a716-9c0ba0a20680/download1646d1f6b96dbbbc38035efc9239ac9cMD52falseAnonymousREADLICENSElicense.txtlicense.txttext/plain; charset=utf-81748https://bibliotecadigital.udea.edu.co/bitstreams/1e0ad328-5814-4aa6-b1ed-2aba97705462/download8a4605be74aa9ea9d79846c1fba20a33MD53falseAnonymousREADORIGINALRojasJohn_2015_ChitosanPotentialMicroencapsulation.pdfRojasJohn_2015_ChitosanPotentialMicroencapsulation.pdfArtículo de investigaciónapplication/pdf414880https://bibliotecadigital.udea.edu.co/bitstreams/4af09044-583c-46a3-b696-86607dc0b93f/downloadb2324ef423edfb7f06950aed987aa70eMD51trueAnonymousREADTEXTRojasJohn_2015_ChitosanPotentialMicroencapsulation.pdf.txtRojasJohn_2015_ChitosanPotentialMicroencapsulation.pdf.txtExtracted texttext/plain23843https://bibliotecadigital.udea.edu.co/bitstreams/3c3ff828-3b7a-4445-84b1-9dd5bb9bfdbb/download5aad0ac86dabb39245483294b04ad92aMD58falseAnonymousREADTHUMBNAILRojasJohn_2015_ChitosanPotentialMicroencapsulation.pdf.jpgRojasJohn_2015_ChitosanPotentialMicroencapsulation.pdf.jpgGenerated Thumbnailimage/jpeg15892https://bibliotecadigital.udea.edu.co/bitstreams/ce8bfab7-aad6-4b4c-9364-dfd54f2d7214/downloadb8a16d808d34a590eff3fc65b0eccfb9MD59falseAnonymousREAD10495/35699oai:bibliotecadigital.udea.edu.co:10495/356992025-03-26 17:09:32.423http://creativecommons.org/licenses/by/2.5/co/open.accesshttps://bibliotecadigital.udea.edu.coRepositorio Institucional de la Universidad de Antioquiaaplicacionbibliotecadigitalbiblioteca@udea.edu.coTk9URTogUExBQ0UgWU9VUiBPV04gTElDRU5TRSBIRVJFClRoaXMgc2FtcGxlIGxpY2Vuc2UgaXMgcHJvdmlkZWQgZm9yIGluZm9ybWF0aW9uYWwgcHVycG9zZXMgb25seS4KCk5PTi1FWENMVVNJVkUgRElTVFJJQlVUSU9OIExJQ0VOU0UKCkJ5IHNpZ25pbmcgYW5kIHN1Ym1pdHRpbmcgdGhpcyBsaWNlbnNlLCB5b3UgKHRoZSBhdXRob3Iocykgb3IgY29weXJpZ2h0Cm93bmVyKSBncmFudHMgdG8gRFNwYWNlIFVuaXZlcnNpdHkgKERTVSkgdGhlIG5vbi1leGNsdXNpdmUgcmlnaHQgdG8gcmVwcm9kdWNlLAp0cmFuc2xhdGUgKGFzIGRlZmluZWQgYmVsb3cpLCBhbmQvb3IgZGlzdHJpYnV0ZSB5b3VyIHN1Ym1pc3Npb24gKGluY2x1ZGluZwp0aGUgYWJzdHJhY3QpIHdvcmxkd2lkZSBpbiBwcmludCBhbmQgZWxlY3Ryb25pYyBmb3JtYXQgYW5kIGluIGFueSBtZWRpdW0sCmluY2x1ZGluZyBidXQgbm90IGxpbWl0ZWQgdG8gYXVkaW8gb3IgdmlkZW8uCgpZb3UgYWdyZWUgdGhhdCBEU1UgbWF5LCB3aXRob3V0IGNoYW5naW5nIHRoZSBjb250ZW50LCB0cmFuc2xhdGUgdGhlCnN1Ym1pc3Npb24gdG8gYW55IG1lZGl1bSBvciBmb3JtYXQgZm9yIHRoZSBwdXJwb3NlIG9mIHByZXNlcnZhdGlvbi4KCllvdSBhbHNvIGFncmVlIHRoYXQgRFNVIG1heSBrZWVwIG1vcmUgdGhhbiBvbmUgY29weSBvZiB0aGlzIHN1Ym1pc3Npb24gZm9yCnB1cnBvc2VzIG9mIHNlY3VyaXR5LCBiYWNrLXVwIGFuZCBwcmVzZXJ2YXRpb24uCgpZb3UgcmVwcmVzZW50IHRoYXQgdGhlIHN1Ym1pc3Npb24gaXMgeW91ciBvcmlnaW5hbCB3b3JrLCBhbmQgdGhhdCB5b3UgaGF2ZQp0aGUgcmlnaHQgdG8gZ3JhbnQgdGhlIHJpZ2h0cyBjb250YWluZWQgaW4gdGhpcyBsaWNlbnNlLiBZb3UgYWxzbyByZXByZXNlbnQKdGhhdCB5b3VyIHN1Ym1pc3Npb24gZG9lcyBub3QsIHRvIHRoZSBiZXN0IG9mIHlvdXIga25vd2xlZGdlLCBpbmZyaW5nZSB1cG9uCmFueW9uZSdzIGNvcHlyaWdodC4KCklmIHRoZSBzdWJtaXNzaW9uIGNvbnRhaW5zIG1hdGVyaWFsIGZvciB3aGljaCB5b3UgZG8gbm90IGhvbGQgY29weXJpZ2h0LAp5b3UgcmVwcmVzZW50IHRoYXQgeW91IGhhdmUgb2J0YWluZWQgdGhlIHVucmVzdHJpY3RlZCBwZXJtaXNzaW9uIG9mIHRoZQpjb3B5cmlnaHQgb3duZXIgdG8gZ3JhbnQgRFNVIHRoZSByaWdodHMgcmVxdWlyZWQgYnkgdGhpcyBsaWNlbnNlLCBhbmQgdGhhdApzdWNoIHRoaXJkLXBhcnR5IG93bmVkIG1hdGVyaWFsIGlzIGNsZWFybHkgaWRlbnRpZmllZCBhbmQgYWNrbm93bGVkZ2VkCndpdGhpbiB0aGUgdGV4dCBvciBjb250ZW50IG9mIHRoZSBzdWJtaXNzaW9uLgoKSUYgVEhFIFNVQk1JU1NJT04gSVMgQkFTRUQgVVBPTiBXT1JLIFRIQVQgSEFTIEJFRU4gU1BPTlNPUkVEIE9SIFNVUFBPUlRFRApCWSBBTiBBR0VOQ1kgT1IgT1JHQU5JWkFUSU9OIE9USEVSIFRIQU4gRFNVLCBZT1UgUkVQUkVTRU5UIFRIQVQgWU9VIEhBVkUKRlVMRklMTEVEIEFOWSBSSUdIVCBPRiBSRVZJRVcgT1IgT1RIRVIgT0JMSUdBVElPTlMgUkVRVUlSRUQgQlkgU1VDSApDT05UUkFDVCBPUiBBR1JFRU1FTlQuCgpEU1Ugd2lsbCBjbGVhcmx5IGlkZW50aWZ5IHlvdXIgbmFtZShzKSBhcyB0aGUgYXV0aG9yKHMpIG9yIG93bmVyKHMpIG9mIHRoZQpzdWJtaXNzaW9uLCBhbmQgd2lsbCBub3QgbWFrZSBhbnkgYWx0ZXJhdGlvbiwgb3RoZXIgdGhhbiBhcyBhbGxvd2VkIGJ5IHRoaXMKbGljZW5zZSwgdG8geW91ciBzdWJtaXNzaW9uLgo=