Singular equivalences of Morita type with level, Gorenstein algebras, and universal deformation rings
Let k be a field of arbitrary characteristic, let Λ be a finite dimensional k-algebra, and let V be an indecomposable finitely generated non-projective Gorenstein-projective left Λ-module whose stable endomorphism ring is isomorphic to k. In this article, we prove that the universal deformation ring...
- Autores:
-
Vélez Marulanda, José Alberto
- Tipo de recurso:
- Article of investigation
- Fecha de publicación:
- 2023
- Institución:
- Universidad de Antioquia
- Repositorio:
- Repositorio UdeA
- Idioma:
- eng
- OAI Identifier:
- oai:bibliotecadigital.udea.edu.co:10495/46191
- Acceso en línea:
- https://hdl.handle.net/10495/46191
- Palabra clave:
- Anillos de Gorenstein
Gorenstein rings
Anillos de endomorfismo
Endomorphism rings
Equivalencias singulares de tipo Morita
Singular equivalences of Morita
http://id.loc.gov/authorities/subjects/sh93007380
http://id.loc.gov/authorities/subjects/sh85043085
- Rights
- openAccess
- License
- http://creativecommons.org/licenses/by-nc-nd/4.0/
| Summary: | Let k be a field of arbitrary characteristic, let Λ be a finite dimensional k-algebra, and let V be an indecomposable finitely generated non-projective Gorenstein-projective left Λ-module whose stable endomorphism ring is isomorphic to k. In this article, we prove that the universal deformation rings R(Λ, V ) and R(Λ, ΩΛV ) are isomorphic, where ΩΛV denotes the first syzygy of V as a left Λ-module. We also prove the following result. Assume that Λ is also Gorenstein and that Γ is another Gorenstein k-algebra such that there exists ` ≥ 0 and a pair of bimodules (ΓXΛ, ΛYΓ) that induces a singular equivalence of Morita type with level ` (as introduced by Z. Wang) between Λ and Γ. Then the left Γ-module X ⊗Λ V is also Gorenstein-projective with stable endomorphism ring isomorphic to k, and the universal deformation ring R(Γ, X ⊗Λ V ) is isomorphic to R(Λ, V ). |
|---|
