Modeling an artificial neural network to estimate cement consumption in clayey waste-cement mixtures based on curing temperature, mechanical strength, and resilient modulus
ABSTRACT: Seeking to address large-scale issues faced by many countries today, such as excessive energy consumption, global warming, and uncontrolled mining activities, this research repurposes clayey mining and excavation waste to design soil-cement mixtures for road construction. A total of 2026 d...
- Autores:
-
Hernández García, Liliana Carolina
Colorado Lopera, Henry Alonso
Vidal Valencia, Julián
- Tipo de recurso:
- Article of investigation
- Fecha de publicación:
- 2025
- Institución:
- Universidad de Antioquia
- Repositorio:
- Repositorio UdeA
- Idioma:
- eng
- OAI Identifier:
- oai:bibliotecadigital.udea.edu.co:10495/45130
- Acceso en línea:
- https://hdl.handle.net/10495/45130
- Palabra clave:
- Inteligencia artificial
Artificial Intelligence
Residuos
Waste Products
Redes neurales (computadores)
Neural networks (Computer science)
Cemento
Cement
Estabilización de suelos
Soil stabilization
Clay soil
Clay waste
https://id.nlm.nih.gov/mesh/D001185
https://id.nlm.nih.gov/mesh/D014866
- Rights
- openAccess
- License
- https://creativecommons.org/licenses/by-nc-nd/4.0/
| id |
UDEA2_06e292ecd51a8b0fbe8d7688844c86a6 |
|---|---|
| oai_identifier_str |
oai:bibliotecadigital.udea.edu.co:10495/45130 |
| network_acronym_str |
UDEA2 |
| network_name_str |
Repositorio UdeA |
| repository_id_str |
|
| dc.title.spa.fl_str_mv |
Modeling an artificial neural network to estimate cement consumption in clayey waste-cement mixtures based on curing temperature, mechanical strength, and resilient modulus |
| title |
Modeling an artificial neural network to estimate cement consumption in clayey waste-cement mixtures based on curing temperature, mechanical strength, and resilient modulus |
| spellingShingle |
Modeling an artificial neural network to estimate cement consumption in clayey waste-cement mixtures based on curing temperature, mechanical strength, and resilient modulus Inteligencia artificial Artificial Intelligence Residuos Waste Products Redes neurales (computadores) Neural networks (Computer science) Cemento Cement Estabilización de suelos Soil stabilization Clay soil Clay waste https://id.nlm.nih.gov/mesh/D001185 https://id.nlm.nih.gov/mesh/D014866 |
| title_short |
Modeling an artificial neural network to estimate cement consumption in clayey waste-cement mixtures based on curing temperature, mechanical strength, and resilient modulus |
| title_full |
Modeling an artificial neural network to estimate cement consumption in clayey waste-cement mixtures based on curing temperature, mechanical strength, and resilient modulus |
| title_fullStr |
Modeling an artificial neural network to estimate cement consumption in clayey waste-cement mixtures based on curing temperature, mechanical strength, and resilient modulus |
| title_full_unstemmed |
Modeling an artificial neural network to estimate cement consumption in clayey waste-cement mixtures based on curing temperature, mechanical strength, and resilient modulus |
| title_sort |
Modeling an artificial neural network to estimate cement consumption in clayey waste-cement mixtures based on curing temperature, mechanical strength, and resilient modulus |
| dc.creator.fl_str_mv |
Hernández García, Liliana Carolina Colorado Lopera, Henry Alonso Vidal Valencia, Julián |
| dc.contributor.author.none.fl_str_mv |
Hernández García, Liliana Carolina Colorado Lopera, Henry Alonso Vidal Valencia, Julián |
| dc.contributor.researchgroup.spa.fl_str_mv |
CCComposites (cements ceramics and composites) |
| dc.subject.decs.none.fl_str_mv |
Inteligencia artificial Artificial Intelligence Residuos Waste Products |
| topic |
Inteligencia artificial Artificial Intelligence Residuos Waste Products Redes neurales (computadores) Neural networks (Computer science) Cemento Cement Estabilización de suelos Soil stabilization Clay soil Clay waste https://id.nlm.nih.gov/mesh/D001185 https://id.nlm.nih.gov/mesh/D014866 |
| dc.subject.lemb.none.fl_str_mv |
Redes neurales (computadores) Neural networks (Computer science) Cemento Cement Estabilización de suelos Soil stabilization |
| dc.subject.proposal.spa.fl_str_mv |
Clay soil Clay waste |
| dc.subject.meshuri.none.fl_str_mv |
https://id.nlm.nih.gov/mesh/D001185 https://id.nlm.nih.gov/mesh/D014866 |
| description |
ABSTRACT: Seeking to address large-scale issues faced by many countries today, such as excessive energy consumption, global warming, and uncontrolled mining activities, this research repurposes clayey mining and excavation waste to design soil-cement mixtures for road construction. A total of 2026 data points from laboratory experimental tests were statistically analyzed using regression models and neural networks to evaluate the effect of curing temperature on compressive strength, indirect tensile strength, and resilient modulus. The study focused on three types of clayey waste mixed with high early-strength hydraulic cement (Type 1 Portland cement) after 7 days of curing. The samples were cured in three different chambers, each maintaining a constant temperature of 10, 28, and 40 ◦C for 7 days, simulating the most common road temperatures in Colombia. Results showed that temperature has a positive effect of 18 % on the resilient modulus, which could lead to cement savings in warm climates. Additionally, an artificial neural network model was developed, which can contribute to the construction and design of more sustainable and environmentally friendly geothermal pavements. The use of these models and networks not only facilitates the study of multiple variables but also optimizes materials and methods, aiming to reduce energy consumption and costs. |
| publishDate |
2025 |
| dc.date.accessioned.none.fl_str_mv |
2025-02-21T20:13:39Z |
| dc.date.available.none.fl_str_mv |
2025-02-21T20:13:39Z |
| dc.date.issued.none.fl_str_mv |
2025 |
| dc.type.spa.fl_str_mv |
Artículo de investigación |
| dc.type.coar.spa.fl_str_mv |
http://purl.org/coar/resource_type/c_2df8fbb1 |
| dc.type.redcol.spa.fl_str_mv |
https://purl.org/redcol/resource_type/ART |
| dc.type.coarversion.spa.fl_str_mv |
http://purl.org/coar/version/c_970fb48d4fbd8a85 |
| dc.type.driver.spa.fl_str_mv |
info:eu-repo/semantics/article |
| dc.type.version.spa.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
| format |
http://purl.org/coar/resource_type/c_2df8fbb1 |
| status_str |
publishedVersion |
| dc.identifier.citation.spa.fl_str_mv |
L. C. H. García, J. V. Valencia, y H. A. Colorado L, «Modeling an artificial neural network to estimate cement consumption in clayey waste-cement mixtures based on curing temperature, mechanical strength, and resilient modulus», Constr. Build. Mater., vol. 467, p. 140376, 2025, doi: https://doi.org/10.1016/j.conbuildmat.2025.140376. |
| dc.identifier.issn.none.fl_str_mv |
0950-0618 |
| dc.identifier.uri.none.fl_str_mv |
https://hdl.handle.net/10495/45130 |
| dc.identifier.doi.none.fl_str_mv |
10.1016/j.conbuildmat.2025.140376 |
| dc.identifier.eissn.none.fl_str_mv |
1879-0526 |
| identifier_str_mv |
L. C. H. García, J. V. Valencia, y H. A. Colorado L, «Modeling an artificial neural network to estimate cement consumption in clayey waste-cement mixtures based on curing temperature, mechanical strength, and resilient modulus», Constr. Build. Mater., vol. 467, p. 140376, 2025, doi: https://doi.org/10.1016/j.conbuildmat.2025.140376. 0950-0618 10.1016/j.conbuildmat.2025.140376 1879-0526 |
| url |
https://hdl.handle.net/10495/45130 |
| dc.language.iso.spa.fl_str_mv |
eng |
| language |
eng |
| dc.relation.ispartofjournalabbrev.spa.fl_str_mv |
Constr. Build. Mater. |
| dc.relation.citationendpage.spa.fl_str_mv |
17 |
| dc.relation.citationstartpage.spa.fl_str_mv |
1 |
| dc.relation.citationvolume.spa.fl_str_mv |
467 |
| dc.relation.ispartofjournal.spa.fl_str_mv |
Construction and Building Materials |
| dc.rights.uri.spa.fl_str_mv |
https://creativecommons.org/licenses/by-nc-nd/4.0/ |
| dc.rights.uri.*.fl_str_mv |
http://creativecommons.org/licenses/by-nc-nd/2.5/co/ |
| dc.rights.accessrights.spa.fl_str_mv |
info:eu-repo/semantics/openAccess |
| dc.rights.coar.spa.fl_str_mv |
http://purl.org/coar/access_right/c_abf2 |
| rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-nd/4.0/ http://creativecommons.org/licenses/by-nc-nd/2.5/co/ http://purl.org/coar/access_right/c_abf2 |
| eu_rights_str_mv |
openAccess |
| dc.format.extent.spa.fl_str_mv |
17 páginas |
| dc.format.mimetype.spa.fl_str_mv |
application/pdf |
| dc.publisher.spa.fl_str_mv |
Elsevier |
| dc.publisher.place.spa.fl_str_mv |
Guildford, Inglaterra |
| institution |
Universidad de Antioquia |
| bitstream.url.fl_str_mv |
https://bibliotecadigital.udea.edu.co/bitstreams/2395bb0d-3aea-4817-adab-1445a75f01fc/download https://bibliotecadigital.udea.edu.co/bitstreams/72ab4be2-fac2-40a5-8d34-9e3dd9b8f3f0/download https://bibliotecadigital.udea.edu.co/bitstreams/449456df-295a-4e36-aefc-2de75e740368/download https://bibliotecadigital.udea.edu.co/bitstreams/f116b760-80a4-4c21-a33d-fb45e4f62c25/download https://bibliotecadigital.udea.edu.co/bitstreams/0e2e5bc8-8cce-457f-ad78-8b3d9e74dd4d/download |
| bitstream.checksum.fl_str_mv |
8a4605be74aa9ea9d79846c1fba20a33 d049157b2c1dbfb107d519ff11a1bf95 b88b088d9957e670ce3b3fbe2eedbc13 98fa4bc3a0d9d2cc1a0972eddc77cb1d 9964489075db8adc7b222a12c9baf0c3 |
| bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 MD5 MD5 MD5 |
| repository.name.fl_str_mv |
Repositorio Institucional de la Universidad de Antioquia |
| repository.mail.fl_str_mv |
aplicacionbibliotecadigitalbiblioteca@udea.edu.co |
| _version_ |
1851052520240054272 |
| spelling |
Hernández García, Liliana CarolinaColorado Lopera, Henry AlonsoVidal Valencia, JuliánCCComposites (cements ceramics and composites)2025-02-21T20:13:39Z2025-02-21T20:13:39Z2025L. C. H. García, J. V. Valencia, y H. A. Colorado L, «Modeling an artificial neural network to estimate cement consumption in clayey waste-cement mixtures based on curing temperature, mechanical strength, and resilient modulus», Constr. Build. Mater., vol. 467, p. 140376, 2025, doi: https://doi.org/10.1016/j.conbuildmat.2025.140376.0950-0618https://hdl.handle.net/10495/4513010.1016/j.conbuildmat.2025.1403761879-0526ABSTRACT: Seeking to address large-scale issues faced by many countries today, such as excessive energy consumption, global warming, and uncontrolled mining activities, this research repurposes clayey mining and excavation waste to design soil-cement mixtures for road construction. A total of 2026 data points from laboratory experimental tests were statistically analyzed using regression models and neural networks to evaluate the effect of curing temperature on compressive strength, indirect tensile strength, and resilient modulus. The study focused on three types of clayey waste mixed with high early-strength hydraulic cement (Type 1 Portland cement) after 7 days of curing. The samples were cured in three different chambers, each maintaining a constant temperature of 10, 28, and 40 ◦C for 7 days, simulating the most common road temperatures in Colombia. Results showed that temperature has a positive effect of 18 % on the resilient modulus, which could lead to cement savings in warm climates. Additionally, an artificial neural network model was developed, which can contribute to the construction and design of more sustainable and environmentally friendly geothermal pavements. The use of these models and networks not only facilitates the study of multiple variables but also optimizes materials and methods, aiming to reduce energy consumption and costs.COL009969817 páginasapplication/pdfengElsevierGuildford, Inglaterrahttps://creativecommons.org/licenses/by-nc-nd/4.0/http://creativecommons.org/licenses/by-nc-nd/2.5/co/info:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2Modeling an artificial neural network to estimate cement consumption in clayey waste-cement mixtures based on curing temperature, mechanical strength, and resilient modulusArtículo de investigaciónhttp://purl.org/coar/resource_type/c_2df8fbb1https://purl.org/redcol/resource_type/ARThttp://purl.org/coar/version/c_970fb48d4fbd8a85info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionInteligencia artificialArtificial IntelligenceResiduosWaste ProductsRedes neurales (computadores)Neural networks (Computer science)CementoCementEstabilización de suelosSoil stabilizationClay soilClay wastehttps://id.nlm.nih.gov/mesh/D001185https://id.nlm.nih.gov/mesh/D014866Constr. Build. Mater.171467Construction and Building MaterialsPublicationLICENSElicense.txtlicense.txttext/plain; charset=utf-81748https://bibliotecadigital.udea.edu.co/bitstreams/2395bb0d-3aea-4817-adab-1445a75f01fc/download8a4605be74aa9ea9d79846c1fba20a33MD53falseAnonymousREADORIGINALColoradoHenry_2025_Modeling_Artificial_Neural.pdfColoradoHenry_2025_Modeling_Artificial_Neural.pdfArtículo de investigaciónapplication/pdf1138854https://bibliotecadigital.udea.edu.co/bitstreams/72ab4be2-fac2-40a5-8d34-9e3dd9b8f3f0/downloadd049157b2c1dbfb107d519ff11a1bf95MD51trueAnonymousREADCC-LICENSElicense_rdflicense_rdfapplication/rdf+xml; charset=utf-8823https://bibliotecadigital.udea.edu.co/bitstreams/449456df-295a-4e36-aefc-2de75e740368/downloadb88b088d9957e670ce3b3fbe2eedbc13MD52falseAnonymousREADTEXTColoradoHenry_2025_Modeling_Artificial_Neural.pdf.txtColoradoHenry_2025_Modeling_Artificial_Neural.pdf.txtExtracted texttext/plain70329https://bibliotecadigital.udea.edu.co/bitstreams/f116b760-80a4-4c21-a33d-fb45e4f62c25/download98fa4bc3a0d9d2cc1a0972eddc77cb1dMD54falseAnonymousREADTHUMBNAILColoradoHenry_2025_Modeling_Artificial_Neural.pdf.jpgColoradoHenry_2025_Modeling_Artificial_Neural.pdf.jpgGenerated Thumbnailimage/jpeg14803https://bibliotecadigital.udea.edu.co/bitstreams/0e2e5bc8-8cce-457f-ad78-8b3d9e74dd4d/download9964489075db8adc7b222a12c9baf0c3MD55falseAnonymousREAD10495/45130oai:bibliotecadigital.udea.edu.co:10495/451302025-03-26 23:42:10.419https://creativecommons.org/licenses/by-nc-nd/4.0/open.accesshttps://bibliotecadigital.udea.edu.coRepositorio Institucional de la Universidad de Antioquiaaplicacionbibliotecadigitalbiblioteca@udea.edu.coTk9URTogUExBQ0UgWU9VUiBPV04gTElDRU5TRSBIRVJFClRoaXMgc2FtcGxlIGxpY2Vuc2UgaXMgcHJvdmlkZWQgZm9yIGluZm9ybWF0aW9uYWwgcHVycG9zZXMgb25seS4KCk5PTi1FWENMVVNJVkUgRElTVFJJQlVUSU9OIExJQ0VOU0UKCkJ5IHNpZ25pbmcgYW5kIHN1Ym1pdHRpbmcgdGhpcyBsaWNlbnNlLCB5b3UgKHRoZSBhdXRob3Iocykgb3IgY29weXJpZ2h0Cm93bmVyKSBncmFudHMgdG8gRFNwYWNlIFVuaXZlcnNpdHkgKERTVSkgdGhlIG5vbi1leGNsdXNpdmUgcmlnaHQgdG8gcmVwcm9kdWNlLAp0cmFuc2xhdGUgKGFzIGRlZmluZWQgYmVsb3cpLCBhbmQvb3IgZGlzdHJpYnV0ZSB5b3VyIHN1Ym1pc3Npb24gKGluY2x1ZGluZwp0aGUgYWJzdHJhY3QpIHdvcmxkd2lkZSBpbiBwcmludCBhbmQgZWxlY3Ryb25pYyBmb3JtYXQgYW5kIGluIGFueSBtZWRpdW0sCmluY2x1ZGluZyBidXQgbm90IGxpbWl0ZWQgdG8gYXVkaW8gb3IgdmlkZW8uCgpZb3UgYWdyZWUgdGhhdCBEU1UgbWF5LCB3aXRob3V0IGNoYW5naW5nIHRoZSBjb250ZW50LCB0cmFuc2xhdGUgdGhlCnN1Ym1pc3Npb24gdG8gYW55IG1lZGl1bSBvciBmb3JtYXQgZm9yIHRoZSBwdXJwb3NlIG9mIHByZXNlcnZhdGlvbi4KCllvdSBhbHNvIGFncmVlIHRoYXQgRFNVIG1heSBrZWVwIG1vcmUgdGhhbiBvbmUgY29weSBvZiB0aGlzIHN1Ym1pc3Npb24gZm9yCnB1cnBvc2VzIG9mIHNlY3VyaXR5LCBiYWNrLXVwIGFuZCBwcmVzZXJ2YXRpb24uCgpZb3UgcmVwcmVzZW50IHRoYXQgdGhlIHN1Ym1pc3Npb24gaXMgeW91ciBvcmlnaW5hbCB3b3JrLCBhbmQgdGhhdCB5b3UgaGF2ZQp0aGUgcmlnaHQgdG8gZ3JhbnQgdGhlIHJpZ2h0cyBjb250YWluZWQgaW4gdGhpcyBsaWNlbnNlLiBZb3UgYWxzbyByZXByZXNlbnQKdGhhdCB5b3VyIHN1Ym1pc3Npb24gZG9lcyBub3QsIHRvIHRoZSBiZXN0IG9mIHlvdXIga25vd2xlZGdlLCBpbmZyaW5nZSB1cG9uCmFueW9uZSdzIGNvcHlyaWdodC4KCklmIHRoZSBzdWJtaXNzaW9uIGNvbnRhaW5zIG1hdGVyaWFsIGZvciB3aGljaCB5b3UgZG8gbm90IGhvbGQgY29weXJpZ2h0LAp5b3UgcmVwcmVzZW50IHRoYXQgeW91IGhhdmUgb2J0YWluZWQgdGhlIHVucmVzdHJpY3RlZCBwZXJtaXNzaW9uIG9mIHRoZQpjb3B5cmlnaHQgb3duZXIgdG8gZ3JhbnQgRFNVIHRoZSByaWdodHMgcmVxdWlyZWQgYnkgdGhpcyBsaWNlbnNlLCBhbmQgdGhhdApzdWNoIHRoaXJkLXBhcnR5IG93bmVkIG1hdGVyaWFsIGlzIGNsZWFybHkgaWRlbnRpZmllZCBhbmQgYWNrbm93bGVkZ2VkCndpdGhpbiB0aGUgdGV4dCBvciBjb250ZW50IG9mIHRoZSBzdWJtaXNzaW9uLgoKSUYgVEhFIFNVQk1JU1NJT04gSVMgQkFTRUQgVVBPTiBXT1JLIFRIQVQgSEFTIEJFRU4gU1BPTlNPUkVEIE9SIFNVUFBPUlRFRApCWSBBTiBBR0VOQ1kgT1IgT1JHQU5JWkFUSU9OIE9USEVSIFRIQU4gRFNVLCBZT1UgUkVQUkVTRU5UIFRIQVQgWU9VIEhBVkUKRlVMRklMTEVEIEFOWSBSSUdIVCBPRiBSRVZJRVcgT1IgT1RIRVIgT0JMSUdBVElPTlMgUkVRVUlSRUQgQlkgU1VDSApDT05UUkFDVCBPUiBBR1JFRU1FTlQuCgpEU1Ugd2lsbCBjbGVhcmx5IGlkZW50aWZ5IHlvdXIgbmFtZShzKSBhcyB0aGUgYXV0aG9yKHMpIG9yIG93bmVyKHMpIG9mIHRoZQpzdWJtaXNzaW9uLCBhbmQgd2lsbCBub3QgbWFrZSBhbnkgYWx0ZXJhdGlvbiwgb3RoZXIgdGhhbiBhcyBhbGxvd2VkIGJ5IHRoaXMKbGljZW5zZSwgdG8geW91ciBzdWJtaXNzaW9uLgo= |
