Modeling an artificial neural network to estimate cement consumption in clayey waste-cement mixtures based on curing temperature, mechanical strength, and resilient modulus

ABSTRACT: Seeking to address large-scale issues faced by many countries today, such as excessive energy consumption, global warming, and uncontrolled mining activities, this research repurposes clayey mining and excavation waste to design soil-cement mixtures for road construction. A total of 2026 d...

Full description

Autores:
Hernández García, Liliana Carolina
Colorado Lopera, Henry Alonso
Vidal Valencia, Julián
Tipo de recurso:
Article of investigation
Fecha de publicación:
2025
Institución:
Universidad de Antioquia
Repositorio:
Repositorio UdeA
Idioma:
eng
OAI Identifier:
oai:bibliotecadigital.udea.edu.co:10495/45130
Acceso en línea:
https://hdl.handle.net/10495/45130
Palabra clave:
Inteligencia artificial
Artificial Intelligence
Residuos
Waste Products
Redes neurales (computadores)
Neural networks (Computer science)
Cemento
Cement
Estabilización de suelos
Soil stabilization
Clay soil
Clay waste
https://id.nlm.nih.gov/mesh/D001185
https://id.nlm.nih.gov/mesh/D014866
Rights
openAccess
License
https://creativecommons.org/licenses/by-nc-nd/4.0/
id UDEA2_06e292ecd51a8b0fbe8d7688844c86a6
oai_identifier_str oai:bibliotecadigital.udea.edu.co:10495/45130
network_acronym_str UDEA2
network_name_str Repositorio UdeA
repository_id_str
dc.title.spa.fl_str_mv Modeling an artificial neural network to estimate cement consumption in clayey waste-cement mixtures based on curing temperature, mechanical strength, and resilient modulus
title Modeling an artificial neural network to estimate cement consumption in clayey waste-cement mixtures based on curing temperature, mechanical strength, and resilient modulus
spellingShingle Modeling an artificial neural network to estimate cement consumption in clayey waste-cement mixtures based on curing temperature, mechanical strength, and resilient modulus
Inteligencia artificial
Artificial Intelligence
Residuos
Waste Products
Redes neurales (computadores)
Neural networks (Computer science)
Cemento
Cement
Estabilización de suelos
Soil stabilization
Clay soil
Clay waste
https://id.nlm.nih.gov/mesh/D001185
https://id.nlm.nih.gov/mesh/D014866
title_short Modeling an artificial neural network to estimate cement consumption in clayey waste-cement mixtures based on curing temperature, mechanical strength, and resilient modulus
title_full Modeling an artificial neural network to estimate cement consumption in clayey waste-cement mixtures based on curing temperature, mechanical strength, and resilient modulus
title_fullStr Modeling an artificial neural network to estimate cement consumption in clayey waste-cement mixtures based on curing temperature, mechanical strength, and resilient modulus
title_full_unstemmed Modeling an artificial neural network to estimate cement consumption in clayey waste-cement mixtures based on curing temperature, mechanical strength, and resilient modulus
title_sort Modeling an artificial neural network to estimate cement consumption in clayey waste-cement mixtures based on curing temperature, mechanical strength, and resilient modulus
dc.creator.fl_str_mv Hernández García, Liliana Carolina
Colorado Lopera, Henry Alonso
Vidal Valencia, Julián
dc.contributor.author.none.fl_str_mv Hernández García, Liliana Carolina
Colorado Lopera, Henry Alonso
Vidal Valencia, Julián
dc.contributor.researchgroup.spa.fl_str_mv CCComposites (cements ceramics and composites)
dc.subject.decs.none.fl_str_mv Inteligencia artificial
Artificial Intelligence
Residuos
Waste Products
topic Inteligencia artificial
Artificial Intelligence
Residuos
Waste Products
Redes neurales (computadores)
Neural networks (Computer science)
Cemento
Cement
Estabilización de suelos
Soil stabilization
Clay soil
Clay waste
https://id.nlm.nih.gov/mesh/D001185
https://id.nlm.nih.gov/mesh/D014866
dc.subject.lemb.none.fl_str_mv Redes neurales (computadores)
Neural networks (Computer science)
Cemento
Cement
Estabilización de suelos
Soil stabilization
dc.subject.proposal.spa.fl_str_mv Clay soil
Clay waste
dc.subject.meshuri.none.fl_str_mv https://id.nlm.nih.gov/mesh/D001185
https://id.nlm.nih.gov/mesh/D014866
description ABSTRACT: Seeking to address large-scale issues faced by many countries today, such as excessive energy consumption, global warming, and uncontrolled mining activities, this research repurposes clayey mining and excavation waste to design soil-cement mixtures for road construction. A total of 2026 data points from laboratory experimental tests were statistically analyzed using regression models and neural networks to evaluate the effect of curing temperature on compressive strength, indirect tensile strength, and resilient modulus. The study focused on three types of clayey waste mixed with high early-strength hydraulic cement (Type 1 Portland cement) after 7 days of curing. The samples were cured in three different chambers, each maintaining a constant temperature of 10, 28, and 40 ◦C for 7 days, simulating the most common road temperatures in Colombia. Results showed that temperature has a positive effect of 18 % on the resilient modulus, which could lead to cement savings in warm climates. Additionally, an artificial neural network model was developed, which can contribute to the construction and design of more sustainable and environmentally friendly geothermal pavements. The use of these models and networks not only facilitates the study of multiple variables but also optimizes materials and methods, aiming to reduce energy consumption and costs.
publishDate 2025
dc.date.accessioned.none.fl_str_mv 2025-02-21T20:13:39Z
dc.date.available.none.fl_str_mv 2025-02-21T20:13:39Z
dc.date.issued.none.fl_str_mv 2025
dc.type.spa.fl_str_mv Artículo de investigación
dc.type.coar.spa.fl_str_mv http://purl.org/coar/resource_type/c_2df8fbb1
dc.type.redcol.spa.fl_str_mv https://purl.org/redcol/resource_type/ART
dc.type.coarversion.spa.fl_str_mv http://purl.org/coar/version/c_970fb48d4fbd8a85
dc.type.driver.spa.fl_str_mv info:eu-repo/semantics/article
dc.type.version.spa.fl_str_mv info:eu-repo/semantics/publishedVersion
format http://purl.org/coar/resource_type/c_2df8fbb1
status_str publishedVersion
dc.identifier.citation.spa.fl_str_mv L. C. H. García, J. V. Valencia, y H. A. Colorado L, «Modeling an artificial neural network to estimate cement consumption in clayey waste-cement mixtures based on curing temperature, mechanical strength, and resilient modulus», Constr. Build. Mater., vol. 467, p. 140376, 2025, doi: https://doi.org/10.1016/j.conbuildmat.2025.140376.
dc.identifier.issn.none.fl_str_mv 0950-0618
dc.identifier.uri.none.fl_str_mv https://hdl.handle.net/10495/45130
dc.identifier.doi.none.fl_str_mv 10.1016/j.conbuildmat.2025.140376
dc.identifier.eissn.none.fl_str_mv 1879-0526
identifier_str_mv L. C. H. García, J. V. Valencia, y H. A. Colorado L, «Modeling an artificial neural network to estimate cement consumption in clayey waste-cement mixtures based on curing temperature, mechanical strength, and resilient modulus», Constr. Build. Mater., vol. 467, p. 140376, 2025, doi: https://doi.org/10.1016/j.conbuildmat.2025.140376.
0950-0618
10.1016/j.conbuildmat.2025.140376
1879-0526
url https://hdl.handle.net/10495/45130
dc.language.iso.spa.fl_str_mv eng
language eng
dc.relation.ispartofjournalabbrev.spa.fl_str_mv Constr. Build. Mater.
dc.relation.citationendpage.spa.fl_str_mv 17
dc.relation.citationstartpage.spa.fl_str_mv 1
dc.relation.citationvolume.spa.fl_str_mv 467
dc.relation.ispartofjournal.spa.fl_str_mv Construction and Building Materials
dc.rights.uri.spa.fl_str_mv https://creativecommons.org/licenses/by-nc-nd/4.0/
dc.rights.uri.*.fl_str_mv http://creativecommons.org/licenses/by-nc-nd/2.5/co/
dc.rights.accessrights.spa.fl_str_mv info:eu-repo/semantics/openAccess
dc.rights.coar.spa.fl_str_mv http://purl.org/coar/access_right/c_abf2
rights_invalid_str_mv https://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/2.5/co/
http://purl.org/coar/access_right/c_abf2
eu_rights_str_mv openAccess
dc.format.extent.spa.fl_str_mv 17 páginas
dc.format.mimetype.spa.fl_str_mv application/pdf
dc.publisher.spa.fl_str_mv Elsevier
dc.publisher.place.spa.fl_str_mv Guildford, Inglaterra
institution Universidad de Antioquia
bitstream.url.fl_str_mv https://bibliotecadigital.udea.edu.co/bitstreams/2395bb0d-3aea-4817-adab-1445a75f01fc/download
https://bibliotecadigital.udea.edu.co/bitstreams/72ab4be2-fac2-40a5-8d34-9e3dd9b8f3f0/download
https://bibliotecadigital.udea.edu.co/bitstreams/449456df-295a-4e36-aefc-2de75e740368/download
https://bibliotecadigital.udea.edu.co/bitstreams/f116b760-80a4-4c21-a33d-fb45e4f62c25/download
https://bibliotecadigital.udea.edu.co/bitstreams/0e2e5bc8-8cce-457f-ad78-8b3d9e74dd4d/download
bitstream.checksum.fl_str_mv 8a4605be74aa9ea9d79846c1fba20a33
d049157b2c1dbfb107d519ff11a1bf95
b88b088d9957e670ce3b3fbe2eedbc13
98fa4bc3a0d9d2cc1a0972eddc77cb1d
9964489075db8adc7b222a12c9baf0c3
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
MD5
MD5
repository.name.fl_str_mv Repositorio Institucional de la Universidad de Antioquia
repository.mail.fl_str_mv aplicacionbibliotecadigitalbiblioteca@udea.edu.co
_version_ 1851052520240054272
spelling Hernández García, Liliana CarolinaColorado Lopera, Henry AlonsoVidal Valencia, JuliánCCComposites (cements ceramics and composites)2025-02-21T20:13:39Z2025-02-21T20:13:39Z2025L. C. H. García, J. V. Valencia, y H. A. Colorado L, «Modeling an artificial neural network to estimate cement consumption in clayey waste-cement mixtures based on curing temperature, mechanical strength, and resilient modulus», Constr. Build. Mater., vol. 467, p. 140376, 2025, doi: https://doi.org/10.1016/j.conbuildmat.2025.140376.0950-0618https://hdl.handle.net/10495/4513010.1016/j.conbuildmat.2025.1403761879-0526ABSTRACT: Seeking to address large-scale issues faced by many countries today, such as excessive energy consumption, global warming, and uncontrolled mining activities, this research repurposes clayey mining and excavation waste to design soil-cement mixtures for road construction. A total of 2026 data points from laboratory experimental tests were statistically analyzed using regression models and neural networks to evaluate the effect of curing temperature on compressive strength, indirect tensile strength, and resilient modulus. The study focused on three types of clayey waste mixed with high early-strength hydraulic cement (Type 1 Portland cement) after 7 days of curing. The samples were cured in three different chambers, each maintaining a constant temperature of 10, 28, and 40 ◦C for 7 days, simulating the most common road temperatures in Colombia. Results showed that temperature has a positive effect of 18 % on the resilient modulus, which could lead to cement savings in warm climates. Additionally, an artificial neural network model was developed, which can contribute to the construction and design of more sustainable and environmentally friendly geothermal pavements. The use of these models and networks not only facilitates the study of multiple variables but also optimizes materials and methods, aiming to reduce energy consumption and costs.COL009969817 páginasapplication/pdfengElsevierGuildford, Inglaterrahttps://creativecommons.org/licenses/by-nc-nd/4.0/http://creativecommons.org/licenses/by-nc-nd/2.5/co/info:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2Modeling an artificial neural network to estimate cement consumption in clayey waste-cement mixtures based on curing temperature, mechanical strength, and resilient modulusArtículo de investigaciónhttp://purl.org/coar/resource_type/c_2df8fbb1https://purl.org/redcol/resource_type/ARThttp://purl.org/coar/version/c_970fb48d4fbd8a85info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionInteligencia artificialArtificial IntelligenceResiduosWaste ProductsRedes neurales (computadores)Neural networks (Computer science)CementoCementEstabilización de suelosSoil stabilizationClay soilClay wastehttps://id.nlm.nih.gov/mesh/D001185https://id.nlm.nih.gov/mesh/D014866Constr. Build. Mater.171467Construction and Building MaterialsPublicationLICENSElicense.txtlicense.txttext/plain; charset=utf-81748https://bibliotecadigital.udea.edu.co/bitstreams/2395bb0d-3aea-4817-adab-1445a75f01fc/download8a4605be74aa9ea9d79846c1fba20a33MD53falseAnonymousREADORIGINALColoradoHenry_2025_Modeling_Artificial_Neural.pdfColoradoHenry_2025_Modeling_Artificial_Neural.pdfArtículo de investigaciónapplication/pdf1138854https://bibliotecadigital.udea.edu.co/bitstreams/72ab4be2-fac2-40a5-8d34-9e3dd9b8f3f0/downloadd049157b2c1dbfb107d519ff11a1bf95MD51trueAnonymousREADCC-LICENSElicense_rdflicense_rdfapplication/rdf+xml; charset=utf-8823https://bibliotecadigital.udea.edu.co/bitstreams/449456df-295a-4e36-aefc-2de75e740368/downloadb88b088d9957e670ce3b3fbe2eedbc13MD52falseAnonymousREADTEXTColoradoHenry_2025_Modeling_Artificial_Neural.pdf.txtColoradoHenry_2025_Modeling_Artificial_Neural.pdf.txtExtracted texttext/plain70329https://bibliotecadigital.udea.edu.co/bitstreams/f116b760-80a4-4c21-a33d-fb45e4f62c25/download98fa4bc3a0d9d2cc1a0972eddc77cb1dMD54falseAnonymousREADTHUMBNAILColoradoHenry_2025_Modeling_Artificial_Neural.pdf.jpgColoradoHenry_2025_Modeling_Artificial_Neural.pdf.jpgGenerated Thumbnailimage/jpeg14803https://bibliotecadigital.udea.edu.co/bitstreams/0e2e5bc8-8cce-457f-ad78-8b3d9e74dd4d/download9964489075db8adc7b222a12c9baf0c3MD55falseAnonymousREAD10495/45130oai:bibliotecadigital.udea.edu.co:10495/451302025-03-26 23:42:10.419https://creativecommons.org/licenses/by-nc-nd/4.0/open.accesshttps://bibliotecadigital.udea.edu.coRepositorio Institucional de la Universidad de Antioquiaaplicacionbibliotecadigitalbiblioteca@udea.edu.coTk9URTogUExBQ0UgWU9VUiBPV04gTElDRU5TRSBIRVJFClRoaXMgc2FtcGxlIGxpY2Vuc2UgaXMgcHJvdmlkZWQgZm9yIGluZm9ybWF0aW9uYWwgcHVycG9zZXMgb25seS4KCk5PTi1FWENMVVNJVkUgRElTVFJJQlVUSU9OIExJQ0VOU0UKCkJ5IHNpZ25pbmcgYW5kIHN1Ym1pdHRpbmcgdGhpcyBsaWNlbnNlLCB5b3UgKHRoZSBhdXRob3Iocykgb3IgY29weXJpZ2h0Cm93bmVyKSBncmFudHMgdG8gRFNwYWNlIFVuaXZlcnNpdHkgKERTVSkgdGhlIG5vbi1leGNsdXNpdmUgcmlnaHQgdG8gcmVwcm9kdWNlLAp0cmFuc2xhdGUgKGFzIGRlZmluZWQgYmVsb3cpLCBhbmQvb3IgZGlzdHJpYnV0ZSB5b3VyIHN1Ym1pc3Npb24gKGluY2x1ZGluZwp0aGUgYWJzdHJhY3QpIHdvcmxkd2lkZSBpbiBwcmludCBhbmQgZWxlY3Ryb25pYyBmb3JtYXQgYW5kIGluIGFueSBtZWRpdW0sCmluY2x1ZGluZyBidXQgbm90IGxpbWl0ZWQgdG8gYXVkaW8gb3IgdmlkZW8uCgpZb3UgYWdyZWUgdGhhdCBEU1UgbWF5LCB3aXRob3V0IGNoYW5naW5nIHRoZSBjb250ZW50LCB0cmFuc2xhdGUgdGhlCnN1Ym1pc3Npb24gdG8gYW55IG1lZGl1bSBvciBmb3JtYXQgZm9yIHRoZSBwdXJwb3NlIG9mIHByZXNlcnZhdGlvbi4KCllvdSBhbHNvIGFncmVlIHRoYXQgRFNVIG1heSBrZWVwIG1vcmUgdGhhbiBvbmUgY29weSBvZiB0aGlzIHN1Ym1pc3Npb24gZm9yCnB1cnBvc2VzIG9mIHNlY3VyaXR5LCBiYWNrLXVwIGFuZCBwcmVzZXJ2YXRpb24uCgpZb3UgcmVwcmVzZW50IHRoYXQgdGhlIHN1Ym1pc3Npb24gaXMgeW91ciBvcmlnaW5hbCB3b3JrLCBhbmQgdGhhdCB5b3UgaGF2ZQp0aGUgcmlnaHQgdG8gZ3JhbnQgdGhlIHJpZ2h0cyBjb250YWluZWQgaW4gdGhpcyBsaWNlbnNlLiBZb3UgYWxzbyByZXByZXNlbnQKdGhhdCB5b3VyIHN1Ym1pc3Npb24gZG9lcyBub3QsIHRvIHRoZSBiZXN0IG9mIHlvdXIga25vd2xlZGdlLCBpbmZyaW5nZSB1cG9uCmFueW9uZSdzIGNvcHlyaWdodC4KCklmIHRoZSBzdWJtaXNzaW9uIGNvbnRhaW5zIG1hdGVyaWFsIGZvciB3aGljaCB5b3UgZG8gbm90IGhvbGQgY29weXJpZ2h0LAp5b3UgcmVwcmVzZW50IHRoYXQgeW91IGhhdmUgb2J0YWluZWQgdGhlIHVucmVzdHJpY3RlZCBwZXJtaXNzaW9uIG9mIHRoZQpjb3B5cmlnaHQgb3duZXIgdG8gZ3JhbnQgRFNVIHRoZSByaWdodHMgcmVxdWlyZWQgYnkgdGhpcyBsaWNlbnNlLCBhbmQgdGhhdApzdWNoIHRoaXJkLXBhcnR5IG93bmVkIG1hdGVyaWFsIGlzIGNsZWFybHkgaWRlbnRpZmllZCBhbmQgYWNrbm93bGVkZ2VkCndpdGhpbiB0aGUgdGV4dCBvciBjb250ZW50IG9mIHRoZSBzdWJtaXNzaW9uLgoKSUYgVEhFIFNVQk1JU1NJT04gSVMgQkFTRUQgVVBPTiBXT1JLIFRIQVQgSEFTIEJFRU4gU1BPTlNPUkVEIE9SIFNVUFBPUlRFRApCWSBBTiBBR0VOQ1kgT1IgT1JHQU5JWkFUSU9OIE9USEVSIFRIQU4gRFNVLCBZT1UgUkVQUkVTRU5UIFRIQVQgWU9VIEhBVkUKRlVMRklMTEVEIEFOWSBSSUdIVCBPRiBSRVZJRVcgT1IgT1RIRVIgT0JMSUdBVElPTlMgUkVRVUlSRUQgQlkgU1VDSApDT05UUkFDVCBPUiBBR1JFRU1FTlQuCgpEU1Ugd2lsbCBjbGVhcmx5IGlkZW50aWZ5IHlvdXIgbmFtZShzKSBhcyB0aGUgYXV0aG9yKHMpIG9yIG93bmVyKHMpIG9mIHRoZQpzdWJtaXNzaW9uLCBhbmQgd2lsbCBub3QgbWFrZSBhbnkgYWx0ZXJhdGlvbiwgb3RoZXIgdGhhbiBhcyBhbGxvd2VkIGJ5IHRoaXMKbGljZW5zZSwgdG8geW91ciBzdWJtaXNzaW9uLgo=