Generalized bivariate beta distributions involving Appell’s hypergeometric function of the second kind

ABSTRACT: Let X1, X2 and X3 be independent random variables, X1 and X2 having a confluent hypergeometric function kind 1 distribution with probability density function proportional to x νi−1 i 1F1(αi; βi; −xi), i = 1, 2, and X3 having a standard gamma distribution with shape parameter ν3. Define (Y1...

Full description

Autores:
Orozco Castañeda, Johanna Marcela
Nagar, Daya Krishna
Gupta, Arjun Kumar
Tipo de recurso:
Article of investigation
Fecha de publicación:
2012
Institución:
Universidad de Antioquia
Repositorio:
Repositorio UdeA
Idioma:
eng
OAI Identifier:
oai:bibliotecadigital.udea.edu.co:10495/41790
Acceso en línea:
https://hdl.handle.net/10495/41790
Palabra clave:
Funciones beta
Functions, beta
Teoría de las distribuciones (análisis funcional)
Theory of distributions (Functional analysis)
Funciones hipergeométricas
Hypergeometric functions
Funciones gamma
Functions, gamma
Funciones de coulomb
Coulomb functions
Distribución de Gauss
Gauss distribution
Rights
openAccess
License
http://creativecommons.org/licenses/by-nc-nd/2.5/co/
id UDEA2_007f42c79d2d10243e449a62fb494c94
oai_identifier_str oai:bibliotecadigital.udea.edu.co:10495/41790
network_acronym_str UDEA2
network_name_str Repositorio UdeA
repository_id_str
dc.title.spa.fl_str_mv Generalized bivariate beta distributions involving Appell’s hypergeometric function of the second kind
title Generalized bivariate beta distributions involving Appell’s hypergeometric function of the second kind
spellingShingle Generalized bivariate beta distributions involving Appell’s hypergeometric function of the second kind
Funciones beta
Functions, beta
Teoría de las distribuciones (análisis funcional)
Theory of distributions (Functional analysis)
Funciones hipergeométricas
Hypergeometric functions
Funciones gamma
Functions, gamma
Funciones de coulomb
Coulomb functions
Distribución de Gauss
Gauss distribution
title_short Generalized bivariate beta distributions involving Appell’s hypergeometric function of the second kind
title_full Generalized bivariate beta distributions involving Appell’s hypergeometric function of the second kind
title_fullStr Generalized bivariate beta distributions involving Appell’s hypergeometric function of the second kind
title_full_unstemmed Generalized bivariate beta distributions involving Appell’s hypergeometric function of the second kind
title_sort Generalized bivariate beta distributions involving Appell’s hypergeometric function of the second kind
dc.creator.fl_str_mv Orozco Castañeda, Johanna Marcela
Nagar, Daya Krishna
Gupta, Arjun Kumar
dc.contributor.author.none.fl_str_mv Orozco Castañeda, Johanna Marcela
Nagar, Daya Krishna
Gupta, Arjun Kumar
dc.contributor.researchgroup.spa.fl_str_mv Análisis Multivariado
dc.subject.lemb.none.fl_str_mv Funciones beta
Functions, beta
Teoría de las distribuciones (análisis funcional)
Theory of distributions (Functional analysis)
Funciones hipergeométricas
Hypergeometric functions
Funciones gamma
Functions, gamma
Funciones de coulomb
Coulomb functions
Distribución de Gauss
Gauss distribution
topic Funciones beta
Functions, beta
Teoría de las distribuciones (análisis funcional)
Theory of distributions (Functional analysis)
Funciones hipergeométricas
Hypergeometric functions
Funciones gamma
Functions, gamma
Funciones de coulomb
Coulomb functions
Distribución de Gauss
Gauss distribution
description ABSTRACT: Let X1, X2 and X3 be independent random variables, X1 and X2 having a confluent hypergeometric function kind 1 distribution with probability density function proportional to x νi−1 i 1F1(αi; βi; −xi), i = 1, 2, and X3 having a standard gamma distribution with shape parameter ν3. Define (Y1, Y2) = (X1/X3, X2/X3) and (Z1, Z2) = (X1, X2)/(X1 + X2 + X3). In this article, we derive probability density functions of (Y1, Y2) and (Z1, Z2), and study their properties. We use the second hypergeometric function of Appell to express these density functions.
publishDate 2012
dc.date.issued.none.fl_str_mv 2012
dc.date.accessioned.none.fl_str_mv 2024-09-05T00:56:55Z
dc.date.available.none.fl_str_mv 2024-09-05T00:56:55Z
dc.type.spa.fl_str_mv Artículo de investigación
dc.type.coar.spa.fl_str_mv http://purl.org/coar/resource_type/c_2df8fbb1
dc.type.redcol.spa.fl_str_mv https://purl.org/redcol/resource_type/ART
dc.type.coarversion.spa.fl_str_mv http://purl.org/coar/version/c_970fb48d4fbd8a85
dc.type.driver.spa.fl_str_mv info:eu-repo/semantics/article
dc.type.version.spa.fl_str_mv info:eu-repo/semantics/publishedVersion
format http://purl.org/coar/resource_type/c_2df8fbb1
status_str publishedVersion
dc.identifier.issn.none.fl_str_mv 0898-1221
dc.identifier.uri.none.fl_str_mv https://hdl.handle.net/10495/41790
dc.identifier.doi.none.fl_str_mv 10.1016/j.camwa.2012.06.006
dc.identifier.eissn.none.fl_str_mv 1873-7668
identifier_str_mv 0898-1221
10.1016/j.camwa.2012.06.006
1873-7668
url https://hdl.handle.net/10495/41790
dc.language.iso.spa.fl_str_mv eng
language eng
dc.relation.ispartofjournalabbrev.spa.fl_str_mv Comput. Math. Appl.
dc.relation.citationendpage.spa.fl_str_mv 2519
dc.relation.citationissue.spa.fl_str_mv 8
dc.relation.citationstartpage.spa.fl_str_mv 2507
dc.relation.citationvolume.spa.fl_str_mv 64
dc.relation.ispartofjournal.spa.fl_str_mv Computers and Mathematics with Applications
dc.rights.uri.*.fl_str_mv http://creativecommons.org/licenses/by-nc-nd/2.5/co/
dc.rights.uri.spa.fl_str_mv https://creativecommons.org/licenses/by-nc-nd/4.0/
dc.rights.accessrights.spa.fl_str_mv info:eu-repo/semantics/openAccess
dc.rights.coar.spa.fl_str_mv http://purl.org/coar/access_right/c_abf2
rights_invalid_str_mv http://creativecommons.org/licenses/by-nc-nd/2.5/co/
https://creativecommons.org/licenses/by-nc-nd/4.0/
http://purl.org/coar/access_right/c_abf2
eu_rights_str_mv openAccess
dc.format.extent.spa.fl_str_mv 13 páginas
dc.format.mimetype.spa.fl_str_mv application/pdf
dc.publisher.spa.fl_str_mv Pergamon Press
Elsevier
dc.publisher.place.spa.fl_str_mv Nueva York, Estados Unidos
institution Universidad de Antioquia
bitstream.url.fl_str_mv https://bibliotecadigital.udea.edu.co/bitstreams/a86144bc-d5fe-46fa-88b3-2fbf3b629c54/download
https://bibliotecadigital.udea.edu.co/bitstreams/56f5b0e1-ddf2-431a-b555-a8cd8bb0de52/download
https://bibliotecadigital.udea.edu.co/bitstreams/b7cc8c5b-ed0a-4d94-80a8-0b5931b98285/download
https://bibliotecadigital.udea.edu.co/bitstreams/4a25f2d2-56d3-40b1-b305-eb8655f98a4b/download
bitstream.checksum.fl_str_mv 8a4605be74aa9ea9d79846c1fba20a33
a044029436892a7c3b812ef4c16ef325
329b4e1541e65bac26a9ed626ac3fba6
ba654a1909769ce6c666725f50e3913f
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
MD5
repository.name.fl_str_mv Repositorio Institucional de la Universidad de Antioquia
repository.mail.fl_str_mv aplicacionbibliotecadigitalbiblioteca@udea.edu.co
_version_ 1851052111766224896
spelling Orozco Castañeda, Johanna MarcelaNagar, Daya KrishnaGupta, Arjun KumarAnálisis Multivariado2024-09-05T00:56:55Z2024-09-05T00:56:55Z20120898-1221https://hdl.handle.net/10495/4179010.1016/j.camwa.2012.06.0061873-7668ABSTRACT: Let X1, X2 and X3 be independent random variables, X1 and X2 having a confluent hypergeometric function kind 1 distribution with probability density function proportional to x νi−1 i 1F1(αi; βi; −xi), i = 1, 2, and X3 having a standard gamma distribution with shape parameter ν3. Define (Y1, Y2) = (X1/X3, X2/X3) and (Z1, Z2) = (X1, X2)/(X1 + X2 + X3). In this article, we derive probability density functions of (Y1, Y2) and (Z1, Z2), and study their properties. We use the second hypergeometric function of Appell to express these density functions.Universidad de Antioquia. Vicerrectoría de investigación. Comité para el Desarrollo de la Investigación - CODICOL000676913 páginasapplication/pdfengPergamon PressElsevierNueva York, Estados Unidoshttp://creativecommons.org/licenses/by-nc-nd/2.5/co/https://creativecommons.org/licenses/by-nc-nd/4.0/info:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2Generalized bivariate beta distributions involving Appell’s hypergeometric function of the second kindArtículo de investigaciónhttp://purl.org/coar/resource_type/c_2df8fbb1https://purl.org/redcol/resource_type/ARThttp://purl.org/coar/version/c_970fb48d4fbd8a85info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionFunciones betaFunctions, betaTeoría de las distribuciones (análisis funcional)Theory of distributions (Functional analysis)Funciones hipergeométricasHypergeometric functionsFunciones gammaFunctions, gammaFunciones de coulombCoulomb functionsDistribución de GaussGauss distributionComput. Math. Appl.25198250764Computers and Mathematics with ApplicationsCODI IN550CERoR:03bp5hc83PublicationLICENSElicense.txtlicense.txttext/plain; charset=utf-81748https://bibliotecadigital.udea.edu.co/bitstreams/a86144bc-d5fe-46fa-88b3-2fbf3b629c54/download8a4605be74aa9ea9d79846c1fba20a33MD52falseAnonymousREADORIGINALOrozcoJohanna_2012_ GeneralizedBivariateBeta.pdfOrozcoJohanna_2012_ GeneralizedBivariateBeta.pdfArtículo de investigaciónapplication/pdf332407https://bibliotecadigital.udea.edu.co/bitstreams/56f5b0e1-ddf2-431a-b555-a8cd8bb0de52/downloada044029436892a7c3b812ef4c16ef325MD51trueAnonymousREADTEXTOrozcoJohanna_2012_ GeneralizedBivariateBeta.pdf.txtOrozcoJohanna_2012_ GeneralizedBivariateBeta.pdf.txtExtracted texttext/plain44887https://bibliotecadigital.udea.edu.co/bitstreams/b7cc8c5b-ed0a-4d94-80a8-0b5931b98285/download329b4e1541e65bac26a9ed626ac3fba6MD57falseAnonymousREADTHUMBNAILOrozcoJohanna_2012_ GeneralizedBivariateBeta.pdf.jpgOrozcoJohanna_2012_ GeneralizedBivariateBeta.pdf.jpgGenerated Thumbnailimage/jpeg13263https://bibliotecadigital.udea.edu.co/bitstreams/4a25f2d2-56d3-40b1-b305-eb8655f98a4b/downloadba654a1909769ce6c666725f50e3913fMD58falseAnonymousREAD10495/41790oai:bibliotecadigital.udea.edu.co:10495/417902025-03-26 17:08:21.149http://creativecommons.org/licenses/by-nc-nd/2.5/co/open.accesshttps://bibliotecadigital.udea.edu.coRepositorio Institucional de la Universidad de Antioquiaaplicacionbibliotecadigitalbiblioteca@udea.edu.coTk9URTogUExBQ0UgWU9VUiBPV04gTElDRU5TRSBIRVJFClRoaXMgc2FtcGxlIGxpY2Vuc2UgaXMgcHJvdmlkZWQgZm9yIGluZm9ybWF0aW9uYWwgcHVycG9zZXMgb25seS4KCk5PTi1FWENMVVNJVkUgRElTVFJJQlVUSU9OIExJQ0VOU0UKCkJ5IHNpZ25pbmcgYW5kIHN1Ym1pdHRpbmcgdGhpcyBsaWNlbnNlLCB5b3UgKHRoZSBhdXRob3Iocykgb3IgY29weXJpZ2h0Cm93bmVyKSBncmFudHMgdG8gRFNwYWNlIFVuaXZlcnNpdHkgKERTVSkgdGhlIG5vbi1leGNsdXNpdmUgcmlnaHQgdG8gcmVwcm9kdWNlLAp0cmFuc2xhdGUgKGFzIGRlZmluZWQgYmVsb3cpLCBhbmQvb3IgZGlzdHJpYnV0ZSB5b3VyIHN1Ym1pc3Npb24gKGluY2x1ZGluZwp0aGUgYWJzdHJhY3QpIHdvcmxkd2lkZSBpbiBwcmludCBhbmQgZWxlY3Ryb25pYyBmb3JtYXQgYW5kIGluIGFueSBtZWRpdW0sCmluY2x1ZGluZyBidXQgbm90IGxpbWl0ZWQgdG8gYXVkaW8gb3IgdmlkZW8uCgpZb3UgYWdyZWUgdGhhdCBEU1UgbWF5LCB3aXRob3V0IGNoYW5naW5nIHRoZSBjb250ZW50LCB0cmFuc2xhdGUgdGhlCnN1Ym1pc3Npb24gdG8gYW55IG1lZGl1bSBvciBmb3JtYXQgZm9yIHRoZSBwdXJwb3NlIG9mIHByZXNlcnZhdGlvbi4KCllvdSBhbHNvIGFncmVlIHRoYXQgRFNVIG1heSBrZWVwIG1vcmUgdGhhbiBvbmUgY29weSBvZiB0aGlzIHN1Ym1pc3Npb24gZm9yCnB1cnBvc2VzIG9mIHNlY3VyaXR5LCBiYWNrLXVwIGFuZCBwcmVzZXJ2YXRpb24uCgpZb3UgcmVwcmVzZW50IHRoYXQgdGhlIHN1Ym1pc3Npb24gaXMgeW91ciBvcmlnaW5hbCB3b3JrLCBhbmQgdGhhdCB5b3UgaGF2ZQp0aGUgcmlnaHQgdG8gZ3JhbnQgdGhlIHJpZ2h0cyBjb250YWluZWQgaW4gdGhpcyBsaWNlbnNlLiBZb3UgYWxzbyByZXByZXNlbnQKdGhhdCB5b3VyIHN1Ym1pc3Npb24gZG9lcyBub3QsIHRvIHRoZSBiZXN0IG9mIHlvdXIga25vd2xlZGdlLCBpbmZyaW5nZSB1cG9uCmFueW9uZSdzIGNvcHlyaWdodC4KCklmIHRoZSBzdWJtaXNzaW9uIGNvbnRhaW5zIG1hdGVyaWFsIGZvciB3aGljaCB5b3UgZG8gbm90IGhvbGQgY29weXJpZ2h0LAp5b3UgcmVwcmVzZW50IHRoYXQgeW91IGhhdmUgb2J0YWluZWQgdGhlIHVucmVzdHJpY3RlZCBwZXJtaXNzaW9uIG9mIHRoZQpjb3B5cmlnaHQgb3duZXIgdG8gZ3JhbnQgRFNVIHRoZSByaWdodHMgcmVxdWlyZWQgYnkgdGhpcyBsaWNlbnNlLCBhbmQgdGhhdApzdWNoIHRoaXJkLXBhcnR5IG93bmVkIG1hdGVyaWFsIGlzIGNsZWFybHkgaWRlbnRpZmllZCBhbmQgYWNrbm93bGVkZ2VkCndpdGhpbiB0aGUgdGV4dCBvciBjb250ZW50IG9mIHRoZSBzdWJtaXNzaW9uLgoKSUYgVEhFIFNVQk1JU1NJT04gSVMgQkFTRUQgVVBPTiBXT1JLIFRIQVQgSEFTIEJFRU4gU1BPTlNPUkVEIE9SIFNVUFBPUlRFRApCWSBBTiBBR0VOQ1kgT1IgT1JHQU5JWkFUSU9OIE9USEVSIFRIQU4gRFNVLCBZT1UgUkVQUkVTRU5UIFRIQVQgWU9VIEhBVkUKRlVMRklMTEVEIEFOWSBSSUdIVCBPRiBSRVZJRVcgT1IgT1RIRVIgT0JMSUdBVElPTlMgUkVRVUlSRUQgQlkgU1VDSApDT05UUkFDVCBPUiBBR1JFRU1FTlQuCgpEU1Ugd2lsbCBjbGVhcmx5IGlkZW50aWZ5IHlvdXIgbmFtZShzKSBhcyB0aGUgYXV0aG9yKHMpIG9yIG93bmVyKHMpIG9mIHRoZQpzdWJtaXNzaW9uLCBhbmQgd2lsbCBub3QgbWFrZSBhbnkgYWx0ZXJhdGlvbiwgb3RoZXIgdGhhbiBhcyBhbGxvd2VkIGJ5IHRoaXMKbGljZW5zZSwgdG8geW91ciBzdWJtaXNzaW9uLgo=