Evaluación de la actividad lítica de bacteriófagos aislados y caracterizados con especificidad sobre Escherichia coli procedentes del sistema productivo de queso costeño

El queso costeño es un producto ampliamente reconocido en el país debido a sus características y condiciones del proceso de producción y comercialización, haciendo necesario el uso de alternativas que conserven sus características y mejoren su inocuidad y calidad. Los bacteriófagos han mostrado ser...

Full description

Autores:
Hernández Arteaga, Ana María
Tipo de recurso:
Fecha de publicación:
2024
Institución:
Universidad de Córdoba
Repositorio:
Repositorio Institucional Unicórdoba
Idioma:
spa
OAI Identifier:
oai:repositorio.unicordoba.edu.co:ucordoba/9053
Acceso en línea:
https://repositorio.unicordoba.edu.co/handle/ucordoba/9053
https://repositorio.unicordoba.edu.co/
Palabra clave:
Bacteriófagos
Escherichia coli
Multiplicidad de infección (MOI)
Queso costeño
Actividad lítica
Bacteriophages
Escherichia coli
Multiplicity of infection (MOI)
Costeño cheese
Lytic activity
Rights
embargoedAccess
License
Copyright Universidad de Córdoba, 2025
id UCORDOBA2_ed6e15cc925c96c77e05ddf711b3c0d9
oai_identifier_str oai:repositorio.unicordoba.edu.co:ucordoba/9053
network_acronym_str UCORDOBA2
network_name_str Repositorio Institucional Unicórdoba
repository_id_str
dc.title.spa.fl_str_mv Evaluación de la actividad lítica de bacteriófagos aislados y caracterizados con especificidad sobre Escherichia coli procedentes del sistema productivo de queso costeño
title Evaluación de la actividad lítica de bacteriófagos aislados y caracterizados con especificidad sobre Escherichia coli procedentes del sistema productivo de queso costeño
spellingShingle Evaluación de la actividad lítica de bacteriófagos aislados y caracterizados con especificidad sobre Escherichia coli procedentes del sistema productivo de queso costeño
Bacteriófagos
Escherichia coli
Multiplicidad de infección (MOI)
Queso costeño
Actividad lítica
Bacteriophages
Escherichia coli
Multiplicity of infection (MOI)
Costeño cheese
Lytic activity
title_short Evaluación de la actividad lítica de bacteriófagos aislados y caracterizados con especificidad sobre Escherichia coli procedentes del sistema productivo de queso costeño
title_full Evaluación de la actividad lítica de bacteriófagos aislados y caracterizados con especificidad sobre Escherichia coli procedentes del sistema productivo de queso costeño
title_fullStr Evaluación de la actividad lítica de bacteriófagos aislados y caracterizados con especificidad sobre Escherichia coli procedentes del sistema productivo de queso costeño
title_full_unstemmed Evaluación de la actividad lítica de bacteriófagos aislados y caracterizados con especificidad sobre Escherichia coli procedentes del sistema productivo de queso costeño
title_sort Evaluación de la actividad lítica de bacteriófagos aislados y caracterizados con especificidad sobre Escherichia coli procedentes del sistema productivo de queso costeño
dc.creator.fl_str_mv Hernández Arteaga, Ana María
dc.contributor.advisor.none.fl_str_mv Pérez Sierra, Omar Andrés
dc.contributor.author.none.fl_str_mv Hernández Arteaga, Ana María
dc.contributor.jury.none.fl_str_mv Mendoza Corvis, Fernando Alonso
Gontijo, Marco Tulio
dc.subject.proposal.spa.fl_str_mv Bacteriófagos
Escherichia coli
Multiplicidad de infección (MOI)
Queso costeño
Actividad lítica
topic Bacteriófagos
Escherichia coli
Multiplicidad de infección (MOI)
Queso costeño
Actividad lítica
Bacteriophages
Escherichia coli
Multiplicity of infection (MOI)
Costeño cheese
Lytic activity
dc.subject.keywords.eng.fl_str_mv Bacteriophages
Escherichia coli
Multiplicity of infection (MOI)
Costeño cheese
Lytic activity
description El queso costeño es un producto ampliamente reconocido en el país debido a sus características y condiciones del proceso de producción y comercialización, haciendo necesario el uso de alternativas que conserven sus características y mejoren su inocuidad y calidad. Los bacteriófagos han mostrado ser una excelente alternativa para el biocontrol de bacterias que puedan afectar la calidad e inocuidad de productos alimenticios de gran valor nutricional. Por esta razón, el objetivo de este trabajo es evaluar la actividad lítica de bacteriófagos aislados y caracterizados con especificidad sobre Escherichia coli procedentes del lactosuero y queso. Los bacteriófagos fueron aislados mediante el método de enriquecimiento, empleando como huésped la cepa de E. coli (ATCC 11229). La presencia de bacteriófagos se confirmó mediante la técnica de microgotas sobre un césped bacteriano. Posteriormente, los fagos se purificaron y cuantificaron. El espectro lítico se evaluó frente a varias especies, y se caracterizó tanto la morfología como su actividad lítica. Los fagos aislados JA-QT, SL-LC y HM-QC, mostraron una alta actividad lítica frente a E. coli. Los títulos de los fagos purificados oscilaron entre 1010 y 1012 UFP/mL. Dentro del rango de huéspedes evaluados, se destacó una notable alta actividad lítica sobre Salmonella Enteritidis. Morfológicamente, los fagos presentaron cabezas y colas características del orden Caudovirales. Los resultados de la actividad lítica indicaron que una multiplicidad de infección superior a 10 es necesaria para lograr una reducción de 2 a 5 log de E. coli en un tiempo de 50 minutos. En conclusión, se aislaron tres bacteriófagos con diversidad morfológica a partir de entornos de producción de queso costeño, capaces de inhibir el crecimiento de E. coli.
publishDate 2024
dc.date.issued.none.fl_str_mv 2024-12
dc.date.accessioned.none.fl_str_mv 2025-02-07T21:17:05Z
dc.date.available.none.fl_str_mv 2025-02-07T21:17:05Z
2027-01-23
dc.type.none.fl_str_mv Trabajo de grado - Maestría
dc.type.driver.none.fl_str_mv info:eu-repo/semantics/masterThesis
dc.type.version.none.fl_str_mv info:eu-repo/semantics/acceptedVersion
dc.type.content.none.fl_str_mv Text
dc.type.redcol.none.fl_str_mv http://purl.org/redcol/resource_type/TM
status_str acceptedVersion
dc.identifier.uri.none.fl_str_mv https://repositorio.unicordoba.edu.co/handle/ucordoba/9053
dc.identifier.instname.none.fl_str_mv Universidad de Córdoba
dc.identifier.reponame.none.fl_str_mv Repositorio Universidad de Córdoba
dc.identifier.repourl.none.fl_str_mv https://repositorio.unicordoba.edu.co/
url https://repositorio.unicordoba.edu.co/handle/ucordoba/9053
https://repositorio.unicordoba.edu.co/
identifier_str_mv Universidad de Córdoba
Repositorio Universidad de Córdoba
dc.language.iso.none.fl_str_mv spa
language spa
dc.relation.references.none.fl_str_mv Adams, M. H. (1959). Bacteriophages. In New York, Interscience Publishers.
Alexyuk, P., Bogoyavlenskiy, A., Alexyuk, M., Akanova, K., Moldakhanov, Y., & Berezin, V. (2023). Isolation and Characterization of Jumbo Coliphage vB_EcoM_Lh1B as a Promising Therapeutic Agent against Chicken Colibacillosis. Microorganisms, 11(6). https://doi.org/10.3390/microorganisms11061524
Alharbi, N. M., & Ziadi, M. M. (2021). Wastewater as a fertility source for novel bacteriophages against multi-drug resistant bacteria. Saudi Journal of Biological Sciences, 28(8), 4358–4364. https://doi.org/10.1016/J.SJBS.2021.04.025
Aljamali, N., Najim, M., & Alabbasy, A. (2021). Review on Food poisoning (Types, Causes, Symptoms, Diagnosis, Treatment). 3, 54–61. https://doi.org/10.36348/gajpdr.2021.v03i04.001
Atterbury, R. J., Van Bergen, M. A. P., Ortiz, F., Lovell, M. A., Harris, J. A., De Boer, A., Wagenaar, J. A., Allen, V. M., & Barrow, P. A. (2007). Bacteriophage therapy to reduce salmonella colonization of broiler chickens. Applied and Environmental Microbiology, 73(14), 4543–4549. https://doi.org/10.1128/AEM.00049-07
Ayala, R., Moiseenko, A. V, Chen, T.-H., Kulikov, E. E., Golomidova, A. K., Orekhov, P. S., Street, M. A., Sokolova, O. S., Letarov, A. V, & Wolf, M. (2023). Nearly complete structure of bacteriophage DT57C reveals architecture of head-to-tail interface and lateral tail fibers. Nature Communications, 14(1), 8205. https://doi.org/10.1038/s41467-023-43824-9
Azzam, M., & Faiesal, A. (2019). Novel “Superspreader” Coliphages for Detecting Microbial Water Pollution. International Journal of Environment and Pollution, 8, 57–70.
Bao, H., Zhang, P., Zhang, H., Zhou, Y., Zhang, L., & Wang, R. (2015). Bio-Control of Salmonella Enteritidis in Foods Using Bacteriophages. Viruses, 7, 4836–4853. https://doi.org/10.3390/v7082847
Bebeacua, C., Tremblay, D., Farenc, C., Chapot-Chartier, M.-P., Sadovskaya, I., van Heel, M., Veesler, D., Moineau, S., & Cambillau, C. (2013). Structure, adsorption to host, and infection mechanism of virulent lactococcal phage p2. Journal of Virology, 87(22), 12302–12312. https://doi.org/10.1128/JVI.02033-13
Benala, M., Vaiyapuri, M., Visnuvinayagam, S., George, J. C., Raveendran, K., George, I., Mothadaka, M. P., & Badireddy, M. R. (2021). A revisited two-step microtiter plate assay: Optimization of in vitro multiplicity of infection (MOI) for Coliphage and Vibriophage. Journal of Virological Methods, 294(March), 1–9. https://doi.org/10.1016/j.jviromet.2021.114177
Bertozzi Silva, J., Storms, Z., & Sauvageau, D. (2016). Host receptors for bacteriophage adsorption. FEMS Microbiology Letters, 363(4). https://doi.org/10.1093/femsle/fnw002
Bintsis, T. (2017). Foodborne pathogens. AIMS Microbiology, 3(3), 529–563. https://doi.org/10.3934/microbiol.2017.3.529
Borbón Ramos, M. E., & Prieto Alvarado, F. E. (2019). Concordancia y subregistro en la notificación de brotes de enfermedades transmitidas por alimentos en Colombia. Revista de Salud Pública, 21(6 SE-Artículos/Investigación), 608–613. https://doi.org/10.15446/rsap.v21n6.50268
Bueno, E., García, P., Martínez, B., & Rodríguez, A. (2012). Phage inactivation of Staphylococcus aureus in fresh and hard-type cheeses. International Journal of Food Microbiology, 158(1), 23–27. https://doi.org/10.1016/J.IJFOODMICRO.2012.06.012
Butt, S., Saleh, M., & Gagnon, J. (2020). Impact of the Escherichia coli Heat-Stable Enterotoxin b (STb) on Gut Health and Function. In Toxins (Vol. 12, Issue 12). https://doi.org/10.3390/toxins12120760
Campbell, A. (2003). The future of bacteriophage biology. Nature Reviews Genetics, 4(6), 471–477. https://doi.org/10.1038/nrg1089
Chang, C., Yu, X., Guo, W., Guo, C., Guo, X., Li, Q., & Zhu, Y. (2022). Bacteriophage-Mediated Control of Biofilm: A Promising New Dawn for the Future. Frontiers in Microbiology, 13. https://www.frontiersin.org/journals/microbiology/articles/10.3389/fmicb.2022.825828
Christie, G. E. (1999). PROPAGATION OF VIRUSES | Bacteria. Encyclopedia of Virology (Second Edition), 1413–1418. https://doi.org/https://doi.org/10.1006/rwvi.1999.0237
Costa, M. J., Pastrana, L. M., Teixeira, J. A., Sillankorva, S. M., & Cerqueira, M. A. (2023). Bacteriophage Delivery Systems for Food Applications: Opportunities and Perspectives. Viruses, 15(6). https://doi.org/10.3390/v15061271
Dharmaraj, T., Kratochvil, M. J., Pourtois, J. D., Chen, Q., Hajfathalian, M., Hargil, A., Lin, Y. H., Evans, Z., Oromí-Bosch, A., Berry, J. D., McBride, R., Haddock, N. L., Holman, D. R., Van Belleghem, J. D., Chang, T. H., Barr, J. J., Lavigne, R., Heilshorn, S. C., Blankenberg, F. G., & Bollyky, P. L. (2023). Rapid assessment of changes in phage bioactivity using dynamic light scattering. PNAS Nexus, 2(12), 1–18. https://doi.org/10.1093/pnasnexus/pgad406
Ekici, G., & Dümen, E. (2019). Escherichia coli and Food Safety (M. S. Erjavec (ed.); p. Ch. 5). IntechOpen. https://doi.org/10.5772/intechopen.82375
El Haddad, L., Roy, J. P., Khalil, G. E., St-Gelais, D., Champagne, C. P., Labrie, S., & Moineau, S. (2016). Efficacy of two Staphylococcus aureus phage cocktails in cheese production. International Journal of Food Microbiology, 217, 7–13. https://doi.org/10.1016/j.ijfoodmicro.2015.10.001
Endersen, L., & Coffey, A. (2020). The use of bacteriophages for food safety. Current Opinion in Food Science, 36, 1–8. https://doi.org/10.1016/j.cofs.2020.10.006
Fathima, B., & Archer, A. C. (2021). Bacteriophage therapy: recent developments and applications of a renaissant weapon. Research in Microbiology, 172(6), 103863. https://doi.org/10.1016/j.resmic.2021.103863
Fikadu, A., Amankwah, S., Alemu, B., Alemu, Y., Naga, A., Tekle, E., & Kassa, T. (2024). Isolation and Phenotypic Characterization of Virulent Bacteriophages Against Multidrug-Resistant Escherichia coli and Its Phage-Resistant Variant from Sewage Sources. Infect Drug Resist., 17, 293–303. https://doi.org/https://doi.org/10.2147/IDR.S441085
Fong, K., Wong, C. W. Y., Wang, S., & Delaquis, P. (2021). How Broad Is Enough: The Host Range of Bacteriophages and Its Impact on the Agri-Food Sector. PHAGE (New Rochelle, N.Y.), 2(2), 83–91. https://doi.org/10.1089/phage.2020.0036
Food and Drug Administration. (2006). Food Additives Permitted for Direct Addition to Food for Human Consumption; Bacteriophage Preparation. https://www.federalregister.gov/documents/2006/08/18/E6-13621/food-additives-permitted-for-direct-addition-to-food-for-human-consumption-bacteriophage-preparation
Gallego del Sol, F., Quiles-Puchalt, N., Brady, A., Penadés, J. R., & Marina, A. (2022). Insights into the mechanism of action of the arbitrium communication system in SPbeta phages. Nature Communications, 13(1), 3627. https://doi.org/10.1038/s41467-022-31144-3
García, P., Madera, C., Martínez, B., Rodríguez, A., & Evaristo Suárez, J. (2009). Prevalence of bacteriophages infecting Staphylococcus aureus in dairy samples and their potential as biocontrol agents. Journal of Dairy Science, 92(7), 3019–3026. https://doi.org/10.3168/JDS.2008-1744
Garvey, M. (2022). Bacteriophages and Food Production: Biocontrol and Bio-Preservation Options for Food Safety. Antibiotics (Basel, Switzerland), 11(10). https://doi.org/10.3390/antibiotics11101324
Gerba, C. P. (2009). Environmentally Transmitted Pathogens. In Environmental Microbiology (pp. 445–484). https://doi.org/10.1016/B978-0-12-370519-8.00022-5
Gibson, B., Wilson, D. J., Feil, E., & Eyre-Walker, A. (2018). The distribution of bacterial doubling times in the wild. Proceedings of the Royal Society B: Biological Sciences, 285(1880). https://doi.org/10.1098/rspb.2018.0789
Gnezda-Meijer, K., Mahne, I., Poljšak-Prijatelj, M., & Stopar, D. (2006). Host physiological status determines phage-like particle distribution in the lysate. FEMS Microbiology Ecology, 55(1), 136–145. https://doi.org/10.1111/j.1574-6941.2005.00008.x
González-Morelo, K., Correa, A., Cabarcas, A. D. C., Castillo, P. M. M., Loraine, B., & Amador, O. (2018). Effect of Fat Content on the Properties of Colombian Queso Costeño Made from Goat Milk. International Journal of ChemTech Research, 11(5), 113–123. http://dx.doi.org/10.20902/IJCTR.2018.110513
Goodridge, L., Gallaccio, A., & Griffiths, M. W. (2003). Morphological, host range, and genetic characterization of two coliphages. Applied and Environmental Microbiology, 69(9), 5364–5371. https://doi.org/10.1128/AEM.69.9.5364-5371.2003
Guenther, S., & Loessner, M. J. (2011). Bacteriophage biocontrol of Listeria monocytogenes on soft ripened white mold and red-smear cheeses . Bacteriophage, 1(2), 94–100. https://doi.org/10.4161/bact.1.2.15662
Guo, M., Gao, Y., Xue, Y., Liu, Y., Zeng, X., Cheng, Y., Ma, J., Wang, H., Sun, J., Wang, Z., & Yan, Y. (2021). Bacteriophage Cocktails Protect Dairy Cows Against Mastitis Caused By Drug Resistant Escherichia coli Infection. Frontiers in Cellular and Infection Microbiology, 11, 690377. https://doi.org/10.3389/fcimb.2021.690377
Gutiérrez -Castañeda, C., Quintero-Peñaranda, R., Burbano-Caicedo, I., & Simancas-Trujillo, R. (2017). Modelo de quesería artesanal bajo un signo distintivo en el Caribe Colombiano: Caso Atlántico. Revista Lasallista de Investigacion, 14(1), 72–83. https://doi.org/10.22507/rli.v14n1a6
Han, S., Byun, K. H., Mizan, M. F. R., Kang, I., & Ha, S. Do. (2022). Bacteriophage and their lysins: A new era of biocontrol for inactivation of pathogenic bacteria in poultry processing and production—A review. In Food Control (Vol. 137). https://doi.org/10.1016/j.foodcont.2022.108976
Harada, L. K., Silva, E. C., Campos, W. F., Del Fiol, F. S., Vila, M., Dąbrowska, K., Krylov, V. N., & Balcão, V. M. (2018). Biotechnological applications of bacteriophages: State of the art. Microbiological Research, 212–213, 38–58. https://doi.org/10.1016/j.micres.2018.04.007
Harding, K. R., Kyte, N., & Fineran, P. C. (2023). Jumbo phages. Current Biology, 33(14), R750–R751. https://doi.org/10.1016/j.cub.2023.05.056
Holtappels, D., Alfenas-Zerbini, P., & Koskella, B. (2023). Drivers and consequences of bacteriophage host range. FEMS Microbiology Reviews, 47(4), fuad038. https://doi.org/10.1093/femsre/fuad038
Hu, B., Margolin, W., Molineux, I. J., & Liu, J. (2015). Structural remodeling of bacteriophage T4 and host membranes during infection initiation. Proceedings of the National Academy of Sciences, 112(35), E4919–E4928. https://doi.org/10.1073/pnas.1501064112
Huang, L., & Xiang, Y. (2020). Structures of the tailed bacteriophages that infect Gram-positive bacteria. Current Opinion in Virology, 45, 65–74. https://doi.org/10.1016/j.coviro.2020.09.002
Hungaro, H. M., Mendonça, R. C. S., Gouvêa, D. M., Vanetti, M. C. D., & Pinto, C. L. de O. (2013). Use of bacteriophages to reduce Salmonella in chicken skin in comparison with chemical agents. Food Research International, 52(1), 75–81. https://doi.org/10.1016/J.FOODRES.2013.02.032
Hyman, P. (2019). Phages for Phage Therapy: Isolation, Characterization, and Host Range Breadth. https://doi.org/10.3390/ph12010035
Hyman, P., & Abedon, S. T. B. T.-A. in A. M. (2010). Chapter 7 - Bacteriophage Host Range and Bacterial Resistance. In Advances in Applied Microbiology (Vol. 70, pp. 217–248). Academic Press. https://doi.org/https://doi.org/10.1016/S0065-2164(10)70007-1
Imam, M., Alrashid, B., Patel, F., Dowah, A. S. A., Brown, N., Millard, A., Clokie, M. R. J., & Galyov, E. E. (2019). vB_PaeM_MIJ3, a Novel Jumbo Phage Infecting Pseudomonas aeruginosa, Possesses Unusual Genomic Features. Frontiers in Microbiology, 10, 2772. https://doi.org/10.3389/fmicb.2019.02772
Imran, A., Shehzadi, U., Islam, F., Afzaal, M., Ali, R., Ali, Y. A., Chauhan, A., Biswas, S., Khurshid, S., Usman, I., Hussain, G., Zahra, S. M., Shah, M. A., & Rasool, A. (2023). Bacteriophages and food safety: An updated overview. Food Science and Nutrition, 11(7), 3621–3630. https://doi.org/10.1002/fsn3.3360
Instituto Nacional de Salud (INS). (2020a). Informe de Evento: Enfermedades trasmitidas por alimentos. Periodo epidemilógico XIII. https://www.ins.gov.co/buscador-eventos/Informesdeevento/ENFERMEDADES TRANSMITIDAS POR ALIMENTOS.pdf
Instituto Nacional de Salud (INS). (2020b). Informe de evento enfermedades transmitidas por alimentos, colombia, 2020. https://www.ins.gov.co/buscador-eventos/Informesdeevento/ENFERMEDADES TRANSMITIDAS POR ALIMENTOS.pdf
Instituto Nacional de Salud (INS). (2023). Informe de evento Brotes Enfermedades Transmitidas por Alimentos Código 349 I Semestre 2023. http://www.ins.gov.co/buscador-eventos/Informesdeevento/ETA PE VI 2023.pdf
Ismael, N. M., Azzam, M., Abdelmoteleb, M., & El-Shibiny, A. (2024). Phage vB_Ec_ZCEC14 to treat antibiotic-resistant Escherichia coli isolated from urinary tract infections. Virology Journal, 21(1), 44. https://doi.org/10.1186/s12985-024-02306-0
Iyer, L. M., Anantharaman, V., Krishnan, A., Maxwell Burroughs, A., & Aravind, L. (2021). Jumbo phages: A comparative genomic overview of core functions and adaptions for biological conflicts. Viruses, 13(1), 1–42. https://doi.org/10.3390/v13010063
Jofre, J., & Muniesa, M. (2020). Bacteriophage Isolation and Characterization: Phages of Escherichia coli. In F. de la Cruz (Ed.), Horizontal gene transfer. Methods in Molecular Biology (Humana). https://doi.org/https://doi.org/10.1007/978-1-4939-9877-7_4
Jones, K. R., Eftim, S., Lindahl, A. J., Black, S., & Nappier, S. P. (2022). Occurrence of coliphage in effluent: A systematic literature review and meta-analysis. Hygiene and Environmental Health Advances, 3, 100014. https://doi.org/10.1016/J.HEHA.2022.100014
Klumpp, J., Dunne, M., & Loessner, M. J. (2023). A perfect fit: Bacteriophage receptor-binding proteins for diagnostic and therapeutic applications. Current Opinion in Microbiology, 71, 102240. https://doi.org/10.1016/j.mib.2022.102240
Kozlova, A. P., Muntyan, V. S., Vladimirova, M. E., Saksaganskaia, A. S., Kabilov, M. R., Gorbunova, M. K., Gorshkov, A. N., Grudinin, M. P., Simarov, B. V., & Roumiantseva, M. L. (2024). Soil Giant Phage: Genome and Biological Characteristics of Sinorhizobium Jumbo Phage. International Journal of Molecular Sciences, 25(13). https://doi.org/10.3390/ijms25137388
Kuek, M., McLean, S. K., & Palombo, E. A. (2022). Application of bacteriophages in food production and their potential as biocontrol agents in the organic farming industry. Biological Control, 165, 104817. https://doi.org/10.1016/J.BIOCONTROL.2021.104817
Kuek, M., McLean, S. K., & Palombo, E. A. (2023). Control of Escherichia coli in Fresh-Cut Mixed Vegetables Using a Combination of Bacteriophage and Carvacrol. Antibiotics (Basel, Switzerland), 12(11). https://doi.org/10.3390/antibiotics12111579
Kwenda, A. (2014). An Investigation on the Causes of Escherichia coli and Coliform Contamination of Cheddar Cheese and How to Reduce the Problem (A Case Study at a Cheese Manufacturing Firm in Harare, Zimbabwe). International Journal of Nutrition and Food Sciences, 3, 6. https://doi.org/10.11648/j.ijnfs.s.2014030601.12
Leiman, P. G., Arisaka, F., van Raaij, M. J., Kostyuchenko, V. A., Aksyuk, A. A., Kanamaru, S., & Rossmann, M. G. (2010). Morphogenesis of the T4 tail and tail fibers. Virology Journal, 7, 355. https://doi.org/10.1186/1743-422X-7-355
LeLièvre, V., Besnard, A., Schlusselhuber, M., Desmasures, N., & Dalmasso, M. (2019). Phages for biocontrol in foods: What opportunities for Salmonella sp. control along the dairy food chain? Food Microbiology, 78, 89–98. https://doi.org/10.1016/J.FM.2018.10.009
Letarov, A. V, & Kulikov, E. E. (2018). Determination of the Bacteriophage Host Range: Culture-Based Approach. Methods in Molecular Biology (Clifton, N.J.), 1693, 75–84. https://doi.org/10.1007/978-1-4939-7395-8_7
Lin, J., Du, F., Long, M., & Li, P. (2022). Limitations of Phage Therapy and Corresponding Optimization Strategies: A Review. Molecules (Basel, Switzerland), 27(6). https://doi.org/10.3390/molecules27061857
Lopez, M. E. S., Batalha, L. S., Vidigal, P. M. P., Albino, L. A. A., Boggione, D. M. G., Gontijo, M. T. P., Bazzolli, D. M. S., & Mendonca, R. C. S. (2016). Genome sequence of the enterohemorrhagic Escherichia coli bacteriophage UFV-AREG1. Genome Announcements, 4(5), 4–5. https://doi.org/10.1128/genomeA.00412-16
Lopez, M. E. S., Gontijo, M. T. P., Batalha, L. S., & Mendonca, R. C. S. (2018). Bio-Sanitization Using Specific Bacteriophages to Control <em>Escherichia coli</em> O157:H7 in Cherry Tomatoes. Advance Journal of Food Science and Technology, 16(SPL), 92–101. https://doi.org/10.19026/ajfst.16.5942
Lopez, M. E. S., Gontijo, M. T. P., Cardoso, R. R., Batalha, L. S., Eller, M. R., Bazzolli, D. M. S., Vidigal, P. M. P., & Mendonça, R. C. S. (2023). Complete genome analysis of Tequatrovirus ufvareg1, a Tequatrovirus species inhibiting Escherichia coli O157:H7. Frontiers in Cellular and Infection Microbiology, 13, 1178248. https://doi.org/10.3389/fcimb.2023.1178248
Lukman, C., Yonathan, C., Magdalena, S., & Waturangi, D. E. (2020). Isolation and characterization of pathogenic Escherichia coli bacteriophages from chicken and beef offal. BMC Research Notes, 13(1), 1–7. https://doi.org/10.1186/S13104-019-4859-Y/FIGURES/2
Maffei, E., Shaidullina, A., Burkolter, M., Heyer, Y., Estermann, F., Druelle, V., Sauer, P., Willi, L., Michaelis, S., Hilbi, H., Thaler, D. S., & Harms, A. (2021). Systematic exploration of Escherichia coli phage–host interactions with the BASEL phage collection. PLOS Biology, 19(11), 1–52. https://doi.org/10.1371/journal.pbio.3001424
Malik, D. J., Sokolov, I. J., Vinner, G. K., Mancuso, F., Cinquerrui, S., Vladisavljevic, G. T., Clokie, M. R. J., Garton, N. J., Stapley, A. G. F., & Kirpichnikova, A. (2017). Formulation, stabilisation and encapsulation of bacteriophage for phage therapy. Advances in Colloid and Interface Science, 249(May), 100–133. https://doi.org/10.1016/j.cis.2017.05.014
Mangalea, M. R., & Duerkop, B. A. (2020). Fitness Trade-Offs Resulting from Bacteriophage Resistance Potentiate Synergistic Antibacterial Strategies. Infection and Immunity, 88(7). https://doi.org/10.1128/IAI.00926-19
Mattey, M., & Spencer, J. (2008). Bacteriophage therapy - cooked goose or Phoenix rising? Current Opinion in Biotechnology, 19(6), 608–612. https://doi.org/10.1016/j.copbio.2008.09.001
Mendoza-Corvis, F. A., Pérez Sierra, O. A., Durango Villadiego, A. M., Gontijo, M. T. P., Batalha, L. S., & Soto Lopez, M. E. (2025). Physicochemical, textural and organoleptic characteristics of costeño cheese: An autochthonous product of the Colombian Caribbean coast. International Dairy Journal, 160(December 2023). https://doi.org/10.1016/j.idairyj.2024.106094
Molina, F., Simancas, A., Tabla, R., Gómez, A., Roa, I., & Rebollo, J. E. (2020). Diversity and Local Coadaptation of Escherichia coli and Coliphages From Small Ruminants. Frontiers in Microbiology, 11, 564522. https://doi.org/10.3389/fmicb.2020.564522
Moye, Z. D., Woolston, J., & Sulakvelidze, A. (2018). Bacteriophage Applications for Food Production and Processing. Viruses, 10(4). https://doi.org/10.3390/v10040205
Mozaffari, P., Berizi, E., Hosseinzadeh, S., Derakhshan, Z., Taghadosi, V., Montaseri, Z., & Götz, F. (2022). Isolation and characterization of E. coli O157: H7 novel bacteriophage for controlling this food-borne pathogen. Virus Research, 315, 198754. https://doi.org/10.1016/j.virusres.2022.198754
Muñoz, A. I., & Rodríguez, E. C. (2021). Distribución y caracterización fenotípica y genotípica de Listeria monocytogenes en aislamientos de alimentos, Colombia, 2010-2018. Biomédica, 41(Sp. 2 SE-Artículos originales), 165–179. https://doi.org/10.7705/biomedica.6152
Nair, A., Ghugare, G. S., & Khairnar, K. (2022). An Appraisal of Bacteriophage Isolation Techniques from Environment. Microbial Ecology, 83(3), 519–535. https://doi.org/10.1007/s00248-021-01782-z
Nawaz, A., Zafar, S., Shahzadi, M., Bukhari, S. M. A. U. S., Khan, N., Shah, A. A., Badshah, M., & Khan, S. (2023). Bacteriophages: an overview of the control strategies against phytopathogens. Egyptian Journal of Biological Pest Control, 33(1), 108. https://doi.org/10.1186/s41938-023-00751-7
Nirmal Kumar, G. P., Sundarrajan, S., Paul, V. D., Nandini, S., Saravanan, R. S., Hariharan, S., Sriram, B., & Padmanabhan, S. (2012). Use of prophage free host for achieving homogenous population of bacteriophages: new findings. Virus Research, 169(1), 182–187. https://doi.org/10.1016/j.virusres.2012.07.026
O’Sullivan, L., Bolton, D., McAuliffe, O., & Coffey, A. (2019). Bacteriophages in Food Applications: From Foe to Friend. Annual Review of Food Science and Technology, 10, 151–172. https://doi.org/10.1146/annurev-food-032818-121747
Organización Mundial de la Salud (OMS). (2020). Inocuidad de los alimentos. https://www.who.int/es/news-room/fact-sheets/detail/food-safety
Organización Panamericana de la Salud, (OPS). (2020). Enfermedades transmitidas por alimentos - OPS/OMS | Organización Panamericana de la Salud. OPS. https://www.paho.org/es/temas/enfermedades-transmitidas-por-alimentos
Połaska, M., & Sokołowska, B. (2019). Bacteriophages-a new hope or a huge problem in the food industry. AIMS Microbiology, 5(4), 324–346. https://doi.org/10.3934/microbiol.2019.4.324
Rajnovic, D., Muñoz-Berbel, X., & Mas, J. (2019). Fast phage detection and quantification: An optical density-based approach. PLoS ONE, 14(5), 1–14. https://doi.org/10.1371/journal.pone.0216292
Ranveer, S. A., Dasriya, V., Ahmad, M. F., Dhillon, H. S., Samtiya, M., Shama, E., Anand, T., Dhewa, T., Chaudhary, V., Chaudhary, P., Behare, P., Ram, C., Puniya, D. V., Khedkar, G. D., Raposo, A., Han, H., & Puniya, A. K. (2024). Positive and negative aspects of bacteriophages and their immense role in the food chain. Npj Science of Food, 8(1), 1. https://doi.org/10.1038/s41538-023-00245-8
Reina, J., & Reina, N. (2018). [Phage therapy, an alternative to antibiotic therapy?)]. Revista espanola de quimioterapia : publicacion oficial de la Sociedad Espanola de Quimioterapia, 31(2), 101–104
Ross, A., Ward, S., & Hyman, P. (2016). More is better: Selecting for broad host range bacteriophages. Frontiers in Microbiology, 7(SEP), 1–6. https://doi.org/10.3389/fmicb.2016.01352
Ruíz-Pérez, R. A., Menco-Morales, N. Y., & Chams-Chams, L. M. (2017). Microbiological evaluation of artisan coastal cheese and hygieniclocative evaluation of small shops in córdoba, Colombia. Revista de Salud Publica, 19(3), 311–317. https://doi.org/10.15446/rsap.v19n3.54853
Shousha, A., Awaiwanont, N., Sofka, D., Smulders, F. J. M., Paulsen, P., Szostak, M. P., Humphrey, T., & Hilbert, F. (2015). Bacteriophages Isolated from Chicken Meat and the Horizontal Transfer of Antimicrobial Resistance Genes. Applied and Environmental Microbiology, 81(14), 4600–4606. https://doi.org/10.1128/AEM.00872-15
Sinha, S., Grewal, R. K., & Roy, S. (2018). Modeling Bacteria–Phage Interactions and Its Implications for Phage Therapy. In Advances in Applied Microbiology (1st ed., Vol. 103). Elsevier Inc. https://doi.org/10.1016/bs.aambs.2018.01.005
Sjahriani, T., Wasito, E. B., & Tyasningsih, W. (2021). Isolation and Identification of Escherichia coli O157:H7 Lytic Bacteriophage from Environment Sewage. International Journal of Food Science, 2021. https://doi.org/10.1155/2021/7383121
Sochocka, M., Tomczyk, T., Sobczyński, M., Szermer-Olearnik, B., & Boratyński, J. (2015). The kinetics of Escherichia coli B growth and bacteriophage T4 multiplication in SM-1 novel minimal culture medium. Journal of General and Applied Microbiology, 61(3), 75–81. https://doi.org/10.2323/jgam.61.75
Soto-Varela, Z. E., Gutiérrez, C. G., de Moya, Y., Mattos, R., & Bolívar-Anillo, Hernando José Villarreal, J. L. (2018). Detección molecular de Salmonella spp., Listeria spp. y Brucella spp. en queso artesanal fresco comercializado en Barranquilla: Biomedica, 38, 30–36. http://www.scielo.org.co/scielo.php?script=sci_arttext&pid=S0120-41572018000600030&nrm=iso
Soto Lopez, M. E., De Carvalho, M. M., Meireles Gouvêa, D., Silva Batalha, L., Oliveira Neves, I., & Santos Mendonça, R. C. (2015). Isolation and characterization of lytic bacteriophages as an alternative to prevent pseudomonas spp in poultry industry. MOJ Food Processing & Technology, Volume 1(Issue 3). https://doi.org/10.15406/MOJFPT.2015.01.00018
Soto Varela, Z., Pérez Lavalle, L., & Estrada Alvarado, D. (2016). Bacterias causantes de enfermedades transmitidas por alimentos: una mirada en colombia. Salud Uninorte, 32(1), 105–122. https://www.redalyc.org/articulo.oa?id=81745985010
Tabla, R., Gómez, A., Rebollo, J. E., Molina, F., & Roa, I. (2022). Effectiveness of a bacteriophage cocktail in reducing cheese early blowing caused by Escherichia coli. LWT, 153, 112430. https://doi.org/10.1016/J.LWT.2021.112430
Tabla, R., Gómez, A., Simancas, A., Rebollo, J. E., Molina, F., & Roa, I. (2016). Enterobacteriaceae species during manufacturing and ripening of semi–hard and soft raw ewe’s milk cheese: Gas production capacity. Small Ruminant Research, 145, 123–129. https://doi.org/https://doi.org/10.1016/j.smallrumres.2016.11.008
Tang, Z., Tang, N., Wang, X., Ren, H., Zhang, C., Zou, L., Han, L., Guo, L., & Liu, W. (2023). Characterization of a lytic Escherichia coli phage CE1 and its potential use in therapy against avian pathogenic Escherichia coli infections. Frontiers in Microbiology, 14. https://doi.org/10.3389/fmicb.2023.1091442
Thung, T., B.M.F., S., J.M.K.J.K., P., Chang, W., Loo, Y., KUAN, C. H. A. O., C.Y., N., A., U., O.S.B., R., Mahyudin, N. A., Basri, D., & S., W. (2017). Isolation of food-borne pathogen bacteriophages from retail food and environmental sewage. International Food Research Journal, 24, 450–454.
Unidad de Planificación Rural Agropecuaria (UPRA). (2021). Analisis prospectivo de la cadena láctea bovina colombiana. https://www.upra.gov.co/documents/10184/166404/20210728_DT_Prospectiva_Leche1.pdf/18a3ed0f-7eb6-4bda-9dd3-b55f85df8ee9
Van Twest, R., & Kropinski, A. M. (2009). Bacteriophage enrichment from water and soil. Methods in Molecular Biology (Clifton, N.J.), 501, 15–21. https://doi.org/10.1007/978-1-60327-164-6_2
Vasquez, I., Retamales, J., Parra, B., Machimbirike, V., Robeson, J., & Santander, J. (2023). Comparative Genomics of a Polyvalent Escherichia-Salmonella Phage fp01 and In Silico Analysis of Its Receptor Binding Protein and Conserved Enterobacteriaceae Phage Receptor. In Viruses (Vol. 15, Issue 2). https://doi.org/10.3390/v15020379
Venturini, C., Petrovic Fabijan, A., Fajardo Lubian, A., Barbirz, S., & Iredell, J. (2022). Biological foundations of successful bacteriophage therapy. EMBO Molecular Medicine, 14(7), e12435. https://doi.org/https://doi.org/10.15252/emmm.202012435
Wang, J., Kanach, A., Han, R., & Applegate, B. (2021). Application of bacteriophage in rapid detection of Escherichia coli in foods. Current Opinion in Food Science, 39, 43–50. https://doi.org/10.1016/J.COFS.2020.12.015
Wang, X., Wei, X., Zhang, Q., Li, L., Liu, Z., Chen, Y., Liu, Y., & Cai, Y. (2024). Genome sequence of Shiga toxin-producing Escherichia coli jumbo bacteriophage vB\_EcoM\_JNE01. Microbiology Resource Announcements, 13(2), e01145-23. https://doi.org/10.1128/mra.01145-23
Xie, Y., Wahab, L., & Gill, J. J. (2018). Development and Validation of a Microtiter Plate-Based Assay for Determination of Bacteriophage Host Range and Virulence. Viruses, 10(4). https://doi.org/10.3390/v10040189
Xuan, G., Lin, H., Tan, L., Zhao, G., & Wang, J. (2022). Quorum Sensing Promotes Phage Infection in Pseudomonas aeruginosa PAO1. MBio, 13(1), e0317421. https://doi.org/10.1128/mbio.03174-21
Yamaki, S., Yamazaki, K., & Kawai, Y. (2022). Broad host range bacteriophage, EscoHU1, infecting Escherichia coli O157:H7 and Salmonella enterica: Characterization, comparative genomics, and applications in food safety. International Journal of Food Microbiology, 372, 109680. https://doi.org/https://doi.org/10.1016/j.ijfoodmicro.2022.109680
Yap, M. L., & Rossmann, M. G. (2014). Structure and function of bacteriophage T4. Future Microbiology, 9(12), 1319–1327. https://doi.org/10.2217/fmb.14.91
You, L., Suthers, P. F., & Yin, J. (2002). Effects of Escherichia coli physiology on growth of phage T7 in vivo and in silico. Journal of Bacteriology, 184(7), 1888–1894. https://doi.org/10.1128/JB.184.7.1888-1894.2002
Yuan, X., Zhang, S., Wang, J., Li, C., Li, N., Yu, S., Kong, L., Zeng, H., Yang, G., Huang, Y., Li, H., Zhang, J., Wu, Q., & Ding, Y. (2021). Isolation and characterization of a novel Escherichia coli Kayfunavirus phage DY1. Virus Research, 293, 198274. https://doi.org/https://doi.org/10.1016/j.virusres.2020.198274
Yuan, Y., & Gao, M. (2017). Jumbo Bacteriophages: An Overview. Frontiers in Microbiology, 8, 403. https://doi.org/10.3389/fmicb.2017.00403
Zaki, B. M., Mohamed, A. A., Dawoud, A., Essam, K., Hammouda, Z. K., Abdelsattar, A. S., & El-Shibiny, A. (2023). Chapter Two - Isolation, screening and characterization of phage. In V. B. T.-P. in M. B. and T. S. SINGH (Ed.), Phage Therapy - Part A (Vol. 200, pp. 13–60). Academic Press. https://doi.org/https://doi.org/10.1016/bs.pmbts.2023.03.008
Zhang, B., Xu, J., He, X., Tong, Y., & Ren, H. (2022). Interactions between Jumbo Phage SA1 and Staphylococcus: A Global Transcriptomic Analysis. In Microorganisms (Vol. 10, Issue 8). https://doi.org/10.3390/microorganisms10081590
Zhang, M., Zhang, T., Yu, M., Chen, Y.-L., & Jin, M. (2022). The Life Cycle Transitions of Temperate Phages: Regulating Factors and Potential Ecological Implications. Viruses, 14(9). https://doi.org/10.3390/v14091904
Zhu, Y., Shang, J., Peng, C., & Sun, Y. (2022). Phage family classification under Caudoviricetes: A review of current tools using the latest ICTV classification framework. Frontiers in Microbiology, 13. https://doi.org/10.3389/fmicb.2022.1032186
dc.rights.none.fl_str_mv Copyright Universidad de Córdoba, 2025
dc.rights.uri.none.fl_str_mv https://creativecommons.org/licenses/by-nc-nd/4.0/
dc.rights.license.none.fl_str_mv Atribución-NoComercial-SinDerivadas 4.0 Internacional (CC BY-NC-ND 4.0)
dc.rights.accessrights.none.fl_str_mv info:eu-repo/semantics/embargoedAccess
dc.rights.coar.none.fl_str_mv http://purl.org/coar/access_right/c_f1cf
rights_invalid_str_mv Copyright Universidad de Córdoba, 2025
https://creativecommons.org/licenses/by-nc-nd/4.0/
Atribución-NoComercial-SinDerivadas 4.0 Internacional (CC BY-NC-ND 4.0)
http://purl.org/coar/access_right/c_f1cf
eu_rights_str_mv embargoedAccess
dc.format.mimetype.none.fl_str_mv application/pdf
dc.publisher.none.fl_str_mv Universidad de Córdoba
dc.publisher.faculty.none.fl_str_mv Facultad de Ingeniería
dc.publisher.place.none.fl_str_mv Berástegui, Córdoba, Colombia
dc.publisher.program.none.fl_str_mv Maestría en Ciencias Agroalimentarias
publisher.none.fl_str_mv Universidad de Córdoba
institution Universidad de Córdoba
bitstream.url.fl_str_mv https://repositorio.unicordoba.edu.co/bitstreams/fbc26087-295a-4c77-b1af-f68745a9b68e/download
https://repositorio.unicordoba.edu.co/bitstreams/eed51e64-bec7-4dd3-b19e-a2d10f7fd985/download
https://repositorio.unicordoba.edu.co/bitstreams/ff02cc8e-7fec-4ffb-9661-384fb24686d4/download
https://repositorio.unicordoba.edu.co/bitstreams/045909c5-2ad9-4de9-83a2-13d71780d272/download
https://repositorio.unicordoba.edu.co/bitstreams/632842bc-bf45-48e5-b81e-bc2696cc1948/download
https://repositorio.unicordoba.edu.co/bitstreams/d27f4e88-9c0d-4a2b-b78d-7946014d10ba/download
https://repositorio.unicordoba.edu.co/bitstreams/3888b66b-0507-47a2-91be-4d80fd8c62b7/download
bitstream.checksum.fl_str_mv fb8bcf80e84c8ee0083ae11b471e11cc
f79059ad1f5ec254f7888ff37ff643d9
73a5432e0b76442b22b026844140d683
a01fd9becf062378ec50330f606da286
a191e9178c5e946edd22c2b2bfbdbb89
64059194b765d04407cecff8c9badef7
2332bdf1f954854785cac8210831b43a
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
MD5
MD5
MD5
MD5
repository.name.fl_str_mv Repositorio Universidad de Córdoba
repository.mail.fl_str_mv bdigital@metabiblioteca.com
_version_ 1839636162392621056
spelling Pérez Sierra, Omar Andrésc5452b9b-e099-42b2-bad1-7a4e2a88a22e-1Hernández Arteaga, Ana María5399332e-6a60-4fd2-ae5e-7b8f1d25bba8-1Mendoza Corvis, Fernando Alonsoedd8f770-0b41-44c4-b980-727ce16d1f35-1Gontijo, Marco Tuliof16260c5-02c2-491e-b4c5-b24fe57d8aff-12025-02-07T21:17:05Z2027-01-232025-02-07T21:17:05Z2024-12https://repositorio.unicordoba.edu.co/handle/ucordoba/9053Universidad de CórdobaRepositorio Universidad de Córdobahttps://repositorio.unicordoba.edu.co/El queso costeño es un producto ampliamente reconocido en el país debido a sus características y condiciones del proceso de producción y comercialización, haciendo necesario el uso de alternativas que conserven sus características y mejoren su inocuidad y calidad. Los bacteriófagos han mostrado ser una excelente alternativa para el biocontrol de bacterias que puedan afectar la calidad e inocuidad de productos alimenticios de gran valor nutricional. Por esta razón, el objetivo de este trabajo es evaluar la actividad lítica de bacteriófagos aislados y caracterizados con especificidad sobre Escherichia coli procedentes del lactosuero y queso. Los bacteriófagos fueron aislados mediante el método de enriquecimiento, empleando como huésped la cepa de E. coli (ATCC 11229). La presencia de bacteriófagos se confirmó mediante la técnica de microgotas sobre un césped bacteriano. Posteriormente, los fagos se purificaron y cuantificaron. El espectro lítico se evaluó frente a varias especies, y se caracterizó tanto la morfología como su actividad lítica. Los fagos aislados JA-QT, SL-LC y HM-QC, mostraron una alta actividad lítica frente a E. coli. Los títulos de los fagos purificados oscilaron entre 1010 y 1012 UFP/mL. Dentro del rango de huéspedes evaluados, se destacó una notable alta actividad lítica sobre Salmonella Enteritidis. Morfológicamente, los fagos presentaron cabezas y colas características del orden Caudovirales. Los resultados de la actividad lítica indicaron que una multiplicidad de infección superior a 10 es necesaria para lograr una reducción de 2 a 5 log de E. coli en un tiempo de 50 minutos. En conclusión, se aislaron tres bacteriófagos con diversidad morfológica a partir de entornos de producción de queso costeño, capaces de inhibir el crecimiento de E. coli.LISTA DE TABLAS 8LISTA DE FIGURAS 9LISTA DE ANEXOS 10LISTA DE SÍMBOLOS Y ABREVIATURAS 11RESUMEN 12ABSTRACT 131 INTRODUCCIÓN 142 REVISIÓN DE LITERATURA 162.1 ENFERMEDADES TRANSMITIDAS POR ALIMENTOS 162.1.1 Escherichia coli 172.2 QUESO COSTEÑO 182.3 BACTERIÓFAGOS 192.3.1 Ciclo de vida de bacteriófagos 192.3.2 Aislamiento de bacteriófagos 212.3.3 Espectro lítico de fagos 222.3.4 Morfología de los bacteriófagos 242.3.5 Aplicaciones de bacteriófagos en alimentos 263 OBJETIVOS 283.1 OBJETIVO GENERAL 283.2 OBJETIVOS ESPECÍFICOS 284 MATERIALES Y MÉTODOS 294.1 Aislamiento de bacteriófagos con capacidad de lisar Escherichia coli a partir de muestras obtenidas del sistema productivo de queso costeño del municipio de Cereté que presenten potencial de especificidad sobre E. coli en queso costeño. 294.1.1 Condiciones experimentales 294.1.2 Cultivo de la bacteria huésped 294.1.3 Enriquecimiento y aislamiento de bacteriófagos 294.1.4 Determinación de la presencia de bacteriófagos en agar semisólido 304.1.5 Purificación y propagación de bacteriófagos 304.1.6 Determinación del título de la suspensión del fago 304.2 Determinación del espectro de acción sobre distintas cepas bacterianas que permitan identificar el alcance del biocontrol de los fagos objeto de este estudio y la morfología de los bacteriófagos aislados para el biocontrol de E. coli 314.2.1 Determinación del espectro de acción de los bacteriófagos aislados. 314.2.2 Caracterización morfológica de bacteriófagos aislados 324.3 Evaluar la actividad lítica de los bacteriófagos aislados para E. coli bajo diferentes tasas de multiplicidad de infección (MOI) que permitan identificar los mejores escenarios de aplicación de los fagos 324.4 Diseño experimental 335 RESULTADOS Y DISCUSIONES 345.1 Aislamiento de bacteriófagos con capacidad de lisar Escherichia coli a partir de muestras obtenidas del sistema productivo de queso costeño del municipio de Cereté que presenten potencial de especificidad sobre E. coli en queso costeño. 345.1.1 Aislamiento de bacteriófagos 345.1.2 Purificación y propagación de bacteriófagos 365.1.3 Determinación del título de la suspensión de los bacteriófagos 385.1.3 Determinación del título de la suspensión de los bacteriófagos 385.2 Determinación del espectro de acción sobre distintas cepas bacterianas que permitan identificar el alcance del biocontrol de los fagos objeto de este estudio y la morfología de los bacteriófagos aislados para el biocontrol de E. coli 395.2.1 Determinación del espectro de acción de los bacteriófagos aislados. 395.2.2 Caracterización morfológica de bacteriófagos aislados 435.3 Evaluar la actividad lítica de los bacteriófagos aislados para E. coli bajo diferentes tasas de multiplicidad de infección (MOI) que permitan identificar los mejores escenarios de aplicación de los fagos 466 CONCLUSIONES 517 RECOMENDACIONES 528 REFERENCIAS BIBLIOGRÁFICAS 53ANEXOS 64MaestríaMagíster en Ciencias AgroalimentariasTrabajos de Investigación y/o Extensiónapplication/pdfspaUniversidad de CórdobaFacultad de IngenieríaBerástegui, Córdoba, ColombiaMaestría en Ciencias AgroalimentariasCopyright Universidad de Córdoba, 2025https://creativecommons.org/licenses/by-nc-nd/4.0/Atribución-NoComercial-SinDerivadas 4.0 Internacional (CC BY-NC-ND 4.0)info:eu-repo/semantics/embargoedAccesshttp://purl.org/coar/access_right/c_f1cfEvaluación de la actividad lítica de bacteriófagos aislados y caracterizados con especificidad sobre Escherichia coli procedentes del sistema productivo de queso costeñoTrabajo de grado - Maestríainfo:eu-repo/semantics/masterThesisinfo:eu-repo/semantics/acceptedVersionTexthttp://purl.org/redcol/resource_type/TMAdams, M. H. (1959). Bacteriophages. In New York, Interscience Publishers.Alexyuk, P., Bogoyavlenskiy, A., Alexyuk, M., Akanova, K., Moldakhanov, Y., & Berezin, V. (2023). Isolation and Characterization of Jumbo Coliphage vB_EcoM_Lh1B as a Promising Therapeutic Agent against Chicken Colibacillosis. Microorganisms, 11(6). https://doi.org/10.3390/microorganisms11061524Alharbi, N. M., & Ziadi, M. M. (2021). Wastewater as a fertility source for novel bacteriophages against multi-drug resistant bacteria. Saudi Journal of Biological Sciences, 28(8), 4358–4364. https://doi.org/10.1016/J.SJBS.2021.04.025Aljamali, N., Najim, M., & Alabbasy, A. (2021). Review on Food poisoning (Types, Causes, Symptoms, Diagnosis, Treatment). 3, 54–61. https://doi.org/10.36348/gajpdr.2021.v03i04.001Atterbury, R. J., Van Bergen, M. A. P., Ortiz, F., Lovell, M. A., Harris, J. A., De Boer, A., Wagenaar, J. A., Allen, V. M., & Barrow, P. A. (2007). Bacteriophage therapy to reduce salmonella colonization of broiler chickens. Applied and Environmental Microbiology, 73(14), 4543–4549. https://doi.org/10.1128/AEM.00049-07Ayala, R., Moiseenko, A. V, Chen, T.-H., Kulikov, E. E., Golomidova, A. K., Orekhov, P. S., Street, M. A., Sokolova, O. S., Letarov, A. V, & Wolf, M. (2023). Nearly complete structure of bacteriophage DT57C reveals architecture of head-to-tail interface and lateral tail fibers. Nature Communications, 14(1), 8205. https://doi.org/10.1038/s41467-023-43824-9Azzam, M., & Faiesal, A. (2019). Novel “Superspreader” Coliphages for Detecting Microbial Water Pollution. International Journal of Environment and Pollution, 8, 57–70.Bao, H., Zhang, P., Zhang, H., Zhou, Y., Zhang, L., & Wang, R. (2015). Bio-Control of Salmonella Enteritidis in Foods Using Bacteriophages. Viruses, 7, 4836–4853. https://doi.org/10.3390/v7082847Bebeacua, C., Tremblay, D., Farenc, C., Chapot-Chartier, M.-P., Sadovskaya, I., van Heel, M., Veesler, D., Moineau, S., & Cambillau, C. (2013). Structure, adsorption to host, and infection mechanism of virulent lactococcal phage p2. Journal of Virology, 87(22), 12302–12312. https://doi.org/10.1128/JVI.02033-13Benala, M., Vaiyapuri, M., Visnuvinayagam, S., George, J. C., Raveendran, K., George, I., Mothadaka, M. P., & Badireddy, M. R. (2021). A revisited two-step microtiter plate assay: Optimization of in vitro multiplicity of infection (MOI) for Coliphage and Vibriophage. Journal of Virological Methods, 294(March), 1–9. https://doi.org/10.1016/j.jviromet.2021.114177Bertozzi Silva, J., Storms, Z., & Sauvageau, D. (2016). Host receptors for bacteriophage adsorption. FEMS Microbiology Letters, 363(4). https://doi.org/10.1093/femsle/fnw002Bintsis, T. (2017). Foodborne pathogens. AIMS Microbiology, 3(3), 529–563. https://doi.org/10.3934/microbiol.2017.3.529Borbón Ramos, M. E., & Prieto Alvarado, F. E. (2019). Concordancia y subregistro en la notificación de brotes de enfermedades transmitidas por alimentos en Colombia. Revista de Salud Pública, 21(6 SE-Artículos/Investigación), 608–613. https://doi.org/10.15446/rsap.v21n6.50268Bueno, E., García, P., Martínez, B., & Rodríguez, A. (2012). Phage inactivation of Staphylococcus aureus in fresh and hard-type cheeses. International Journal of Food Microbiology, 158(1), 23–27. https://doi.org/10.1016/J.IJFOODMICRO.2012.06.012Butt, S., Saleh, M., & Gagnon, J. (2020). Impact of the Escherichia coli Heat-Stable Enterotoxin b (STb) on Gut Health and Function. In Toxins (Vol. 12, Issue 12). https://doi.org/10.3390/toxins12120760Campbell, A. (2003). The future of bacteriophage biology. Nature Reviews Genetics, 4(6), 471–477. https://doi.org/10.1038/nrg1089Chang, C., Yu, X., Guo, W., Guo, C., Guo, X., Li, Q., & Zhu, Y. (2022). Bacteriophage-Mediated Control of Biofilm: A Promising New Dawn for the Future. Frontiers in Microbiology, 13. https://www.frontiersin.org/journals/microbiology/articles/10.3389/fmicb.2022.825828Christie, G. E. (1999). PROPAGATION OF VIRUSES | Bacteria. Encyclopedia of Virology (Second Edition), 1413–1418. https://doi.org/https://doi.org/10.1006/rwvi.1999.0237Costa, M. J., Pastrana, L. M., Teixeira, J. A., Sillankorva, S. M., & Cerqueira, M. A. (2023). Bacteriophage Delivery Systems for Food Applications: Opportunities and Perspectives. Viruses, 15(6). https://doi.org/10.3390/v15061271Dharmaraj, T., Kratochvil, M. J., Pourtois, J. D., Chen, Q., Hajfathalian, M., Hargil, A., Lin, Y. H., Evans, Z., Oromí-Bosch, A., Berry, J. D., McBride, R., Haddock, N. L., Holman, D. R., Van Belleghem, J. D., Chang, T. H., Barr, J. J., Lavigne, R., Heilshorn, S. C., Blankenberg, F. G., & Bollyky, P. L. (2023). Rapid assessment of changes in phage bioactivity using dynamic light scattering. PNAS Nexus, 2(12), 1–18. https://doi.org/10.1093/pnasnexus/pgad406Ekici, G., & Dümen, E. (2019). Escherichia coli and Food Safety (M. S. Erjavec (ed.); p. Ch. 5). IntechOpen. https://doi.org/10.5772/intechopen.82375El Haddad, L., Roy, J. P., Khalil, G. E., St-Gelais, D., Champagne, C. P., Labrie, S., & Moineau, S. (2016). Efficacy of two Staphylococcus aureus phage cocktails in cheese production. International Journal of Food Microbiology, 217, 7–13. https://doi.org/10.1016/j.ijfoodmicro.2015.10.001Endersen, L., & Coffey, A. (2020). The use of bacteriophages for food safety. Current Opinion in Food Science, 36, 1–8. https://doi.org/10.1016/j.cofs.2020.10.006Fathima, B., & Archer, A. C. (2021). Bacteriophage therapy: recent developments and applications of a renaissant weapon. Research in Microbiology, 172(6), 103863. https://doi.org/10.1016/j.resmic.2021.103863Fikadu, A., Amankwah, S., Alemu, B., Alemu, Y., Naga, A., Tekle, E., & Kassa, T. (2024). Isolation and Phenotypic Characterization of Virulent Bacteriophages Against Multidrug-Resistant Escherichia coli and Its Phage-Resistant Variant from Sewage Sources. Infect Drug Resist., 17, 293–303. https://doi.org/https://doi.org/10.2147/IDR.S441085Fong, K., Wong, C. W. Y., Wang, S., & Delaquis, P. (2021). How Broad Is Enough: The Host Range of Bacteriophages and Its Impact on the Agri-Food Sector. PHAGE (New Rochelle, N.Y.), 2(2), 83–91. https://doi.org/10.1089/phage.2020.0036Food and Drug Administration. (2006). Food Additives Permitted for Direct Addition to Food for Human Consumption; Bacteriophage Preparation. https://www.federalregister.gov/documents/2006/08/18/E6-13621/food-additives-permitted-for-direct-addition-to-food-for-human-consumption-bacteriophage-preparationGallego del Sol, F., Quiles-Puchalt, N., Brady, A., Penadés, J. R., & Marina, A. (2022). Insights into the mechanism of action of the arbitrium communication system in SPbeta phages. Nature Communications, 13(1), 3627. https://doi.org/10.1038/s41467-022-31144-3García, P., Madera, C., Martínez, B., Rodríguez, A., & Evaristo Suárez, J. (2009). Prevalence of bacteriophages infecting Staphylococcus aureus in dairy samples and their potential as biocontrol agents. Journal of Dairy Science, 92(7), 3019–3026. https://doi.org/10.3168/JDS.2008-1744Garvey, M. (2022). Bacteriophages and Food Production: Biocontrol and Bio-Preservation Options for Food Safety. Antibiotics (Basel, Switzerland), 11(10). https://doi.org/10.3390/antibiotics11101324Gerba, C. P. (2009). Environmentally Transmitted Pathogens. In Environmental Microbiology (pp. 445–484). https://doi.org/10.1016/B978-0-12-370519-8.00022-5Gibson, B., Wilson, D. J., Feil, E., & Eyre-Walker, A. (2018). The distribution of bacterial doubling times in the wild. Proceedings of the Royal Society B: Biological Sciences, 285(1880). https://doi.org/10.1098/rspb.2018.0789Gnezda-Meijer, K., Mahne, I., Poljšak-Prijatelj, M., & Stopar, D. (2006). Host physiological status determines phage-like particle distribution in the lysate. FEMS Microbiology Ecology, 55(1), 136–145. https://doi.org/10.1111/j.1574-6941.2005.00008.xGonzález-Morelo, K., Correa, A., Cabarcas, A. D. C., Castillo, P. M. M., Loraine, B., & Amador, O. (2018). Effect of Fat Content on the Properties of Colombian Queso Costeño Made from Goat Milk. International Journal of ChemTech Research, 11(5), 113–123. http://dx.doi.org/10.20902/IJCTR.2018.110513Goodridge, L., Gallaccio, A., & Griffiths, M. W. (2003). Morphological, host range, and genetic characterization of two coliphages. Applied and Environmental Microbiology, 69(9), 5364–5371. https://doi.org/10.1128/AEM.69.9.5364-5371.2003Guenther, S., & Loessner, M. J. (2011). Bacteriophage biocontrol of Listeria monocytogenes on soft ripened white mold and red-smear cheeses . Bacteriophage, 1(2), 94–100. https://doi.org/10.4161/bact.1.2.15662Guo, M., Gao, Y., Xue, Y., Liu, Y., Zeng, X., Cheng, Y., Ma, J., Wang, H., Sun, J., Wang, Z., & Yan, Y. (2021). Bacteriophage Cocktails Protect Dairy Cows Against Mastitis Caused By Drug Resistant Escherichia coli Infection. Frontiers in Cellular and Infection Microbiology, 11, 690377. https://doi.org/10.3389/fcimb.2021.690377Gutiérrez -Castañeda, C., Quintero-Peñaranda, R., Burbano-Caicedo, I., & Simancas-Trujillo, R. (2017). Modelo de quesería artesanal bajo un signo distintivo en el Caribe Colombiano: Caso Atlántico. Revista Lasallista de Investigacion, 14(1), 72–83. https://doi.org/10.22507/rli.v14n1a6Han, S., Byun, K. H., Mizan, M. F. R., Kang, I., & Ha, S. Do. (2022). Bacteriophage and their lysins: A new era of biocontrol for inactivation of pathogenic bacteria in poultry processing and production—A review. In Food Control (Vol. 137). https://doi.org/10.1016/j.foodcont.2022.108976Harada, L. K., Silva, E. C., Campos, W. F., Del Fiol, F. S., Vila, M., Dąbrowska, K., Krylov, V. N., & Balcão, V. M. (2018). Biotechnological applications of bacteriophages: State of the art. Microbiological Research, 212–213, 38–58. https://doi.org/10.1016/j.micres.2018.04.007Harding, K. R., Kyte, N., & Fineran, P. C. (2023). Jumbo phages. Current Biology, 33(14), R750–R751. https://doi.org/10.1016/j.cub.2023.05.056Holtappels, D., Alfenas-Zerbini, P., & Koskella, B. (2023). Drivers and consequences of bacteriophage host range. FEMS Microbiology Reviews, 47(4), fuad038. https://doi.org/10.1093/femsre/fuad038Hu, B., Margolin, W., Molineux, I. J., & Liu, J. (2015). Structural remodeling of bacteriophage T4 and host membranes during infection initiation. Proceedings of the National Academy of Sciences, 112(35), E4919–E4928. https://doi.org/10.1073/pnas.1501064112Huang, L., & Xiang, Y. (2020). Structures of the tailed bacteriophages that infect Gram-positive bacteria. Current Opinion in Virology, 45, 65–74. https://doi.org/10.1016/j.coviro.2020.09.002Hungaro, H. M., Mendonça, R. C. S., Gouvêa, D. M., Vanetti, M. C. D., & Pinto, C. L. de O. (2013). Use of bacteriophages to reduce Salmonella in chicken skin in comparison with chemical agents. Food Research International, 52(1), 75–81. https://doi.org/10.1016/J.FOODRES.2013.02.032Hyman, P. (2019). Phages for Phage Therapy: Isolation, Characterization, and Host Range Breadth. https://doi.org/10.3390/ph12010035Hyman, P., & Abedon, S. T. B. T.-A. in A. M. (2010). Chapter 7 - Bacteriophage Host Range and Bacterial Resistance. In Advances in Applied Microbiology (Vol. 70, pp. 217–248). Academic Press. https://doi.org/https://doi.org/10.1016/S0065-2164(10)70007-1Imam, M., Alrashid, B., Patel, F., Dowah, A. S. A., Brown, N., Millard, A., Clokie, M. R. J., & Galyov, E. E. (2019). vB_PaeM_MIJ3, a Novel Jumbo Phage Infecting Pseudomonas aeruginosa, Possesses Unusual Genomic Features. Frontiers in Microbiology, 10, 2772. https://doi.org/10.3389/fmicb.2019.02772Imran, A., Shehzadi, U., Islam, F., Afzaal, M., Ali, R., Ali, Y. A., Chauhan, A., Biswas, S., Khurshid, S., Usman, I., Hussain, G., Zahra, S. M., Shah, M. A., & Rasool, A. (2023). Bacteriophages and food safety: An updated overview. Food Science and Nutrition, 11(7), 3621–3630. https://doi.org/10.1002/fsn3.3360Instituto Nacional de Salud (INS). (2020a). Informe de Evento: Enfermedades trasmitidas por alimentos. Periodo epidemilógico XIII. https://www.ins.gov.co/buscador-eventos/Informesdeevento/ENFERMEDADES TRANSMITIDAS POR ALIMENTOS.pdfInstituto Nacional de Salud (INS). (2020b). Informe de evento enfermedades transmitidas por alimentos, colombia, 2020. https://www.ins.gov.co/buscador-eventos/Informesdeevento/ENFERMEDADES TRANSMITIDAS POR ALIMENTOS.pdfInstituto Nacional de Salud (INS). (2023). Informe de evento Brotes Enfermedades Transmitidas por Alimentos Código 349 I Semestre 2023. http://www.ins.gov.co/buscador-eventos/Informesdeevento/ETA PE VI 2023.pdfIsmael, N. M., Azzam, M., Abdelmoteleb, M., & El-Shibiny, A. (2024). Phage vB_Ec_ZCEC14 to treat antibiotic-resistant Escherichia coli isolated from urinary tract infections. Virology Journal, 21(1), 44. https://doi.org/10.1186/s12985-024-02306-0Iyer, L. M., Anantharaman, V., Krishnan, A., Maxwell Burroughs, A., & Aravind, L. (2021). Jumbo phages: A comparative genomic overview of core functions and adaptions for biological conflicts. Viruses, 13(1), 1–42. https://doi.org/10.3390/v13010063Jofre, J., & Muniesa, M. (2020). Bacteriophage Isolation and Characterization: Phages of Escherichia coli. In F. de la Cruz (Ed.), Horizontal gene transfer. Methods in Molecular Biology (Humana). https://doi.org/https://doi.org/10.1007/978-1-4939-9877-7_4Jones, K. R., Eftim, S., Lindahl, A. J., Black, S., & Nappier, S. P. (2022). Occurrence of coliphage in effluent: A systematic literature review and meta-analysis. Hygiene and Environmental Health Advances, 3, 100014. https://doi.org/10.1016/J.HEHA.2022.100014Klumpp, J., Dunne, M., & Loessner, M. J. (2023). A perfect fit: Bacteriophage receptor-binding proteins for diagnostic and therapeutic applications. Current Opinion in Microbiology, 71, 102240. https://doi.org/10.1016/j.mib.2022.102240Kozlova, A. P., Muntyan, V. S., Vladimirova, M. E., Saksaganskaia, A. S., Kabilov, M. R., Gorbunova, M. K., Gorshkov, A. N., Grudinin, M. P., Simarov, B. V., & Roumiantseva, M. L. (2024). Soil Giant Phage: Genome and Biological Characteristics of Sinorhizobium Jumbo Phage. International Journal of Molecular Sciences, 25(13). https://doi.org/10.3390/ijms25137388Kuek, M., McLean, S. K., & Palombo, E. A. (2022). Application of bacteriophages in food production and their potential as biocontrol agents in the organic farming industry. Biological Control, 165, 104817. https://doi.org/10.1016/J.BIOCONTROL.2021.104817Kuek, M., McLean, S. K., & Palombo, E. A. (2023). Control of Escherichia coli in Fresh-Cut Mixed Vegetables Using a Combination of Bacteriophage and Carvacrol. Antibiotics (Basel, Switzerland), 12(11). https://doi.org/10.3390/antibiotics12111579Kwenda, A. (2014). An Investigation on the Causes of Escherichia coli and Coliform Contamination of Cheddar Cheese and How to Reduce the Problem (A Case Study at a Cheese Manufacturing Firm in Harare, Zimbabwe). International Journal of Nutrition and Food Sciences, 3, 6. https://doi.org/10.11648/j.ijnfs.s.2014030601.12Leiman, P. G., Arisaka, F., van Raaij, M. J., Kostyuchenko, V. A., Aksyuk, A. A., Kanamaru, S., & Rossmann, M. G. (2010). Morphogenesis of the T4 tail and tail fibers. Virology Journal, 7, 355. https://doi.org/10.1186/1743-422X-7-355LeLièvre, V., Besnard, A., Schlusselhuber, M., Desmasures, N., & Dalmasso, M. (2019). Phages for biocontrol in foods: What opportunities for Salmonella sp. control along the dairy food chain? Food Microbiology, 78, 89–98. https://doi.org/10.1016/J.FM.2018.10.009Letarov, A. V, & Kulikov, E. E. (2018). Determination of the Bacteriophage Host Range: Culture-Based Approach. Methods in Molecular Biology (Clifton, N.J.), 1693, 75–84. https://doi.org/10.1007/978-1-4939-7395-8_7Lin, J., Du, F., Long, M., & Li, P. (2022). Limitations of Phage Therapy and Corresponding Optimization Strategies: A Review. Molecules (Basel, Switzerland), 27(6). https://doi.org/10.3390/molecules27061857Lopez, M. E. S., Batalha, L. S., Vidigal, P. M. P., Albino, L. A. A., Boggione, D. M. G., Gontijo, M. T. P., Bazzolli, D. M. S., & Mendonca, R. C. S. (2016). Genome sequence of the enterohemorrhagic Escherichia coli bacteriophage UFV-AREG1. Genome Announcements, 4(5), 4–5. https://doi.org/10.1128/genomeA.00412-16Lopez, M. E. S., Gontijo, M. T. P., Batalha, L. S., & Mendonca, R. C. S. (2018). Bio-Sanitization Using Specific Bacteriophages to Control <em>Escherichia coli</em> O157:H7 in Cherry Tomatoes. Advance Journal of Food Science and Technology, 16(SPL), 92–101. https://doi.org/10.19026/ajfst.16.5942Lopez, M. E. S., Gontijo, M. T. P., Cardoso, R. R., Batalha, L. S., Eller, M. R., Bazzolli, D. M. S., Vidigal, P. M. P., & Mendonça, R. C. S. (2023). Complete genome analysis of Tequatrovirus ufvareg1, a Tequatrovirus species inhibiting Escherichia coli O157:H7. Frontiers in Cellular and Infection Microbiology, 13, 1178248. https://doi.org/10.3389/fcimb.2023.1178248Lukman, C., Yonathan, C., Magdalena, S., & Waturangi, D. E. (2020). Isolation and characterization of pathogenic Escherichia coli bacteriophages from chicken and beef offal. BMC Research Notes, 13(1), 1–7. https://doi.org/10.1186/S13104-019-4859-Y/FIGURES/2Maffei, E., Shaidullina, A., Burkolter, M., Heyer, Y., Estermann, F., Druelle, V., Sauer, P., Willi, L., Michaelis, S., Hilbi, H., Thaler, D. S., & Harms, A. (2021). Systematic exploration of Escherichia coli phage–host interactions with the BASEL phage collection. PLOS Biology, 19(11), 1–52. https://doi.org/10.1371/journal.pbio.3001424Malik, D. J., Sokolov, I. J., Vinner, G. K., Mancuso, F., Cinquerrui, S., Vladisavljevic, G. T., Clokie, M. R. J., Garton, N. J., Stapley, A. G. F., & Kirpichnikova, A. (2017). Formulation, stabilisation and encapsulation of bacteriophage for phage therapy. Advances in Colloid and Interface Science, 249(May), 100–133. https://doi.org/10.1016/j.cis.2017.05.014Mangalea, M. R., & Duerkop, B. A. (2020). Fitness Trade-Offs Resulting from Bacteriophage Resistance Potentiate Synergistic Antibacterial Strategies. Infection and Immunity, 88(7). https://doi.org/10.1128/IAI.00926-19Mattey, M., & Spencer, J. (2008). Bacteriophage therapy - cooked goose or Phoenix rising? Current Opinion in Biotechnology, 19(6), 608–612. https://doi.org/10.1016/j.copbio.2008.09.001Mendoza-Corvis, F. A., Pérez Sierra, O. A., Durango Villadiego, A. M., Gontijo, M. T. P., Batalha, L. S., & Soto Lopez, M. E. (2025). Physicochemical, textural and organoleptic characteristics of costeño cheese: An autochthonous product of the Colombian Caribbean coast. International Dairy Journal, 160(December 2023). https://doi.org/10.1016/j.idairyj.2024.106094Molina, F., Simancas, A., Tabla, R., Gómez, A., Roa, I., & Rebollo, J. E. (2020). Diversity and Local Coadaptation of Escherichia coli and Coliphages From Small Ruminants. Frontiers in Microbiology, 11, 564522. https://doi.org/10.3389/fmicb.2020.564522Moye, Z. D., Woolston, J., & Sulakvelidze, A. (2018). Bacteriophage Applications for Food Production and Processing. Viruses, 10(4). https://doi.org/10.3390/v10040205Mozaffari, P., Berizi, E., Hosseinzadeh, S., Derakhshan, Z., Taghadosi, V., Montaseri, Z., & Götz, F. (2022). Isolation and characterization of E. coli O157: H7 novel bacteriophage for controlling this food-borne pathogen. Virus Research, 315, 198754. https://doi.org/10.1016/j.virusres.2022.198754Muñoz, A. I., & Rodríguez, E. C. (2021). Distribución y caracterización fenotípica y genotípica de Listeria monocytogenes en aislamientos de alimentos, Colombia, 2010-2018. Biomédica, 41(Sp. 2 SE-Artículos originales), 165–179. https://doi.org/10.7705/biomedica.6152Nair, A., Ghugare, G. S., & Khairnar, K. (2022). An Appraisal of Bacteriophage Isolation Techniques from Environment. Microbial Ecology, 83(3), 519–535. https://doi.org/10.1007/s00248-021-01782-zNawaz, A., Zafar, S., Shahzadi, M., Bukhari, S. M. A. U. S., Khan, N., Shah, A. A., Badshah, M., & Khan, S. (2023). Bacteriophages: an overview of the control strategies against phytopathogens. Egyptian Journal of Biological Pest Control, 33(1), 108. https://doi.org/10.1186/s41938-023-00751-7Nirmal Kumar, G. P., Sundarrajan, S., Paul, V. D., Nandini, S., Saravanan, R. S., Hariharan, S., Sriram, B., & Padmanabhan, S. (2012). Use of prophage free host for achieving homogenous population of bacteriophages: new findings. Virus Research, 169(1), 182–187. https://doi.org/10.1016/j.virusres.2012.07.026O’Sullivan, L., Bolton, D., McAuliffe, O., & Coffey, A. (2019). Bacteriophages in Food Applications: From Foe to Friend. Annual Review of Food Science and Technology, 10, 151–172. https://doi.org/10.1146/annurev-food-032818-121747Organización Mundial de la Salud (OMS). (2020). Inocuidad de los alimentos. https://www.who.int/es/news-room/fact-sheets/detail/food-safetyOrganización Panamericana de la Salud, (OPS). (2020). Enfermedades transmitidas por alimentos - OPS/OMS | Organización Panamericana de la Salud. OPS. https://www.paho.org/es/temas/enfermedades-transmitidas-por-alimentosPołaska, M., & Sokołowska, B. (2019). Bacteriophages-a new hope or a huge problem in the food industry. AIMS Microbiology, 5(4), 324–346. https://doi.org/10.3934/microbiol.2019.4.324Rajnovic, D., Muñoz-Berbel, X., & Mas, J. (2019). Fast phage detection and quantification: An optical density-based approach. PLoS ONE, 14(5), 1–14. https://doi.org/10.1371/journal.pone.0216292Ranveer, S. A., Dasriya, V., Ahmad, M. F., Dhillon, H. S., Samtiya, M., Shama, E., Anand, T., Dhewa, T., Chaudhary, V., Chaudhary, P., Behare, P., Ram, C., Puniya, D. V., Khedkar, G. D., Raposo, A., Han, H., & Puniya, A. K. (2024). Positive and negative aspects of bacteriophages and their immense role in the food chain. Npj Science of Food, 8(1), 1. https://doi.org/10.1038/s41538-023-00245-8Reina, J., & Reina, N. (2018). [Phage therapy, an alternative to antibiotic therapy?)]. Revista espanola de quimioterapia : publicacion oficial de la Sociedad Espanola de Quimioterapia, 31(2), 101–104Ross, A., Ward, S., & Hyman, P. (2016). More is better: Selecting for broad host range bacteriophages. Frontiers in Microbiology, 7(SEP), 1–6. https://doi.org/10.3389/fmicb.2016.01352Ruíz-Pérez, R. A., Menco-Morales, N. Y., & Chams-Chams, L. M. (2017). Microbiological evaluation of artisan coastal cheese and hygieniclocative evaluation of small shops in córdoba, Colombia. Revista de Salud Publica, 19(3), 311–317. https://doi.org/10.15446/rsap.v19n3.54853Shousha, A., Awaiwanont, N., Sofka, D., Smulders, F. J. M., Paulsen, P., Szostak, M. P., Humphrey, T., & Hilbert, F. (2015). Bacteriophages Isolated from Chicken Meat and the Horizontal Transfer of Antimicrobial Resistance Genes. Applied and Environmental Microbiology, 81(14), 4600–4606. https://doi.org/10.1128/AEM.00872-15Sinha, S., Grewal, R. K., & Roy, S. (2018). Modeling Bacteria–Phage Interactions and Its Implications for Phage Therapy. In Advances in Applied Microbiology (1st ed., Vol. 103). Elsevier Inc. https://doi.org/10.1016/bs.aambs.2018.01.005Sjahriani, T., Wasito, E. B., & Tyasningsih, W. (2021). Isolation and Identification of Escherichia coli O157:H7 Lytic Bacteriophage from Environment Sewage. International Journal of Food Science, 2021. https://doi.org/10.1155/2021/7383121Sochocka, M., Tomczyk, T., Sobczyński, M., Szermer-Olearnik, B., & Boratyński, J. (2015). The kinetics of Escherichia coli B growth and bacteriophage T4 multiplication in SM-1 novel minimal culture medium. Journal of General and Applied Microbiology, 61(3), 75–81. https://doi.org/10.2323/jgam.61.75Soto-Varela, Z. E., Gutiérrez, C. G., de Moya, Y., Mattos, R., & Bolívar-Anillo, Hernando José Villarreal, J. L. (2018). Detección molecular de Salmonella spp., Listeria spp. y Brucella spp. en queso artesanal fresco comercializado en Barranquilla: Biomedica, 38, 30–36. http://www.scielo.org.co/scielo.php?script=sci_arttext&pid=S0120-41572018000600030&nrm=isoSoto Lopez, M. E., De Carvalho, M. M., Meireles Gouvêa, D., Silva Batalha, L., Oliveira Neves, I., & Santos Mendonça, R. C. (2015). Isolation and characterization of lytic bacteriophages as an alternative to prevent pseudomonas spp in poultry industry. MOJ Food Processing & Technology, Volume 1(Issue 3). https://doi.org/10.15406/MOJFPT.2015.01.00018Soto Varela, Z., Pérez Lavalle, L., & Estrada Alvarado, D. (2016). Bacterias causantes de enfermedades transmitidas por alimentos: una mirada en colombia. Salud Uninorte, 32(1), 105–122. https://www.redalyc.org/articulo.oa?id=81745985010Tabla, R., Gómez, A., Rebollo, J. E., Molina, F., & Roa, I. (2022). Effectiveness of a bacteriophage cocktail in reducing cheese early blowing caused by Escherichia coli. LWT, 153, 112430. https://doi.org/10.1016/J.LWT.2021.112430Tabla, R., Gómez, A., Simancas, A., Rebollo, J. E., Molina, F., & Roa, I. (2016). Enterobacteriaceae species during manufacturing and ripening of semi–hard and soft raw ewe’s milk cheese: Gas production capacity. Small Ruminant Research, 145, 123–129. https://doi.org/https://doi.org/10.1016/j.smallrumres.2016.11.008Tang, Z., Tang, N., Wang, X., Ren, H., Zhang, C., Zou, L., Han, L., Guo, L., & Liu, W. (2023). Characterization of a lytic Escherichia coli phage CE1 and its potential use in therapy against avian pathogenic Escherichia coli infections. Frontiers in Microbiology, 14. https://doi.org/10.3389/fmicb.2023.1091442Thung, T., B.M.F., S., J.M.K.J.K., P., Chang, W., Loo, Y., KUAN, C. H. A. O., C.Y., N., A., U., O.S.B., R., Mahyudin, N. A., Basri, D., & S., W. (2017). Isolation of food-borne pathogen bacteriophages from retail food and environmental sewage. International Food Research Journal, 24, 450–454.Unidad de Planificación Rural Agropecuaria (UPRA). (2021). Analisis prospectivo de la cadena láctea bovina colombiana. https://www.upra.gov.co/documents/10184/166404/20210728_DT_Prospectiva_Leche1.pdf/18a3ed0f-7eb6-4bda-9dd3-b55f85df8ee9Van Twest, R., & Kropinski, A. M. (2009). Bacteriophage enrichment from water and soil. Methods in Molecular Biology (Clifton, N.J.), 501, 15–21. https://doi.org/10.1007/978-1-60327-164-6_2Vasquez, I., Retamales, J., Parra, B., Machimbirike, V., Robeson, J., & Santander, J. (2023). Comparative Genomics of a Polyvalent Escherichia-Salmonella Phage fp01 and In Silico Analysis of Its Receptor Binding Protein and Conserved Enterobacteriaceae Phage Receptor. In Viruses (Vol. 15, Issue 2). https://doi.org/10.3390/v15020379Venturini, C., Petrovic Fabijan, A., Fajardo Lubian, A., Barbirz, S., & Iredell, J. (2022). Biological foundations of successful bacteriophage therapy. EMBO Molecular Medicine, 14(7), e12435. https://doi.org/https://doi.org/10.15252/emmm.202012435Wang, J., Kanach, A., Han, R., & Applegate, B. (2021). Application of bacteriophage in rapid detection of Escherichia coli in foods. Current Opinion in Food Science, 39, 43–50. https://doi.org/10.1016/J.COFS.2020.12.015Wang, X., Wei, X., Zhang, Q., Li, L., Liu, Z., Chen, Y., Liu, Y., & Cai, Y. (2024). Genome sequence of Shiga toxin-producing Escherichia coli jumbo bacteriophage vB\_EcoM\_JNE01. Microbiology Resource Announcements, 13(2), e01145-23. https://doi.org/10.1128/mra.01145-23Xie, Y., Wahab, L., & Gill, J. J. (2018). Development and Validation of a Microtiter Plate-Based Assay for Determination of Bacteriophage Host Range and Virulence. Viruses, 10(4). https://doi.org/10.3390/v10040189Xuan, G., Lin, H., Tan, L., Zhao, G., & Wang, J. (2022). Quorum Sensing Promotes Phage Infection in Pseudomonas aeruginosa PAO1. MBio, 13(1), e0317421. https://doi.org/10.1128/mbio.03174-21Yamaki, S., Yamazaki, K., & Kawai, Y. (2022). Broad host range bacteriophage, EscoHU1, infecting Escherichia coli O157:H7 and Salmonella enterica: Characterization, comparative genomics, and applications in food safety. International Journal of Food Microbiology, 372, 109680. https://doi.org/https://doi.org/10.1016/j.ijfoodmicro.2022.109680Yap, M. L., & Rossmann, M. G. (2014). Structure and function of bacteriophage T4. Future Microbiology, 9(12), 1319–1327. https://doi.org/10.2217/fmb.14.91You, L., Suthers, P. F., & Yin, J. (2002). Effects of Escherichia coli physiology on growth of phage T7 in vivo and in silico. Journal of Bacteriology, 184(7), 1888–1894. https://doi.org/10.1128/JB.184.7.1888-1894.2002Yuan, X., Zhang, S., Wang, J., Li, C., Li, N., Yu, S., Kong, L., Zeng, H., Yang, G., Huang, Y., Li, H., Zhang, J., Wu, Q., & Ding, Y. (2021). Isolation and characterization of a novel Escherichia coli Kayfunavirus phage DY1. Virus Research, 293, 198274. https://doi.org/https://doi.org/10.1016/j.virusres.2020.198274Yuan, Y., & Gao, M. (2017). Jumbo Bacteriophages: An Overview. Frontiers in Microbiology, 8, 403. https://doi.org/10.3389/fmicb.2017.00403Zaki, B. M., Mohamed, A. A., Dawoud, A., Essam, K., Hammouda, Z. K., Abdelsattar, A. S., & El-Shibiny, A. (2023). Chapter Two - Isolation, screening and characterization of phage. In V. B. T.-P. in M. B. and T. S. SINGH (Ed.), Phage Therapy - Part A (Vol. 200, pp. 13–60). Academic Press. https://doi.org/https://doi.org/10.1016/bs.pmbts.2023.03.008Zhang, B., Xu, J., He, X., Tong, Y., & Ren, H. (2022). Interactions between Jumbo Phage SA1 and Staphylococcus: A Global Transcriptomic Analysis. In Microorganisms (Vol. 10, Issue 8). https://doi.org/10.3390/microorganisms10081590Zhang, M., Zhang, T., Yu, M., Chen, Y.-L., & Jin, M. (2022). The Life Cycle Transitions of Temperate Phages: Regulating Factors and Potential Ecological Implications. Viruses, 14(9). https://doi.org/10.3390/v14091904Zhu, Y., Shang, J., Peng, C., & Sun, Y. (2022). Phage family classification under Caudoviricetes: A review of current tools using the latest ICTV classification framework. Frontiers in Microbiology, 13. https://doi.org/10.3389/fmicb.2022.1032186BacteriófagosEscherichia coliMultiplicidad de infección (MOI)Queso costeñoActividad líticaBacteriophagesEscherichia coliMultiplicity of infection (MOI)Costeño cheeseLytic activityPublicationORIGINALHernandezArteagaAnaMaría.pdfHernandezArteagaAnaMaría.pdfapplication/pdf2054707https://repositorio.unicordoba.edu.co/bitstreams/fbc26087-295a-4c77-b1af-f68745a9b68e/downloadfb8bcf80e84c8ee0083ae11b471e11ccMD51Formato de autorización.pdfFormato de autorización.pdfapplication/pdf626661https://repositorio.unicordoba.edu.co/bitstreams/eed51e64-bec7-4dd3-b19e-a2d10f7fd985/downloadf79059ad1f5ec254f7888ff37ff643d9MD54LICENSElicense.txtlicense.txttext/plain; charset=utf-815543https://repositorio.unicordoba.edu.co/bitstreams/ff02cc8e-7fec-4ffb-9661-384fb24686d4/download73a5432e0b76442b22b026844140d683MD53TEXTHernandezArteagaAnaMaría.pdf.txtHernandezArteagaAnaMaría.pdf.txtExtracted texttext/plain102381https://repositorio.unicordoba.edu.co/bitstreams/045909c5-2ad9-4de9-83a2-13d71780d272/downloada01fd9becf062378ec50330f606da286MD55Formato de autorización.pdf.txtFormato de autorización.pdf.txtExtracted texttext/plain4246https://repositorio.unicordoba.edu.co/bitstreams/632842bc-bf45-48e5-b81e-bc2696cc1948/downloada191e9178c5e946edd22c2b2bfbdbb89MD57THUMBNAILHernandezArteagaAnaMaría.pdf.jpgHernandezArteagaAnaMaría.pdf.jpgGenerated Thumbnailimage/jpeg10586https://repositorio.unicordoba.edu.co/bitstreams/d27f4e88-9c0d-4a2b-b78d-7946014d10ba/download64059194b765d04407cecff8c9badef7MD56Formato de autorización.pdf.jpgFormato de autorización.pdf.jpgGenerated Thumbnailimage/jpeg14209https://repositorio.unicordoba.edu.co/bitstreams/3888b66b-0507-47a2-91be-4d80fd8c62b7/download2332bdf1f954854785cac8210831b43aMD58ucordoba/9053oai:repositorio.unicordoba.edu.co:ucordoba/90532025-02-08 03:01:37.786https://creativecommons.org/licenses/by-nc-nd/4.0/Copyright Universidad de Córdoba, 2025embargohttps://repositorio.unicordoba.edu.coRepositorio Universidad de Córdobabdigital@metabiblioteca.comPHA+TEEgT0JSQSAoVEFMIFkgQ09NTyBTRSBERUZJTkUgTcOBUyBBREVMQU5URSkgU0UgT1RPUkdBIEJBSk8gTE9TIFRFUk1JTk9TIERFIEVTVEEgTElDRU5DSUEgUMOaQkxJQ0EgREUgQ1JFQVRJVkUgQ09NTU9OUyAo4oCcTFBDQ+KAnSBPIOKAnExJQ0VOQ0lB4oCdKS4gTEEgT0JSQSBFU1TDgSBQUk9URUdJREEgUE9SIERFUkVDSE9TIERFIEFVVE9SIFkvVSBPVFJBUyBMRVlFUyBBUExJQ0FCTEVTLiBRVUVEQSBQUk9ISUJJRE8gQ1VBTFFVSUVSIFVTTyBRVUUgU0UgSEFHQSBERSBMQSBPQlJBIFFVRSBOTyBDVUVOVEUgQ09OIExBIEFVVE9SSVpBQ0nDk04gUEVSVElORU5URSBERSBDT05GT1JNSURBRCBDT04gTE9TIFTDiVJNSU5PUyBERSBFU1RBIExJQ0VOQ0lBIFkgREUgTEEgTEVZIERFIERFUkVDSE8gREUgQVVUT1IuPC9wPgo8cD5NRURJQU5URSBFTCBFSkVSQ0lDSU8gREUgQ1VBTFFVSUVSQSBERSBMT1MgREVSRUNIT1MgUVVFIFNFIE9UT1JHQU4gRU4gRVNUQSBMSUNFTkNJQSwgVVNURUQgQUNFUFRBIFkgQUNVRVJEQSBRVUVEQVIgT0JMSUdBRE8gRU4gTE9TIFRFUk1JTk9TIFFVRSBTRSBTRcORQUxBTiBFTiBFTExBLiBFTCBMSUNFTkNJQU5URSBDT05DRURFIEEgVVNURUQgTE9TIERFUkVDSE9TIENPTlRFTklET1MgRU4gRVNUQSBMSUNFTkNJQSBDT05ESUNJT05BRE9TIEEgTEEgQUNFUFRBQ0nDk04gREUgU1VTIFRFUk1JTk9TIFkgQ09ORElDSU9ORVMuPC9wPgo8b2wgdHlwZT0iMSI+CiAgPGxpPgogICAgRGVmaW5pY2lvbmVzCiAgICA8b2wgdHlwZT1hPgogICAgICA8bGk+T2JyYSBDb2xlY3RpdmEgZXMgdW5hIG9icmEsIHRhbCBjb21vIHVuYSBwdWJsaWNhY2nDs24gcGVyacOzZGljYSwgdW5hIGFudG9sb2fDrWEsIG8gdW5hIGVuY2ljbG9wZWRpYSwgZW4gbGEgcXVlIGxhIG9icmEgZW4gc3UgdG90YWxpZGFkLCBzaW4gbW9kaWZpY2FjacOzbiBhbGd1bmEsIGp1bnRvIGNvbiB1biBncnVwbyBkZSBvdHJhcyBjb250cmlidWNpb25lcyBxdWUgY29uc3RpdHV5ZW4gb2JyYXMgc2VwYXJhZGFzIGUgaW5kZXBlbmRpZW50ZXMgZW4gc8OtIG1pc21hcywgc2UgaW50ZWdyYW4gZW4gdW4gdG9kbyBjb2xlY3Rpdm8uIFVuYSBPYnJhIHF1ZSBjb25zdGl0dXllIHVuYSBvYnJhIGNvbGVjdGl2YSBubyBzZSBjb25zaWRlcmFyw6EgdW5hIE9icmEgRGVyaXZhZGEgKGNvbW8gc2UgZGVmaW5lIGFiYWpvKSBwYXJhIGxvcyBwcm9ww7NzaXRvcyBkZSBlc3RhIGxpY2VuY2lhLiBhcXVlbGxhIHByb2R1Y2lkYSBwb3IgdW4gZ3J1cG8gZGUgYXV0b3JlcywgZW4gcXVlIGxhIE9icmEgc2UgZW5jdWVudHJhIHNpbiBtb2RpZmljYWNpb25lcywganVudG8gY29uIHVuYSBjaWVydGEgY2FudGlkYWQgZGUgb3RyYXMgY29udHJpYnVjaW9uZXMsIHF1ZSBjb25zdGl0dXllbiBlbiBzw60gbWlzbW9zIHRyYWJham9zIHNlcGFyYWRvcyBlIGluZGVwZW5kaWVudGVzLCBxdWUgc29uIGludGVncmFkb3MgYWwgdG9kbyBjb2xlY3Rpdm8sIHRhbGVzIGNvbW8gcHVibGljYWNpb25lcyBwZXJpw7NkaWNhcywgYW50b2xvZ8OtYXMgbyBlbmNpY2xvcGVkaWFzLjwvbGk+CiAgICAgIDxsaT5PYnJhIERlcml2YWRhIHNpZ25pZmljYSB1bmEgb2JyYSBiYXNhZGEgZW4gbGEgb2JyYSBvYmpldG8gZGUgZXN0YSBsaWNlbmNpYSBvIGVuIMOpc3RhIHkgb3RyYXMgb2JyYXMgcHJlZXhpc3RlbnRlcywgdGFsZXMgY29tbyB0cmFkdWNjaW9uZXMsIGFycmVnbG9zIG11c2ljYWxlcywgZHJhbWF0aXphY2lvbmVzLCDigJxmaWNjaW9uYWxpemFjaW9uZXPigJ0sIHZlcnNpb25lcyBwYXJhIGNpbmUsIOKAnGdyYWJhY2lvbmVzIGRlIHNvbmlkb+KAnSwgcmVwcm9kdWNjaW9uZXMgZGUgYXJ0ZSwgcmVzw7ptZW5lcywgY29uZGVuc2FjaW9uZXMsIG8gY3VhbHF1aWVyIG90cmEgZW4gbGEgcXVlIGxhIG9icmEgcHVlZGEgc2VyIHRyYW5zZm9ybWFkYSwgY2FtYmlhZGEgbyBhZGFwdGFkYSwgZXhjZXB0byBhcXVlbGxhcyBxdWUgY29uc3RpdHV5YW4gdW5hIG9icmEgY29sZWN0aXZhLCBsYXMgcXVlIG5vIHNlcsOhbiBjb25zaWRlcmFkYXMgdW5hIG9icmEgZGVyaXZhZGEgcGFyYSBlZmVjdG9zIGRlIGVzdGEgbGljZW5jaWEuIChQYXJhIGV2aXRhciBkdWRhcywgZW4gZWwgY2FzbyBkZSBxdWUgbGEgT2JyYSBzZWEgdW5hIGNvbXBvc2ljacOzbiBtdXNpY2FsIG8gdW5hIGdyYWJhY2nDs24gc29ub3JhLCBwYXJhIGxvcyBlZmVjdG9zIGRlIGVzdGEgTGljZW5jaWEgbGEgc2luY3Jvbml6YWNpw7NuIHRlbXBvcmFsIGRlIGxhIE9icmEgY29uIHVuYSBpbWFnZW4gZW4gbW92aW1pZW50byBzZSBjb25zaWRlcmFyw6EgdW5hIE9icmEgRGVyaXZhZGEgcGFyYSBsb3MgZmluZXMgZGUgZXN0YSBsaWNlbmNpYSkuPC9saT4KICAgICAgPGxpPkxpY2VuY2lhbnRlLCBlcyBlbCBpbmRpdmlkdW8gbyBsYSBlbnRpZGFkIHRpdHVsYXIgZGUgbG9zIGRlcmVjaG9zIGRlIGF1dG9yIHF1ZSBvZnJlY2UgbGEgT2JyYSBlbiBjb25mb3JtaWRhZCBjb24gbGFzIGNvbmRpY2lvbmVzIGRlIGVzdGEgTGljZW5jaWEuPC9saT4KICAgICAgPGxpPkF1dG9yIG9yaWdpbmFsLCBlcyBlbCBpbmRpdmlkdW8gcXVlIGNyZcOzIGxhIE9icmEuPC9saT4KICAgICAgPGxpPk9icmEsIGVzIGFxdWVsbGEgb2JyYSBzdXNjZXB0aWJsZSBkZSBwcm90ZWNjacOzbiBwb3IgZWwgcsOpZ2ltZW4gZGUgRGVyZWNobyBkZSBBdXRvciB5IHF1ZSBlcyBvZnJlY2lkYSBlbiBsb3MgdMOpcm1pbm9zIGRlIGVzdGEgbGljZW5jaWE8L2xpPgogICAgICA8bGk+VXN0ZWQsIGVzIGVsIGluZGl2aWR1byBvIGxhIGVudGlkYWQgcXVlIGVqZXJjaXRhIGxvcyBkZXJlY2hvcyBvdG9yZ2Fkb3MgYWwgYW1wYXJvIGRlIGVzdGEgTGljZW5jaWEgeSBxdWUgY29uIGFudGVyaW9yaWRhZCBubyBoYSB2aW9sYWRvIGxhcyBjb25kaWNpb25lcyBkZSBsYSBtaXNtYSByZXNwZWN0byBhIGxhIE9icmEsIG8gcXVlIGhheWEgb2J0ZW5pZG8gYXV0b3JpemFjacOzbiBleHByZXNhIHBvciBwYXJ0ZSBkZWwgTGljZW5jaWFudGUgcGFyYSBlamVyY2VyIGxvcyBkZXJlY2hvcyBhbCBhbXBhcm8gZGUgZXN0YSBMaWNlbmNpYSBwZXNlIGEgdW5hIHZpb2xhY2nDs24gYW50ZXJpb3IuPC9saT4KICAgIDwvb2w+CiAgPC9saT4KICA8YnIvPgogIDxsaT4KICAgIERlcmVjaG9zIGRlIFVzb3MgSG9ucmFkb3MgeSBleGNlcGNpb25lcyBMZWdhbGVzLgogICAgPHA+TmFkYSBlbiBlc3RhIExpY2VuY2lhIHBvZHLDoSBzZXIgaW50ZXJwcmV0YWRvIGNvbW8gdW5hIGRpc21pbnVjacOzbiwgbGltaXRhY2nDs24gbyByZXN0cmljY2nDs24gZGUgbG9zIGRlcmVjaG9zIGRlcml2YWRvcyBkZWwgdXNvIGhvbnJhZG8geSBvdHJhcyBsaW1pdGFjaW9uZXMgbyBleGNlcGNpb25lcyBhIGxvcyBkZXJlY2hvcyBkZWwgYXV0b3IgYmFqbyBlbCByw6lnaW1lbiBsZWdhbCB2aWdlbnRlIG8gZGVyaXZhZG8gZGUgY3VhbHF1aWVyIG90cmEgbm9ybWEgcXVlIHNlIGxlIGFwbGlxdWUuPC9wPgogIDwvbGk+CiAgPGxpPgogICAgQ29uY2VzacOzbiBkZSBsYSBMaWNlbmNpYS4KICAgIDxwPkJham8gbG9zIHTDqXJtaW5vcyB5IGNvbmRpY2lvbmVzIGRlIGVzdGEgTGljZW5jaWEsIGVsIExpY2VuY2lhbnRlIG90b3JnYSBhIFVzdGVkIHVuYSBsaWNlbmNpYSBtdW5kaWFsLCBsaWJyZSBkZSByZWdhbMOtYXMsIG5vIGV4Y2x1c2l2YSB5IHBlcnBldHVhIChkdXJhbnRlIHRvZG8gZWwgcGVyw61vZG8gZGUgdmlnZW5jaWEgZGUgbG9zIGRlcmVjaG9zIGRlIGF1dG9yKSBwYXJhIGVqZXJjZXIgZXN0b3MgZGVyZWNob3Mgc29icmUgbGEgT2JyYSB0YWwgeSBjb21vIHNlIGluZGljYSBhIGNvbnRpbnVhY2nDs246PC9wPgogICAgPG9sIHR5cGU9ImEiPgogICAgICA8bGk+UmVwcm9kdWNpciBsYSBPYnJhLCBpbmNvcnBvcmFyIGxhIE9icmEgZW4gdW5hIG8gbcOhcyBPYnJhcyBDb2xlY3RpdmFzLCB5IHJlcHJvZHVjaXIgbGEgT2JyYSBpbmNvcnBvcmFkYSBlbiBsYXMgT2JyYXMgQ29sZWN0aXZhcy48L2xpPgogICAgICA8bGk+RGlzdHJpYnVpciBjb3BpYXMgbyBmb25vZ3JhbWFzIGRlIGxhcyBPYnJhcywgZXhoaWJpcmxhcyBww7pibGljYW1lbnRlLCBlamVjdXRhcmxhcyBww7pibGljYW1lbnRlIHkvbyBwb25lcmxhcyBhIGRpc3Bvc2ljacOzbiBww7pibGljYSwgaW5jbHV5w6luZG9sYXMgY29tbyBpbmNvcnBvcmFkYXMgZW4gT2JyYXMgQ29sZWN0aXZhcywgc2Vnw7puIGNvcnJlc3BvbmRhLjwvbGk+CiAgICAgIDxsaT5EaXN0cmlidWlyIGNvcGlhcyBkZSBsYXMgT2JyYXMgRGVyaXZhZGFzIHF1ZSBzZSBnZW5lcmVuLCBleGhpYmlybGFzIHDDumJsaWNhbWVudGUsIGVqZWN1dGFybGFzIHDDumJsaWNhbWVudGUgeS9vIHBvbmVybGFzIGEgZGlzcG9zaWNpw7NuIHDDumJsaWNhLjwvbGk+CiAgICA8L29sPgogICAgPHA+TG9zIGRlcmVjaG9zIG1lbmNpb25hZG9zIGFudGVyaW9ybWVudGUgcHVlZGVuIHNlciBlamVyY2lkb3MgZW4gdG9kb3MgbG9zIG1lZGlvcyB5IGZvcm1hdG9zLCBhY3R1YWxtZW50ZSBjb25vY2lkb3MgbyBxdWUgc2UgaW52ZW50ZW4gZW4gZWwgZnV0dXJvLiBMb3MgZGVyZWNob3MgYW50ZXMgbWVuY2lvbmFkb3MgaW5jbHV5ZW4gZWwgZGVyZWNobyBhIHJlYWxpemFyIGRpY2hhcyBtb2RpZmljYWNpb25lcyBlbiBsYSBtZWRpZGEgcXVlIHNlYW4gdMOpY25pY2FtZW50ZSBuZWNlc2FyaWFzIHBhcmEgZWplcmNlciBsb3MgZGVyZWNob3MgZW4gb3RybyBtZWRpbyBvIGZvcm1hdG9zLCBwZXJvIGRlIG90cmEgbWFuZXJhIHVzdGVkIG5vIGVzdMOhIGF1dG9yaXphZG8gcGFyYSByZWFsaXphciBvYnJhcyBkZXJpdmFkYXMuIFRvZG9zIGxvcyBkZXJlY2hvcyBubyBvdG9yZ2Fkb3MgZXhwcmVzYW1lbnRlIHBvciBlbCBMaWNlbmNpYW50ZSBxdWVkYW4gcG9yIGVzdGUgbWVkaW8gcmVzZXJ2YWRvcywgaW5jbHV5ZW5kbyBwZXJvIHNpbiBsaW1pdGFyc2UgYSBhcXVlbGxvcyBxdWUgc2UgbWVuY2lvbmFuIGVuIGxhcyBzZWNjaW9uZXMgNChkKSB5IDQoZSkuPC9wPgogIDwvbGk+CiAgPGJyLz4KICA8bGk+CiAgICBSZXN0cmljY2lvbmVzLgogICAgPHA+TGEgbGljZW5jaWEgb3RvcmdhZGEgZW4gbGEgYW50ZXJpb3IgU2VjY2nDs24gMyBlc3TDoSBleHByZXNhbWVudGUgc3VqZXRhIHkgbGltaXRhZGEgcG9yIGxhcyBzaWd1aWVudGVzIHJlc3RyaWNjaW9uZXM6PC9wPgogICAgPG9sIHR5cGU9ImEiPgogICAgICA8bGk+VXN0ZWQgcHVlZGUgZGlzdHJpYnVpciwgZXhoaWJpciBww7pibGljYW1lbnRlLCBlamVjdXRhciBww7pibGljYW1lbnRlLCBvIHBvbmVyIGEgZGlzcG9zaWNpw7NuIHDDumJsaWNhIGxhIE9icmEgc8OzbG8gYmFqbyBsYXMgY29uZGljaW9uZXMgZGUgZXN0YSBMaWNlbmNpYSwgeSBVc3RlZCBkZWJlIGluY2x1aXIgdW5hIGNvcGlhIGRlIGVzdGEgbGljZW5jaWEgbyBkZWwgSWRlbnRpZmljYWRvciBVbml2ZXJzYWwgZGUgUmVjdXJzb3MgZGUgbGEgbWlzbWEgY29uIGNhZGEgY29waWEgZGUgbGEgT2JyYSBxdWUgZGlzdHJpYnV5YSwgZXhoaWJhIHDDumJsaWNhbWVudGUsIGVqZWN1dGUgcMO6YmxpY2FtZW50ZSBvIHBvbmdhIGEgZGlzcG9zaWNpw7NuIHDDumJsaWNhLiBObyBlcyBwb3NpYmxlIG9mcmVjZXIgbyBpbXBvbmVyIG5pbmd1bmEgY29uZGljacOzbiBzb2JyZSBsYSBPYnJhIHF1ZSBhbHRlcmUgbyBsaW1pdGUgbGFzIGNvbmRpY2lvbmVzIGRlIGVzdGEgTGljZW5jaWEgbyBlbCBlamVyY2ljaW8gZGUgbG9zIGRlcmVjaG9zIGRlIGxvcyBkZXN0aW5hdGFyaW9zIG90b3JnYWRvcyBlbiBlc3RlIGRvY3VtZW50by4gTm8gZXMgcG9zaWJsZSBzdWJsaWNlbmNpYXIgbGEgT2JyYS4gVXN0ZWQgZGViZSBtYW50ZW5lciBpbnRhY3RvcyB0b2RvcyBsb3MgYXZpc29zIHF1ZSBoYWdhbiByZWZlcmVuY2lhIGEgZXN0YSBMaWNlbmNpYSB5IGEgbGEgY2zDoXVzdWxhIGRlIGxpbWl0YWNpw7NuIGRlIGdhcmFudMOtYXMuIFVzdGVkIG5vIHB1ZWRlIGRpc3RyaWJ1aXIsIGV4aGliaXIgcMO6YmxpY2FtZW50ZSwgZWplY3V0YXIgcMO6YmxpY2FtZW50ZSwgbyBwb25lciBhIGRpc3Bvc2ljacOzbiBww7pibGljYSBsYSBPYnJhIGNvbiBhbGd1bmEgbWVkaWRhIHRlY25vbMOzZ2ljYSBxdWUgY29udHJvbGUgZWwgYWNjZXNvIG8gbGEgdXRpbGl6YWNpw7NuIGRlIGVsbGEgZGUgdW5hIGZvcm1hIHF1ZSBzZWEgaW5jb25zaXN0ZW50ZSBjb24gbGFzIGNvbmRpY2lvbmVzIGRlIGVzdGEgTGljZW5jaWEuIExvIGFudGVyaW9yIHNlIGFwbGljYSBhIGxhIE9icmEgaW5jb3Jwb3JhZGEgYSB1bmEgT2JyYSBDb2xlY3RpdmEsIHBlcm8gZXN0byBubyBleGlnZSBxdWUgbGEgT2JyYSBDb2xlY3RpdmEgYXBhcnRlIGRlIGxhIG9icmEgbWlzbWEgcXVlZGUgc3VqZXRhIGEgbGFzIGNvbmRpY2lvbmVzIGRlIGVzdGEgTGljZW5jaWEuIFNpIFVzdGVkIGNyZWEgdW5hIE9icmEgQ29sZWN0aXZhLCBwcmV2aW8gYXZpc28gZGUgY3VhbHF1aWVyIExpY2VuY2lhbnRlIGRlYmUsIGVuIGxhIG1lZGlkYSBkZSBsbyBwb3NpYmxlLCBlbGltaW5hciBkZSBsYSBPYnJhIENvbGVjdGl2YSBjdWFscXVpZXIgcmVmZXJlbmNpYSBhIGRpY2hvIExpY2VuY2lhbnRlIG8gYWwgQXV0b3IgT3JpZ2luYWwsIHNlZ8O6biBsbyBzb2xpY2l0YWRvIHBvciBlbCBMaWNlbmNpYW50ZSB5IGNvbmZvcm1lIGxvIGV4aWdlIGxhIGNsw6F1c3VsYSA0KGMpLjwvbGk+CiAgICAgIDxsaT5Vc3RlZCBubyBwdWVkZSBlamVyY2VyIG5pbmd1bm8gZGUgbG9zIGRlcmVjaG9zIHF1ZSBsZSBoYW4gc2lkbyBvdG9yZ2Fkb3MgZW4gbGEgU2VjY2nDs24gMyBwcmVjZWRlbnRlIGRlIG1vZG8gcXVlIGVzdMOpbiBwcmluY2lwYWxtZW50ZSBkZXN0aW5hZG9zIG8gZGlyZWN0YW1lbnRlIGRpcmlnaWRvcyBhIGNvbnNlZ3VpciB1biBwcm92ZWNobyBjb21lcmNpYWwgbyB1bmEgY29tcGVuc2FjacOzbiBtb25ldGFyaWEgcHJpdmFkYS4gRWwgaW50ZXJjYW1iaW8gZGUgbGEgT2JyYSBwb3Igb3RyYXMgb2JyYXMgcHJvdGVnaWRhcyBwb3IgZGVyZWNob3MgZGUgYXV0b3IsIHlhIHNlYSBhIHRyYXbDqXMgZGUgdW4gc2lzdGVtYSBwYXJhIGNvbXBhcnRpciBhcmNoaXZvcyBkaWdpdGFsZXMgKGRpZ2l0YWwgZmlsZS1zaGFyaW5nKSBvIGRlIGN1YWxxdWllciBvdHJhIG1hbmVyYSBubyBzZXLDoSBjb25zaWRlcmFkbyBjb21vIGVzdGFyIGRlc3RpbmFkbyBwcmluY2lwYWxtZW50ZSBvIGRpcmlnaWRvIGRpcmVjdGFtZW50ZSBhIGNvbnNlZ3VpciB1biBwcm92ZWNobyBjb21lcmNpYWwgbyB1bmEgY29tcGVuc2FjacOzbiBtb25ldGFyaWEgcHJpdmFkYSwgc2llbXByZSBxdWUgbm8gc2UgcmVhbGljZSB1biBwYWdvIG1lZGlhbnRlIHVuYSBjb21wZW5zYWNpw7NuIG1vbmV0YXJpYSBlbiByZWxhY2nDs24gY29uIGVsIGludGVyY2FtYmlvIGRlIG9icmFzIHByb3RlZ2lkYXMgcG9yIGVsIGRlcmVjaG8gZGUgYXV0b3IuPC9saT4KICAgICAgPGxpPlNpIHVzdGVkIGRpc3RyaWJ1eWUsIGV4aGliZSBww7pibGljYW1lbnRlLCBlamVjdXRhIHDDumJsaWNhbWVudGUgbyBlamVjdXRhIHDDumJsaWNhbWVudGUgZW4gZm9ybWEgZGlnaXRhbCBsYSBPYnJhIG8gY3VhbHF1aWVyIE9icmEgRGVyaXZhZGEgdSBPYnJhIENvbGVjdGl2YSwgVXN0ZWQgZGViZSBtYW50ZW5lciBpbnRhY3RhIHRvZGEgbGEgaW5mb3JtYWNpw7NuIGRlIGRlcmVjaG8gZGUgYXV0b3IgZGUgbGEgT2JyYSB5IHByb3BvcmNpb25hciwgZGUgZm9ybWEgcmF6b25hYmxlIHNlZ8O6biBlbCBtZWRpbyBvIG1hbmVyYSBxdWUgVXN0ZWQgZXN0w6kgdXRpbGl6YW5kbzogKGkpIGVsIG5vbWJyZSBkZWwgQXV0b3IgT3JpZ2luYWwgc2kgZXN0w6EgcHJvdmlzdG8gKG8gc2V1ZMOzbmltbywgc2kgZnVlcmUgYXBsaWNhYmxlKSwgeS9vIChpaSkgZWwgbm9tYnJlIGRlIGxhIHBhcnRlIG8gbGFzIHBhcnRlcyBxdWUgZWwgQXV0b3IgT3JpZ2luYWwgeS9vIGVsIExpY2VuY2lhbnRlIGh1YmllcmVuIGRlc2lnbmFkbyBwYXJhIGxhIGF0cmlidWNpw7NuICh2LmcuLCB1biBpbnN0aXR1dG8gcGF0cm9jaW5hZG9yLCBlZGl0b3JpYWwsIHB1YmxpY2FjacOzbikgZW4gbGEgaW5mb3JtYWNpw7NuIGRlIGxvcyBkZXJlY2hvcyBkZSBhdXRvciBkZWwgTGljZW5jaWFudGUsIHTDqXJtaW5vcyBkZSBzZXJ2aWNpb3MgbyBkZSBvdHJhcyBmb3JtYXMgcmF6b25hYmxlczsgZWwgdMOtdHVsbyBkZSBsYSBPYnJhIHNpIGVzdMOhIHByb3Zpc3RvOyBlbiBsYSBtZWRpZGEgZGUgbG8gcmF6b25hYmxlbWVudGUgZmFjdGlibGUgeSwgc2kgZXN0w6EgcHJvdmlzdG8sIGVsIElkZW50aWZpY2Fkb3IgVW5pZm9ybWUgZGUgUmVjdXJzb3MgKFVuaWZvcm0gUmVzb3VyY2UgSWRlbnRpZmllcikgcXVlIGVsIExpY2VuY2lhbnRlIGVzcGVjaWZpY2EgcGFyYSBzZXIgYXNvY2lhZG8gY29uIGxhIE9icmEsIHNhbHZvIHF1ZSB0YWwgVVJJIG5vIHNlIHJlZmllcmEgYSBsYSBub3RhIHNvYnJlIGxvcyBkZXJlY2hvcyBkZSBhdXRvciBvIGEgbGEgaW5mb3JtYWNpw7NuIHNvYnJlIGVsIGxpY2VuY2lhbWllbnRvIGRlIGxhIE9icmE7IHkgZW4gZWwgY2FzbyBkZSB1bmEgT2JyYSBEZXJpdmFkYSwgYXRyaWJ1aXIgZWwgY3LDqWRpdG8gaWRlbnRpZmljYW5kbyBlbCB1c28gZGUgbGEgT2JyYSBlbiBsYSBPYnJhIERlcml2YWRhICh2LmcuLCAiVHJhZHVjY2nDs24gRnJhbmNlc2EgZGUgbGEgT2JyYSBkZWwgQXV0b3IgT3JpZ2luYWwsIiBvICJHdWnDs24gQ2luZW1hdG9ncsOhZmljbyBiYXNhZG8gZW4gbGEgT2JyYSBvcmlnaW5hbCBkZWwgQXV0b3IgT3JpZ2luYWwiKS4gVGFsIGNyw6lkaXRvIHB1ZWRlIHNlciBpbXBsZW1lbnRhZG8gZGUgY3VhbHF1aWVyIGZvcm1hIHJhem9uYWJsZTsgZW4gZWwgY2Fzbywgc2luIGVtYmFyZ28sIGRlIE9icmFzIERlcml2YWRhcyB1IE9icmFzIENvbGVjdGl2YXMsIHRhbCBjcsOpZGl0byBhcGFyZWNlcsOhLCBjb21vIG3DrW5pbW8sIGRvbmRlIGFwYXJlY2UgZWwgY3LDqWRpdG8gZGUgY3VhbHF1aWVyIG90cm8gYXV0b3IgY29tcGFyYWJsZSB5IGRlIHVuYSBtYW5lcmEsIGFsIG1lbm9zLCB0YW4gZGVzdGFjYWRhIGNvbW8gZWwgY3LDqWRpdG8gZGUgb3RybyBhdXRvciBjb21wYXJhYmxlLjwvbGk+CiAgICAgIDxsaT4KICAgICAgICBQYXJhIGV2aXRhciB0b2RhIGNvbmZ1c2nDs24sIGVsIExpY2VuY2lhbnRlIGFjbGFyYSBxdWUsIGN1YW5kbyBsYSBvYnJhIGVzIHVuYSBjb21wb3NpY2nDs24gbXVzaWNhbDoKICAgICAgICA8b2wgdHlwZT0iaSI+CiAgICAgICAgICA8bGk+UmVnYWzDrWFzIHBvciBpbnRlcnByZXRhY2nDs24geSBlamVjdWNpw7NuIGJham8gbGljZW5jaWFzIGdlbmVyYWxlcy4gRWwgTGljZW5jaWFudGUgc2UgcmVzZXJ2YSBlbCBkZXJlY2hvIGV4Y2x1c2l2byBkZSBhdXRvcml6YXIgbGEgZWplY3VjacOzbiBww7pibGljYSBvIGxhIGVqZWN1Y2nDs24gcMO6YmxpY2EgZGlnaXRhbCBkZSBsYSBvYnJhIHkgZGUgcmVjb2xlY3Rhciwgc2VhIGluZGl2aWR1YWxtZW50ZSBvIGEgdHJhdsOpcyBkZSB1bmEgc29jaWVkYWQgZGUgZ2VzdGnDs24gY29sZWN0aXZhIGRlIGRlcmVjaG9zIGRlIGF1dG9yIHkgZGVyZWNob3MgY29uZXhvcyAocG9yIGVqZW1wbG8sIFNBWUNPKSwgbGFzIHJlZ2Fsw61hcyBwb3IgbGEgZWplY3VjacOzbiBww7pibGljYSBvIHBvciBsYSBlamVjdWNpw7NuIHDDumJsaWNhIGRpZ2l0YWwgZGUgbGEgb2JyYSAocG9yIGVqZW1wbG8gV2ViY2FzdCkgbGljZW5jaWFkYSBiYWpvIGxpY2VuY2lhcyBnZW5lcmFsZXMsIHNpIGxhIGludGVycHJldGFjacOzbiBvIGVqZWN1Y2nDs24gZGUgbGEgb2JyYSBlc3TDoSBwcmltb3JkaWFsbWVudGUgb3JpZW50YWRhIHBvciBvIGRpcmlnaWRhIGEgbGEgb2J0ZW5jacOzbiBkZSB1bmEgdmVudGFqYSBjb21lcmNpYWwgbyB1bmEgY29tcGVuc2FjacOzbiBtb25ldGFyaWEgcHJpdmFkYS48L2xpPgogICAgICAgICAgPGxpPlJlZ2Fsw61hcyBwb3IgRm9ub2dyYW1hcy4gRWwgTGljZW5jaWFudGUgc2UgcmVzZXJ2YSBlbCBkZXJlY2hvIGV4Y2x1c2l2byBkZSByZWNvbGVjdGFyLCBpbmRpdmlkdWFsbWVudGUgbyBhIHRyYXbDqXMgZGUgdW5hIHNvY2llZGFkIGRlIGdlc3Rpw7NuIGNvbGVjdGl2YSBkZSBkZXJlY2hvcyBkZSBhdXRvciB5IGRlcmVjaG9zIGNvbmV4b3MgKHBvciBlamVtcGxvLCBsb3MgY29uc2FncmFkb3MgcG9yIGxhIFNBWUNPKSwgdW5hIGFnZW5jaWEgZGUgZGVyZWNob3MgbXVzaWNhbGVzIG8gYWxnw7puIGFnZW50ZSBkZXNpZ25hZG8sIGxhcyByZWdhbMOtYXMgcG9yIGN1YWxxdWllciBmb25vZ3JhbWEgcXVlIFVzdGVkIGNyZWUgYSBwYXJ0aXIgZGUgbGEgb2JyYSAo4oCcdmVyc2nDs24gY292ZXLigJ0pIHkgZGlzdHJpYnV5YSwgZW4gbG9zIHTDqXJtaW5vcyBkZWwgcsOpZ2ltZW4gZGUgZGVyZWNob3MgZGUgYXV0b3IsIHNpIGxhIGNyZWFjacOzbiBvIGRpc3RyaWJ1Y2nDs24gZGUgZXNhIHZlcnNpw7NuIGNvdmVyIGVzdMOhIHByaW1vcmRpYWxtZW50ZSBkZXN0aW5hZGEgbyBkaXJpZ2lkYSBhIG9idGVuZXIgdW5hIHZlbnRhamEgY29tZXJjaWFsIG8gdW5hIGNvbXBlbnNhY2nDs24gbW9uZXRhcmlhIHByaXZhZGEuPC9saT4KICAgICAgICA8L29sPgogICAgICA8L2xpPgogICAgICA8bGk+R2VzdGnDs24gZGUgRGVyZWNob3MgZGUgQXV0b3Igc29icmUgSW50ZXJwcmV0YWNpb25lcyB5IEVqZWN1Y2lvbmVzIERpZ2l0YWxlcyAoV2ViQ2FzdGluZykuIFBhcmEgZXZpdGFyIHRvZGEgY29uZnVzacOzbiwgZWwgTGljZW5jaWFudGUgYWNsYXJhIHF1ZSwgY3VhbmRvIGxhIG9icmEgc2VhIHVuIGZvbm9ncmFtYSwgZWwgTGljZW5jaWFudGUgc2UgcmVzZXJ2YSBlbCBkZXJlY2hvIGV4Y2x1c2l2byBkZSBhdXRvcml6YXIgbGEgZWplY3VjacOzbiBww7pibGljYSBkaWdpdGFsIGRlIGxhIG9icmEgKHBvciBlamVtcGxvLCB3ZWJjYXN0KSB5IGRlIHJlY29sZWN0YXIsIGluZGl2aWR1YWxtZW50ZSBvIGEgdHJhdsOpcyBkZSB1bmEgc29jaWVkYWQgZGUgZ2VzdGnDs24gY29sZWN0aXZhIGRlIGRlcmVjaG9zIGRlIGF1dG9yIHkgZGVyZWNob3MgY29uZXhvcyAocG9yIGVqZW1wbG8sIEFDSU5QUk8pLCBsYXMgcmVnYWzDrWFzIHBvciBsYSBlamVjdWNpw7NuIHDDumJsaWNhIGRpZ2l0YWwgZGUgbGEgb2JyYSAocG9yIGVqZW1wbG8sIHdlYmNhc3QpLCBzdWpldGEgYSBsYXMgZGlzcG9zaWNpb25lcyBhcGxpY2FibGVzIGRlbCByw6lnaW1lbiBkZSBEZXJlY2hvIGRlIEF1dG9yLCBzaSBlc3RhIGVqZWN1Y2nDs24gcMO6YmxpY2EgZGlnaXRhbCBlc3TDoSBwcmltb3JkaWFsbWVudGUgZGlyaWdpZGEgYSBvYnRlbmVyIHVuYSB2ZW50YWphIGNvbWVyY2lhbCBvIHVuYSBjb21wZW5zYWNpw7NuIG1vbmV0YXJpYSBwcml2YWRhLjwvbGk+CiAgICA8L29sPgogIDwvbGk+CiAgPGJyLz4KICA8bGk+CiAgICBSZXByZXNlbnRhY2lvbmVzLCBHYXJhbnTDrWFzIHkgTGltaXRhY2lvbmVzIGRlIFJlc3BvbnNhYmlsaWRhZC4KICAgIDxwPkEgTUVOT1MgUVVFIExBUyBQQVJURVMgTE8gQUNPUkRBUkFOIERFIE9UUkEgRk9STUEgUE9SIEVTQ1JJVE8sIEVMIExJQ0VOQ0lBTlRFIE9GUkVDRSBMQSBPQlJBIChFTiBFTCBFU1RBRE8gRU4gRUwgUVVFIFNFIEVOQ1VFTlRSQSkg4oCcVEFMIENVQUzigJ0sIFNJTiBCUklOREFSIEdBUkFOVMONQVMgREUgQ0xBU0UgQUxHVU5BIFJFU1BFQ1RPIERFIExBIE9CUkEsIFlBIFNFQSBFWFBSRVNBLCBJTVBMw41DSVRBLCBMRUdBTCBPIENVQUxRVUlFUkEgT1RSQSwgSU5DTFVZRU5ETywgU0lOIExJTUlUQVJTRSBBIEVMTEFTLCBHQVJBTlTDjUFTIERFIFRJVFVMQVJJREFELCBDT01FUkNJQUJJTElEQUQsIEFEQVBUQUJJTElEQUQgTyBBREVDVUFDScOTTiBBIFBST1DDk1NJVE8gREVURVJNSU5BRE8sIEFVU0VOQ0lBIERFIElORlJBQ0NJw5NOLCBERSBBVVNFTkNJQSBERSBERUZFQ1RPUyBMQVRFTlRFUyBPIERFIE9UUk8gVElQTywgTyBMQSBQUkVTRU5DSUEgTyBBVVNFTkNJQSBERSBFUlJPUkVTLCBTRUFOIE8gTk8gREVTQ1VCUklCTEVTIChQVUVEQU4gTyBOTyBTRVIgRVNUT1MgREVTQ1VCSUVSVE9TKS4gQUxHVU5BUyBKVVJJU0RJQ0NJT05FUyBOTyBQRVJNSVRFTiBMQSBFWENMVVNJw5NOIERFIEdBUkFOVMONQVMgSU1QTMONQ0lUQVMsIEVOIENVWU8gQ0FTTyBFU1RBIEVYQ0xVU0nDk04gUFVFREUgTk8gQVBMSUNBUlNFIEEgVVNURUQuPC9wPgogIDwvbGk+CiAgPGJyLz4KICA8bGk+CiAgICBMaW1pdGFjacOzbiBkZSByZXNwb25zYWJpbGlkYWQuCiAgICA8cD5BIE1FTk9TIFFVRSBMTyBFWElKQSBFWFBSRVNBTUVOVEUgTEEgTEVZIEFQTElDQUJMRSwgRUwgTElDRU5DSUFOVEUgTk8gU0VSw4EgUkVTUE9OU0FCTEUgQU5URSBVU1RFRCBQT1IgREHDkU8gQUxHVU5PLCBTRUEgUE9SIFJFU1BPTlNBQklMSURBRCBFWFRSQUNPTlRSQUNUVUFMLCBQUkVDT05UUkFDVFVBTCBPIENPTlRSQUNUVUFMLCBPQkpFVElWQSBPIFNVQkpFVElWQSwgU0UgVFJBVEUgREUgREHDkU9TIE1PUkFMRVMgTyBQQVRSSU1PTklBTEVTLCBESVJFQ1RPUyBPIElORElSRUNUT1MsIFBSRVZJU1RPUyBPIElNUFJFVklTVE9TIFBST0RVQ0lET1MgUE9SIEVMIFVTTyBERSBFU1RBIExJQ0VOQ0lBIE8gREUgTEEgT0JSQSwgQVVOIENVQU5ETyBFTCBMSUNFTkNJQU5URSBIQVlBIFNJRE8gQURWRVJUSURPIERFIExBIFBPU0lCSUxJREFEIERFIERJQ0hPUyBEQcORT1MuIEFMR1VOQVMgTEVZRVMgTk8gUEVSTUlURU4gTEEgRVhDTFVTScOTTiBERSBDSUVSVEEgUkVTUE9OU0FCSUxJREFELCBFTiBDVVlPIENBU08gRVNUQSBFWENMVVNJw5NOIFBVRURFIE5PIEFQTElDQVJTRSBBIFVTVEVELjwvcD4KICA8L2xpPgogIDxici8+CiAgPGxpPgogICAgVMOpcm1pbm8uCiAgICA8b2wgdHlwZT0iYSI+CiAgICAgIDxsaT5Fc3RhIExpY2VuY2lhIHkgbG9zIGRlcmVjaG9zIG90b3JnYWRvcyBlbiB2aXJ0dWQgZGUgZWxsYSB0ZXJtaW5hcsOhbiBhdXRvbcOhdGljYW1lbnRlIHNpIFVzdGVkIGluZnJpbmdlIGFsZ3VuYSBjb25kaWNpw7NuIGVzdGFibGVjaWRhIGVuIGVsbGEuIFNpbiBlbWJhcmdvLCBsb3MgaW5kaXZpZHVvcyBvIGVudGlkYWRlcyBxdWUgaGFuIHJlY2liaWRvIE9icmFzIERlcml2YWRhcyBvIENvbGVjdGl2YXMgZGUgVXN0ZWQgZGUgY29uZm9ybWlkYWQgY29uIGVzdGEgTGljZW5jaWEsIG5vIHZlcsOhbiB0ZXJtaW5hZGFzIHN1cyBsaWNlbmNpYXMsIHNpZW1wcmUgcXVlIGVzdG9zIGluZGl2aWR1b3MgbyBlbnRpZGFkZXMgc2lnYW4gY3VtcGxpZW5kbyDDrW50ZWdyYW1lbnRlIGxhcyBjb25kaWNpb25lcyBkZSBlc3RhcyBsaWNlbmNpYXMuIExhcyBTZWNjaW9uZXMgMSwgMiwgNSwgNiwgNywgeSA4IHN1YnNpc3RpcsOhbiBhIGN1YWxxdWllciB0ZXJtaW5hY2nDs24gZGUgZXN0YSBMaWNlbmNpYS48L2xpPgogICAgICA8bGk+U3VqZXRhIGEgbGFzIGNvbmRpY2lvbmVzIHkgdMOpcm1pbm9zIGFudGVyaW9yZXMsIGxhIGxpY2VuY2lhIG90b3JnYWRhIGFxdcOtIGVzIHBlcnBldHVhIChkdXJhbnRlIGVsIHBlcsOtb2RvIGRlIHZpZ2VuY2lhIGRlIGxvcyBkZXJlY2hvcyBkZSBhdXRvciBkZSBsYSBvYnJhKS4gTm8gb2JzdGFudGUgbG8gYW50ZXJpb3IsIGVsIExpY2VuY2lhbnRlIHNlIHJlc2VydmEgZWwgZGVyZWNobyBhIHB1YmxpY2FyIHkvbyBlc3RyZW5hciBsYSBPYnJhIGJham8gY29uZGljaW9uZXMgZGUgbGljZW5jaWEgZGlmZXJlbnRlcyBvIGEgZGVqYXIgZGUgZGlzdHJpYnVpcmxhIGVuIGxvcyB0w6lybWlub3MgZGUgZXN0YSBMaWNlbmNpYSBlbiBjdWFscXVpZXIgbW9tZW50bzsgZW4gZWwgZW50ZW5kaWRvLCBzaW4gZW1iYXJnbywgcXVlIGVzYSBlbGVjY2nDs24gbm8gc2Vydmlyw6EgcGFyYSByZXZvY2FyIGVzdGEgbGljZW5jaWEgbyBxdWUgZGViYSBzZXIgb3RvcmdhZGEgLCBiYWpvIGxvcyB0w6lybWlub3MgZGUgZXN0YSBsaWNlbmNpYSksIHkgZXN0YSBsaWNlbmNpYSBjb250aW51YXLDoSBlbiBwbGVubyB2aWdvciB5IGVmZWN0byBhIG1lbm9zIHF1ZSBzZWEgdGVybWluYWRhIGNvbW8gc2UgZXhwcmVzYSBhdHLDoXMuIExhIExpY2VuY2lhIHJldm9jYWRhIGNvbnRpbnVhcsOhIHNpZW5kbyBwbGVuYW1lbnRlIHZpZ2VudGUgeSBlZmVjdGl2YSBzaSBubyBzZSBsZSBkYSB0w6lybWlubyBlbiBsYXMgY29uZGljaW9uZXMgaW5kaWNhZGFzIGFudGVyaW9ybWVudGUuPC9saT4KICAgIDwvb2w+CiAgPC9saT4KICA8YnIvPgogIDxsaT4KICAgIFZhcmlvcy4KICAgIDxvbCB0eXBlPSJhIj4KICAgICAgPGxpPkNhZGEgdmV6IHF1ZSBVc3RlZCBkaXN0cmlidXlhIG8gcG9uZ2EgYSBkaXNwb3NpY2nDs24gcMO6YmxpY2EgbGEgT2JyYSBvIHVuYSBPYnJhIENvbGVjdGl2YSwgZWwgTGljZW5jaWFudGUgb2ZyZWNlcsOhIGFsIGRlc3RpbmF0YXJpbyB1bmEgbGljZW5jaWEgZW4gbG9zIG1pc21vcyB0w6lybWlub3MgeSBjb25kaWNpb25lcyBxdWUgbGEgbGljZW5jaWEgb3RvcmdhZGEgYSBVc3RlZCBiYWpvIGVzdGEgTGljZW5jaWEuPC9saT4KICAgICAgPGxpPlNpIGFsZ3VuYSBkaXNwb3NpY2nDs24gZGUgZXN0YSBMaWNlbmNpYSByZXN1bHRhIGludmFsaWRhZGEgbyBubyBleGlnaWJsZSwgc2Vnw7puIGxhIGxlZ2lzbGFjacOzbiB2aWdlbnRlLCBlc3RvIG5vIGFmZWN0YXLDoSBuaSBsYSB2YWxpZGV6IG5pIGxhIGFwbGljYWJpbGlkYWQgZGVsIHJlc3RvIGRlIGNvbmRpY2lvbmVzIGRlIGVzdGEgTGljZW5jaWEgeSwgc2luIGFjY2nDs24gYWRpY2lvbmFsIHBvciBwYXJ0ZSBkZSBsb3Mgc3VqZXRvcyBkZSBlc3RlIGFjdWVyZG8sIGFxdcOpbGxhIHNlIGVudGVuZGVyw6EgcmVmb3JtYWRhIGxvIG3DrW5pbW8gbmVjZXNhcmlvIHBhcmEgaGFjZXIgcXVlIGRpY2hhIGRpc3Bvc2ljacOzbiBzZWEgdsOhbGlkYSB5IGV4aWdpYmxlLjwvbGk+CiAgICAgIDxsaT5OaW5nw7puIHTDqXJtaW5vIG8gZGlzcG9zaWNpw7NuIGRlIGVzdGEgTGljZW5jaWEgc2UgZXN0aW1hcsOhIHJlbnVuY2lhZGEgeSBuaW5ndW5hIHZpb2xhY2nDs24gZGUgZWxsYSBzZXLDoSBjb25zZW50aWRhIGEgbWVub3MgcXVlIGVzYSByZW51bmNpYSBvIGNvbnNlbnRpbWllbnRvIHNlYSBvdG9yZ2FkbyBwb3IgZXNjcml0byB5IGZpcm1hZG8gcG9yIGxhIHBhcnRlIHF1ZSByZW51bmNpZSBvIGNvbnNpZW50YS48L2xpPgogICAgICA8bGk+RXN0YSBMaWNlbmNpYSByZWZsZWphIGVsIGFjdWVyZG8gcGxlbm8gZW50cmUgbGFzIHBhcnRlcyByZXNwZWN0byBhIGxhIE9icmEgYXF1w60gbGljZW5jaWFkYS4gTm8gaGF5IGFycmVnbG9zLCBhY3VlcmRvcyBvIGRlY2xhcmFjaW9uZXMgcmVzcGVjdG8gYSBsYSBPYnJhIHF1ZSBubyBlc3TDqW4gZXNwZWNpZmljYWRvcyBlbiBlc3RlIGRvY3VtZW50by4gRWwgTGljZW5jaWFudGUgbm8gc2UgdmVyw6EgbGltaXRhZG8gcG9yIG5pbmd1bmEgZGlzcG9zaWNpw7NuIGFkaWNpb25hbCBxdWUgcHVlZGEgc3VyZ2lyIGVuIGFsZ3VuYSBjb211bmljYWNpw7NuIGVtYW5hZGEgZGUgVXN0ZWQuIEVzdGEgTGljZW5jaWEgbm8gcHVlZGUgc2VyIG1vZGlmaWNhZGEgc2luIGVsIGNvbnNlbnRpbWllbnRvIG11dHVvIHBvciBlc2NyaXRvIGRlbCBMaWNlbmNpYW50ZSB5IFVzdGVkLjwvbGk+CiAgICA8L29sPgogIDwvbGk+CiAgPGJyLz4KPC9vbD4K