Una demostración elemental del teorema de los números primos

Given a real positive number x, the quantity of prime numbers less than or equal to x is denoted by π(x). In this work, we will present an elementary proof of famous prime number theorem, which asserts that the quantity π(x) is asymptotically equivalent to the quotient x/ ln x as x → ∞. To do this d...

Full description

Autores:
Flores Luna, Larry Antonio
Tipo de recurso:
Trabajo de grado de pregrado
Fecha de publicación:
2022
Institución:
Universidad de Córdoba
Repositorio:
Repositorio Institucional Unicórdoba
Idioma:
spa
OAI Identifier:
oai:repositorio.unicordoba.edu.co:ucordoba/5057
Acceso en línea:
https://repositorio.unicordoba.edu.co/handle/ucordoba/5057
Palabra clave:
Fórmulas asintóticas
Números primos
Identidad de Selberg
Asymptotic formulas
Prime numbers
Selberg's identity
Rights
openAccess
License
Copyright Universidad de Córdoba, 2022
Description
Summary:Given a real positive number x, the quantity of prime numbers less than or equal to x is denoted by π(x). In this work, we will present an elementary proof of famous prime number theorem, which asserts that the quantity π(x) is asymptotically equivalent to the quotient x/ ln x as x → ∞. To do this demonstration, we will use elementary techniques of analytic number theory to demonstrate Selberg’s asymptotic formula, from which we will derive the elementary proof of the prime number theorem.