Potencial de bioacumulación de metales pesados por plantas vasculares acuáticas en una zona minera de Ayapel, Córdoba

La minería artesanal de oro contamina los cuerpos de agua por la liberación de metales pesados (MP) lo que representa un riesgo ambiental y sanitario. Frente a esta problemática, las plantas vasculares acuáticas han sido reconocidas por su eficiencia y ampliamente utilizadas en técnicas de fitorreme...

Full description

Autores:
Mercado Tobio, Luisa Fernanda
Tipo de recurso:
Fecha de publicación:
2025
Institución:
Universidad de Córdoba
Repositorio:
Repositorio Institucional Unicórdoba
Idioma:
spa
OAI Identifier:
oai:repositorio.unicordoba.edu.co:ucordoba/9631
Acceso en línea:
https://repositorio.unicordoba.edu.co/handle/ucordoba/9631
https://repositorio.unicordoba.edu.co
Palabra clave:
Elementos potencialmente tóxicos
Fitorremediación
Humedales construidos
Plantas vasculares acuáticas
Potentially toxic elements
Phytoremediation
Constructed wetlands
Aquatic vascular plants
Rights
embargoedAccess
License
Copyright Universidad de Córdoba, 2025
id UCORDOBA2_bc82894109a6738104f64a4f0ee990e2
oai_identifier_str oai:repositorio.unicordoba.edu.co:ucordoba/9631
network_acronym_str UCORDOBA2
network_name_str Repositorio Institucional Unicórdoba
repository_id_str
dc.title.spa.fl_str_mv Potencial de bioacumulación de metales pesados por plantas vasculares acuáticas en una zona minera de Ayapel, Córdoba
title Potencial de bioacumulación de metales pesados por plantas vasculares acuáticas en una zona minera de Ayapel, Córdoba
spellingShingle Potencial de bioacumulación de metales pesados por plantas vasculares acuáticas en una zona minera de Ayapel, Córdoba
Elementos potencialmente tóxicos
Fitorremediación
Humedales construidos
Plantas vasculares acuáticas
Potentially toxic elements
Phytoremediation
Constructed wetlands
Aquatic vascular plants
title_short Potencial de bioacumulación de metales pesados por plantas vasculares acuáticas en una zona minera de Ayapel, Córdoba
title_full Potencial de bioacumulación de metales pesados por plantas vasculares acuáticas en una zona minera de Ayapel, Córdoba
title_fullStr Potencial de bioacumulación de metales pesados por plantas vasculares acuáticas en una zona minera de Ayapel, Córdoba
title_full_unstemmed Potencial de bioacumulación de metales pesados por plantas vasculares acuáticas en una zona minera de Ayapel, Córdoba
title_sort Potencial de bioacumulación de metales pesados por plantas vasculares acuáticas en una zona minera de Ayapel, Córdoba
dc.creator.fl_str_mv Mercado Tobio, Luisa Fernanda
dc.contributor.advisor.none.fl_str_mv Marrugo Negrete, José Luis
dc.contributor.author.none.fl_str_mv Mercado Tobio, Luisa Fernanda
dc.contributor.jury.none.fl_str_mv Diaz Uribe, Carlos Enrique
Consuegra Solorzano, Adolfo
dc.subject.proposal.none.fl_str_mv Elementos potencialmente tóxicos
Fitorremediación
Humedales construidos
Plantas vasculares acuáticas
topic Elementos potencialmente tóxicos
Fitorremediación
Humedales construidos
Plantas vasculares acuáticas
Potentially toxic elements
Phytoremediation
Constructed wetlands
Aquatic vascular plants
dc.subject.keywords.none.fl_str_mv Potentially toxic elements
Phytoremediation
Constructed wetlands
Aquatic vascular plants
description La minería artesanal de oro contamina los cuerpos de agua por la liberación de metales pesados (MP) lo que representa un riesgo ambiental y sanitario. Frente a esta problemática, las plantas vasculares acuáticas han sido reconocidas por su eficiencia y ampliamente utilizadas en técnicas de fitorremediación al ser bioacumuladoras naturales de MP. Asimismo, constituyen uno de los componentes clave en sistemas de humedales de tratamiento. Esta investigación se realizó en una zona minera de Ayapel, Córdoba y en la Universidad de Córdoba, Colombia, donde inicialmente se identificó la vegetación pionera de plantas vasculares acuáticas en la quebrada la Quebradona y en pozas artificiales presentes en el área perturbada por la minería y se determinó la capacidad de acumulación de mercurio (Hg), zinc (Zn), cadmio (Cd) y cobre (Cu) en cada una de las especies de plantas vasculares acuáticas reportadas. Se estudió el potencial de acumulación de Hg, Cd y Cu a las especies reportadas en la zona minera Eleocharis interstincta y Thalia geniculata en humedales construidos de flujo superficial para el tratamiento de agua y suelos contaminados y se determinaron los factores de traslocación (FT) y bioconcentración (FCB). En la zona minera de Ayapel, Córdoba se registraron 12 familias, 17 géneros y 22 especies. Se encontraron correlaciones positivas entre los parámetros fisicoquímicos del agua y del sedimento de las pozas y la Quebradona y la presencia de MP en ambas matrices y su relación con la capacidad de las plantas vasculares acuáticas para acumular metales. En los humedales de tratamiento evaluados, el FT del Cu alcanzó un valor máximo de 1 en los tratamientos plantados con E. interstincta y T. geniculata. Respecto al FCB del Hg se obtuvieron valores de 1, y para el Cd se obtuvieron valores de 0,87 para el tratamiento Eli, 0,88 para Eli-C y 0,80 para Thag. Aunque ambos factores no superaron el valor de 1, los resultados demuestran que E. interstincta y T. geniculata son buenos acumuladores de Cu, Hg y Cd.
publishDate 2025
dc.date.accessioned.none.fl_str_mv 2025-11-12T15:42:38Z
dc.date.issued.none.fl_str_mv 2025
dc.date.available.none.fl_str_mv 2028-11-12
dc.type.none.fl_str_mv Trabajo de grado - Maestría
dc.type.driver.none.fl_str_mv info:eu-repo/semantics/masterThesis
dc.type.version.none.fl_str_mv info:eu-repo/semantics/acceptedVersion
dc.type.content.none.fl_str_mv Text
dc.type.redcol.none.fl_str_mv http://purl.org/redcol/resource_type/TM
status_str acceptedVersion
dc.identifier.uri.none.fl_str_mv https://repositorio.unicordoba.edu.co/handle/ucordoba/9631
dc.identifier.instname.none.fl_str_mv Universidad de Córdoba
dc.identifier.reponame.none.fl_str_mv Repositorio Institucional Unicórdoba
dc.identifier.repourl.none.fl_str_mv https://repositorio.unicordoba.edu.co
url https://repositorio.unicordoba.edu.co/handle/ucordoba/9631
https://repositorio.unicordoba.edu.co
identifier_str_mv Universidad de Córdoba
Repositorio Institucional Unicórdoba
dc.language.iso.none.fl_str_mv spa
language spa
dc.relation.references.none.fl_str_mv A.A. Idriss and A.K. Ahmad, 2012. Heavy Metal Concentrations (Cu, Cd and Pb) in Sediments in the Juru River, Penang, Malaysia. Journal of Biological Sciences, 12: 376-384.
Abedi, T., & Mojiri, A. (2019). Constructed wetland modified by biochar/zeolite addition for enhanced wastewater treatment. Environmental Technology & Innovation, 16, 100472. https://doi.org/10.1016/j.eti.2019.100472
Abid Maktoof, A., & AL-Enazi, M. S. (2020). Use of two plants to remove pollutants in wastewater in constructed wetlands in southern Iraq. The Egyptian Journal of Aquatic Research, 46(3), 227-233. https://doi.org/10.1016/j.ejar.2020.06.002
Adnan, M., Xiao, B., Ali, M. U., Xiao, P., Zhao, P., Wang, H., & Bibi, S. (2024). Heavy metals pollution from smelting activities: A threat to soil and groundwater. Ecotoxicology and Environmental Safety, 274, 116189. https://doi.org/10.1016/j.ecoenv.2024.116189
Aghili, S., & Golzary, A. (2023). Greening the earth, healing the soil: A comprehensive life cycle assessment of phytoremediation for heavy metal contamination. Environmental Technology & Innovation, 32, 103241. https://doi.org/10.1016/j.eti.2023.103241
Aguirre, S. E., Piraneque, N. V., & Linero-Cueto, J. (2021). Concentración de metales pesados y calidad físico-química del agua de la Ciénaga Grande de Santa Marta. Revista U.D.C.A Actualidad & Divulgación Científica, 24(1). https://doi.org/10.31910/rudca.v24.n1.2021.1313
Akoto, O., Yakubu, S., Ofori, L. A., Bortey-sam, N., Boadi, N. O., Horgah, J., & Sackey, L. N. A. (2023). Multivariate studies and heavy metal pollution in soil from gold mining area. Heliyon, 9(1), e12661. https://doi.org/10.1016/j.heliyon.2022.e12661
Alloway, B.J. (2012) Sources of Heavy Metals and Metalloids in Soils. In: Alloway. B.J., Ed., Heavy Metals in Soils: Trace Metals and Metalloids in Soils and Their Bioavailability, Environmental Pollution, Vol. 22, Springer, Dordrecht, 11-50
Ansari, A. A., Naeem, M., Gill, S. S., & AlZuaibr, F. M. (2020). Phytoremediation of contaminated waters: An eco-friendly technology based on aquatic macrophytes application. The Egyptian Journal of Aquatic Research, 46(4), 371-376. https://doi.org/10.1016/j.ejar.2020.03.002
Angon, P. B., Islam, Md. S., Kc, S., Das, A., Anjum, N., Poudel, A., & Suchi, S. A. (2024). Sources, effects and present perspectives of heavy metals contamination: Soil, plants and human food chain. Heliyon, 10(7), e28357. https://doi.org/10.1016/j.heliyon.2024.e28357
Atuesta-Ibargüen DJ. 2019. Composición florística y formas de vida de las macrófitas acuáticas de la serranía de La Lindosa (Guaviare), Guayana colombiana. Caldasia 41(2):301–312.doi: https://dx.doi.org/10. 15446/caldasia.v41n2.71615
Bashir, S., Zhu, J., Fu, Q., & Hu, H. (2018). Cadmium mobility, uptake and anti-oxidative response of water spinach (Ipomoea aquatic) under rice straw biochar, zeolite and rock phosphate as amendments. Chemosphere, 194, 579-587. https://doi.org/10.1016/j.chemosphere.2017.11.162
Batool, A., & Saleh, T. A. (2020). Removal of toxic metals from wastewater in constructed wetlands as a green technology; catalyst role of substrates and chelators. Ecotoxicology and Environmental Safety, 189, 109924. https://doi.org/10.1016/j.ecoenv.2019.109924
Betancur-Corredor, B., Loaiza-Usuga, J. C., Denich, M., & Borgemeister, C. (2018). Gold mining as a potential driver of development in Colombia: Challenges and opportunities. Journal of Cleaner Production, 199, 538-553. https://doi.org/10.1016/j.jclepro.2018.07.142
Bi, R., Zhou, C., Jia, Y., Wang, S., Li, P., Reichwaldt, E. S., & Liu, W. (2019). Giving waterbodies the treatment they need: A critical review of the application of constructed floating wetlands. Journal of Environmental Management, 238, 484-498. https://doi.org/10.1016/j.jenvman.2019.02.064
Briffa, J., Sinagra, E., & Blundell, R. (2020). Heavy metal pollution in the environment and their toxicological effects on humans. Heliyon, 6(9), e04691. https://doi.org/10.1016/j.heliyon.2020.e04691
Camargo, N. R. (2023). Índices de contaminación de metales pesados y su relación con variables fisicoquímicas en el caribe colombiano. Recuperado de: http://hdl.handle.net/20.500.12010/31640
Chandra, R., Dubey, N. K., & Kumar, V. (Eds.). (2018). Phytoremediation of environmental pollutants. Taylor & Francis, CRC Press
Chang, J., Peng, D., Deng, S., Chen, J., & Duan, C. (2022). Efficient treatment of mercury(Ⅱ)-containing wastewater in aerated constructed wetland microcosms packed with biochar. Chemosphere, 290, 133302. https://doi.org/10.1016/j.chemosphere.2021.133302
Chou, P.-I., Ng, D.-Q., Li, I.-C., & Lin, Y.-P. (2018). Effects of dissolved oxygen, pH, salinity and humic acid on the release of metal ions from PbS, CuS and ZnS during a simulated storm event. Science of The Total Environment, 624, 1401-1410. https://doi.org/10.1016/j.scitotenv.2017.12.221
Cortés, D. V. (2017). Vegetación estuarina y vegetación acuática de complejos cenagosos del Caribe Colombiano. Recuperado de: https://repositorio.unal.edu.co/handle/unal/59487 Chukwu, E. C., & Gulser, C. (2025). Morphological, physiological, and anatomical effects of heavy metals on soil and plant health and possible remediation technologies. Soil Security, 18, 100178. https://doi.org/10.1016/j.soisec.2025.100178 Díaz-Pérez, W. A., Guillén, C. D. P., Pereira, F. J. M., & Briceño, J. D. H (2023). Caracterización florística de áreas degradadas por la pequeña minería en la Reserva Forestal Imataca, Río Grande, estado Delta Amacuro, Venezuela http://hdl.handle.net/20.500.12010/31640 DÍAZ P., W. A., & ELCORO, S. (2009). PLANTAS COLONIZADORAS EN ÁREAS PERTURBADAS POR LA MINERÍA EN EL ESTADO BOLÍVAR, VENEZUELA / Pioneer plant species in disturbed mining areas in Bolívar State, Venezuela. Acta Botánica Venezuélica, 32(2), 453–466. http://www.jstor.org/stable/41740896 Enamorado, G., Tirado Montoya, J., & Marrugo Negrete, J. (2021). Metales pesados (Hg, As, Cd, Zn, Pb, Cu, Mn) en un trayecto del río Cauca impactado por la minería de oro. Revista EIA, 19(37). https://doi.org/10.24050/reia.v19i37.1481 Gaballah, M. S., Abdelwahab, O., Barakat, K. M., & Stefanakis, A. I. (2022). A pilot system integrating a settling technique and a horizontal subsurface flow constructed wetland for the treatment of polluted lake water. Chemosphere, 295, 133844. https://doi.org/10.1016/j.chemosphere.2022.133844 Gao, J., Han, H., Gao, C., Wang, Y., Dong, B., & Xu, Z. (2023). Organic amendments for in situ immobilization of heavy metals in soil: A review. Chemosphere, 335, 139088. https://doi.org/10.1016/j.chemosphere.2023.139088 García Acevedo, R., García Rodríguez, E., & Pérez Amezcua, N. E. (2023). Remoción de contaminantes del agua en humedales artificiales de flujo subsuperficial, utilizando Typha domingensis, tezontle y grava triturada y su relación con la conductividad hidráulica. Ciencia Nicolaita, 87. https://doi.org/10.35830/cn.vi87.660 Guevara, R., Rosales, J., & Sanoja, E. (2005). Vegetación pionera sobre rocas, un potencial biológico para la revegetaciónde áreas degradadas por la mineria de hierro. Interciencia, 30(10),644-652.[fecha de Consulta 11 de Agosto de 2025]. ISSN: 0378-1844. Recuperado de: https://www.redalyc.org/articulo.oa?id=33910910 Hadad, H. R., Mufarrege, M. D. L. M., Di Luca, G. A., Denaro, A. C., Nocetti, E., & Maine, M. A. (2022). Potential metal phytoremediation in peri-urban wetlands using rooted macrophytes. Ecological Engineering, 182, 106734. https://doi.org/10.1016/j.ecoleng.2022.106734 Haghighizadeh, A., Rajabi, O., Nezarat, A., Hajyani, Z., Haghmohammadi, M., Hedayatikhah, S., Asl, S. D., & Aghababai Beni, A. (2024). Comprehensive analysis of heavy metal soil contamination in mining Environments: Impacts, monitoring Techniques, and remediation strategies. Arabian Journal of Chemistry, 17(6), 105777. https://doi.org/10.1016/j.arabjc.2024.105777 Hosseinniaee, S., Jafari, M., Tavili, A., Zare, S., Cappai, G., & De Giudici, G. (2022). Perspectives for phytoremediation capability of native plants growing on Angouran Pb–Zn mining complex in northwest of Iran. Journal of Environmental Management, 315, 115184. https://doi.org/10.1016/j.jenvman.2022.115184 Hou, Y., Zhao, Y., Lu, J., Wei, Q., Zang, L., & Zhao, X. (2023). Environmental contamination and health risk assessment of potentially toxic trace metal elements in soils near gold mines – A global meta-analysis. Environmental Pollution, 330, 121803. https://doi.org/10.1016/j.envpol.2023.121803 Irshad, S., Xie, Z., Qing, M., Ali, H., Ali, I., Ahmad, N., Rizwan Khan, M., & Nawaz, A. (2024). Application of coconut shell activated carbon filter in vertical subsurface flow constructed wetland for enhanced multi-metal bioremediation and antioxidant response of Salvinia cucullate. Environmental Pollution, 346, 123597. https://doi.org/10.1016/j.envpol.2024.123597 Islam, Md. M., Saxena, N., & Sharma, D. (2024). Phytoremediation as a green and sustainable prospective method for heavy metal contamination: A review. RSC Sustainability, 2(5), 1269-1288. https://doi.org/10.1039/D3SU00440F Jeong, H., Byeon, E., Kim, D.-H., Maszczyk, P., & Lee, J.-S. (2023). Heavy metals and metalloid in aquatic invertebrates: A review of single/mixed forms, combination with other pollutants, and environmental factors. Marine Pollution Bulletin, 191, 114959. https://doi.org/10.1016/j.marpolbul.2023.114959 Jiang, S., Dai, G., Zhou, J., Zhong, J., Liu, J., & Shu, Y. (2022). An assessment of integrated amendments of biochar and soil replacement on the phytotoxicity of metal(loid)s in rotated radish-soya bean-amaranth in a mining acidy soil. Chemosphere, 287, 132082. https://doi.org/10.1016/j.chemosphere.2021.132082 Kabata-Pendias, A. (2010). Trace Elements in Soils and Plants (4th ed.). CRC Press. https://doi.org/10.1201/b10158 Kafle, A., Timilsina, A., Gautam, A., Adhikari, K., Bhattarai, A., & Aryal, N. (2022). Phytoremediation: Mechanisms, plant selection and enhancement by natural and synthetic agents. Environmental Advances, 8, 100203. https://doi.org/10.1016/j.envadv.2022.100203 Kahangwa, C. A., Nahonyo, C. L., Sangu, G., & Nassary, E. K. (2021). Assessing phytoremediation potentials of selected plant species in restoration of environments contaminated by heavy metals in gold mining areas of Tanzania. Heliyon, 7(9), e07979. https://doi.org/10.1016/j.heliyon.2021.e07979 Kasak, K., Truu, J., Ostonen, I., Sarjas, J., Oopkaup, K., Paiste, P., Kõiv-Vainik, M., Mander, Ü., & Truu, M. (2018). Biochar enhances plant growth and nutrient removal in horizontal subsurface flow constructed wetlands. Science of The Total Environment, 639, 67-74. https://doi.org/10.1016/j.scitotenv.2018.05.146 Kataki, S., Chatterjee, S., Vairale, M. G., Dwivedi, S. K., & Gupta, D. K. (2021). Constructed wetland, an eco-technology for wastewater treatment: A review on types of wastewater treated and components of the technology (macrophyte, biolfilm and substrate). Journal of Environmental Management, 283, 111986. https://doi.org/10.1016/j.jenvman.2021.111986 Linnik, P., Osadchyi, V., Osadcha, N., & Linnik, R. (2023). Redox potential as an important characteristic of the chemical and biological state of surface waters (review). Chemistry and Ecology, 39(6), 640-672. https://doi.org/10.1080/02757540.2023.2225496 Liu, G., Chen, L., Wang, W., Wang, M., Zhang, Y., Li, J., Lin, C., Xiong, J., Zhu, Q., Liu, Y., Zhu, H., & Shen, Z. (2023). Balancing water quality impacts and cost-effectiveness for sustainable watershed management. Journal of Hydrology, 621, 129645. https://doi.org/10.1016/j.jhydrol.2023.129645 Liu, N., Zhao, J., Du, J., Hou, C., Zhou, X., Chen, J., & Zhang, Y. (2024). Non-phytoremediation and phytoremediation technologies of integrated remediation for water and soil heavy metal pollution: A comprehensive review. Science of The Total Environment, 948, 174237. https://doi.org/10.1016/j.scitotenv.2024.174237 Madriñán, S. (with Rial, A.). (2017). Plantas acuáticas de la Orinoquia colombiana. Universidad de los Andes. Malik, B., & Kaur Sandhu, K. (2023). Occurrence and impact of heavy metals on environment. Materials Today: Proceedings, S2214785323004078. https://doi.org/10.1016/j.matpr.2023.01.317 Marrugo-Negrete, J., Enamorado-Montes, G., Durango-Hernández, J., Pinedo-Hernández, J., & Díez, S. (2017). Removal of mercury from gold mine effluents using Limnocharis flava in constructed wetlands. Chemosphere, 167, 188-192. https://doi.org/10.1016/j.chemosphere.2016.09.130 Marrugo-Negrete, J., Marrugo-Madrid, S., Pinedo-Hernández, J., Durango-Hernández, J., & Díez, S. (2016). Screening of native plant species for phytoremediation potential at a Hg-contaminated mining site. Science of The Total Environment, 542, 809-816. https://doi.org/10.1016/j.scitotenv.2015.10.117 Marrugo-Negrete, J., Pinedo-Hernández, J., & Díez, S. (2017). Assessment of heavy metal pollution, spatial distribution and origin in agricultural soils along the Sinú River Basin, Colombia. Environmental Research, 154, 380-388. https://doi.org/10.1016/j.envres.2017.01.021 Messetta, M., Anselmo, J., Gantes, P., Perez, B., & Feijoó, C. (2023). Plantas acuáticas de arroyos pampeanos. Una guía de campo. Revalorizando nuestro ambiente. Moore MT, Kröger R (2010) Evaluating plant species-specific contribu tions to nutrient mitigation in drainage ditch mesocosm. Water Air Soil Pollut 217:445–454 Moreno, C. E. (2001). Métodos para medir la biodiversidad. Sociedad Entomológica Aragonesa. Mustafa, H. M., & Hayder, G. (2021). Recent studies on applications of aquatic weed plants in phytoremediation of wastewater: A review article. Ain Shams Engineering Journal, 12(1), 355-365. https://doi.org/10.1016/j.asej.2020.05.009 Nabi, M. (2021). Heavy metals accumulation in aquatic macrophytes from an urban lake in Kashmir Himalaya, India. Environmental Nanotechnology, Monitoring & Management, 16, 100509. https://doi.org/10.1016/j.enmm.2021.100509 Nandakumar PBA, Dushenkov V, Motto H, Raskin I (1995) Phytoextraction: the use of plants to remove heavy metals from soils. Environ Sci Technol 29:1232–1238 Naveed, S., Oladoye, P. O., & Alli, Y. A. (2023). Toxic heavy metals: A bibliographic review of risk assessment, toxicity, and phytoremediation technology. Sustainable Chemistry for the Environment, 2, 100018. https://doi.org/10.1016/j.scenv.2023.100018 Oyuela Leguizamo, M. A., Fernández Gómez, W. D., & Sarmiento, M. C. G. (2017). Native herbaceous plant species with potential use in phytoremediation of heavy metals, spotlight on wetlands—A review. Chemosphere, 168, 1230-1247. https://doi.org/10.1016/j.chemosphere.2016.10.075 Parde, D., Patwa, A., Shukla, A., Vijay, R., Killedar, D. J., & Kumar, R. (2021). A review of constructed wetland on type, treatment and technology of wastewater. Environmental Technology & Innovation, 21, 101261. https://doi.org/10.1016/j.eti.2020.101261 Penido, E. S., Martins, G. C., Mendes, T. B. M., Melo, L. C. A., Do Rosário Guimarães, I., & Guilherme, L. R. G. (2019). Combining biochar and sewage sludge for immobilization of heavy metals in mining soils. Ecotoxicology and Environmental Safety, 172, 326-333. https://doi.org/10.1016/j.ecoenv.2019.01.110 Pérez Lahiguera, J. A. (2016). Aplicación de macrófitos acuáticos en el tratamiento de aguas residuales urbanas y sus subproductos mediante humedales artificiales en clima Mediterráneo [Tesis doctoral, Universidad de Alicante]. Repositorio Institucional RUA. http://hdl.handle.net/10045/56232 Pérez López, M. E. (2009). Selección de plantas acuáticas para establecer humedales en el estado de Durango [Tesis doctoral, Centro de Investigación en Materiales Avanzados]. Repositorio Institucional CIMAV. http://cimav.repositorioinstitucional.mx/jspui/handle/1004/597 Pérez-Vásquez, N. D. S., Arias-Rios, J., & Quirós-Rodríguez, J. A. (2015). VARIACIÓN ESPACIO-TEMPORAL DE PLANTAS VASCULARES ACUÁTICAS EN EL COMPLEJO CENAGOSO DEL BAJO SINÚ, CÓRDOBA, COLOMBIA. Acta Biológica Colombiana, 20(3), 155-165. https://doi.org/10.15446/abc.v20n3.45380 Pizano, C y H. García (Editores). 2014. El Bosque Seco Tropical en Colombia. Instituto de Investigación de Recursos Biológicos Alexander von Humboldt (IAvH). Bogotá, D.C., Colombia. Rai, P. K. (2019). Heavy metals/metalloids remediation from wastewater using free floating macrophytes of a natural wetland. Environmental Technology & Innovation, 15, 100393. https://doi.org/10.1016/j.eti.2019.100393 Rangel, J. (2010). VEGETACIÓN ACUÁTICA -Caracterización inicial (pp. 325-339). Rivas, J. D. (2021). Potencial fitorremediador de macrófitas en cuerpos de agua contaminados con mercurio remanentes de la minería (pozas) en el departamento del Chocó-Colombia. Recuperado de: https://repositorio.unal.edu.co/handle/unal/83774 Rivas, J. D. (2021). Potencial fitorremediador de macrófitas en cuerpos de agua contaminados con mercurio remanentes de la minería (pozas) en el departamento del Chocó-Colombia. Recuperado de: https://repositorio.unal.edu.co/handle/unal/83774 Rodríguez Ríos, Roberto. Fica Gallardo, Boris. CORMA (Chile). 2020. Guía campo plantas vasculares acuáticas en Chile. CORMA. https://bibliotecadigital.ciren.cl/handle/20.500.13082/148108 Rwiza, M. J., Focus, E., Bayuo, J., Kimaro, J. M., Kleinke, M., Lyasenga, T. J., Mosses, J. T., & Marwa, J. (2023). Artisanal and small-scale mining in Tanzania and health implications: A policy perspective. Heliyon, 9(4), e14616. https://doi.org/10.1016/j.heliyon.2023.e14616 Sampayo Campo, L y Ariza Blanco, A. (2017). Determinación de la contaminación por metales pesados en el embalse el Guájaro, Departamento del Atlántico. Universidad de la Costa. Disponible en: https://hdl.handle.net/11323/4861 Sánchez-Castro, I., Molina, L., Prieto-Fernández, M.-Á., & Segura, A. (2023). Past, present and future trends in the remediation of heavy-metal contaminated soil—Remediation techniques applied in real soil-contamination events. Heliyon, 9(6), e16692. https://doi.org/10.1016/j.heliyon.2023.e16692 Sarker, A., Masud, M. A. A., Deepo, D. M., Das, K., Nandi, R., Ansary, M. W. R., Islam, A. R. M. T., & Islam, T. (2023). Biological and green remediation of heavy metal contaminated water and soils: A state-of-the-art review. Chemosphere, 332, 138861. https://doi.org/10.1016/j.chemosphere.2023.138861 Schneider, B. (2017). Ensambles de macrófitas en ambientes de la llanura aluvial del río Paraná Medio: Factores que inciden a distintas escalas. Tan, H. W., Pang, Y. L., Lim, S., & Chong, W. C. (2023). A state-of-the-art of phytoremediation approach for sustainable management of heavy metals recovery. Environmental Technology & Innovation, 30, 103043. https://doi.org/10.1016/j.eti.2023.103043 Timalsina, H., Gyawali, T., Ghimire, S., & Paudel, S. R. (2022). Potential application of enhanced phytoremediation for heavy metals treatment in Nepal. Chemosphere, 306, 135581. https://doi.org/10.1016/j.chemosphere.2022.135581 Turcios, A. E., Miglio, R., Vela, R., Sánchez, G., Bergier, T., Włodyka-Bergier, A., Cifuentes, J. I., Pignataro, G., Avellan, T., & Papenbrock, J. (2021). From natural habitats to successful application—Role of halophytes in the treatment of saline wastewater in constructed wetlands with a focus on Latin America. Environmental and Experimental Botany, 190, 104583. https://doi.org/10.1016/j.envexpbot.2021.104583 Valois-Cuesta, H., & Martínez-Ruiz, C. (2017). Especies vegetales colonizadoras de áreas perturbadas por la minería en bosques pluviales tropicales del Chocó, Colombia. Biota Colombiana, 18(1), 87-103. https://doi.org/10.21068/c2017.v18n01a7 Verma P, George KV, Singh HV, Singh SK, Juwarkar A, Singh RN (2006) Modeling rhizofiltration: heavy-metal uptake by plant roots. Environ Model Assess 11:387–394 Vinayagam, S., Sathishkumar, K., Ayyamperumal, R., Natarajan, P. M., Ahmad, I., Saeed, M., Alabdallah, N. M., & Sundaram, T. (2024). Distribution and transport of contaminants in soil through mining processes and its environmental impact and health hazard assessment: A review of the prospective solutions. Environmental Research, 240, 117473. https://doi.org/10.1016/j.envres.2023.117473 Wang, H., Chen, S., Liu, H., Li, J., Zaman, Q. U., Sultan, K., Rehman, M., Jeridi, M., Siddiqui, S., Fahad, S., Deng, G., & Chen, A. (2023). Maize straw biochar can alleviate heavy metals stress in potato by improving soil health. South African Journal of Botany, 162, 391-401. https://doi.org/10.1016/j.sajb.2023.09.024 Woraharn, S., Meeinkuirt, W., Phusantisampan, T., & Avakul, P. (2021). Potential of ornamental monocot plants for rhizofiltration of cadmium and zinc in hydroponic systems. Environmental Science and Pollution Research, 28(26), 35157-35170. https://doi.org/10.1007/s11356-021-13151-x Wu, B., Peng, H., Sheng, M., Luo, H., Wang, X., Zhang, R., Xu, F., & Xu, H. (2021). Evaluation of phytoremediation potential of native dominant plants and spatial distribution of heavy metals in abandoned mining area in Southwest China. Ecotoxicology and Environmental Safety, 220, 112368. https://doi.org/10.1016/j.ecoenv.2021.112368 Xiao, R., Shen, F., Du, J., Li, R., Lahori, A. H., & Zhang, Z. (2018). Screening of native plants from wasteland surrounding a Zn smelter in Feng County China, for phytoremediation. Ecotoxicology and Environmental Safety, 162, 178-183. https://doi.org/10.1016/j.ecoenv.2018.06.095 Yang, S., Liang, S., Yi, L., Xu, B., Cao, J., Guo, Y., & Zhou, Y. (2014). Heavy metal accumulation and phytostabilization potential of dominant plant species growing on manganese mine tailings. Frontiers of Environmental Science & Engineering, 8(3), 394-404. https://doi.org/10.1007/s11783-013-0602-4 Zhang, C., Yu, Z., Zeng, G., Jiang, M., Yang, Z., Cui, F., Zhu, M., Shen, L., & Hu, L. (2014). Effects of sediment geochemical properties on heavy metal bioavailability. Environment International, 73, 270-281. https://doi.org/10.1016/j.envint.2014.08.010 Zhang, S., Yin, X., Arif, M., Chen, S., Ma, M., Zhu, K., Chen, Q., Wu, S., & Li, C. (2023). Strategy matters: Phytoremediation potential of native halophytes is jointly associated with their distinct salt tolerances. Journal of Cleaner Production, 425, 139060. https://doi.org/10.1016/j.jclepro.2023.139060 Zhu, G., Xiao, H., Guo, Q., Song, B., Zheng, G., Zhang, Z., Zhao, J., & Okoli, C. P. (2018). Heavy metal contents and enrichment characteristics of dominant plants in wasteland of the downstream of a lead-zinc mining area in Guangxi, Southwest China. Ecotoxicology and Environmental Safety, 151, 266-271. https://doi.org/10.1016/j.ecoenv.2018.01.011
Chukwu, E. C., & Gulser, C. (2025). Morphological, physiological, and anatomical effects of heavy metals on soil and plant health and possible remediation technologies. Soil Security, 18, 100178. https://doi.org/10.1016/j.soisec.2025.100178
Díaz-Pérez, W. A., Guillén, C. D. P., Pereira, F. J. M., & Briceño, J. D. H (2023). Caracterización florística de áreas degradadas por la pequeña minería en la Reserva Forestal Imataca, Río Grande, estado Delta Amacuro, Venezuela http://hdl.handle.net/20.500.12010/31640
DÍAZ P., W. A., & ELCORO, S. (2009). PLANTAS COLONIZADORAS EN ÁREAS PERTURBADAS POR LA MINERÍA EN EL ESTADO BOLÍVAR, VENEZUELA / Pioneer plant species in disturbed mining areas in Bolívar State, Venezuela. Acta Botánica Venezuélica, 32(2), 453–466. http://www.jstor.org/stable/41740896 Enamorado, G., Tirado Montoya, J., & Marrugo Negrete, J. (2021). Metales pesados (Hg, As, Cd, Zn, Pb, Cu, Mn) en un trayecto del río Cauca impactado por la minería de oro. Revista EIA, 19(37). https://doi.org/10.24050/reia.v19i37.1481 Gaballah, M. S., Abdelwahab, O., Barakat, K. M., & Stefanakis, A. I. (2022). A pilot system integrating a settling technique and a horizontal subsurface flow constructed wetland for the treatment of polluted lake water. Chemosphere, 295, 133844. https://doi.org/10.1016/j.chemosphere.2022.133844 Gao, J., Han, H., Gao, C., Wang, Y., Dong, B., & Xu, Z. (2023). Organic amendments for in situ immobilization of heavy metals in soil: A review. Chemosphere, 335, 139088. https://doi.org/10.1016/j.chemosphere.2023.139088 García Acevedo, R., García Rodríguez, E., & Pérez Amezcua, N. E. (2023). Remoción de contaminantes del agua en humedales artificiales de flujo subsuperficial, utilizando Typha domingensis, tezontle y grava triturada y su relación con la conductividad hidráulica. Ciencia Nicolaita, 87. https://doi.org/10.35830/cn.vi87.660 Guevara, R., Rosales, J., & Sanoja, E. (2005). Vegetación pionera sobre rocas, un potencial biológico para la revegetaciónde áreas degradadas por la mineria de hierro. Interciencia, 30(10),644-652.[fecha de Consulta 11 de Agosto de 2025]. ISSN: 0378-1844. Recuperado de: https://www.redalyc.org/articulo.oa?id=33910910 Hadad, H. R., Mufarrege, M. D. L. M., Di Luca, G. A., Denaro, A. C., Nocetti, E., & Maine, M. A. (2022). Potential metal phytoremediation in peri-urban wetlands using rooted macrophytes. Ecological Engineering, 182, 106734. https://doi.org/10.1016/j.ecoleng.2022.106734 Haghighizadeh, A., Rajabi, O., Nezarat, A., Hajyani, Z., Haghmohammadi, M., Hedayatikhah, S., Asl, S. D., & Aghababai Beni, A. (2024). Comprehensive analysis of heavy metal soil contamination in mining Environments: Impacts, monitoring Techniques, and remediation strategies. Arabian Journal of Chemistry, 17(6), 105777. https://doi.org/10.1016/j.arabjc.2024.105777 Hosseinniaee, S., Jafari, M., Tavili, A., Zare, S., Cappai, G., & De Giudici, G. (2022). Perspectives for phytoremediation capability of native plants growing on Angouran Pb–Zn mining complex in northwest of Iran. Journal of Environmental Management, 315, 115184. https://doi.org/10.1016/j.jenvman.2022.115184 Hou, Y., Zhao, Y., Lu, J., Wei, Q., Zang, L., & Zhao, X. (2023). Environmental contamination and health risk assessment of potentially toxic trace metal elements in soils near gold mines – A global meta-analysis. Environmental Pollution, 330, 121803. https://doi.org/10.1016/j.envpol.2023.121803 Irshad, S., Xie, Z., Qing, M., Ali, H., Ali, I., Ahmad, N., Rizwan Khan, M., & Nawaz, A. (2024). Application of coconut shell activated carbon filter in vertical subsurface flow constructed wetland for enhanced multi-metal bioremediation and antioxidant response of Salvinia cucullate. Environmental Pollution, 346, 123597. https://doi.org/10.1016/j.envpol.2024.123597 Islam, Md. M., Saxena, N., & Sharma, D. (2024). Phytoremediation as a green and sustainable prospective method for heavy metal contamination: A review. RSC Sustainability, 2(5), 1269-1288. https://doi.org/10.1039/D3SU00440F Jeong, H., Byeon, E., Kim, D.-H., Maszczyk, P., & Lee, J.-S. (2023). Heavy metals and metalloid in aquatic invertebrates: A review of single/mixed forms, combination with other pollutants, and environmental factors. Marine Pollution Bulletin, 191, 114959. https://doi.org/10.1016/j.marpolbul.2023.114959 Jiang, S., Dai, G., Zhou, J., Zhong, J., Liu, J., & Shu, Y. (2022). An assessment of integrated amendments of biochar and soil replacement on the phytotoxicity of metal(loid)s in rotated radish-soya bean-amaranth in a mining acidy soil. Chemosphere, 287, 132082. https://doi.org/10.1016/j.chemosphere.2021.132082 Kabata-Pendias, A. (2010). Trace Elements in Soils and Plants (4th ed.). CRC Press. https://doi.org/10.1201/b10158 Kafle, A., Timilsina, A., Gautam, A., Adhikari, K., Bhattarai, A., & Aryal, N. (2022). Phytoremediation: Mechanisms, plant selection and enhancement by natural and synthetic agents. Environmental Advances, 8, 100203. https://doi.org/10.1016/j.envadv.2022.100203 Kahangwa, C. A., Nahonyo, C. L., Sangu, G., & Nassary, E. K. (2021). Assessing phytoremediation potentials of selected plant species in restoration of environments contaminated by heavy metals in gold mining areas of Tanzania. Heliyon, 7(9), e07979. https://doi.org/10.1016/j.heliyon.2021.e07979 Kasak, K., Truu, J., Ostonen, I., Sarjas, J., Oopkaup, K., Paiste, P., Kõiv-Vainik, M., Mander, Ü., & Truu, M. (2018). Biochar enhances plant growth and nutrient removal in horizontal subsurface flow constructed wetlands. Science of The Total Environment, 639, 67-74. https://doi.org/10.1016/j.scitotenv.2018.05.146 Kataki, S., Chatterjee, S., Vairale, M. G., Dwivedi, S. K., & Gupta, D. K. (2021). Constructed wetland, an eco-technology for wastewater treatment: A review on types of wastewater treated and components of the technology (macrophyte, biolfilm and substrate). Journal of Environmental Management, 283, 111986. https://doi.org/10.1016/j.jenvman.2021.111986 Linnik, P., Osadchyi, V., Osadcha, N., & Linnik, R. (2023). Redox potential as an important characteristic of the chemical and biological state of surface waters (review). Chemistry and Ecology, 39(6), 640-672. https://doi.org/10.1080/02757540.2023.2225496 Liu, G., Chen, L., Wang, W., Wang, M., Zhang, Y., Li, J., Lin, C., Xiong, J., Zhu, Q., Liu, Y., Zhu, H., & Shen, Z. (2023). Balancing water quality impacts and cost-effectiveness for sustainable watershed management. Journal of Hydrology, 621, 129645. https://doi.org/10.1016/j.jhydrol.2023.129645 Liu, N., Zhao, J., Du, J., Hou, C., Zhou, X., Chen, J., & Zhang, Y. (2024). Non-phytoremediation and phytoremediation technologies of integrated remediation for water and soil heavy metal pollution: A comprehensive review. Science of The Total Environment, 948, 174237. https://doi.org/10.1016/j.scitotenv.2024.174237 Madriñán, S. (with Rial, A.). (2017). Plantas acuáticas de la Orinoquia colombiana. Universidad de los Andes. Malik, B., & Kaur Sandhu, K. (2023). Occurrence and impact of heavy metals on environment. Materials Today: Proceedings, S2214785323004078. https://doi.org/10.1016/j.matpr.2023.01.317 Marrugo-Negrete, J., Enamorado-Montes, G., Durango-Hernández, J., Pinedo-Hernández, J., & Díez, S. (2017). Removal of mercury from gold mine effluents using Limnocharis flava in constructed wetlands. Chemosphere, 167, 188-192. https://doi.org/10.1016/j.chemosphere.2016.09.130 Marrugo-Negrete, J., Marrugo-Madrid, S., Pinedo-Hernández, J., Durango-Hernández, J., & Díez, S. (2016). Screening of native plant species for phytoremediation potential at a Hg-contaminated mining site. Science of The Total Environment, 542, 809-816. https://doi.org/10.1016/j.scitotenv.2015.10.117 Marrugo-Negrete, J., Pinedo-Hernández, J., & Díez, S. (2017). Assessment of heavy metal pollution, spatial distribution and origin in agricultural soils along the Sinú River Basin, Colombia. Environmental Research, 154, 380-388. https://doi.org/10.1016/j.envres.2017.01.021 Messetta, M., Anselmo, J., Gantes, P., Perez, B., & Feijoó, C. (2023). Plantas acuáticas de arroyos pampeanos. Una guía de campo. Revalorizando nuestro ambiente. Moore MT, Kröger R (2010) Evaluating plant species-specific contribu tions to nutrient mitigation in drainage ditch mesocosm. Water Air Soil Pollut 217:445–454 Moreno, C. E. (2001). Métodos para medir la biodiversidad. Sociedad Entomológica Aragonesa. Mustafa, H. M., & Hayder, G. (2021). Recent studies on applications of aquatic weed plants in phytoremediation of wastewater: A review article. Ain Shams Engineering Journal, 12(1), 355-365. https://doi.org/10.1016/j.asej.2020.05.009 Nabi, M. (2021). Heavy metals accumulation in aquatic macrophytes from an urban lake in Kashmir Himalaya, India. Environmental Nanotechnology, Monitoring & Management, 16, 100509. https://doi.org/10.1016/j.enmm.2021.100509 Nandakumar PBA, Dushenkov V, Motto H, Raskin I (1995) Phytoextraction: the use of plants to remove heavy metals from soils. Environ Sci Technol 29:1232–1238 Naveed, S., Oladoye, P. O., & Alli, Y. A. (2023). Toxic heavy metals: A bibliographic review of risk assessment, toxicity, and phytoremediation technology. Sustainable Chemistry for the Environment, 2, 100018. https://doi.org/10.1016/j.scenv.2023.100018 Oyuela Leguizamo, M. A., Fernández Gómez, W. D., & Sarmiento, M. C. G. (2017). Native herbaceous plant species with potential use in phytoremediation of heavy metals, spotlight on wetlands—A review. Chemosphere, 168, 1230-1247. https://doi.org/10.1016/j.chemosphere.2016.10.075 Parde, D., Patwa, A., Shukla, A., Vijay, R., Killedar, D. J., & Kumar, R. (2021). A review of constructed wetland on type, treatment and technology of wastewater. Environmental Technology & Innovation, 21, 101261. https://doi.org/10.1016/j.eti.2020.101261 Penido, E. S., Martins, G. C., Mendes, T. B. M., Melo, L. C. A., Do Rosário Guimarães, I., & Guilherme, L. R. G. (2019). Combining biochar and sewage sludge for immobilization of heavy metals in mining soils. Ecotoxicology and Environmental Safety, 172, 326-333. https://doi.org/10.1016/j.ecoenv.2019.01.110 Pérez Lahiguera, J. A. (2016). Aplicación de macrófitos acuáticos en el tratamiento de aguas residuales urbanas y sus subproductos mediante humedales artificiales en clima Mediterráneo [Tesis doctoral, Universidad de Alicante]. Repositorio Institucional RUA. http://hdl.handle.net/10045/56232 Pérez López, M. E. (2009). Selección de plantas acuáticas para establecer humedales en el estado de Durango [Tesis doctoral, Centro de Investigación en Materiales Avanzados]. Repositorio Institucional CIMAV. http://cimav.repositorioinstitucional.mx/jspui/handle/1004/597 Pérez-Vásquez, N. D. S., Arias-Rios, J., & Quirós-Rodríguez, J. A. (2015). VARIACIÓN ESPACIO-TEMPORAL DE PLANTAS VASCULARES ACUÁTICAS EN EL COMPLEJO CENAGOSO DEL BAJO SINÚ, CÓRDOBA, COLOMBIA. Acta Biológica Colombiana, 20(3), 155-165. https://doi.org/10.15446/abc.v20n3.45380 Pizano, C y H. García (Editores). 2014. El Bosque Seco Tropical en Colombia. Instituto de Investigación de Recursos Biológicos Alexander von Humboldt (IAvH). Bogotá, D.C., Colombia. Rai, P. K. (2019). Heavy metals/metalloids remediation from wastewater using free floating macrophytes of a natural wetland. Environmental Technology & Innovation, 15, 100393. https://doi.org/10.1016/j.eti.2019.100393 Rangel, J. (2010). VEGETACIÓN ACUÁTICA -Caracterización inicial (pp. 325-339). Rivas, J. D. (2021). Potencial fitorremediador de macrófitas en cuerpos de agua contaminados con mercurio remanentes de la minería (pozas) en el departamento del Chocó-Colombia. Recuperado de: https://repositorio.unal.edu.co/handle/unal/83774 Rivas, J. D. (2021). Potencial fitorremediador de macrófitas en cuerpos de agua contaminados con mercurio remanentes de la minería (pozas) en el departamento del Chocó-Colombia. Recuperado de: https://repositorio.unal.edu.co/handle/unal/83774 Rodríguez Ríos, Roberto. Fica Gallardo, Boris. CORMA (Chile). 2020. Guía campo plantas vasculares acuáticas en Chile. CORMA. https://bibliotecadigital.ciren.cl/handle/20.500.13082/148108 Rwiza, M. J., Focus, E., Bayuo, J., Kimaro, J. M., Kleinke, M., Lyasenga, T. J., Mosses, J. T., & Marwa, J. (2023). Artisanal and small-scale mining in Tanzania and health implications: A policy perspective. Heliyon, 9(4), e14616. https://doi.org/10.1016/j.heliyon.2023.e14616 Sampayo Campo, L y Ariza Blanco, A. (2017). Determinación de la contaminación por metales pesados en el embalse el Guájaro, Departamento del Atlántico. Universidad de la Costa. Disponible en: https://hdl.handle.net/11323/4861 Sánchez-Castro, I., Molina, L., Prieto-Fernández, M.-Á., & Segura, A. (2023). Past, present and future trends in the remediation of heavy-metal contaminated soil—Remediation techniques applied in real soil-contamination events. Heliyon, 9(6), e16692. https://doi.org/10.1016/j.heliyon.2023.e16692 Sarker, A., Masud, M. A. A., Deepo, D. M., Das, K., Nandi, R., Ansary, M. W. R., Islam, A. R. M. T., & Islam, T. (2023). Biological and green remediation of heavy metal contaminated water and soils: A state-of-the-art review. Chemosphere, 332, 138861. https://doi.org/10.1016/j.chemosphere.2023.138861 Schneider, B. (2017). Ensambles de macrófitas en ambientes de la llanura aluvial del río Paraná Medio: Factores que inciden a distintas escalas. Tan, H. W., Pang, Y. L., Lim, S., & Chong, W. C. (2023). A state-of-the-art of phytoremediation approach for sustainable management of heavy metals recovery. Environmental Technology & Innovation, 30, 103043. https://doi.org/10.1016/j.eti.2023.103043 Timalsina, H., Gyawali, T., Ghimire, S., & Paudel, S. R. (2022). Potential application of enhanced phytoremediation for heavy metals treatment in Nepal. Chemosphere, 306, 135581. https://doi.org/10.1016/j.chemosphere.2022.135581 Turcios, A. E., Miglio, R., Vela, R., Sánchez, G., Bergier, T., Włodyka-Bergier, A., Cifuentes, J. I., Pignataro, G., Avellan, T., & Papenbrock, J. (2021). From natural habitats to successful application—Role of halophytes in the treatment of saline wastewater in constructed wetlands with a focus on Latin America. Environmental and Experimental Botany, 190, 104583. https://doi.org/10.1016/j.envexpbot.2021.104583 Valois-Cuesta, H., & Martínez-Ruiz, C. (2017). Especies vegetales colonizadoras de áreas perturbadas por la minería en bosques pluviales tropicales del Chocó, Colombia. Biota Colombiana, 18(1), 87-103. https://doi.org/10.21068/c2017.v18n01a7 Verma P, George KV, Singh HV, Singh SK, Juwarkar A, Singh RN (2006) Modeling rhizofiltration: heavy-metal uptake by plant roots. Environ Model Assess 11:387–394 Vinayagam, S., Sathishkumar, K., Ayyamperumal, R., Natarajan, P. M., Ahmad, I., Saeed, M., Alabdallah, N. M., & Sundaram, T. (2024). Distribution and transport of contaminants in soil through mining processes and its environmental impact and health hazard assessment: A review of the prospective solutions. Environmental Research, 240, 117473. https://doi.org/10.1016/j.envres.2023.117473 Wang, H., Chen, S., Liu, H., Li, J., Zaman, Q. U., Sultan, K., Rehman, M., Jeridi, M., Siddiqui, S., Fahad, S., Deng, G., & Chen, A. (2023). Maize straw biochar can alleviate heavy metals stress in potato by improving soil health. South African Journal of Botany, 162, 391-401. https://doi.org/10.1016/j.sajb.2023.09.024 Woraharn, S., Meeinkuirt, W., Phusantisampan, T., & Avakul, P. (2021). Potential of ornamental monocot plants for rhizofiltration of cadmium and zinc in hydroponic systems. Environmental Science and Pollution Research, 28(26), 35157-35170. https://doi.org/10.1007/s11356-021-13151-x Wu, B., Peng, H., Sheng, M., Luo, H., Wang, X., Zhang, R., Xu, F., & Xu, H. (2021). Evaluation of phytoremediation potential of native dominant plants and spatial distribution of heavy metals in abandoned mining area in Southwest China. Ecotoxicology and Environmental Safety, 220, 112368. https://doi.org/10.1016/j.ecoenv.2021.112368 Xiao, R., Shen, F., Du, J., Li, R., Lahori, A. H., & Zhang, Z. (2018). Screening of native plants from wasteland surrounding a Zn smelter in Feng County China, for phytoremediation. Ecotoxicology and Environmental Safety, 162, 178-183. https://doi.org/10.1016/j.ecoenv.2018.06.095 Yang, S., Liang, S., Yi, L., Xu, B., Cao, J., Guo, Y., & Zhou, Y. (2014). Heavy metal accumulation and phytostabilization potential of dominant plant species growing on manganese mine tailings. Frontiers of Environmental Science & Engineering, 8(3), 394-404. https://doi.org/10.1007/s11783-013-0602-4 Zhang, C., Yu, Z., Zeng, G., Jiang, M., Yang, Z., Cui, F., Zhu, M., Shen, L., & Hu, L. (2014). Effects of sediment geochemical properties on heavy metal bioavailability. Environment International, 73, 270-281. https://doi.org/10.1016/j.envint.2014.08.010 Zhang, S., Yin, X., Arif, M., Chen, S., Ma, M., Zhu, K., Chen, Q., Wu, S., & Li, C. (2023). Strategy matters: Phytoremediation potential of native halophytes is jointly associated with their distinct salt tolerances. Journal of Cleaner Production, 425, 139060. https://doi.org/10.1016/j.jclepro.2023.139060 Zhu, G., Xiao, H., Guo, Q., Song, B., Zheng, G., Zhang, Z., Zhao, J., & Okoli, C. P. (2018). Heavy metal contents and enrichment characteristics of dominant plants in wasteland of the downstream of a lead-zinc mining area in Guangxi, Southwest China. Ecotoxicology and Environmental Safety, 151, 266-271. https://doi.org/10.1016/j.ecoenv.2018.01.011
Enamorado, G., Tirado Montoya, J., & Marrugo Negrete, J. (2021). Metales pesados (Hg, As, Cd, Zn, Pb, Cu, Mn) en un trayecto del río Cauca impactado por la minería de oro. Revista EIA, 19(37). https://doi.org/10.24050/reia.v19i37.1481
Gaballah, M. S., Abdelwahab, O., Barakat, K. M., & Stefanakis, A. I. (2022). A pilot system integrating a settling technique and a horizontal subsurface flow constructed wetland for the treatment of polluted lake water. Chemosphere, 295, 133844. https://doi.org/10.1016/j.chemosphere.2022.133844
Gao, J., Han, H., Gao, C., Wang, Y., Dong, B., & Xu, Z. (2023). Organic amendments for in situ immobilization of heavy metals in soil: A review. Chemosphere, 335, 139088. https://doi.org/10.1016/j.chemosphere.2023.139088
García Acevedo, R., García Rodríguez, E., & Pérez Amezcua, N. E. (2023). Remoción de contaminantes del agua en humedales artificiales de flujo subsuperficial, utilizando Typha domingensis, tezontle y grava triturada y su relación con la conductividad hidráulica. Ciencia Nicolaita, 87. https://doi.org/10.35830/cn.vi87.660
Guevara, R., Rosales, J., & Sanoja, E. (2005). Vegetación pionera sobre rocas, un potencial biológico para la revegetaciónde áreas degradadas por la mineria de hierro. Interciencia, 30(10),644-652.[fecha de Consulta 11 de Agosto de 2025]. ISSN: 0378-1844. Recuperado de: https://www.redalyc.org/articulo.oa?id=33910910
Hadad, H. R., Mufarrege, M. D. L. M., Di Luca, G. A., Denaro, A. C., Nocetti, E., & Maine, M. A. (2022). Potential metal phytoremediation in peri-urban wetlands using rooted macrophytes. Ecological Engineering, 182, 106734. https://doi.org/10.1016/j.ecoleng.2022.106734
Haghighizadeh, A., Rajabi, O., Nezarat, A., Hajyani, Z., Haghmohammadi, M., Hedayatikhah, S., Asl, S. D., & Aghababai Beni, A. (2024). Comprehensive analysis of heavy metal soil contamination in mining Environments: Impacts, monitoring Techniques, and remediation strategies. Arabian Journal of Chemistry, 17(6), 105777. https://doi.org/10.1016/j.arabjc.2024.105777
Hosseinniaee, S., Jafari, M., Tavili, A., Zare, S., Cappai, G., & De Giudici, G. (2022). Perspectives for phytoremediation capability of native plants growing on Angouran Pb–Zn mining complex in northwest of Iran. Journal of Environmental Management, 315, 115184. https://doi.org/10.1016/j.jenvman.2022.115184
Hou, Y., Zhao, Y., Lu, J., Wei, Q., Zang, L., & Zhao, X. (2023). Environmental contamination and health risk assessment of potentially toxic trace metal elements in soils near gold mines – A global meta-analysis. Environmental Pollution, 330, 121803. https://doi.org/10.1016/j.envpol.2023.121803
Irshad, S., Xie, Z., Qing, M., Ali, H., Ali, I., Ahmad, N., Rizwan Khan, M., & Nawaz, A. (2024). Application of coconut shell activated carbon filter in vertical subsurface flow constructed wetland for enhanced multi-metal bioremediation and antioxidant response of Salvinia cucullate. Environmental Pollution, 346, 123597. https://doi.org/10.1016/j.envpol.2024.123597
Islam, Md. M., Saxena, N., & Sharma, D. (2024). Phytoremediation as a green and sustainable prospective method for heavy metal contamination: A review. RSC Sustainability, 2(5), 1269-1288. https://doi.org/10.1039/D3SU00440F
Jeong, H., Byeon, E., Kim, D.-H., Maszczyk, P., & Lee, J.-S. (2023). Heavy metals and metalloid in aquatic invertebrates: A review of single/mixed forms, combination with other pollutants, and environmental factors. Marine Pollution Bulletin, 191, 114959. https://doi.org/10.1016/j.marpolbul.2023.114959
Jiang, S., Dai, G., Zhou, J., Zhong, J., Liu, J., & Shu, Y. (2022). An assessment of integrated amendments of biochar and soil replacement on the phytotoxicity of metal(loid)s in rotated radish-soya bean-amaranth in a mining acidy soil. Chemosphere, 287, 132082. https://doi.org/10.1016/j.chemosphere.2021.132082
Kabata-Pendias, A. (2010). Trace Elements in Soils and Plants (4th ed.). CRC Press. https://doi.org/10.1201/b10158
Kafle, A., Timilsina, A., Gautam, A., Adhikari, K., Bhattarai, A., & Aryal, N. (2022). Phytoremediation: Mechanisms, plant selection and enhancement by natural and synthetic agents. Environmental Advances, 8, 100203. https://doi.org/10.1016/j.envadv.2022.100203
Kahangwa, C. A., Nahonyo, C. L., Sangu, G., & Nassary, E. K. (2021). Assessing phytoremediation potentials of selected plant species in restoration of environments contaminated by heavy metals in gold mining areas of Tanzania. Heliyon, 7(9), e07979. https://doi.org/10.1016/j.heliyon.2021.e07979
Kasak, K., Truu, J., Ostonen, I., Sarjas, J., Oopkaup, K., Paiste, P., Kõiv-Vainik, M., Mander, Ü., & Truu, M. (2018). Biochar enhances plant growth and nutrient removal in horizontal subsurface flow constructed wetlands. Science of The Total Environment, 639, 67-74. https://doi.org/10.1016/j.scitotenv.2018.05.146
Kataki, S., Chatterjee, S., Vairale, M. G., Dwivedi, S. K., & Gupta, D. K. (2021). Constructed wetland, an eco-technology for wastewater treatment: A review on types of wastewater treated and components of the technology (macrophyte, biolfilm and substrate). Journal of Environmental Management, 283, 111986. https://doi.org/10.1016/j.jenvman.2021.111986
Linnik, P., Osadchyi, V., Osadcha, N., & Linnik, R. (2023). Redox potential as an important characteristic of the chemical and biological state of surface waters (review). Chemistry and Ecology, 39(6), 640-672. https://doi.org/10.1080/02757540.2023.2225496
Liu, G., Chen, L., Wang, W., Wang, M., Zhang, Y., Li, J., Lin, C., Xiong, J., Zhu, Q., Liu, Y., Zhu, H., & Shen, Z. (2023). Balancing water quality impacts and cost-effectiveness for sustainable watershed management. Journal of Hydrology, 621, 129645. https://doi.org/10.1016/j.jhydrol.2023.129645
Liu, N., Zhao, J., Du, J., Hou, C., Zhou, X., Chen, J., & Zhang, Y. (2024). Non-phytoremediation and phytoremediation technologies of integrated remediation for water and soil heavy metal pollution: A comprehensive review. Science of The Total Environment, 948, 174237. https://doi.org/10.1016/j.scitotenv.2024.174237
Madriñán, S. (with Rial, A.). (2017). Plantas acuáticas de la Orinoquia colombiana. Universidad de los Andes.
Malik, B., & Kaur Sandhu, K. (2023). Occurrence and impact of heavy metals on environment. Materials Today: Proceedings, S2214785323004078. https://doi.org/10.1016/j.matpr.2023.01.317
Marrugo-Negrete, J., Enamorado-Montes, G., Durango-Hernández, J., Pinedo-Hernández, J., & Díez, S. (2017). Removal of mercury from gold mine effluents using Limnocharis flava in constructed wetlands. Chemosphere, 167, 188-192. https://doi.org/10.1016/j.chemosphere.2016.09.130
Marrugo-Negrete, J., Marrugo-Madrid, S., Pinedo-Hernández, J., Durango-Hernández, J., & Díez, S. (2016). Screening of native plant species for phytoremediation potential at a Hg-contaminated mining site. Science of The Total Environment, 542, 809-816. https://doi.org/10.1016/j.scitotenv.2015.10.117
Marrugo-Negrete, J., Pinedo-Hernández, J., & Díez, S. (2017). Assessment of heavy metal pollution, spatial distribution and origin in agricultural soils along the Sinú River Basin, Colombia. Environmental Research, 154, 380-388. https://doi.org/10.1016/j.envres.2017.01.021
Messetta, M., Anselmo, J., Gantes, P., Perez, B., & Feijoó, C. (2023). Plantas acuáticas de arroyos pampeanos. Una guía de campo. Revalorizando nuestro ambiente.
Moore MT, Kröger R (2010) Evaluating plant species-specific contribu tions to nutrient mitigation in drainage ditch mesocosm. Water Air Soil Pollut 217:445–454
Moreno, C. E. (2001). Métodos para medir la biodiversidad. Sociedad Entomológica Aragonesa.
Mustafa, H. M., & Hayder, G. (2021). Recent studies on applications of aquatic weed plants in phytoremediation of wastewater: A review article. Ain Shams Engineering Journal, 12(1), 355-365. https://doi.org/10.1016/j.asej.2020.05.009
Nabi, M. (2021). Heavy metals accumulation in aquatic macrophytes from an urban lake in Kashmir Himalaya, India. Environmental Nanotechnology, Monitoring & Management, 16, 100509. https://doi.org/10.1016/j.enmm.2021.100509
Nandakumar PBA, Dushenkov V, Motto H, Raskin I (1995) Phytoextraction: the use of plants to remove heavy metals from soils. Environ Sci Technol 29:1232–1238
Naveed, S., Oladoye, P. O., & Alli, Y. A. (2023). Toxic heavy metals: A bibliographic review of risk assessment, toxicity, and phytoremediation technology. Sustainable Chemistry for the Environment, 2, 100018. https://doi.org/10.1016/j.scenv.2023.100018
Oyuela Leguizamo, M. A., Fernández Gómez, W. D., & Sarmiento, M. C. G. (2017). Native herbaceous plant species with potential use in phytoremediation of heavy metals, spotlight on wetlands—A review. Chemosphere, 168, 1230-1247. https://doi.org/10.1016/j.chemosphere.2016.10.075
Parde, D., Patwa, A., Shukla, A., Vijay, R., Killedar, D. J., & Kumar, R. (2021). A review of constructed wetland on type, treatment and technology of wastewater. Environmental Technology & Innovation, 21, 101261. https://doi.org/10.1016/j.eti.2020.101261
Penido, E. S., Martins, G. C., Mendes, T. B. M., Melo, L. C. A., Do Rosário Guimarães, I., & Guilherme, L. R. G. (2019). Combining biochar and sewage sludge for immobilization of heavy metals in mining soils. Ecotoxicology and Environmental Safety, 172, 326-333. https://doi.org/10.1016/j.ecoenv.2019.01.110
Pérez Lahiguera, J. A. (2016). Aplicación de macrófitos acuáticos en el tratamiento de aguas residuales urbanas y sus subproductos mediante humedales artificiales en clima Mediterráneo [Tesis doctoral, Universidad de Alicante]. Repositorio Institucional RUA. http://hdl.handle.net/10045/56232 Pérez López, M. E. (2009). Selección de plantas acuáticas para establecer humedales en el estado de Durango [Tesis doctoral, Centro de Investigación en Materiales Avanzados]. Repositorio Institucional CIMAV. http://cimav.repositorioinstitucional.mx/jspui/handle/1004/597 Pérez-Vásquez, N. D. S., Arias-Rios, J., & Quirós-Rodríguez, J. A. (2015). VARIACIÓN ESPACIO-TEMPORAL DE PLANTAS VASCULARES ACUÁTICAS EN EL COMPLEJO CENAGOSO DEL BAJO SINÚ, CÓRDOBA, COLOMBIA. Acta Biológica Colombiana, 20(3), 155-165. https://doi.org/10.15446/abc.v20n3.45380 Pizano, C y H. García (Editores). 2014. El Bosque Seco Tropical en Colombia. Instituto de Investigación de Recursos Biológicos Alexander von Humboldt (IAvH). Bogotá, D.C., Colombia. Rai, P. K. (2019). Heavy metals/metalloids remediation from wastewater using free floating macrophytes of a natural wetland. Environmental Technology & Innovation, 15, 100393. https://doi.org/10.1016/j.eti.2019.100393 Rangel, J. (2010). VEGETACIÓN ACUÁTICA -Caracterización inicial (pp. 325-339). Rivas, J. D. (2021). Potencial fitorremediador de macrófitas en cuerpos de agua contaminados con mercurio remanentes de la minería (pozas) en el departamento del Chocó-Colombia. Recuperado de: https://repositorio.unal.edu.co/handle/unal/83774 Rivas, J. D. (2021). Potencial fitorremediador de macrófitas en cuerpos de agua contaminados con mercurio remanentes de la minería (pozas) en el departamento del Chocó-Colombia. Recuperado de: https://repositorio.unal.edu.co/handle/unal/83774 Rodríguez Ríos, Roberto. Fica Gallardo, Boris. CORMA (Chile). 2020. Guía campo plantas vasculares acuáticas en Chile. CORMA. https://bibliotecadigital.ciren.cl/handle/20.500.13082/148108 Rwiza, M. J., Focus, E., Bayuo, J., Kimaro, J. M., Kleinke, M., Lyasenga, T. J., Mosses, J. T., & Marwa, J. (2023). Artisanal and small-scale mining in Tanzania and health implications: A policy perspective. Heliyon, 9(4), e14616. https://doi.org/10.1016/j.heliyon.2023.e14616 Sampayo Campo, L y Ariza Blanco, A. (2017). Determinación de la contaminación por metales pesados en el embalse el Guájaro, Departamento del Atlántico. Universidad de la Costa. Disponible en: https://hdl.handle.net/11323/4861 Sánchez-Castro, I., Molina, L., Prieto-Fernández, M.-Á., & Segura, A. (2023). Past, present and future trends in the remediation of heavy-metal contaminated soil—Remediation techniques applied in real soil-contamination events. Heliyon, 9(6), e16692. https://doi.org/10.1016/j.heliyon.2023.e16692 Sarker, A., Masud, M. A. A., Deepo, D. M., Das, K., Nandi, R., Ansary, M. W. R., Islam, A. R. M. T., & Islam, T. (2023). Biological and green remediation of heavy metal contaminated water and soils: A state-of-the-art review. Chemosphere, 332, 138861. https://doi.org/10.1016/j.chemosphere.2023.138861 Schneider, B. (2017). Ensambles de macrófitas en ambientes de la llanura aluvial del río Paraná Medio: Factores que inciden a distintas escalas. Tan, H. W., Pang, Y. L., Lim, S., & Chong, W. C. (2023). A state-of-the-art of phytoremediation approach for sustainable management of heavy metals recovery. Environmental Technology & Innovation, 30, 103043. https://doi.org/10.1016/j.eti.2023.103043 Timalsina, H., Gyawali, T., Ghimire, S., & Paudel, S. R. (2022). Potential application of enhanced phytoremediation for heavy metals treatment in Nepal. Chemosphere, 306, 135581. https://doi.org/10.1016/j.chemosphere.2022.135581 Turcios, A. E., Miglio, R., Vela, R., Sánchez, G., Bergier, T., Włodyka-Bergier, A., Cifuentes, J. I., Pignataro, G., Avellan, T., & Papenbrock, J. (2021). From natural habitats to successful application—Role of halophytes in the treatment of saline wastewater in constructed wetlands with a focus on Latin America. Environmental and Experimental Botany, 190, 104583. https://doi.org/10.1016/j.envexpbot.2021.104583 Valois-Cuesta, H., & Martínez-Ruiz, C. (2017). Especies vegetales colonizadoras de áreas perturbadas por la minería en bosques pluviales tropicales del Chocó, Colombia. Biota Colombiana, 18(1), 87-103. https://doi.org/10.21068/c2017.v18n01a7 Verma P, George KV, Singh HV, Singh SK, Juwarkar A, Singh RN (2006) Modeling rhizofiltration: heavy-metal uptake by plant roots. Environ Model Assess 11:387–394 Vinayagam, S., Sathishkumar, K., Ayyamperumal, R., Natarajan, P. M., Ahmad, I., Saeed, M., Alabdallah, N. M., & Sundaram, T. (2024). Distribution and transport of contaminants in soil through mining processes and its environmental impact and health hazard assessment: A review of the prospective solutions. Environmental Research, 240, 117473. https://doi.org/10.1016/j.envres.2023.117473 Wang, H., Chen, S., Liu, H., Li, J., Zaman, Q. U., Sultan, K., Rehman, M., Jeridi, M., Siddiqui, S., Fahad, S., Deng, G., & Chen, A. (2023). Maize straw biochar can alleviate heavy metals stress in potato by improving soil health. South African Journal of Botany, 162, 391-401. https://doi.org/10.1016/j.sajb.2023.09.024 Woraharn, S., Meeinkuirt, W., Phusantisampan, T., & Avakul, P. (2021). Potential of ornamental monocot plants for rhizofiltration of cadmium and zinc in hydroponic systems. Environmental Science and Pollution Research, 28(26), 35157-35170. https://doi.org/10.1007/s11356-021-13151-x Wu, B., Peng, H., Sheng, M., Luo, H., Wang, X., Zhang, R., Xu, F., & Xu, H. (2021). Evaluation of phytoremediation potential of native dominant plants and spatial distribution of heavy metals in abandoned mining area in Southwest China. Ecotoxicology and Environmental Safety, 220, 112368. https://doi.org/10.1016/j.ecoenv.2021.112368 Xiao, R., Shen, F., Du, J., Li, R., Lahori, A. H., & Zhang, Z. (2018). Screening of native plants from wasteland surrounding a Zn smelter in Feng County China, for phytoremediation. Ecotoxicology and Environmental Safety, 162, 178-183. https://doi.org/10.1016/j.ecoenv.2018.06.095 Yang, S., Liang, S., Yi, L., Xu, B., Cao, J., Guo, Y., & Zhou, Y. (2014). Heavy metal accumulation and phytostabilization potential of dominant plant species growing on manganese mine tailings. Frontiers of Environmental Science & Engineering, 8(3), 394-404. https://doi.org/10.1007/s11783-013-0602-4 Zhang, C., Yu, Z., Zeng, G., Jiang, M., Yang, Z., Cui, F., Zhu, M., Shen, L., & Hu, L. (2014). Effects of sediment geochemical properties on heavy metal bioavailability. Environment International, 73, 270-281. https://doi.org/10.1016/j.envint.2014.08.010 Zhang, S., Yin, X., Arif, M., Chen, S., Ma, M., Zhu, K., Chen, Q., Wu, S., & Li, C. (2023). Strategy matters: Phytoremediation potential of native halophytes is jointly associated with their distinct salt tolerances. Journal of Cleaner Production, 425, 139060. https://doi.org/10.1016/j.jclepro.2023.139060 Zhu, G., Xiao, H., Guo, Q., Song, B., Zheng, G., Zhang, Z., Zhao, J., & Okoli, C. P. (2018). Heavy metal contents and enrichment characteristics of dominant plants in wasteland of the downstream of a lead-zinc mining area in Guangxi, Southwest China. Ecotoxicology and Environmental Safety, 151, 266-271. https://doi.org/10.1016/j.ecoenv.2018.01.011
Pérez López, M. E. (2009). Selección de plantas acuáticas para establecer humedales en el estado de Durango [Tesis doctoral, Centro de Investigación en Materiales Avanzados]. Repositorio Institucional CIMAV. http://cimav.repositorioinstitucional.mx/jspui/handle/1004/597
Pérez-Vásquez, N. D. S., Arias-Rios, J., & Quirós-Rodríguez, J. A. (2015). VARIACIÓN ESPACIO-TEMPORAL DE PLANTAS VASCULARES ACUÁTICAS EN EL COMPLEJO CENAGOSO DEL BAJO SINÚ, CÓRDOBA, COLOMBIA. Acta Biológica Colombiana, 20(3), 155-165. https://doi.org/10.15446/abc.v20n3.45380
Pizano, C y H. García (Editores). 2014. El Bosque Seco Tropical en Colombia. Instituto de Investigación de Recursos Biológicos Alexander von Humboldt (IAvH). Bogotá, D.C., Colombia.
Rai, P. K. (2019). Heavy metals/metalloids remediation from wastewater using free floating macrophytes of a natural wetland. Environmental Technology & Innovation, 15, 100393. https://doi.org/10.1016/j.eti.2019.100393
Rangel, J. (2010). VEGETACIÓN ACUÁTICA -Caracterización inicial (pp. 325-339). Rivas, J. D. (2021). Potencial fitorremediador de macrófitas en cuerpos de agua contaminados con mercurio remanentes de la minería (pozas) en el departamento del Chocó-Colombia. Recuperado de: https://repositorio.unal.edu.co/handle/unal/83774 Rivas, J. D. (2021). Potencial fitorremediador de macrófitas en cuerpos de agua contaminados con mercurio remanentes de la minería (pozas) en el departamento del Chocó-Colombia. Recuperado de: https://repositorio.unal.edu.co/handle/unal/83774 Rodríguez Ríos, Roberto. Fica Gallardo, Boris. CORMA (Chile). 2020. Guía campo plantas vasculares acuáticas en Chile. CORMA. https://bibliotecadigital.ciren.cl/handle/20.500.13082/148108 Rwiza, M. J., Focus, E., Bayuo, J., Kimaro, J. M., Kleinke, M., Lyasenga, T. J., Mosses, J. T., & Marwa, J. (2023). Artisanal and small-scale mining in Tanzania and health implications: A policy perspective. Heliyon, 9(4), e14616. https://doi.org/10.1016/j.heliyon.2023.e14616 Sampayo Campo, L y Ariza Blanco, A. (2017). Determinación de la contaminación por metales pesados en el embalse el Guájaro, Departamento del Atlántico. Universidad de la Costa. Disponible en: https://hdl.handle.net/11323/4861 Sánchez-Castro, I., Molina, L., Prieto-Fernández, M.-Á., & Segura, A. (2023). Past, present and future trends in the remediation of heavy-metal contaminated soil—Remediation techniques applied in real soil-contamination events. Heliyon, 9(6), e16692. https://doi.org/10.1016/j.heliyon.2023.e16692 Sarker, A., Masud, M. A. A., Deepo, D. M., Das, K., Nandi, R., Ansary, M. W. R., Islam, A. R. M. T., & Islam, T. (2023). Biological and green remediation of heavy metal contaminated water and soils: A state-of-the-art review. Chemosphere, 332, 138861. https://doi.org/10.1016/j.chemosphere.2023.138861 Schneider, B. (2017). Ensambles de macrófitas en ambientes de la llanura aluvial del río Paraná Medio: Factores que inciden a distintas escalas. Tan, H. W., Pang, Y. L., Lim, S., & Chong, W. C. (2023). A state-of-the-art of phytoremediation approach for sustainable management of heavy metals recovery. Environmental Technology & Innovation, 30, 103043. https://doi.org/10.1016/j.eti.2023.103043 Timalsina, H., Gyawali, T., Ghimire, S., & Paudel, S. R. (2022). Potential application of enhanced phytoremediation for heavy metals treatment in Nepal. Chemosphere, 306, 135581. https://doi.org/10.1016/j.chemosphere.2022.135581 Turcios, A. E., Miglio, R., Vela, R., Sánchez, G., Bergier, T., Włodyka-Bergier, A., Cifuentes, J. I., Pignataro, G., Avellan, T., & Papenbrock, J. (2021). From natural habitats to successful application—Role of halophytes in the treatment of saline wastewater in constructed wetlands with a focus on Latin America. Environmental and Experimental Botany, 190, 104583. https://doi.org/10.1016/j.envexpbot.2021.104583 Valois-Cuesta, H., & Martínez-Ruiz, C. (2017). Especies vegetales colonizadoras de áreas perturbadas por la minería en bosques pluviales tropicales del Chocó, Colombia. Biota Colombiana, 18(1), 87-103. https://doi.org/10.21068/c2017.v18n01a7 Verma P, George KV, Singh HV, Singh SK, Juwarkar A, Singh RN (2006) Modeling rhizofiltration: heavy-metal uptake by plant roots. Environ Model Assess 11:387–394 Vinayagam, S., Sathishkumar, K., Ayyamperumal, R., Natarajan, P. M., Ahmad, I., Saeed, M., Alabdallah, N. M., & Sundaram, T. (2024). Distribution and transport of contaminants in soil through mining processes and its environmental impact and health hazard assessment: A review of the prospective solutions. Environmental Research, 240, 117473. https://doi.org/10.1016/j.envres.2023.117473 Wang, H., Chen, S., Liu, H., Li, J., Zaman, Q. U., Sultan, K., Rehman, M., Jeridi, M., Siddiqui, S., Fahad, S., Deng, G., & Chen, A. (2023). Maize straw biochar can alleviate heavy metals stress in potato by improving soil health. South African Journal of Botany, 162, 391-401. https://doi.org/10.1016/j.sajb.2023.09.024 Woraharn, S., Meeinkuirt, W., Phusantisampan, T., & Avakul, P. (2021). Potential of ornamental monocot plants for rhizofiltration of cadmium and zinc in hydroponic systems. Environmental Science and Pollution Research, 28(26), 35157-35170. https://doi.org/10.1007/s11356-021-13151-x Wu, B., Peng, H., Sheng, M., Luo, H., Wang, X., Zhang, R., Xu, F., & Xu, H. (2021). Evaluation of phytoremediation potential of native dominant plants and spatial distribution of heavy metals in abandoned mining area in Southwest China. Ecotoxicology and Environmental Safety, 220, 112368. https://doi.org/10.1016/j.ecoenv.2021.112368 Xiao, R., Shen, F., Du, J., Li, R., Lahori, A. H., & Zhang, Z. (2018). Screening of native plants from wasteland surrounding a Zn smelter in Feng County China, for phytoremediation. Ecotoxicology and Environmental Safety, 162, 178-183. https://doi.org/10.1016/j.ecoenv.2018.06.095 Yang, S., Liang, S., Yi, L., Xu, B., Cao, J., Guo, Y., & Zhou, Y. (2014). Heavy metal accumulation and phytostabilization potential of dominant plant species growing on manganese mine tailings. Frontiers of Environmental Science & Engineering, 8(3), 394-404. https://doi.org/10.1007/s11783-013-0602-4 Zhang, C., Yu, Z., Zeng, G., Jiang, M., Yang, Z., Cui, F., Zhu, M., Shen, L., & Hu, L. (2014). Effects of sediment geochemical properties on heavy metal bioavailability. Environment International, 73, 270-281. https://doi.org/10.1016/j.envint.2014.08.010 Zhang, S., Yin, X., Arif, M., Chen, S., Ma, M., Zhu, K., Chen, Q., Wu, S., & Li, C. (2023). Strategy matters: Phytoremediation potential of native halophytes is jointly associated with their distinct salt tolerances. Journal of Cleaner Production, 425, 139060. https://doi.org/10.1016/j.jclepro.2023.139060 Zhu, G., Xiao, H., Guo, Q., Song, B., Zheng, G., Zhang, Z., Zhao, J., & Okoli, C. P. (2018). Heavy metal contents and enrichment characteristics of dominant plants in wasteland of the downstream of a lead-zinc mining area in Guangxi, Southwest China. Ecotoxicology and Environmental Safety, 151, 266-271. https://doi.org/10.1016/j.ecoenv.2018.01.011
Rivas, J. D. (2021). Potencial fitorremediador de macrófitas en cuerpos de agua contaminados con mercurio remanentes de la minería (pozas) en el departamento del Chocó-Colombia. Recuperado de: https://repositorio.unal.edu.co/handle/unal/83774
Rodríguez Ríos, Roberto. Fica Gallardo, Boris. CORMA (Chile). 2020. Guía campo plantas vasculares acuáticas en Chile. CORMA. https://bibliotecadigital.ciren.cl/handle/20.500.13082/148108 Rwiza, M. J., Focus, E., Bayuo, J., Kimaro, J. M., Kleinke, M., Lyasenga, T. J., Mosses, J. T., & Marwa, J. (2023). Artisanal and small-scale mining in Tanzania and health implications: A policy perspective. Heliyon, 9(4), e14616. https://doi.org/10.1016/j.heliyon.2023.e14616 Sampayo Campo, L y Ariza Blanco, A. (2017). Determinación de la contaminación por metales pesados en el embalse el Guájaro, Departamento del Atlántico. Universidad de la Costa. Disponible en: https://hdl.handle.net/11323/4861 Sánchez-Castro, I., Molina, L., Prieto-Fernández, M.-Á., & Segura, A. (2023). Past, present and future trends in the remediation of heavy-metal contaminated soil—Remediation techniques applied in real soil-contamination events. Heliyon, 9(6), e16692. https://doi.org/10.1016/j.heliyon.2023.e16692 Sarker, A., Masud, M. A. A., Deepo, D. M., Das, K., Nandi, R., Ansary, M. W. R., Islam, A. R. M. T., & Islam, T. (2023). Biological and green remediation of heavy metal contaminated water and soils: A state-of-the-art review. Chemosphere, 332, 138861. https://doi.org/10.1016/j.chemosphere.2023.138861 Schneider, B. (2017). Ensambles de macrófitas en ambientes de la llanura aluvial del río Paraná Medio: Factores que inciden a distintas escalas. Tan, H. W., Pang, Y. L., Lim, S., & Chong, W. C. (2023). A state-of-the-art of phytoremediation approach for sustainable management of heavy metals recovery. Environmental Technology & Innovation, 30, 103043. https://doi.org/10.1016/j.eti.2023.103043 Timalsina, H., Gyawali, T., Ghimire, S., & Paudel, S. R. (2022). Potential application of enhanced phytoremediation for heavy metals treatment in Nepal. Chemosphere, 306, 135581. https://doi.org/10.1016/j.chemosphere.2022.135581 Turcios, A. E., Miglio, R., Vela, R., Sánchez, G., Bergier, T., Włodyka-Bergier, A., Cifuentes, J. I., Pignataro, G., Avellan, T., & Papenbrock, J. (2021). From natural habitats to successful application—Role of halophytes in the treatment of saline wastewater in constructed wetlands with a focus on Latin America. Environmental and Experimental Botany, 190, 104583. https://doi.org/10.1016/j.envexpbot.2021.104583 Valois-Cuesta, H., & Martínez-Ruiz, C. (2017). Especies vegetales colonizadoras de áreas perturbadas por la minería en bosques pluviales tropicales del Chocó, Colombia. Biota Colombiana, 18(1), 87-103. https://doi.org/10.21068/c2017.v18n01a7 Verma P, George KV, Singh HV, Singh SK, Juwarkar A, Singh RN (2006) Modeling rhizofiltration: heavy-metal uptake by plant roots. Environ Model Assess 11:387–394 Vinayagam, S., Sathishkumar, K., Ayyamperumal, R., Natarajan, P. M., Ahmad, I., Saeed, M., Alabdallah, N. M., & Sundaram, T. (2024). Distribution and transport of contaminants in soil through mining processes and its environmental impact and health hazard assessment: A review of the prospective solutions. Environmental Research, 240, 117473. https://doi.org/10.1016/j.envres.2023.117473 Wang, H., Chen, S., Liu, H., Li, J., Zaman, Q. U., Sultan, K., Rehman, M., Jeridi, M., Siddiqui, S., Fahad, S., Deng, G., & Chen, A. (2023). Maize straw biochar can alleviate heavy metals stress in potato by improving soil health. South African Journal of Botany, 162, 391-401. https://doi.org/10.1016/j.sajb.2023.09.024 Woraharn, S., Meeinkuirt, W., Phusantisampan, T., & Avakul, P. (2021). Potential of ornamental monocot plants for rhizofiltration of cadmium and zinc in hydroponic systems. Environmental Science and Pollution Research, 28(26), 35157-35170. https://doi.org/10.1007/s11356-021-13151-x Wu, B., Peng, H., Sheng, M., Luo, H., Wang, X., Zhang, R., Xu, F., & Xu, H. (2021). Evaluation of phytoremediation potential of native dominant plants and spatial distribution of heavy metals in abandoned mining area in Southwest China. Ecotoxicology and Environmental Safety, 220, 112368. https://doi.org/10.1016/j.ecoenv.2021.112368 Xiao, R., Shen, F., Du, J., Li, R., Lahori, A. H., & Zhang, Z. (2018). Screening of native plants from wasteland surrounding a Zn smelter in Feng County China, for phytoremediation. Ecotoxicology and Environmental Safety, 162, 178-183. https://doi.org/10.1016/j.ecoenv.2018.06.095 Yang, S., Liang, S., Yi, L., Xu, B., Cao, J., Guo, Y., & Zhou, Y. (2014). Heavy metal accumulation and phytostabilization potential of dominant plant species growing on manganese mine tailings. Frontiers of Environmental Science & Engineering, 8(3), 394-404. https://doi.org/10.1007/s11783-013-0602-4 Zhang, C., Yu, Z., Zeng, G., Jiang, M., Yang, Z., Cui, F., Zhu, M., Shen, L., & Hu, L. (2014). Effects of sediment geochemical properties on heavy metal bioavailability. Environment International, 73, 270-281. https://doi.org/10.1016/j.envint.2014.08.010 Zhang, S., Yin, X., Arif, M., Chen, S., Ma, M., Zhu, K., Chen, Q., Wu, S., & Li, C. (2023). Strategy matters: Phytoremediation potential of native halophytes is jointly associated with their distinct salt tolerances. Journal of Cleaner Production, 425, 139060. https://doi.org/10.1016/j.jclepro.2023.139060 Zhu, G., Xiao, H., Guo, Q., Song, B., Zheng, G., Zhang, Z., Zhao, J., & Okoli, C. P. (2018). Heavy metal contents and enrichment characteristics of dominant plants in wasteland of the downstream of a lead-zinc mining area in Guangxi, Southwest China. Ecotoxicology and Environmental Safety, 151, 266-271. https://doi.org/10.1016/j.ecoenv.2018.01.011
Rwiza, M. J., Focus, E., Bayuo, J., Kimaro, J. M., Kleinke, M., Lyasenga, T. J., Mosses, J. T., & Marwa, J. (2023). Artisanal and small-scale mining in Tanzania and health implications: A policy perspective. Heliyon, 9(4), e14616. https://doi.org/10.1016/j.heliyon.2023.e14616
Sampayo Campo, L y Ariza Blanco, A. (2017). Determinación de la contaminación por metales pesados en el embalse el Guájaro, Departamento del Atlántico. Universidad de la Costa. Disponible en: https://hdl.handle.net/11323/4861
Sánchez-Castro, I., Molina, L., Prieto-Fernández, M.-Á., & Segura, A. (2023). Past, present and future trends in the remediation of heavy-metal contaminated soil—Remediation techniques applied in real soil-contamination events. Heliyon, 9(6), e16692. https://doi.org/10.1016/j.heliyon.2023.e16692
Sarker, A., Masud, M. A. A., Deepo, D. M., Das, K., Nandi, R., Ansary, M. W. R., Islam, A. R. M. T., & Islam, T. (2023). Biological and green remediation of heavy metal contaminated water and soils: A state-of-the-art review. Chemosphere, 332, 138861. https://doi.org/10.1016/j.chemosphere.2023.138861
Schneider, B. (2017). Ensambles de macrófitas en ambientes de la llanura aluvial del río Paraná Medio: Factores que inciden a distintas escalas.
Tan, H. W., Pang, Y. L., Lim, S., & Chong, W. C. (2023). A state-of-the-art of phytoremediation approach for sustainable management of heavy metals recovery. Environmental Technology & Innovation, 30, 103043. https://doi.org/10.1016/j.eti.2023.103043
Timalsina, H., Gyawali, T., Ghimire, S., & Paudel, S. R. (2022). Potential application of enhanced phytoremediation for heavy metals treatment in Nepal. Chemosphere, 306, 135581. https://doi.org/10.1016/j.chemosphere.2022.135581
Turcios, A. E., Miglio, R., Vela, R., Sánchez, G., Bergier, T., Włodyka-Bergier, A., Cifuentes, J. I., Pignataro, G., Avellan, T., & Papenbrock, J. (2021). From natural habitats to successful application—Role of halophytes in the treatment of saline wastewater in constructed wetlands with a focus on Latin America. Environmental and Experimental Botany, 190, 104583. https://doi.org/10.1016/j.envexpbot.2021.104583
Valois-Cuesta, H., & Martínez-Ruiz, C. (2017). Especies vegetales colonizadoras de áreas perturbadas por la minería en bosques pluviales tropicales del Chocó, Colombia. Biota Colombiana, 18(1), 87-103. https://doi.org/10.21068/c2017.v18n01a7
Verma P, George KV, Singh HV, Singh SK, Juwarkar A, Singh RN (2006) Modeling rhizofiltration: heavy-metal uptake by plant roots. Environ Model Assess 11:387–394
Vinayagam, S., Sathishkumar, K., Ayyamperumal, R., Natarajan, P. M., Ahmad, I., Saeed, M., Alabdallah, N. M., & Sundaram, T. (2024). Distribution and transport of contaminants in soil through mining processes and its environmental impact and health hazard assessment: A review of the prospective solutions. Environmental Research, 240, 117473. https://doi.org/10.1016/j.envres.2023.117473
Wang, H., Chen, S., Liu, H., Li, J., Zaman, Q. U., Sultan, K., Rehman, M., Jeridi, M., Siddiqui, S., Fahad, S., Deng, G., & Chen, A. (2023). Maize straw biochar can alleviate heavy metals stress in potato by improving soil health. South African Journal of Botany, 162, 391-401. https://doi.org/10.1016/j.sajb.2023.09.024
Woraharn, S., Meeinkuirt, W., Phusantisampan, T., & Avakul, P. (2021). Potential of ornamental monocot plants for rhizofiltration of cadmium and zinc in hydroponic systems. Environmental Science and Pollution Research, 28(26), 35157-35170. https://doi.org/10.1007/s11356-021-13151-x
Wu, B., Peng, H., Sheng, M., Luo, H., Wang, X., Zhang, R., Xu, F., & Xu, H. (2021). Evaluation of phytoremediation potential of native dominant plants and spatial distribution of heavy metals in abandoned mining area in Southwest China. Ecotoxicology and Environmental Safety, 220, 112368. https://doi.org/10.1016/j.ecoenv.2021.112368
Xiao, R., Shen, F., Du, J., Li, R., Lahori, A. H., & Zhang, Z. (2018). Screening of native plants from wasteland surrounding a Zn smelter in Feng County China, for phytoremediation. Ecotoxicology and Environmental Safety, 162, 178-183. https://doi.org/10.1016/j.ecoenv.2018.06.095
Yang, S., Liang, S., Yi, L., Xu, B., Cao, J., Guo, Y., & Zhou, Y. (2014). Heavy metal accumulation and phytostabilization potential of dominant plant species growing on manganese mine tailings. Frontiers of Environmental Science & Engineering, 8(3), 394-404. https://doi.org/10.1007/s11783-013-0602-4
Zhang, C., Yu, Z., Zeng, G., Jiang, M., Yang, Z., Cui, F., Zhu, M., Shen, L., & Hu, L. (2014). Effects of sediment geochemical properties on heavy metal bioavailability. Environment International, 73, 270-281. https://doi.org/10.1016/j.envint.2014.08.010
Zhang, S., Yin, X., Arif, M., Chen, S., Ma, M., Zhu, K., Chen, Q., Wu, S., & Li, C. (2023). Strategy matters: Phytoremediation potential of native halophytes is jointly associated with their distinct salt tolerances. Journal of Cleaner Production, 425, 139060. https://doi.org/10.1016/j.jclepro.2023.139060
Zhu, G., Xiao, H., Guo, Q., Song, B., Zheng, G., Zhang, Z., Zhao, J., & Okoli, C. P. (2018). Heavy metal contents and enrichment characteristics of dominant plants in wasteland of the downstream of a lead-zinc mining area in Guangxi, Southwest China. Ecotoxicology and Environmental Safety, 151, 266-271. https://doi.org/10.1016/j.ecoenv.2018.01.011
dc.rights.none.fl_str_mv Copyright Universidad de Córdoba, 2025
dc.rights.uri.none.fl_str_mv https://creativecommons.org/licenses/by-nc-nd/4.0/
dc.rights.license.none.fl_str_mv Atribución-NoComercial-SinDerivadas 4.0 Internacional (CC BY-NC-ND 4.0)
dc.rights.accessrights.none.fl_str_mv info:eu-repo/semantics/embargoedAccess
dc.rights.coar.none.fl_str_mv http://purl.org/coar/access_right/c_f1cf
rights_invalid_str_mv Copyright Universidad de Córdoba, 2025
https://creativecommons.org/licenses/by-nc-nd/4.0/
Atribución-NoComercial-SinDerivadas 4.0 Internacional (CC BY-NC-ND 4.0)
http://purl.org/coar/access_right/c_f1cf
eu_rights_str_mv embargoedAccess
dc.format.mimetype.none.fl_str_mv application/pdf
dc.publisher.none.fl_str_mv Universidad de Córdoba
dc.publisher.faculty.none.fl_str_mv Facultad de Ciencias Básicas
dc.publisher.place.none.fl_str_mv Monteria, Córdoba, Colombia
dc.publisher.program.none.fl_str_mv Maestría en Ciencias Ambientales
publisher.none.fl_str_mv Universidad de Córdoba
institution Universidad de Córdoba
bitstream.url.fl_str_mv https://repositorio.unicordoba.edu.co/bitstreams/138ec3e0-de0f-47a2-8c62-11dc5122b00e/download
https://repositorio.unicordoba.edu.co/bitstreams/8285c8c3-f8c9-4f7a-8f5c-cb2ed9e0a872/download
https://repositorio.unicordoba.edu.co/bitstreams/eb50d175-74c6-4b68-9fa3-3cd592f51902/download
https://repositorio.unicordoba.edu.co/bitstreams/ee92e864-b864-43ec-b25d-97a1f52de3cb/download
https://repositorio.unicordoba.edu.co/bitstreams/74695865-6702-469c-88a0-8735aa1d53b1/download
https://repositorio.unicordoba.edu.co/bitstreams/680e792d-a6c2-4de8-84fa-158cf96a4bce/download
https://repositorio.unicordoba.edu.co/bitstreams/636193ff-3377-42f3-8549-655a9948829c/download
bitstream.checksum.fl_str_mv 04b72a86d9a0ea0697e237c2a80d6e68
4527f09157c6394e31a3cf97935340ed
b76e7a76e24cf2f94b3ce0ae5ed275d0
fafd5580132940378ae8886fae1cf965
6d93d3216dc4a7f5df47d4876fbec4d3
c439d86795568e1543248d1251e74d0b
5531cfab7eee6d66ab160aa1eb253533
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
MD5
MD5
MD5
MD5
repository.name.fl_str_mv Repositorio institucional Universidad de Córdoba
repository.mail.fl_str_mv bdigital@metabiblioteca.com
_version_ 1849968250780123136
spelling Marrugo Negrete, José LuisMercado Tobio, Luisa FernandaDiaz Uribe, Carlos EnriqueConsuegra Solorzano, Adolfo2025-11-12T15:42:38Z2028-11-122025https://repositorio.unicordoba.edu.co/handle/ucordoba/9631Universidad de CórdobaRepositorio Institucional Unicórdobahttps://repositorio.unicordoba.edu.coLa minería artesanal de oro contamina los cuerpos de agua por la liberación de metales pesados (MP) lo que representa un riesgo ambiental y sanitario. Frente a esta problemática, las plantas vasculares acuáticas han sido reconocidas por su eficiencia y ampliamente utilizadas en técnicas de fitorremediación al ser bioacumuladoras naturales de MP. Asimismo, constituyen uno de los componentes clave en sistemas de humedales de tratamiento. Esta investigación se realizó en una zona minera de Ayapel, Córdoba y en la Universidad de Córdoba, Colombia, donde inicialmente se identificó la vegetación pionera de plantas vasculares acuáticas en la quebrada la Quebradona y en pozas artificiales presentes en el área perturbada por la minería y se determinó la capacidad de acumulación de mercurio (Hg), zinc (Zn), cadmio (Cd) y cobre (Cu) en cada una de las especies de plantas vasculares acuáticas reportadas. Se estudió el potencial de acumulación de Hg, Cd y Cu a las especies reportadas en la zona minera Eleocharis interstincta y Thalia geniculata en humedales construidos de flujo superficial para el tratamiento de agua y suelos contaminados y se determinaron los factores de traslocación (FT) y bioconcentración (FCB). En la zona minera de Ayapel, Córdoba se registraron 12 familias, 17 géneros y 22 especies. Se encontraron correlaciones positivas entre los parámetros fisicoquímicos del agua y del sedimento de las pozas y la Quebradona y la presencia de MP en ambas matrices y su relación con la capacidad de las plantas vasculares acuáticas para acumular metales. En los humedales de tratamiento evaluados, el FT del Cu alcanzó un valor máximo de 1 en los tratamientos plantados con E. interstincta y T. geniculata. Respecto al FCB del Hg se obtuvieron valores de 1, y para el Cd se obtuvieron valores de 0,87 para el tratamiento Eli, 0,88 para Eli-C y 0,80 para Thag. Aunque ambos factores no superaron el valor de 1, los resultados demuestran que E. interstincta y T. geniculata son buenos acumuladores de Cu, Hg y Cd.Artisanal gold mining contaminates water bodies through the release of heavy metals (HMs), posing an environmental and health risk. In response to this problem, aquatic vascular plants have been recognized for their efficiency and are widely used in phytoremediation techniques as natural bioaccumulators of HMs. They also constitute a key component in wetland treatment systems. This research was conducted in a mining area of Ayapel, Córdoba, and at the University of Córdoba, Colombia. Initially, pioneer aquatic vascular plant vegetation was identified in the La Quebradona stream and in artificial ponds within the mining-disturbed area. The accumulation capacity of mercury (Hg), zinc (Zn), cadmium (Cd), and copper (Cu) was then determined for each of the reported aquatic vascular plant species. The accumulation potential of Hg, Cd, and Cu in the species Eleocharis interstincta and Thalia geniculata, reported in the mining area, was studied in constructed surface-flow wetlands for the treatment of contaminated water and soil. Translocation factors (TF) and bioconcentration factors (BCF) were determined. Twelve families, 17 genera, and 22 species were recorded in the Ayapel mining area, Córdoba. Positive correlations were found between the physicochemical parameters of the water and sediment in the ponds and the Quebradona stream and the presence of metals in both matrices, as well as their relationship to the capacity of aquatic vascular plants to accumulate metals. In the evaluated treatment wetlands, the TF of Cu reached a maximum value of 1 in the treatments planted with E. interstincta and T. geniculata. Regarding the Hg FCB, values of 1 were obtained, and for Cd, values of 0.87 were obtained for the Eli treatment, 0.88 for Eli-C, and 0.80 for Thag. Although both factors did not exceed the value of 1, the results demonstrate that E. interstincta and T. geniculata are good accumulators of Cu, Hg, and Cd.1. INTRODUCCIÓN2. MARCO DE REFERENCIA2.1. Antecedentes2.2. Marco teórico2.2.1. Metales pesados2.2.2. Efectos por la contaminación de metales pesados2.2.3. Plantas vasculares acuáticas2.2.4. Métodos para cuantificar la diversidad de plantas vasculares acuáticas2.2.5. Plantas vasculares acuáticas y su papel en la fitorremediación2.2.6. Factores de bioconcentración y translocación2.2.7. Humedales construidos y su aplicación en técnicas de fitorremediación3. OBJETIVOS3.1. Objetivo general3.2. Objetivos específicos4. MARCO METODOLÓGICO4.1. Área de estudio4.2. Fases de la investigación4.2.1. Fase I: Muestreo de plantas vasculares acuáticas en zona minera4.2.2. Muestreo de agua y sedimentos4.2.3. Análisis de parámetros fisicoquímicos4.2.4. Fase II: Análisis de mercurio (Hg), zinc (Zn), cobre (Cu) y cadmio (Cd) en sedimento, agua y material vegetal4.2.5. Fase III: Sistema humedales construidos (HCs)4.2.6. Fase IV: Tratamiento de datos5. RESULTADOS Y DISCUSIÓN5.1. Diversidad de plantas vasculares acuáticas en la zona minera5.1.1. Riqueza y abundancia general en la zona minera5.1.2. Riqueza y abundancia por época climática5.2. Acumulación de Hg, Zn, Cu y Cd para cada una de las especies de plantas vasculares acuáticas y su relación con las características fisicoquímicas del agua y sedimentos presentes en la zona minera5.2.1. Correlación del Hg, Zn, Cd y Cu y las plantas vasculares acuáticas y su relación con las características fisicoquímicas del agua y sedimentos presentes en la zona minera5.3. Factor de translocación (FT) y bioconcentración (FCB) de Hg, Cu Y Cd en E. intersticta y T. geniculata en los tratamientos de humedales construidos5.4. Remoción de Hg, Cu y Cd en el suelo y en el agua en los humedales construidos5.5. Parámetros morfofisiológicos de las plantas vasculares acuáticas en humedales construidos6. CONCLUSIONES7. RECOMENDACIONES8. REFERENCIASMaestríaMagíster en Ciencias AmbientalesTrabajos de Investigación y/o Extensiónapplication/pdfspaUniversidad de CórdobaFacultad de Ciencias BásicasMonteria, Córdoba, ColombiaMaestría en Ciencias AmbientalesCopyright Universidad de Córdoba, 2025https://creativecommons.org/licenses/by-nc-nd/4.0/Atribución-NoComercial-SinDerivadas 4.0 Internacional (CC BY-NC-ND 4.0)info:eu-repo/semantics/embargoedAccesshttp://purl.org/coar/access_right/c_f1cfPotencial de bioacumulación de metales pesados por plantas vasculares acuáticas en una zona minera de Ayapel, CórdobaTrabajo de grado - Maestríainfo:eu-repo/semantics/masterThesisinfo:eu-repo/semantics/acceptedVersionTexthttp://purl.org/redcol/resource_type/TMA.A. Idriss and A.K. Ahmad, 2012. Heavy Metal Concentrations (Cu, Cd and Pb) in Sediments in the Juru River, Penang, Malaysia. Journal of Biological Sciences, 12: 376-384.Abedi, T., & Mojiri, A. (2019). Constructed wetland modified by biochar/zeolite addition for enhanced wastewater treatment. Environmental Technology & Innovation, 16, 100472. https://doi.org/10.1016/j.eti.2019.100472Abid Maktoof, A., & AL-Enazi, M. S. (2020). Use of two plants to remove pollutants in wastewater in constructed wetlands in southern Iraq. The Egyptian Journal of Aquatic Research, 46(3), 227-233. https://doi.org/10.1016/j.ejar.2020.06.002Adnan, M., Xiao, B., Ali, M. U., Xiao, P., Zhao, P., Wang, H., & Bibi, S. (2024). Heavy metals pollution from smelting activities: A threat to soil and groundwater. Ecotoxicology and Environmental Safety, 274, 116189. https://doi.org/10.1016/j.ecoenv.2024.116189Aghili, S., & Golzary, A. (2023). Greening the earth, healing the soil: A comprehensive life cycle assessment of phytoremediation for heavy metal contamination. Environmental Technology & Innovation, 32, 103241. https://doi.org/10.1016/j.eti.2023.103241Aguirre, S. E., Piraneque, N. V., & Linero-Cueto, J. (2021). Concentración de metales pesados y calidad físico-química del agua de la Ciénaga Grande de Santa Marta. Revista U.D.C.A Actualidad & Divulgación Científica, 24(1). https://doi.org/10.31910/rudca.v24.n1.2021.1313Akoto, O., Yakubu, S., Ofori, L. A., Bortey-sam, N., Boadi, N. O., Horgah, J., & Sackey, L. N. A. (2023). Multivariate studies and heavy metal pollution in soil from gold mining area. Heliyon, 9(1), e12661. https://doi.org/10.1016/j.heliyon.2022.e12661Alloway, B.J. (2012) Sources of Heavy Metals and Metalloids in Soils. In: Alloway. B.J., Ed., Heavy Metals in Soils: Trace Metals and Metalloids in Soils and Their Bioavailability, Environmental Pollution, Vol. 22, Springer, Dordrecht, 11-50Ansari, A. A., Naeem, M., Gill, S. S., & AlZuaibr, F. M. (2020). Phytoremediation of contaminated waters: An eco-friendly technology based on aquatic macrophytes application. The Egyptian Journal of Aquatic Research, 46(4), 371-376. https://doi.org/10.1016/j.ejar.2020.03.002Angon, P. B., Islam, Md. S., Kc, S., Das, A., Anjum, N., Poudel, A., & Suchi, S. A. (2024). Sources, effects and present perspectives of heavy metals contamination: Soil, plants and human food chain. Heliyon, 10(7), e28357. https://doi.org/10.1016/j.heliyon.2024.e28357Atuesta-Ibargüen DJ. 2019. Composición florística y formas de vida de las macrófitas acuáticas de la serranía de La Lindosa (Guaviare), Guayana colombiana. Caldasia 41(2):301–312.doi: https://dx.doi.org/10. 15446/caldasia.v41n2.71615Bashir, S., Zhu, J., Fu, Q., & Hu, H. (2018). Cadmium mobility, uptake and anti-oxidative response of water spinach (Ipomoea aquatic) under rice straw biochar, zeolite and rock phosphate as amendments. Chemosphere, 194, 579-587. https://doi.org/10.1016/j.chemosphere.2017.11.162Batool, A., & Saleh, T. A. (2020). Removal of toxic metals from wastewater in constructed wetlands as a green technology; catalyst role of substrates and chelators. Ecotoxicology and Environmental Safety, 189, 109924. https://doi.org/10.1016/j.ecoenv.2019.109924Betancur-Corredor, B., Loaiza-Usuga, J. C., Denich, M., & Borgemeister, C. (2018). Gold mining as a potential driver of development in Colombia: Challenges and opportunities. Journal of Cleaner Production, 199, 538-553. https://doi.org/10.1016/j.jclepro.2018.07.142Bi, R., Zhou, C., Jia, Y., Wang, S., Li, P., Reichwaldt, E. S., & Liu, W. (2019). Giving waterbodies the treatment they need: A critical review of the application of constructed floating wetlands. Journal of Environmental Management, 238, 484-498. https://doi.org/10.1016/j.jenvman.2019.02.064Briffa, J., Sinagra, E., & Blundell, R. (2020). Heavy metal pollution in the environment and their toxicological effects on humans. Heliyon, 6(9), e04691. https://doi.org/10.1016/j.heliyon.2020.e04691Camargo, N. R. (2023). Índices de contaminación de metales pesados y su relación con variables fisicoquímicas en el caribe colombiano. Recuperado de: http://hdl.handle.net/20.500.12010/31640Chandra, R., Dubey, N. K., & Kumar, V. (Eds.). (2018). Phytoremediation of environmental pollutants. Taylor & Francis, CRC PressChang, J., Peng, D., Deng, S., Chen, J., & Duan, C. (2022). Efficient treatment of mercury(Ⅱ)-containing wastewater in aerated constructed wetland microcosms packed with biochar. Chemosphere, 290, 133302. https://doi.org/10.1016/j.chemosphere.2021.133302Chou, P.-I., Ng, D.-Q., Li, I.-C., & Lin, Y.-P. (2018). Effects of dissolved oxygen, pH, salinity and humic acid on the release of metal ions from PbS, CuS and ZnS during a simulated storm event. Science of The Total Environment, 624, 1401-1410. https://doi.org/10.1016/j.scitotenv.2017.12.221Cortés, D. V. (2017). Vegetación estuarina y vegetación acuática de complejos cenagosos del Caribe Colombiano. Recuperado de: https://repositorio.unal.edu.co/handle/unal/59487 Chukwu, E. C., & Gulser, C. (2025). Morphological, physiological, and anatomical effects of heavy metals on soil and plant health and possible remediation technologies. Soil Security, 18, 100178. https://doi.org/10.1016/j.soisec.2025.100178 Díaz-Pérez, W. A., Guillén, C. D. P., Pereira, F. J. M., & Briceño, J. D. H (2023). Caracterización florística de áreas degradadas por la pequeña minería en la Reserva Forestal Imataca, Río Grande, estado Delta Amacuro, Venezuela http://hdl.handle.net/20.500.12010/31640 DÍAZ P., W. A., & ELCORO, S. (2009). PLANTAS COLONIZADORAS EN ÁREAS PERTURBADAS POR LA MINERÍA EN EL ESTADO BOLÍVAR, VENEZUELA / Pioneer plant species in disturbed mining areas in Bolívar State, Venezuela. Acta Botánica Venezuélica, 32(2), 453–466. http://www.jstor.org/stable/41740896 Enamorado, G., Tirado Montoya, J., & Marrugo Negrete, J. (2021). Metales pesados (Hg, As, Cd, Zn, Pb, Cu, Mn) en un trayecto del río Cauca impactado por la minería de oro. Revista EIA, 19(37). https://doi.org/10.24050/reia.v19i37.1481 Gaballah, M. S., Abdelwahab, O., Barakat, K. M., & Stefanakis, A. I. (2022). A pilot system integrating a settling technique and a horizontal subsurface flow constructed wetland for the treatment of polluted lake water. Chemosphere, 295, 133844. https://doi.org/10.1016/j.chemosphere.2022.133844 Gao, J., Han, H., Gao, C., Wang, Y., Dong, B., & Xu, Z. (2023). Organic amendments for in situ immobilization of heavy metals in soil: A review. Chemosphere, 335, 139088. https://doi.org/10.1016/j.chemosphere.2023.139088 García Acevedo, R., García Rodríguez, E., & Pérez Amezcua, N. E. (2023). Remoción de contaminantes del agua en humedales artificiales de flujo subsuperficial, utilizando Typha domingensis, tezontle y grava triturada y su relación con la conductividad hidráulica. Ciencia Nicolaita, 87. https://doi.org/10.35830/cn.vi87.660 Guevara, R., Rosales, J., & Sanoja, E. (2005). Vegetación pionera sobre rocas, un potencial biológico para la revegetaciónde áreas degradadas por la mineria de hierro. Interciencia, 30(10),644-652.[fecha de Consulta 11 de Agosto de 2025]. ISSN: 0378-1844. Recuperado de: https://www.redalyc.org/articulo.oa?id=33910910 Hadad, H. R., Mufarrege, M. D. L. M., Di Luca, G. A., Denaro, A. C., Nocetti, E., & Maine, M. A. (2022). Potential metal phytoremediation in peri-urban wetlands using rooted macrophytes. Ecological Engineering, 182, 106734. https://doi.org/10.1016/j.ecoleng.2022.106734 Haghighizadeh, A., Rajabi, O., Nezarat, A., Hajyani, Z., Haghmohammadi, M., Hedayatikhah, S., Asl, S. D., & Aghababai Beni, A. (2024). Comprehensive analysis of heavy metal soil contamination in mining Environments: Impacts, monitoring Techniques, and remediation strategies. Arabian Journal of Chemistry, 17(6), 105777. https://doi.org/10.1016/j.arabjc.2024.105777 Hosseinniaee, S., Jafari, M., Tavili, A., Zare, S., Cappai, G., & De Giudici, G. (2022). Perspectives for phytoremediation capability of native plants growing on Angouran Pb–Zn mining complex in northwest of Iran. Journal of Environmental Management, 315, 115184. https://doi.org/10.1016/j.jenvman.2022.115184 Hou, Y., Zhao, Y., Lu, J., Wei, Q., Zang, L., & Zhao, X. (2023). Environmental contamination and health risk assessment of potentially toxic trace metal elements in soils near gold mines – A global meta-analysis. Environmental Pollution, 330, 121803. https://doi.org/10.1016/j.envpol.2023.121803 Irshad, S., Xie, Z., Qing, M., Ali, H., Ali, I., Ahmad, N., Rizwan Khan, M., & Nawaz, A. (2024). Application of coconut shell activated carbon filter in vertical subsurface flow constructed wetland for enhanced multi-metal bioremediation and antioxidant response of Salvinia cucullate. Environmental Pollution, 346, 123597. https://doi.org/10.1016/j.envpol.2024.123597 Islam, Md. M., Saxena, N., & Sharma, D. (2024). Phytoremediation as a green and sustainable prospective method for heavy metal contamination: A review. RSC Sustainability, 2(5), 1269-1288. https://doi.org/10.1039/D3SU00440F Jeong, H., Byeon, E., Kim, D.-H., Maszczyk, P., & Lee, J.-S. (2023). Heavy metals and metalloid in aquatic invertebrates: A review of single/mixed forms, combination with other pollutants, and environmental factors. Marine Pollution Bulletin, 191, 114959. https://doi.org/10.1016/j.marpolbul.2023.114959 Jiang, S., Dai, G., Zhou, J., Zhong, J., Liu, J., & Shu, Y. (2022). An assessment of integrated amendments of biochar and soil replacement on the phytotoxicity of metal(loid)s in rotated radish-soya bean-amaranth in a mining acidy soil. Chemosphere, 287, 132082. https://doi.org/10.1016/j.chemosphere.2021.132082 Kabata-Pendias, A. (2010). Trace Elements in Soils and Plants (4th ed.). CRC Press. https://doi.org/10.1201/b10158 Kafle, A., Timilsina, A., Gautam, A., Adhikari, K., Bhattarai, A., & Aryal, N. (2022). Phytoremediation: Mechanisms, plant selection and enhancement by natural and synthetic agents. Environmental Advances, 8, 100203. https://doi.org/10.1016/j.envadv.2022.100203 Kahangwa, C. A., Nahonyo, C. L., Sangu, G., & Nassary, E. K. (2021). Assessing phytoremediation potentials of selected plant species in restoration of environments contaminated by heavy metals in gold mining areas of Tanzania. Heliyon, 7(9), e07979. https://doi.org/10.1016/j.heliyon.2021.e07979 Kasak, K., Truu, J., Ostonen, I., Sarjas, J., Oopkaup, K., Paiste, P., Kõiv-Vainik, M., Mander, Ü., & Truu, M. (2018). Biochar enhances plant growth and nutrient removal in horizontal subsurface flow constructed wetlands. Science of The Total Environment, 639, 67-74. https://doi.org/10.1016/j.scitotenv.2018.05.146 Kataki, S., Chatterjee, S., Vairale, M. G., Dwivedi, S. K., & Gupta, D. K. (2021). Constructed wetland, an eco-technology for wastewater treatment: A review on types of wastewater treated and components of the technology (macrophyte, biolfilm and substrate). Journal of Environmental Management, 283, 111986. https://doi.org/10.1016/j.jenvman.2021.111986 Linnik, P., Osadchyi, V., Osadcha, N., & Linnik, R. (2023). Redox potential as an important characteristic of the chemical and biological state of surface waters (review). Chemistry and Ecology, 39(6), 640-672. https://doi.org/10.1080/02757540.2023.2225496 Liu, G., Chen, L., Wang, W., Wang, M., Zhang, Y., Li, J., Lin, C., Xiong, J., Zhu, Q., Liu, Y., Zhu, H., & Shen, Z. (2023). Balancing water quality impacts and cost-effectiveness for sustainable watershed management. Journal of Hydrology, 621, 129645. https://doi.org/10.1016/j.jhydrol.2023.129645 Liu, N., Zhao, J., Du, J., Hou, C., Zhou, X., Chen, J., & Zhang, Y. (2024). Non-phytoremediation and phytoremediation technologies of integrated remediation for water and soil heavy metal pollution: A comprehensive review. Science of The Total Environment, 948, 174237. https://doi.org/10.1016/j.scitotenv.2024.174237 Madriñán, S. (with Rial, A.). (2017). Plantas acuáticas de la Orinoquia colombiana. Universidad de los Andes. Malik, B., & Kaur Sandhu, K. (2023). Occurrence and impact of heavy metals on environment. Materials Today: Proceedings, S2214785323004078. https://doi.org/10.1016/j.matpr.2023.01.317 Marrugo-Negrete, J., Enamorado-Montes, G., Durango-Hernández, J., Pinedo-Hernández, J., & Díez, S. (2017). Removal of mercury from gold mine effluents using Limnocharis flava in constructed wetlands. Chemosphere, 167, 188-192. https://doi.org/10.1016/j.chemosphere.2016.09.130 Marrugo-Negrete, J., Marrugo-Madrid, S., Pinedo-Hernández, J., Durango-Hernández, J., & Díez, S. (2016). Screening of native plant species for phytoremediation potential at a Hg-contaminated mining site. Science of The Total Environment, 542, 809-816. https://doi.org/10.1016/j.scitotenv.2015.10.117 Marrugo-Negrete, J., Pinedo-Hernández, J., & Díez, S. (2017). Assessment of heavy metal pollution, spatial distribution and origin in agricultural soils along the Sinú River Basin, Colombia. Environmental Research, 154, 380-388. https://doi.org/10.1016/j.envres.2017.01.021 Messetta, M., Anselmo, J., Gantes, P., Perez, B., & Feijoó, C. (2023). Plantas acuáticas de arroyos pampeanos. Una guía de campo. Revalorizando nuestro ambiente. Moore MT, Kröger R (2010) Evaluating plant species-specific contribu tions to nutrient mitigation in drainage ditch mesocosm. Water Air Soil Pollut 217:445–454 Moreno, C. E. (2001). Métodos para medir la biodiversidad. Sociedad Entomológica Aragonesa. Mustafa, H. M., & Hayder, G. (2021). Recent studies on applications of aquatic weed plants in phytoremediation of wastewater: A review article. Ain Shams Engineering Journal, 12(1), 355-365. https://doi.org/10.1016/j.asej.2020.05.009 Nabi, M. (2021). Heavy metals accumulation in aquatic macrophytes from an urban lake in Kashmir Himalaya, India. Environmental Nanotechnology, Monitoring & Management, 16, 100509. https://doi.org/10.1016/j.enmm.2021.100509 Nandakumar PBA, Dushenkov V, Motto H, Raskin I (1995) Phytoextraction: the use of plants to remove heavy metals from soils. Environ Sci Technol 29:1232–1238 Naveed, S., Oladoye, P. O., & Alli, Y. A. (2023). Toxic heavy metals: A bibliographic review of risk assessment, toxicity, and phytoremediation technology. Sustainable Chemistry for the Environment, 2, 100018. https://doi.org/10.1016/j.scenv.2023.100018 Oyuela Leguizamo, M. A., Fernández Gómez, W. D., & Sarmiento, M. C. G. (2017). Native herbaceous plant species with potential use in phytoremediation of heavy metals, spotlight on wetlands—A review. Chemosphere, 168, 1230-1247. https://doi.org/10.1016/j.chemosphere.2016.10.075 Parde, D., Patwa, A., Shukla, A., Vijay, R., Killedar, D. J., & Kumar, R. (2021). A review of constructed wetland on type, treatment and technology of wastewater. Environmental Technology & Innovation, 21, 101261. https://doi.org/10.1016/j.eti.2020.101261 Penido, E. S., Martins, G. C., Mendes, T. B. M., Melo, L. C. A., Do Rosário Guimarães, I., & Guilherme, L. R. G. (2019). Combining biochar and sewage sludge for immobilization of heavy metals in mining soils. Ecotoxicology and Environmental Safety, 172, 326-333. https://doi.org/10.1016/j.ecoenv.2019.01.110 Pérez Lahiguera, J. A. (2016). Aplicación de macrófitos acuáticos en el tratamiento de aguas residuales urbanas y sus subproductos mediante humedales artificiales en clima Mediterráneo [Tesis doctoral, Universidad de Alicante]. Repositorio Institucional RUA. http://hdl.handle.net/10045/56232 Pérez López, M. E. (2009). Selección de plantas acuáticas para establecer humedales en el estado de Durango [Tesis doctoral, Centro de Investigación en Materiales Avanzados]. Repositorio Institucional CIMAV. http://cimav.repositorioinstitucional.mx/jspui/handle/1004/597 Pérez-Vásquez, N. D. S., Arias-Rios, J., & Quirós-Rodríguez, J. A. (2015). VARIACIÓN ESPACIO-TEMPORAL DE PLANTAS VASCULARES ACUÁTICAS EN EL COMPLEJO CENAGOSO DEL BAJO SINÚ, CÓRDOBA, COLOMBIA. Acta Biológica Colombiana, 20(3), 155-165. https://doi.org/10.15446/abc.v20n3.45380 Pizano, C y H. García (Editores). 2014. El Bosque Seco Tropical en Colombia. Instituto de Investigación de Recursos Biológicos Alexander von Humboldt (IAvH). Bogotá, D.C., Colombia. Rai, P. K. (2019). Heavy metals/metalloids remediation from wastewater using free floating macrophytes of a natural wetland. Environmental Technology & Innovation, 15, 100393. https://doi.org/10.1016/j.eti.2019.100393 Rangel, J. (2010). VEGETACIÓN ACUÁTICA -Caracterización inicial (pp. 325-339). Rivas, J. D. (2021). Potencial fitorremediador de macrófitas en cuerpos de agua contaminados con mercurio remanentes de la minería (pozas) en el departamento del Chocó-Colombia. Recuperado de: https://repositorio.unal.edu.co/handle/unal/83774 Rivas, J. D. (2021). Potencial fitorremediador de macrófitas en cuerpos de agua contaminados con mercurio remanentes de la minería (pozas) en el departamento del Chocó-Colombia. Recuperado de: https://repositorio.unal.edu.co/handle/unal/83774 Rodríguez Ríos, Roberto. Fica Gallardo, Boris. CORMA (Chile). 2020. Guía campo plantas vasculares acuáticas en Chile. CORMA. https://bibliotecadigital.ciren.cl/handle/20.500.13082/148108 Rwiza, M. J., Focus, E., Bayuo, J., Kimaro, J. M., Kleinke, M., Lyasenga, T. J., Mosses, J. T., & Marwa, J. (2023). Artisanal and small-scale mining in Tanzania and health implications: A policy perspective. Heliyon, 9(4), e14616. https://doi.org/10.1016/j.heliyon.2023.e14616 Sampayo Campo, L y Ariza Blanco, A. (2017). Determinación de la contaminación por metales pesados en el embalse el Guájaro, Departamento del Atlántico. Universidad de la Costa. Disponible en: https://hdl.handle.net/11323/4861 Sánchez-Castro, I., Molina, L., Prieto-Fernández, M.-Á., & Segura, A. (2023). Past, present and future trends in the remediation of heavy-metal contaminated soil—Remediation techniques applied in real soil-contamination events. Heliyon, 9(6), e16692. https://doi.org/10.1016/j.heliyon.2023.e16692 Sarker, A., Masud, M. A. A., Deepo, D. M., Das, K., Nandi, R., Ansary, M. W. R., Islam, A. R. M. T., & Islam, T. (2023). Biological and green remediation of heavy metal contaminated water and soils: A state-of-the-art review. Chemosphere, 332, 138861. https://doi.org/10.1016/j.chemosphere.2023.138861 Schneider, B. (2017). Ensambles de macrófitas en ambientes de la llanura aluvial del río Paraná Medio: Factores que inciden a distintas escalas. Tan, H. W., Pang, Y. L., Lim, S., & Chong, W. C. (2023). A state-of-the-art of phytoremediation approach for sustainable management of heavy metals recovery. Environmental Technology & Innovation, 30, 103043. https://doi.org/10.1016/j.eti.2023.103043 Timalsina, H., Gyawali, T., Ghimire, S., & Paudel, S. R. (2022). Potential application of enhanced phytoremediation for heavy metals treatment in Nepal. Chemosphere, 306, 135581. https://doi.org/10.1016/j.chemosphere.2022.135581 Turcios, A. E., Miglio, R., Vela, R., Sánchez, G., Bergier, T., Włodyka-Bergier, A., Cifuentes, J. I., Pignataro, G., Avellan, T., & Papenbrock, J. (2021). From natural habitats to successful application—Role of halophytes in the treatment of saline wastewater in constructed wetlands with a focus on Latin America. Environmental and Experimental Botany, 190, 104583. https://doi.org/10.1016/j.envexpbot.2021.104583 Valois-Cuesta, H., & Martínez-Ruiz, C. (2017). Especies vegetales colonizadoras de áreas perturbadas por la minería en bosques pluviales tropicales del Chocó, Colombia. Biota Colombiana, 18(1), 87-103. https://doi.org/10.21068/c2017.v18n01a7 Verma P, George KV, Singh HV, Singh SK, Juwarkar A, Singh RN (2006) Modeling rhizofiltration: heavy-metal uptake by plant roots. Environ Model Assess 11:387–394 Vinayagam, S., Sathishkumar, K., Ayyamperumal, R., Natarajan, P. M., Ahmad, I., Saeed, M., Alabdallah, N. M., & Sundaram, T. (2024). Distribution and transport of contaminants in soil through mining processes and its environmental impact and health hazard assessment: A review of the prospective solutions. Environmental Research, 240, 117473. https://doi.org/10.1016/j.envres.2023.117473 Wang, H., Chen, S., Liu, H., Li, J., Zaman, Q. U., Sultan, K., Rehman, M., Jeridi, M., Siddiqui, S., Fahad, S., Deng, G., & Chen, A. (2023). Maize straw biochar can alleviate heavy metals stress in potato by improving soil health. South African Journal of Botany, 162, 391-401. https://doi.org/10.1016/j.sajb.2023.09.024 Woraharn, S., Meeinkuirt, W., Phusantisampan, T., & Avakul, P. (2021). Potential of ornamental monocot plants for rhizofiltration of cadmium and zinc in hydroponic systems. Environmental Science and Pollution Research, 28(26), 35157-35170. https://doi.org/10.1007/s11356-021-13151-x Wu, B., Peng, H., Sheng, M., Luo, H., Wang, X., Zhang, R., Xu, F., & Xu, H. (2021). Evaluation of phytoremediation potential of native dominant plants and spatial distribution of heavy metals in abandoned mining area in Southwest China. Ecotoxicology and Environmental Safety, 220, 112368. https://doi.org/10.1016/j.ecoenv.2021.112368 Xiao, R., Shen, F., Du, J., Li, R., Lahori, A. H., & Zhang, Z. (2018). Screening of native plants from wasteland surrounding a Zn smelter in Feng County China, for phytoremediation. Ecotoxicology and Environmental Safety, 162, 178-183. https://doi.org/10.1016/j.ecoenv.2018.06.095 Yang, S., Liang, S., Yi, L., Xu, B., Cao, J., Guo, Y., & Zhou, Y. (2014). Heavy metal accumulation and phytostabilization potential of dominant plant species growing on manganese mine tailings. Frontiers of Environmental Science & Engineering, 8(3), 394-404. https://doi.org/10.1007/s11783-013-0602-4 Zhang, C., Yu, Z., Zeng, G., Jiang, M., Yang, Z., Cui, F., Zhu, M., Shen, L., & Hu, L. (2014). Effects of sediment geochemical properties on heavy metal bioavailability. Environment International, 73, 270-281. https://doi.org/10.1016/j.envint.2014.08.010 Zhang, S., Yin, X., Arif, M., Chen, S., Ma, M., Zhu, K., Chen, Q., Wu, S., & Li, C. (2023). Strategy matters: Phytoremediation potential of native halophytes is jointly associated with their distinct salt tolerances. Journal of Cleaner Production, 425, 139060. https://doi.org/10.1016/j.jclepro.2023.139060 Zhu, G., Xiao, H., Guo, Q., Song, B., Zheng, G., Zhang, Z., Zhao, J., & Okoli, C. P. (2018). Heavy metal contents and enrichment characteristics of dominant plants in wasteland of the downstream of a lead-zinc mining area in Guangxi, Southwest China. Ecotoxicology and Environmental Safety, 151, 266-271. https://doi.org/10.1016/j.ecoenv.2018.01.011Chukwu, E. C., & Gulser, C. (2025). Morphological, physiological, and anatomical effects of heavy metals on soil and plant health and possible remediation technologies. Soil Security, 18, 100178. https://doi.org/10.1016/j.soisec.2025.100178Díaz-Pérez, W. A., Guillén, C. D. P., Pereira, F. J. M., & Briceño, J. D. H (2023). Caracterización florística de áreas degradadas por la pequeña minería en la Reserva Forestal Imataca, Río Grande, estado Delta Amacuro, Venezuela http://hdl.handle.net/20.500.12010/31640DÍAZ P., W. A., & ELCORO, S. (2009). PLANTAS COLONIZADORAS EN ÁREAS PERTURBADAS POR LA MINERÍA EN EL ESTADO BOLÍVAR, VENEZUELA / Pioneer plant species in disturbed mining areas in Bolívar State, Venezuela. Acta Botánica Venezuélica, 32(2), 453–466. http://www.jstor.org/stable/41740896 Enamorado, G., Tirado Montoya, J., & Marrugo Negrete, J. (2021). Metales pesados (Hg, As, Cd, Zn, Pb, Cu, Mn) en un trayecto del río Cauca impactado por la minería de oro. Revista EIA, 19(37). https://doi.org/10.24050/reia.v19i37.1481 Gaballah, M. S., Abdelwahab, O., Barakat, K. M., & Stefanakis, A. I. (2022). A pilot system integrating a settling technique and a horizontal subsurface flow constructed wetland for the treatment of polluted lake water. Chemosphere, 295, 133844. https://doi.org/10.1016/j.chemosphere.2022.133844 Gao, J., Han, H., Gao, C., Wang, Y., Dong, B., & Xu, Z. (2023). Organic amendments for in situ immobilization of heavy metals in soil: A review. Chemosphere, 335, 139088. https://doi.org/10.1016/j.chemosphere.2023.139088 García Acevedo, R., García Rodríguez, E., & Pérez Amezcua, N. E. (2023). Remoción de contaminantes del agua en humedales artificiales de flujo subsuperficial, utilizando Typha domingensis, tezontle y grava triturada y su relación con la conductividad hidráulica. Ciencia Nicolaita, 87. https://doi.org/10.35830/cn.vi87.660 Guevara, R., Rosales, J., & Sanoja, E. (2005). Vegetación pionera sobre rocas, un potencial biológico para la revegetaciónde áreas degradadas por la mineria de hierro. Interciencia, 30(10),644-652.[fecha de Consulta 11 de Agosto de 2025]. ISSN: 0378-1844. Recuperado de: https://www.redalyc.org/articulo.oa?id=33910910 Hadad, H. R., Mufarrege, M. D. L. M., Di Luca, G. A., Denaro, A. C., Nocetti, E., & Maine, M. A. (2022). Potential metal phytoremediation in peri-urban wetlands using rooted macrophytes. Ecological Engineering, 182, 106734. https://doi.org/10.1016/j.ecoleng.2022.106734 Haghighizadeh, A., Rajabi, O., Nezarat, A., Hajyani, Z., Haghmohammadi, M., Hedayatikhah, S., Asl, S. D., & Aghababai Beni, A. (2024). Comprehensive analysis of heavy metal soil contamination in mining Environments: Impacts, monitoring Techniques, and remediation strategies. Arabian Journal of Chemistry, 17(6), 105777. https://doi.org/10.1016/j.arabjc.2024.105777 Hosseinniaee, S., Jafari, M., Tavili, A., Zare, S., Cappai, G., & De Giudici, G. (2022). Perspectives for phytoremediation capability of native plants growing on Angouran Pb–Zn mining complex in northwest of Iran. Journal of Environmental Management, 315, 115184. https://doi.org/10.1016/j.jenvman.2022.115184 Hou, Y., Zhao, Y., Lu, J., Wei, Q., Zang, L., & Zhao, X. (2023). Environmental contamination and health risk assessment of potentially toxic trace metal elements in soils near gold mines – A global meta-analysis. Environmental Pollution, 330, 121803. https://doi.org/10.1016/j.envpol.2023.121803 Irshad, S., Xie, Z., Qing, M., Ali, H., Ali, I., Ahmad, N., Rizwan Khan, M., & Nawaz, A. (2024). Application of coconut shell activated carbon filter in vertical subsurface flow constructed wetland for enhanced multi-metal bioremediation and antioxidant response of Salvinia cucullate. Environmental Pollution, 346, 123597. https://doi.org/10.1016/j.envpol.2024.123597 Islam, Md. M., Saxena, N., & Sharma, D. (2024). Phytoremediation as a green and sustainable prospective method for heavy metal contamination: A review. RSC Sustainability, 2(5), 1269-1288. https://doi.org/10.1039/D3SU00440F Jeong, H., Byeon, E., Kim, D.-H., Maszczyk, P., & Lee, J.-S. (2023). Heavy metals and metalloid in aquatic invertebrates: A review of single/mixed forms, combination with other pollutants, and environmental factors. Marine Pollution Bulletin, 191, 114959. https://doi.org/10.1016/j.marpolbul.2023.114959 Jiang, S., Dai, G., Zhou, J., Zhong, J., Liu, J., & Shu, Y. (2022). An assessment of integrated amendments of biochar and soil replacement on the phytotoxicity of metal(loid)s in rotated radish-soya bean-amaranth in a mining acidy soil. Chemosphere, 287, 132082. https://doi.org/10.1016/j.chemosphere.2021.132082 Kabata-Pendias, A. (2010). Trace Elements in Soils and Plants (4th ed.). CRC Press. https://doi.org/10.1201/b10158 Kafle, A., Timilsina, A., Gautam, A., Adhikari, K., Bhattarai, A., & Aryal, N. (2022). Phytoremediation: Mechanisms, plant selection and enhancement by natural and synthetic agents. Environmental Advances, 8, 100203. https://doi.org/10.1016/j.envadv.2022.100203 Kahangwa, C. A., Nahonyo, C. L., Sangu, G., & Nassary, E. K. (2021). Assessing phytoremediation potentials of selected plant species in restoration of environments contaminated by heavy metals in gold mining areas of Tanzania. Heliyon, 7(9), e07979. https://doi.org/10.1016/j.heliyon.2021.e07979 Kasak, K., Truu, J., Ostonen, I., Sarjas, J., Oopkaup, K., Paiste, P., Kõiv-Vainik, M., Mander, Ü., & Truu, M. (2018). Biochar enhances plant growth and nutrient removal in horizontal subsurface flow constructed wetlands. Science of The Total Environment, 639, 67-74. https://doi.org/10.1016/j.scitotenv.2018.05.146 Kataki, S., Chatterjee, S., Vairale, M. G., Dwivedi, S. K., & Gupta, D. K. (2021). Constructed wetland, an eco-technology for wastewater treatment: A review on types of wastewater treated and components of the technology (macrophyte, biolfilm and substrate). Journal of Environmental Management, 283, 111986. https://doi.org/10.1016/j.jenvman.2021.111986 Linnik, P., Osadchyi, V., Osadcha, N., & Linnik, R. (2023). Redox potential as an important characteristic of the chemical and biological state of surface waters (review). Chemistry and Ecology, 39(6), 640-672. https://doi.org/10.1080/02757540.2023.2225496 Liu, G., Chen, L., Wang, W., Wang, M., Zhang, Y., Li, J., Lin, C., Xiong, J., Zhu, Q., Liu, Y., Zhu, H., & Shen, Z. (2023). Balancing water quality impacts and cost-effectiveness for sustainable watershed management. Journal of Hydrology, 621, 129645. https://doi.org/10.1016/j.jhydrol.2023.129645 Liu, N., Zhao, J., Du, J., Hou, C., Zhou, X., Chen, J., & Zhang, Y. (2024). Non-phytoremediation and phytoremediation technologies of integrated remediation for water and soil heavy metal pollution: A comprehensive review. Science of The Total Environment, 948, 174237. https://doi.org/10.1016/j.scitotenv.2024.174237 Madriñán, S. (with Rial, A.). (2017). Plantas acuáticas de la Orinoquia colombiana. Universidad de los Andes. Malik, B., & Kaur Sandhu, K. (2023). Occurrence and impact of heavy metals on environment. Materials Today: Proceedings, S2214785323004078. https://doi.org/10.1016/j.matpr.2023.01.317 Marrugo-Negrete, J., Enamorado-Montes, G., Durango-Hernández, J., Pinedo-Hernández, J., & Díez, S. (2017). Removal of mercury from gold mine effluents using Limnocharis flava in constructed wetlands. Chemosphere, 167, 188-192. https://doi.org/10.1016/j.chemosphere.2016.09.130 Marrugo-Negrete, J., Marrugo-Madrid, S., Pinedo-Hernández, J., Durango-Hernández, J., & Díez, S. (2016). Screening of native plant species for phytoremediation potential at a Hg-contaminated mining site. Science of The Total Environment, 542, 809-816. https://doi.org/10.1016/j.scitotenv.2015.10.117 Marrugo-Negrete, J., Pinedo-Hernández, J., & Díez, S. (2017). Assessment of heavy metal pollution, spatial distribution and origin in agricultural soils along the Sinú River Basin, Colombia. Environmental Research, 154, 380-388. https://doi.org/10.1016/j.envres.2017.01.021 Messetta, M., Anselmo, J., Gantes, P., Perez, B., & Feijoó, C. (2023). Plantas acuáticas de arroyos pampeanos. Una guía de campo. Revalorizando nuestro ambiente. Moore MT, Kröger R (2010) Evaluating plant species-specific contribu tions to nutrient mitigation in drainage ditch mesocosm. Water Air Soil Pollut 217:445–454 Moreno, C. E. (2001). Métodos para medir la biodiversidad. Sociedad Entomológica Aragonesa. Mustafa, H. M., & Hayder, G. (2021). Recent studies on applications of aquatic weed plants in phytoremediation of wastewater: A review article. Ain Shams Engineering Journal, 12(1), 355-365. https://doi.org/10.1016/j.asej.2020.05.009 Nabi, M. (2021). Heavy metals accumulation in aquatic macrophytes from an urban lake in Kashmir Himalaya, India. Environmental Nanotechnology, Monitoring & Management, 16, 100509. https://doi.org/10.1016/j.enmm.2021.100509 Nandakumar PBA, Dushenkov V, Motto H, Raskin I (1995) Phytoextraction: the use of plants to remove heavy metals from soils. Environ Sci Technol 29:1232–1238 Naveed, S., Oladoye, P. O., & Alli, Y. A. (2023). Toxic heavy metals: A bibliographic review of risk assessment, toxicity, and phytoremediation technology. Sustainable Chemistry for the Environment, 2, 100018. https://doi.org/10.1016/j.scenv.2023.100018 Oyuela Leguizamo, M. A., Fernández Gómez, W. D., & Sarmiento, M. C. G. (2017). Native herbaceous plant species with potential use in phytoremediation of heavy metals, spotlight on wetlands—A review. Chemosphere, 168, 1230-1247. https://doi.org/10.1016/j.chemosphere.2016.10.075 Parde, D., Patwa, A., Shukla, A., Vijay, R., Killedar, D. J., & Kumar, R. (2021). A review of constructed wetland on type, treatment and technology of wastewater. Environmental Technology & Innovation, 21, 101261. https://doi.org/10.1016/j.eti.2020.101261 Penido, E. S., Martins, G. C., Mendes, T. B. M., Melo, L. C. A., Do Rosário Guimarães, I., & Guilherme, L. R. G. (2019). Combining biochar and sewage sludge for immobilization of heavy metals in mining soils. Ecotoxicology and Environmental Safety, 172, 326-333. https://doi.org/10.1016/j.ecoenv.2019.01.110 Pérez Lahiguera, J. A. (2016). Aplicación de macrófitos acuáticos en el tratamiento de aguas residuales urbanas y sus subproductos mediante humedales artificiales en clima Mediterráneo [Tesis doctoral, Universidad de Alicante]. Repositorio Institucional RUA. http://hdl.handle.net/10045/56232 Pérez López, M. E. (2009). Selección de plantas acuáticas para establecer humedales en el estado de Durango [Tesis doctoral, Centro de Investigación en Materiales Avanzados]. Repositorio Institucional CIMAV. http://cimav.repositorioinstitucional.mx/jspui/handle/1004/597 Pérez-Vásquez, N. D. S., Arias-Rios, J., & Quirós-Rodríguez, J. A. (2015). VARIACIÓN ESPACIO-TEMPORAL DE PLANTAS VASCULARES ACUÁTICAS EN EL COMPLEJO CENAGOSO DEL BAJO SINÚ, CÓRDOBA, COLOMBIA. Acta Biológica Colombiana, 20(3), 155-165. https://doi.org/10.15446/abc.v20n3.45380 Pizano, C y H. García (Editores). 2014. El Bosque Seco Tropical en Colombia. Instituto de Investigación de Recursos Biológicos Alexander von Humboldt (IAvH). Bogotá, D.C., Colombia. Rai, P. K. (2019). Heavy metals/metalloids remediation from wastewater using free floating macrophytes of a natural wetland. Environmental Technology & Innovation, 15, 100393. https://doi.org/10.1016/j.eti.2019.100393 Rangel, J. (2010). VEGETACIÓN ACUÁTICA -Caracterización inicial (pp. 325-339). Rivas, J. D. (2021). Potencial fitorremediador de macrófitas en cuerpos de agua contaminados con mercurio remanentes de la minería (pozas) en el departamento del Chocó-Colombia. Recuperado de: https://repositorio.unal.edu.co/handle/unal/83774 Rivas, J. D. (2021). Potencial fitorremediador de macrófitas en cuerpos de agua contaminados con mercurio remanentes de la minería (pozas) en el departamento del Chocó-Colombia. Recuperado de: https://repositorio.unal.edu.co/handle/unal/83774 Rodríguez Ríos, Roberto. Fica Gallardo, Boris. CORMA (Chile). 2020. Guía campo plantas vasculares acuáticas en Chile. CORMA. https://bibliotecadigital.ciren.cl/handle/20.500.13082/148108 Rwiza, M. J., Focus, E., Bayuo, J., Kimaro, J. M., Kleinke, M., Lyasenga, T. J., Mosses, J. T., & Marwa, J. (2023). Artisanal and small-scale mining in Tanzania and health implications: A policy perspective. Heliyon, 9(4), e14616. https://doi.org/10.1016/j.heliyon.2023.e14616 Sampayo Campo, L y Ariza Blanco, A. (2017). Determinación de la contaminación por metales pesados en el embalse el Guájaro, Departamento del Atlántico. Universidad de la Costa. Disponible en: https://hdl.handle.net/11323/4861 Sánchez-Castro, I., Molina, L., Prieto-Fernández, M.-Á., & Segura, A. (2023). Past, present and future trends in the remediation of heavy-metal contaminated soil—Remediation techniques applied in real soil-contamination events. Heliyon, 9(6), e16692. https://doi.org/10.1016/j.heliyon.2023.e16692 Sarker, A., Masud, M. A. A., Deepo, D. M., Das, K., Nandi, R., Ansary, M. W. R., Islam, A. R. M. T., & Islam, T. (2023). Biological and green remediation of heavy metal contaminated water and soils: A state-of-the-art review. Chemosphere, 332, 138861. https://doi.org/10.1016/j.chemosphere.2023.138861 Schneider, B. (2017). Ensambles de macrófitas en ambientes de la llanura aluvial del río Paraná Medio: Factores que inciden a distintas escalas. Tan, H. W., Pang, Y. L., Lim, S., & Chong, W. C. (2023). A state-of-the-art of phytoremediation approach for sustainable management of heavy metals recovery. Environmental Technology & Innovation, 30, 103043. https://doi.org/10.1016/j.eti.2023.103043 Timalsina, H., Gyawali, T., Ghimire, S., & Paudel, S. R. (2022). Potential application of enhanced phytoremediation for heavy metals treatment in Nepal. Chemosphere, 306, 135581. https://doi.org/10.1016/j.chemosphere.2022.135581 Turcios, A. E., Miglio, R., Vela, R., Sánchez, G., Bergier, T., Włodyka-Bergier, A., Cifuentes, J. I., Pignataro, G., Avellan, T., & Papenbrock, J. (2021). From natural habitats to successful application—Role of halophytes in the treatment of saline wastewater in constructed wetlands with a focus on Latin America. Environmental and Experimental Botany, 190, 104583. https://doi.org/10.1016/j.envexpbot.2021.104583 Valois-Cuesta, H., & Martínez-Ruiz, C. (2017). Especies vegetales colonizadoras de áreas perturbadas por la minería en bosques pluviales tropicales del Chocó, Colombia. Biota Colombiana, 18(1), 87-103. https://doi.org/10.21068/c2017.v18n01a7 Verma P, George KV, Singh HV, Singh SK, Juwarkar A, Singh RN (2006) Modeling rhizofiltration: heavy-metal uptake by plant roots. Environ Model Assess 11:387–394 Vinayagam, S., Sathishkumar, K., Ayyamperumal, R., Natarajan, P. M., Ahmad, I., Saeed, M., Alabdallah, N. M., & Sundaram, T. (2024). Distribution and transport of contaminants in soil through mining processes and its environmental impact and health hazard assessment: A review of the prospective solutions. Environmental Research, 240, 117473. https://doi.org/10.1016/j.envres.2023.117473 Wang, H., Chen, S., Liu, H., Li, J., Zaman, Q. U., Sultan, K., Rehman, M., Jeridi, M., Siddiqui, S., Fahad, S., Deng, G., & Chen, A. (2023). Maize straw biochar can alleviate heavy metals stress in potato by improving soil health. South African Journal of Botany, 162, 391-401. https://doi.org/10.1016/j.sajb.2023.09.024 Woraharn, S., Meeinkuirt, W., Phusantisampan, T., & Avakul, P. (2021). Potential of ornamental monocot plants for rhizofiltration of cadmium and zinc in hydroponic systems. Environmental Science and Pollution Research, 28(26), 35157-35170. https://doi.org/10.1007/s11356-021-13151-x Wu, B., Peng, H., Sheng, M., Luo, H., Wang, X., Zhang, R., Xu, F., & Xu, H. (2021). Evaluation of phytoremediation potential of native dominant plants and spatial distribution of heavy metals in abandoned mining area in Southwest China. Ecotoxicology and Environmental Safety, 220, 112368. https://doi.org/10.1016/j.ecoenv.2021.112368 Xiao, R., Shen, F., Du, J., Li, R., Lahori, A. H., & Zhang, Z. (2018). Screening of native plants from wasteland surrounding a Zn smelter in Feng County China, for phytoremediation. Ecotoxicology and Environmental Safety, 162, 178-183. https://doi.org/10.1016/j.ecoenv.2018.06.095 Yang, S., Liang, S., Yi, L., Xu, B., Cao, J., Guo, Y., & Zhou, Y. (2014). Heavy metal accumulation and phytostabilization potential of dominant plant species growing on manganese mine tailings. Frontiers of Environmental Science & Engineering, 8(3), 394-404. https://doi.org/10.1007/s11783-013-0602-4 Zhang, C., Yu, Z., Zeng, G., Jiang, M., Yang, Z., Cui, F., Zhu, M., Shen, L., & Hu, L. (2014). Effects of sediment geochemical properties on heavy metal bioavailability. Environment International, 73, 270-281. https://doi.org/10.1016/j.envint.2014.08.010 Zhang, S., Yin, X., Arif, M., Chen, S., Ma, M., Zhu, K., Chen, Q., Wu, S., & Li, C. (2023). Strategy matters: Phytoremediation potential of native halophytes is jointly associated with their distinct salt tolerances. Journal of Cleaner Production, 425, 139060. https://doi.org/10.1016/j.jclepro.2023.139060 Zhu, G., Xiao, H., Guo, Q., Song, B., Zheng, G., Zhang, Z., Zhao, J., & Okoli, C. P. (2018). Heavy metal contents and enrichment characteristics of dominant plants in wasteland of the downstream of a lead-zinc mining area in Guangxi, Southwest China. Ecotoxicology and Environmental Safety, 151, 266-271. https://doi.org/10.1016/j.ecoenv.2018.01.011Enamorado, G., Tirado Montoya, J., & Marrugo Negrete, J. (2021). Metales pesados (Hg, As, Cd, Zn, Pb, Cu, Mn) en un trayecto del río Cauca impactado por la minería de oro. Revista EIA, 19(37). https://doi.org/10.24050/reia.v19i37.1481Gaballah, M. S., Abdelwahab, O., Barakat, K. M., & Stefanakis, A. I. (2022). A pilot system integrating a settling technique and a horizontal subsurface flow constructed wetland for the treatment of polluted lake water. Chemosphere, 295, 133844. https://doi.org/10.1016/j.chemosphere.2022.133844Gao, J., Han, H., Gao, C., Wang, Y., Dong, B., & Xu, Z. (2023). Organic amendments for in situ immobilization of heavy metals in soil: A review. Chemosphere, 335, 139088. https://doi.org/10.1016/j.chemosphere.2023.139088García Acevedo, R., García Rodríguez, E., & Pérez Amezcua, N. E. (2023). Remoción de contaminantes del agua en humedales artificiales de flujo subsuperficial, utilizando Typha domingensis, tezontle y grava triturada y su relación con la conductividad hidráulica. Ciencia Nicolaita, 87. https://doi.org/10.35830/cn.vi87.660Guevara, R., Rosales, J., & Sanoja, E. (2005). Vegetación pionera sobre rocas, un potencial biológico para la revegetaciónde áreas degradadas por la mineria de hierro. Interciencia, 30(10),644-652.[fecha de Consulta 11 de Agosto de 2025]. ISSN: 0378-1844. Recuperado de: https://www.redalyc.org/articulo.oa?id=33910910Hadad, H. R., Mufarrege, M. D. L. M., Di Luca, G. A., Denaro, A. C., Nocetti, E., & Maine, M. A. (2022). Potential metal phytoremediation in peri-urban wetlands using rooted macrophytes. Ecological Engineering, 182, 106734. https://doi.org/10.1016/j.ecoleng.2022.106734Haghighizadeh, A., Rajabi, O., Nezarat, A., Hajyani, Z., Haghmohammadi, M., Hedayatikhah, S., Asl, S. D., & Aghababai Beni, A. (2024). Comprehensive analysis of heavy metal soil contamination in mining Environments: Impacts, monitoring Techniques, and remediation strategies. Arabian Journal of Chemistry, 17(6), 105777. https://doi.org/10.1016/j.arabjc.2024.105777Hosseinniaee, S., Jafari, M., Tavili, A., Zare, S., Cappai, G., & De Giudici, G. (2022). Perspectives for phytoremediation capability of native plants growing on Angouran Pb–Zn mining complex in northwest of Iran. Journal of Environmental Management, 315, 115184. https://doi.org/10.1016/j.jenvman.2022.115184Hou, Y., Zhao, Y., Lu, J., Wei, Q., Zang, L., & Zhao, X. (2023). Environmental contamination and health risk assessment of potentially toxic trace metal elements in soils near gold mines – A global meta-analysis. Environmental Pollution, 330, 121803. https://doi.org/10.1016/j.envpol.2023.121803Irshad, S., Xie, Z., Qing, M., Ali, H., Ali, I., Ahmad, N., Rizwan Khan, M., & Nawaz, A. (2024). Application of coconut shell activated carbon filter in vertical subsurface flow constructed wetland for enhanced multi-metal bioremediation and antioxidant response of Salvinia cucullate. Environmental Pollution, 346, 123597. https://doi.org/10.1016/j.envpol.2024.123597Islam, Md. M., Saxena, N., & Sharma, D. (2024). Phytoremediation as a green and sustainable prospective method for heavy metal contamination: A review. RSC Sustainability, 2(5), 1269-1288. https://doi.org/10.1039/D3SU00440FJeong, H., Byeon, E., Kim, D.-H., Maszczyk, P., & Lee, J.-S. (2023). Heavy metals and metalloid in aquatic invertebrates: A review of single/mixed forms, combination with other pollutants, and environmental factors. Marine Pollution Bulletin, 191, 114959. https://doi.org/10.1016/j.marpolbul.2023.114959Jiang, S., Dai, G., Zhou, J., Zhong, J., Liu, J., & Shu, Y. (2022). An assessment of integrated amendments of biochar and soil replacement on the phytotoxicity of metal(loid)s in rotated radish-soya bean-amaranth in a mining acidy soil. Chemosphere, 287, 132082. https://doi.org/10.1016/j.chemosphere.2021.132082Kabata-Pendias, A. (2010). Trace Elements in Soils and Plants (4th ed.). CRC Press. https://doi.org/10.1201/b10158Kafle, A., Timilsina, A., Gautam, A., Adhikari, K., Bhattarai, A., & Aryal, N. (2022). Phytoremediation: Mechanisms, plant selection and enhancement by natural and synthetic agents. Environmental Advances, 8, 100203. https://doi.org/10.1016/j.envadv.2022.100203Kahangwa, C. A., Nahonyo, C. L., Sangu, G., & Nassary, E. K. (2021). Assessing phytoremediation potentials of selected plant species in restoration of environments contaminated by heavy metals in gold mining areas of Tanzania. Heliyon, 7(9), e07979. https://doi.org/10.1016/j.heliyon.2021.e07979Kasak, K., Truu, J., Ostonen, I., Sarjas, J., Oopkaup, K., Paiste, P., Kõiv-Vainik, M., Mander, Ü., & Truu, M. (2018). Biochar enhances plant growth and nutrient removal in horizontal subsurface flow constructed wetlands. Science of The Total Environment, 639, 67-74. https://doi.org/10.1016/j.scitotenv.2018.05.146Kataki, S., Chatterjee, S., Vairale, M. G., Dwivedi, S. K., & Gupta, D. K. (2021). Constructed wetland, an eco-technology for wastewater treatment: A review on types of wastewater treated and components of the technology (macrophyte, biolfilm and substrate). Journal of Environmental Management, 283, 111986. https://doi.org/10.1016/j.jenvman.2021.111986Linnik, P., Osadchyi, V., Osadcha, N., & Linnik, R. (2023). Redox potential as an important characteristic of the chemical and biological state of surface waters (review). Chemistry and Ecology, 39(6), 640-672. https://doi.org/10.1080/02757540.2023.2225496Liu, G., Chen, L., Wang, W., Wang, M., Zhang, Y., Li, J., Lin, C., Xiong, J., Zhu, Q., Liu, Y., Zhu, H., & Shen, Z. (2023). Balancing water quality impacts and cost-effectiveness for sustainable watershed management. Journal of Hydrology, 621, 129645. https://doi.org/10.1016/j.jhydrol.2023.129645Liu, N., Zhao, J., Du, J., Hou, C., Zhou, X., Chen, J., & Zhang, Y. (2024). Non-phytoremediation and phytoremediation technologies of integrated remediation for water and soil heavy metal pollution: A comprehensive review. Science of The Total Environment, 948, 174237. https://doi.org/10.1016/j.scitotenv.2024.174237Madriñán, S. (with Rial, A.). (2017). Plantas acuáticas de la Orinoquia colombiana. Universidad de los Andes.Malik, B., & Kaur Sandhu, K. (2023). Occurrence and impact of heavy metals on environment. Materials Today: Proceedings, S2214785323004078. https://doi.org/10.1016/j.matpr.2023.01.317Marrugo-Negrete, J., Enamorado-Montes, G., Durango-Hernández, J., Pinedo-Hernández, J., & Díez, S. (2017). Removal of mercury from gold mine effluents using Limnocharis flava in constructed wetlands. Chemosphere, 167, 188-192. https://doi.org/10.1016/j.chemosphere.2016.09.130Marrugo-Negrete, J., Marrugo-Madrid, S., Pinedo-Hernández, J., Durango-Hernández, J., & Díez, S. (2016). Screening of native plant species for phytoremediation potential at a Hg-contaminated mining site. Science of The Total Environment, 542, 809-816. https://doi.org/10.1016/j.scitotenv.2015.10.117Marrugo-Negrete, J., Pinedo-Hernández, J., & Díez, S. (2017). Assessment of heavy metal pollution, spatial distribution and origin in agricultural soils along the Sinú River Basin, Colombia. Environmental Research, 154, 380-388. https://doi.org/10.1016/j.envres.2017.01.021Messetta, M., Anselmo, J., Gantes, P., Perez, B., & Feijoó, C. (2023). Plantas acuáticas de arroyos pampeanos. Una guía de campo. Revalorizando nuestro ambiente.Moore MT, Kröger R (2010) Evaluating plant species-specific contribu tions to nutrient mitigation in drainage ditch mesocosm. Water Air Soil Pollut 217:445–454Moreno, C. E. (2001). Métodos para medir la biodiversidad. Sociedad Entomológica Aragonesa.Mustafa, H. M., & Hayder, G. (2021). Recent studies on applications of aquatic weed plants in phytoremediation of wastewater: A review article. Ain Shams Engineering Journal, 12(1), 355-365. https://doi.org/10.1016/j.asej.2020.05.009Nabi, M. (2021). Heavy metals accumulation in aquatic macrophytes from an urban lake in Kashmir Himalaya, India. Environmental Nanotechnology, Monitoring & Management, 16, 100509. https://doi.org/10.1016/j.enmm.2021.100509Nandakumar PBA, Dushenkov V, Motto H, Raskin I (1995) Phytoextraction: the use of plants to remove heavy metals from soils. Environ Sci Technol 29:1232–1238Naveed, S., Oladoye, P. O., & Alli, Y. A. (2023). Toxic heavy metals: A bibliographic review of risk assessment, toxicity, and phytoremediation technology. Sustainable Chemistry for the Environment, 2, 100018. https://doi.org/10.1016/j.scenv.2023.100018Oyuela Leguizamo, M. A., Fernández Gómez, W. D., & Sarmiento, M. C. G. (2017). Native herbaceous plant species with potential use in phytoremediation of heavy metals, spotlight on wetlands—A review. Chemosphere, 168, 1230-1247. https://doi.org/10.1016/j.chemosphere.2016.10.075Parde, D., Patwa, A., Shukla, A., Vijay, R., Killedar, D. J., & Kumar, R. (2021). A review of constructed wetland on type, treatment and technology of wastewater. Environmental Technology & Innovation, 21, 101261. https://doi.org/10.1016/j.eti.2020.101261Penido, E. S., Martins, G. C., Mendes, T. B. M., Melo, L. C. A., Do Rosário Guimarães, I., & Guilherme, L. R. G. (2019). Combining biochar and sewage sludge for immobilization of heavy metals in mining soils. Ecotoxicology and Environmental Safety, 172, 326-333. https://doi.org/10.1016/j.ecoenv.2019.01.110Pérez Lahiguera, J. A. (2016). Aplicación de macrófitos acuáticos en el tratamiento de aguas residuales urbanas y sus subproductos mediante humedales artificiales en clima Mediterráneo [Tesis doctoral, Universidad de Alicante]. Repositorio Institucional RUA. http://hdl.handle.net/10045/56232 Pérez López, M. E. (2009). Selección de plantas acuáticas para establecer humedales en el estado de Durango [Tesis doctoral, Centro de Investigación en Materiales Avanzados]. Repositorio Institucional CIMAV. http://cimav.repositorioinstitucional.mx/jspui/handle/1004/597 Pérez-Vásquez, N. D. S., Arias-Rios, J., & Quirós-Rodríguez, J. A. (2015). VARIACIÓN ESPACIO-TEMPORAL DE PLANTAS VASCULARES ACUÁTICAS EN EL COMPLEJO CENAGOSO DEL BAJO SINÚ, CÓRDOBA, COLOMBIA. Acta Biológica Colombiana, 20(3), 155-165. https://doi.org/10.15446/abc.v20n3.45380 Pizano, C y H. García (Editores). 2014. El Bosque Seco Tropical en Colombia. Instituto de Investigación de Recursos Biológicos Alexander von Humboldt (IAvH). Bogotá, D.C., Colombia. Rai, P. K. (2019). Heavy metals/metalloids remediation from wastewater using free floating macrophytes of a natural wetland. Environmental Technology & Innovation, 15, 100393. https://doi.org/10.1016/j.eti.2019.100393 Rangel, J. (2010). VEGETACIÓN ACUÁTICA -Caracterización inicial (pp. 325-339). Rivas, J. D. (2021). Potencial fitorremediador de macrófitas en cuerpos de agua contaminados con mercurio remanentes de la minería (pozas) en el departamento del Chocó-Colombia. Recuperado de: https://repositorio.unal.edu.co/handle/unal/83774 Rivas, J. D. (2021). Potencial fitorremediador de macrófitas en cuerpos de agua contaminados con mercurio remanentes de la minería (pozas) en el departamento del Chocó-Colombia. Recuperado de: https://repositorio.unal.edu.co/handle/unal/83774 Rodríguez Ríos, Roberto. Fica Gallardo, Boris. CORMA (Chile). 2020. Guía campo plantas vasculares acuáticas en Chile. CORMA. https://bibliotecadigital.ciren.cl/handle/20.500.13082/148108 Rwiza, M. J., Focus, E., Bayuo, J., Kimaro, J. M., Kleinke, M., Lyasenga, T. J., Mosses, J. T., & Marwa, J. (2023). Artisanal and small-scale mining in Tanzania and health implications: A policy perspective. Heliyon, 9(4), e14616. https://doi.org/10.1016/j.heliyon.2023.e14616 Sampayo Campo, L y Ariza Blanco, A. (2017). Determinación de la contaminación por metales pesados en el embalse el Guájaro, Departamento del Atlántico. Universidad de la Costa. Disponible en: https://hdl.handle.net/11323/4861 Sánchez-Castro, I., Molina, L., Prieto-Fernández, M.-Á., & Segura, A. (2023). Past, present and future trends in the remediation of heavy-metal contaminated soil—Remediation techniques applied in real soil-contamination events. Heliyon, 9(6), e16692. https://doi.org/10.1016/j.heliyon.2023.e16692 Sarker, A., Masud, M. A. A., Deepo, D. M., Das, K., Nandi, R., Ansary, M. W. R., Islam, A. R. M. T., & Islam, T. (2023). Biological and green remediation of heavy metal contaminated water and soils: A state-of-the-art review. Chemosphere, 332, 138861. https://doi.org/10.1016/j.chemosphere.2023.138861 Schneider, B. (2017). Ensambles de macrófitas en ambientes de la llanura aluvial del río Paraná Medio: Factores que inciden a distintas escalas. Tan, H. W., Pang, Y. L., Lim, S., & Chong, W. C. (2023). A state-of-the-art of phytoremediation approach for sustainable management of heavy metals recovery. Environmental Technology & Innovation, 30, 103043. https://doi.org/10.1016/j.eti.2023.103043 Timalsina, H., Gyawali, T., Ghimire, S., & Paudel, S. R. (2022). Potential application of enhanced phytoremediation for heavy metals treatment in Nepal. Chemosphere, 306, 135581. https://doi.org/10.1016/j.chemosphere.2022.135581 Turcios, A. E., Miglio, R., Vela, R., Sánchez, G., Bergier, T., Włodyka-Bergier, A., Cifuentes, J. I., Pignataro, G., Avellan, T., & Papenbrock, J. (2021). From natural habitats to successful application—Role of halophytes in the treatment of saline wastewater in constructed wetlands with a focus on Latin America. Environmental and Experimental Botany, 190, 104583. https://doi.org/10.1016/j.envexpbot.2021.104583 Valois-Cuesta, H., & Martínez-Ruiz, C. (2017). Especies vegetales colonizadoras de áreas perturbadas por la minería en bosques pluviales tropicales del Chocó, Colombia. Biota Colombiana, 18(1), 87-103. https://doi.org/10.21068/c2017.v18n01a7 Verma P, George KV, Singh HV, Singh SK, Juwarkar A, Singh RN (2006) Modeling rhizofiltration: heavy-metal uptake by plant roots. Environ Model Assess 11:387–394 Vinayagam, S., Sathishkumar, K., Ayyamperumal, R., Natarajan, P. M., Ahmad, I., Saeed, M., Alabdallah, N. M., & Sundaram, T. (2024). Distribution and transport of contaminants in soil through mining processes and its environmental impact and health hazard assessment: A review of the prospective solutions. Environmental Research, 240, 117473. https://doi.org/10.1016/j.envres.2023.117473 Wang, H., Chen, S., Liu, H., Li, J., Zaman, Q. U., Sultan, K., Rehman, M., Jeridi, M., Siddiqui, S., Fahad, S., Deng, G., & Chen, A. (2023). Maize straw biochar can alleviate heavy metals stress in potato by improving soil health. South African Journal of Botany, 162, 391-401. https://doi.org/10.1016/j.sajb.2023.09.024 Woraharn, S., Meeinkuirt, W., Phusantisampan, T., & Avakul, P. (2021). Potential of ornamental monocot plants for rhizofiltration of cadmium and zinc in hydroponic systems. Environmental Science and Pollution Research, 28(26), 35157-35170. https://doi.org/10.1007/s11356-021-13151-x Wu, B., Peng, H., Sheng, M., Luo, H., Wang, X., Zhang, R., Xu, F., & Xu, H. (2021). Evaluation of phytoremediation potential of native dominant plants and spatial distribution of heavy metals in abandoned mining area in Southwest China. Ecotoxicology and Environmental Safety, 220, 112368. https://doi.org/10.1016/j.ecoenv.2021.112368 Xiao, R., Shen, F., Du, J., Li, R., Lahori, A. H., & Zhang, Z. (2018). Screening of native plants from wasteland surrounding a Zn smelter in Feng County China, for phytoremediation. Ecotoxicology and Environmental Safety, 162, 178-183. https://doi.org/10.1016/j.ecoenv.2018.06.095 Yang, S., Liang, S., Yi, L., Xu, B., Cao, J., Guo, Y., & Zhou, Y. (2014). Heavy metal accumulation and phytostabilization potential of dominant plant species growing on manganese mine tailings. Frontiers of Environmental Science & Engineering, 8(3), 394-404. https://doi.org/10.1007/s11783-013-0602-4 Zhang, C., Yu, Z., Zeng, G., Jiang, M., Yang, Z., Cui, F., Zhu, M., Shen, L., & Hu, L. (2014). Effects of sediment geochemical properties on heavy metal bioavailability. Environment International, 73, 270-281. https://doi.org/10.1016/j.envint.2014.08.010 Zhang, S., Yin, X., Arif, M., Chen, S., Ma, M., Zhu, K., Chen, Q., Wu, S., & Li, C. (2023). Strategy matters: Phytoremediation potential of native halophytes is jointly associated with their distinct salt tolerances. Journal of Cleaner Production, 425, 139060. https://doi.org/10.1016/j.jclepro.2023.139060 Zhu, G., Xiao, H., Guo, Q., Song, B., Zheng, G., Zhang, Z., Zhao, J., & Okoli, C. P. (2018). Heavy metal contents and enrichment characteristics of dominant plants in wasteland of the downstream of a lead-zinc mining area in Guangxi, Southwest China. Ecotoxicology and Environmental Safety, 151, 266-271. https://doi.org/10.1016/j.ecoenv.2018.01.011Pérez López, M. E. (2009). Selección de plantas acuáticas para establecer humedales en el estado de Durango [Tesis doctoral, Centro de Investigación en Materiales Avanzados]. Repositorio Institucional CIMAV. http://cimav.repositorioinstitucional.mx/jspui/handle/1004/597Pérez-Vásquez, N. D. S., Arias-Rios, J., & Quirós-Rodríguez, J. A. (2015). VARIACIÓN ESPACIO-TEMPORAL DE PLANTAS VASCULARES ACUÁTICAS EN EL COMPLEJO CENAGOSO DEL BAJO SINÚ, CÓRDOBA, COLOMBIA. Acta Biológica Colombiana, 20(3), 155-165. https://doi.org/10.15446/abc.v20n3.45380Pizano, C y H. García (Editores). 2014. El Bosque Seco Tropical en Colombia. Instituto de Investigación de Recursos Biológicos Alexander von Humboldt (IAvH). Bogotá, D.C., Colombia.Rai, P. K. (2019). Heavy metals/metalloids remediation from wastewater using free floating macrophytes of a natural wetland. Environmental Technology & Innovation, 15, 100393. https://doi.org/10.1016/j.eti.2019.100393Rangel, J. (2010). VEGETACIÓN ACUÁTICA -Caracterización inicial (pp. 325-339). Rivas, J. D. (2021). Potencial fitorremediador de macrófitas en cuerpos de agua contaminados con mercurio remanentes de la minería (pozas) en el departamento del Chocó-Colombia. Recuperado de: https://repositorio.unal.edu.co/handle/unal/83774 Rivas, J. D. (2021). Potencial fitorremediador de macrófitas en cuerpos de agua contaminados con mercurio remanentes de la minería (pozas) en el departamento del Chocó-Colombia. Recuperado de: https://repositorio.unal.edu.co/handle/unal/83774 Rodríguez Ríos, Roberto. Fica Gallardo, Boris. CORMA (Chile). 2020. Guía campo plantas vasculares acuáticas en Chile. CORMA. https://bibliotecadigital.ciren.cl/handle/20.500.13082/148108 Rwiza, M. J., Focus, E., Bayuo, J., Kimaro, J. M., Kleinke, M., Lyasenga, T. J., Mosses, J. T., & Marwa, J. (2023). Artisanal and small-scale mining in Tanzania and health implications: A policy perspective. Heliyon, 9(4), e14616. https://doi.org/10.1016/j.heliyon.2023.e14616 Sampayo Campo, L y Ariza Blanco, A. (2017). Determinación de la contaminación por metales pesados en el embalse el Guájaro, Departamento del Atlántico. Universidad de la Costa. Disponible en: https://hdl.handle.net/11323/4861 Sánchez-Castro, I., Molina, L., Prieto-Fernández, M.-Á., & Segura, A. (2023). Past, present and future trends in the remediation of heavy-metal contaminated soil—Remediation techniques applied in real soil-contamination events. Heliyon, 9(6), e16692. https://doi.org/10.1016/j.heliyon.2023.e16692 Sarker, A., Masud, M. A. A., Deepo, D. M., Das, K., Nandi, R., Ansary, M. W. R., Islam, A. R. M. T., & Islam, T. (2023). Biological and green remediation of heavy metal contaminated water and soils: A state-of-the-art review. Chemosphere, 332, 138861. https://doi.org/10.1016/j.chemosphere.2023.138861 Schneider, B. (2017). Ensambles de macrófitas en ambientes de la llanura aluvial del río Paraná Medio: Factores que inciden a distintas escalas. Tan, H. W., Pang, Y. L., Lim, S., & Chong, W. C. (2023). A state-of-the-art of phytoremediation approach for sustainable management of heavy metals recovery. Environmental Technology & Innovation, 30, 103043. https://doi.org/10.1016/j.eti.2023.103043 Timalsina, H., Gyawali, T., Ghimire, S., & Paudel, S. R. (2022). Potential application of enhanced phytoremediation for heavy metals treatment in Nepal. Chemosphere, 306, 135581. https://doi.org/10.1016/j.chemosphere.2022.135581 Turcios, A. E., Miglio, R., Vela, R., Sánchez, G., Bergier, T., Włodyka-Bergier, A., Cifuentes, J. I., Pignataro, G., Avellan, T., & Papenbrock, J. (2021). From natural habitats to successful application—Role of halophytes in the treatment of saline wastewater in constructed wetlands with a focus on Latin America. Environmental and Experimental Botany, 190, 104583. https://doi.org/10.1016/j.envexpbot.2021.104583 Valois-Cuesta, H., & Martínez-Ruiz, C. (2017). Especies vegetales colonizadoras de áreas perturbadas por la minería en bosques pluviales tropicales del Chocó, Colombia. Biota Colombiana, 18(1), 87-103. https://doi.org/10.21068/c2017.v18n01a7 Verma P, George KV, Singh HV, Singh SK, Juwarkar A, Singh RN (2006) Modeling rhizofiltration: heavy-metal uptake by plant roots. Environ Model Assess 11:387–394 Vinayagam, S., Sathishkumar, K., Ayyamperumal, R., Natarajan, P. M., Ahmad, I., Saeed, M., Alabdallah, N. M., & Sundaram, T. (2024). Distribution and transport of contaminants in soil through mining processes and its environmental impact and health hazard assessment: A review of the prospective solutions. Environmental Research, 240, 117473. https://doi.org/10.1016/j.envres.2023.117473 Wang, H., Chen, S., Liu, H., Li, J., Zaman, Q. U., Sultan, K., Rehman, M., Jeridi, M., Siddiqui, S., Fahad, S., Deng, G., & Chen, A. (2023). Maize straw biochar can alleviate heavy metals stress in potato by improving soil health. South African Journal of Botany, 162, 391-401. https://doi.org/10.1016/j.sajb.2023.09.024 Woraharn, S., Meeinkuirt, W., Phusantisampan, T., & Avakul, P. (2021). Potential of ornamental monocot plants for rhizofiltration of cadmium and zinc in hydroponic systems. Environmental Science and Pollution Research, 28(26), 35157-35170. https://doi.org/10.1007/s11356-021-13151-x Wu, B., Peng, H., Sheng, M., Luo, H., Wang, X., Zhang, R., Xu, F., & Xu, H. (2021). Evaluation of phytoremediation potential of native dominant plants and spatial distribution of heavy metals in abandoned mining area in Southwest China. Ecotoxicology and Environmental Safety, 220, 112368. https://doi.org/10.1016/j.ecoenv.2021.112368 Xiao, R., Shen, F., Du, J., Li, R., Lahori, A. H., & Zhang, Z. (2018). Screening of native plants from wasteland surrounding a Zn smelter in Feng County China, for phytoremediation. Ecotoxicology and Environmental Safety, 162, 178-183. https://doi.org/10.1016/j.ecoenv.2018.06.095 Yang, S., Liang, S., Yi, L., Xu, B., Cao, J., Guo, Y., & Zhou, Y. (2014). Heavy metal accumulation and phytostabilization potential of dominant plant species growing on manganese mine tailings. Frontiers of Environmental Science & Engineering, 8(3), 394-404. https://doi.org/10.1007/s11783-013-0602-4 Zhang, C., Yu, Z., Zeng, G., Jiang, M., Yang, Z., Cui, F., Zhu, M., Shen, L., & Hu, L. (2014). Effects of sediment geochemical properties on heavy metal bioavailability. Environment International, 73, 270-281. https://doi.org/10.1016/j.envint.2014.08.010 Zhang, S., Yin, X., Arif, M., Chen, S., Ma, M., Zhu, K., Chen, Q., Wu, S., & Li, C. (2023). Strategy matters: Phytoremediation potential of native halophytes is jointly associated with their distinct salt tolerances. Journal of Cleaner Production, 425, 139060. https://doi.org/10.1016/j.jclepro.2023.139060 Zhu, G., Xiao, H., Guo, Q., Song, B., Zheng, G., Zhang, Z., Zhao, J., & Okoli, C. P. (2018). Heavy metal contents and enrichment characteristics of dominant plants in wasteland of the downstream of a lead-zinc mining area in Guangxi, Southwest China. Ecotoxicology and Environmental Safety, 151, 266-271. https://doi.org/10.1016/j.ecoenv.2018.01.011Rivas, J. D. (2021). Potencial fitorremediador de macrófitas en cuerpos de agua contaminados con mercurio remanentes de la minería (pozas) en el departamento del Chocó-Colombia. Recuperado de: https://repositorio.unal.edu.co/handle/unal/83774Rodríguez Ríos, Roberto. Fica Gallardo, Boris. CORMA (Chile). 2020. Guía campo plantas vasculares acuáticas en Chile. CORMA. https://bibliotecadigital.ciren.cl/handle/20.500.13082/148108 Rwiza, M. J., Focus, E., Bayuo, J., Kimaro, J. M., Kleinke, M., Lyasenga, T. J., Mosses, J. T., & Marwa, J. (2023). Artisanal and small-scale mining in Tanzania and health implications: A policy perspective. Heliyon, 9(4), e14616. https://doi.org/10.1016/j.heliyon.2023.e14616 Sampayo Campo, L y Ariza Blanco, A. (2017). Determinación de la contaminación por metales pesados en el embalse el Guájaro, Departamento del Atlántico. Universidad de la Costa. Disponible en: https://hdl.handle.net/11323/4861 Sánchez-Castro, I., Molina, L., Prieto-Fernández, M.-Á., & Segura, A. (2023). Past, present and future trends in the remediation of heavy-metal contaminated soil—Remediation techniques applied in real soil-contamination events. Heliyon, 9(6), e16692. https://doi.org/10.1016/j.heliyon.2023.e16692 Sarker, A., Masud, M. A. A., Deepo, D. M., Das, K., Nandi, R., Ansary, M. W. R., Islam, A. R. M. T., & Islam, T. (2023). Biological and green remediation of heavy metal contaminated water and soils: A state-of-the-art review. Chemosphere, 332, 138861. https://doi.org/10.1016/j.chemosphere.2023.138861 Schneider, B. (2017). Ensambles de macrófitas en ambientes de la llanura aluvial del río Paraná Medio: Factores que inciden a distintas escalas. Tan, H. W., Pang, Y. L., Lim, S., & Chong, W. C. (2023). A state-of-the-art of phytoremediation approach for sustainable management of heavy metals recovery. Environmental Technology & Innovation, 30, 103043. https://doi.org/10.1016/j.eti.2023.103043 Timalsina, H., Gyawali, T., Ghimire, S., & Paudel, S. R. (2022). Potential application of enhanced phytoremediation for heavy metals treatment in Nepal. Chemosphere, 306, 135581. https://doi.org/10.1016/j.chemosphere.2022.135581 Turcios, A. E., Miglio, R., Vela, R., Sánchez, G., Bergier, T., Włodyka-Bergier, A., Cifuentes, J. I., Pignataro, G., Avellan, T., & Papenbrock, J. (2021). From natural habitats to successful application—Role of halophytes in the treatment of saline wastewater in constructed wetlands with a focus on Latin America. Environmental and Experimental Botany, 190, 104583. https://doi.org/10.1016/j.envexpbot.2021.104583 Valois-Cuesta, H., & Martínez-Ruiz, C. (2017). Especies vegetales colonizadoras de áreas perturbadas por la minería en bosques pluviales tropicales del Chocó, Colombia. Biota Colombiana, 18(1), 87-103. https://doi.org/10.21068/c2017.v18n01a7 Verma P, George KV, Singh HV, Singh SK, Juwarkar A, Singh RN (2006) Modeling rhizofiltration: heavy-metal uptake by plant roots. Environ Model Assess 11:387–394 Vinayagam, S., Sathishkumar, K., Ayyamperumal, R., Natarajan, P. M., Ahmad, I., Saeed, M., Alabdallah, N. M., & Sundaram, T. (2024). Distribution and transport of contaminants in soil through mining processes and its environmental impact and health hazard assessment: A review of the prospective solutions. Environmental Research, 240, 117473. https://doi.org/10.1016/j.envres.2023.117473 Wang, H., Chen, S., Liu, H., Li, J., Zaman, Q. U., Sultan, K., Rehman, M., Jeridi, M., Siddiqui, S., Fahad, S., Deng, G., & Chen, A. (2023). Maize straw biochar can alleviate heavy metals stress in potato by improving soil health. South African Journal of Botany, 162, 391-401. https://doi.org/10.1016/j.sajb.2023.09.024 Woraharn, S., Meeinkuirt, W., Phusantisampan, T., & Avakul, P. (2021). Potential of ornamental monocot plants for rhizofiltration of cadmium and zinc in hydroponic systems. Environmental Science and Pollution Research, 28(26), 35157-35170. https://doi.org/10.1007/s11356-021-13151-x Wu, B., Peng, H., Sheng, M., Luo, H., Wang, X., Zhang, R., Xu, F., & Xu, H. (2021). Evaluation of phytoremediation potential of native dominant plants and spatial distribution of heavy metals in abandoned mining area in Southwest China. Ecotoxicology and Environmental Safety, 220, 112368. https://doi.org/10.1016/j.ecoenv.2021.112368 Xiao, R., Shen, F., Du, J., Li, R., Lahori, A. H., & Zhang, Z. (2018). Screening of native plants from wasteland surrounding a Zn smelter in Feng County China, for phytoremediation. Ecotoxicology and Environmental Safety, 162, 178-183. https://doi.org/10.1016/j.ecoenv.2018.06.095 Yang, S., Liang, S., Yi, L., Xu, B., Cao, J., Guo, Y., & Zhou, Y. (2014). Heavy metal accumulation and phytostabilization potential of dominant plant species growing on manganese mine tailings. Frontiers of Environmental Science & Engineering, 8(3), 394-404. https://doi.org/10.1007/s11783-013-0602-4 Zhang, C., Yu, Z., Zeng, G., Jiang, M., Yang, Z., Cui, F., Zhu, M., Shen, L., & Hu, L. (2014). Effects of sediment geochemical properties on heavy metal bioavailability. Environment International, 73, 270-281. https://doi.org/10.1016/j.envint.2014.08.010 Zhang, S., Yin, X., Arif, M., Chen, S., Ma, M., Zhu, K., Chen, Q., Wu, S., & Li, C. (2023). Strategy matters: Phytoremediation potential of native halophytes is jointly associated with their distinct salt tolerances. Journal of Cleaner Production, 425, 139060. https://doi.org/10.1016/j.jclepro.2023.139060 Zhu, G., Xiao, H., Guo, Q., Song, B., Zheng, G., Zhang, Z., Zhao, J., & Okoli, C. P. (2018). Heavy metal contents and enrichment characteristics of dominant plants in wasteland of the downstream of a lead-zinc mining area in Guangxi, Southwest China. Ecotoxicology and Environmental Safety, 151, 266-271. https://doi.org/10.1016/j.ecoenv.2018.01.011Rwiza, M. J., Focus, E., Bayuo, J., Kimaro, J. M., Kleinke, M., Lyasenga, T. J., Mosses, J. T., & Marwa, J. (2023). Artisanal and small-scale mining in Tanzania and health implications: A policy perspective. Heliyon, 9(4), e14616. https://doi.org/10.1016/j.heliyon.2023.e14616Sampayo Campo, L y Ariza Blanco, A. (2017). Determinación de la contaminación por metales pesados en el embalse el Guájaro, Departamento del Atlántico. Universidad de la Costa. Disponible en: https://hdl.handle.net/11323/4861Sánchez-Castro, I., Molina, L., Prieto-Fernández, M.-Á., & Segura, A. (2023). Past, present and future trends in the remediation of heavy-metal contaminated soil—Remediation techniques applied in real soil-contamination events. Heliyon, 9(6), e16692. https://doi.org/10.1016/j.heliyon.2023.e16692Sarker, A., Masud, M. A. A., Deepo, D. M., Das, K., Nandi, R., Ansary, M. W. R., Islam, A. R. M. T., & Islam, T. (2023). Biological and green remediation of heavy metal contaminated water and soils: A state-of-the-art review. Chemosphere, 332, 138861. https://doi.org/10.1016/j.chemosphere.2023.138861Schneider, B. (2017). Ensambles de macrófitas en ambientes de la llanura aluvial del río Paraná Medio: Factores que inciden a distintas escalas.Tan, H. W., Pang, Y. L., Lim, S., & Chong, W. C. (2023). A state-of-the-art of phytoremediation approach for sustainable management of heavy metals recovery. Environmental Technology & Innovation, 30, 103043. https://doi.org/10.1016/j.eti.2023.103043Timalsina, H., Gyawali, T., Ghimire, S., & Paudel, S. R. (2022). Potential application of enhanced phytoremediation for heavy metals treatment in Nepal. Chemosphere, 306, 135581. https://doi.org/10.1016/j.chemosphere.2022.135581Turcios, A. E., Miglio, R., Vela, R., Sánchez, G., Bergier, T., Włodyka-Bergier, A., Cifuentes, J. I., Pignataro, G., Avellan, T., & Papenbrock, J. (2021). From natural habitats to successful application—Role of halophytes in the treatment of saline wastewater in constructed wetlands with a focus on Latin America. Environmental and Experimental Botany, 190, 104583. https://doi.org/10.1016/j.envexpbot.2021.104583Valois-Cuesta, H., & Martínez-Ruiz, C. (2017). Especies vegetales colonizadoras de áreas perturbadas por la minería en bosques pluviales tropicales del Chocó, Colombia. Biota Colombiana, 18(1), 87-103. https://doi.org/10.21068/c2017.v18n01a7Verma P, George KV, Singh HV, Singh SK, Juwarkar A, Singh RN (2006) Modeling rhizofiltration: heavy-metal uptake by plant roots. Environ Model Assess 11:387–394Vinayagam, S., Sathishkumar, K., Ayyamperumal, R., Natarajan, P. M., Ahmad, I., Saeed, M., Alabdallah, N. M., & Sundaram, T. (2024). Distribution and transport of contaminants in soil through mining processes and its environmental impact and health hazard assessment: A review of the prospective solutions. Environmental Research, 240, 117473. https://doi.org/10.1016/j.envres.2023.117473Wang, H., Chen, S., Liu, H., Li, J., Zaman, Q. U., Sultan, K., Rehman, M., Jeridi, M., Siddiqui, S., Fahad, S., Deng, G., & Chen, A. (2023). Maize straw biochar can alleviate heavy metals stress in potato by improving soil health. South African Journal of Botany, 162, 391-401. https://doi.org/10.1016/j.sajb.2023.09.024Woraharn, S., Meeinkuirt, W., Phusantisampan, T., & Avakul, P. (2021). Potential of ornamental monocot plants for rhizofiltration of cadmium and zinc in hydroponic systems. Environmental Science and Pollution Research, 28(26), 35157-35170. https://doi.org/10.1007/s11356-021-13151-xWu, B., Peng, H., Sheng, M., Luo, H., Wang, X., Zhang, R., Xu, F., & Xu, H. (2021). Evaluation of phytoremediation potential of native dominant plants and spatial distribution of heavy metals in abandoned mining area in Southwest China. Ecotoxicology and Environmental Safety, 220, 112368. https://doi.org/10.1016/j.ecoenv.2021.112368Xiao, R., Shen, F., Du, J., Li, R., Lahori, A. H., & Zhang, Z. (2018). Screening of native plants from wasteland surrounding a Zn smelter in Feng County China, for phytoremediation. Ecotoxicology and Environmental Safety, 162, 178-183. https://doi.org/10.1016/j.ecoenv.2018.06.095Yang, S., Liang, S., Yi, L., Xu, B., Cao, J., Guo, Y., & Zhou, Y. (2014). Heavy metal accumulation and phytostabilization potential of dominant plant species growing on manganese mine tailings. Frontiers of Environmental Science & Engineering, 8(3), 394-404. https://doi.org/10.1007/s11783-013-0602-4Zhang, C., Yu, Z., Zeng, G., Jiang, M., Yang, Z., Cui, F., Zhu, M., Shen, L., & Hu, L. (2014). Effects of sediment geochemical properties on heavy metal bioavailability. Environment International, 73, 270-281. https://doi.org/10.1016/j.envint.2014.08.010Zhang, S., Yin, X., Arif, M., Chen, S., Ma, M., Zhu, K., Chen, Q., Wu, S., & Li, C. (2023). Strategy matters: Phytoremediation potential of native halophytes is jointly associated with their distinct salt tolerances. Journal of Cleaner Production, 425, 139060. https://doi.org/10.1016/j.jclepro.2023.139060Zhu, G., Xiao, H., Guo, Q., Song, B., Zheng, G., Zhang, Z., Zhao, J., & Okoli, C. P. (2018). Heavy metal contents and enrichment characteristics of dominant plants in wasteland of the downstream of a lead-zinc mining area in Guangxi, Southwest China. Ecotoxicology and Environmental Safety, 151, 266-271. https://doi.org/10.1016/j.ecoenv.2018.01.011Elementos potencialmente tóxicosFitorremediaciónHumedales construidosPlantas vasculares acuáticasPotentially toxic elementsPhytoremediationConstructed wetlandsAquatic vascular plantsPublicationORIGINALMercadoTobio.pdfMercadoTobio.pdfapplication/pdf2108807https://repositorio.unicordoba.edu.co/bitstreams/138ec3e0-de0f-47a2-8c62-11dc5122b00e/download04b72a86d9a0ea0697e237c2a80d6e68MD52trueAnonymousREAD2028-11-11Formato de autorización.pdfFormato de autorización.pdfapplication/pdf15522444https://repositorio.unicordoba.edu.co/bitstreams/8285c8c3-f8c9-4f7a-8f5c-cb2ed9e0a872/download4527f09157c6394e31a3cf97935340edMD55falseLICENSElicense.txtlicense.txttext/plain; charset=utf-814837https://repositorio.unicordoba.edu.co/bitstreams/eb50d175-74c6-4b68-9fa3-3cd592f51902/downloadb76e7a76e24cf2f94b3ce0ae5ed275d0MD54falseAnonymousREADTEXTMercadoTobio.pdf.txtMercadoTobio.pdf.txtExtracted texttext/plain101931https://repositorio.unicordoba.edu.co/bitstreams/ee92e864-b864-43ec-b25d-97a1f52de3cb/downloadfafd5580132940378ae8886fae1cf965MD56falseAnonymousREAD2028-11-11Formato de autorización.pdf.txtFormato de autorización.pdf.txtExtracted texttext/plain6https://repositorio.unicordoba.edu.co/bitstreams/74695865-6702-469c-88a0-8735aa1d53b1/download6d93d3216dc4a7f5df47d4876fbec4d3MD58falseTHUMBNAILMercadoTobio.pdf.jpgMercadoTobio.pdf.jpgGenerated Thumbnailimage/jpeg6311https://repositorio.unicordoba.edu.co/bitstreams/680e792d-a6c2-4de8-84fa-158cf96a4bce/downloadc439d86795568e1543248d1251e74d0bMD57falseAnonymousREAD2028-11-11Formato de autorización.pdf.jpgFormato de autorización.pdf.jpgGenerated Thumbnailimage/jpeg16681https://repositorio.unicordoba.edu.co/bitstreams/636193ff-3377-42f3-8549-655a9948829c/download5531cfab7eee6d66ab160aa1eb253533MD59falseucordoba/9631oai:repositorio.unicordoba.edu.co:ucordoba/96312025-11-13 04:01:00.359https://creativecommons.org/licenses/by-nc-nd/4.0/Copyright Universidad de Córdoba, 2025embargo2028-11-11https://repositorio.unicordoba.edu.coRepositorio institucional Universidad de Córdobabdigital@metabiblioteca.comTEEgT0JSQSAoVEFMIFkgQ09NTyBTRSBERUZJTkUgTcOBUyBBREVMQU5URSkgU0UgT1RPUkdBIEJBSk8gTE9TIFRFUk1JTk9TIERFIEVTVEEgTElDRU5DSUEgUMOaQkxJQ0EgREUgQ1JFQVRJVkUgQ09NTU9OUyAo4oCcTFBDQ+KAnSBPIOKAnExJQ0VOQ0lB4oCdKS4gTEEgT0JSQSBFU1TDgSBQUk9URUdJREEgUE9SIERFUkVDSE9TIERFIEFVVE9SIFkvVSBPVFJBUyBMRVlFUyBBUExJQ0FCTEVTLiBRVUVEQSBQUk9ISUJJRE8gQ1VBTFFVSUVSIFVTTyBRVUUgU0UgSEFHQSBERSBMQSBPQlJBIFFVRSBOTyBDVUVOVEUgQ09OIExBIEFVVE9SSVpBQ0nDk04gUEVSVElORU5URSBERSBDT05GT1JNSURBRCBDT04gTE9TIFTDiVJNSU5PUyBERSBFU1RBIExJQ0VOQ0lBIFkgREUgTEEgTEVZIERFIERFUkVDSE8gREUgQVVUT1IuCgpNRURJQU5URSBFTCBFSkVSQ0lDSU8gREUgQ1VBTFFVSUVSQSBERSBMT1MgREVSRUNIT1MgUVVFIFNFIE9UT1JHQU4gRU4gRVNUQSBMSUNFTkNJQSwgVVNURUQgQUNFUFRBIFkgQUNVRVJEQSBRVUVEQVIgT0JMSUdBRE8gRU4gTE9TIFRFUk1JTk9TIFFVRSBTRSBTRcORQUxBTiBFTiBFTExBLiBFTCBMSUNFTkNJQU5URSBDT05DRURFIEEgVVNURUQgTE9TIERFUkVDSE9TIENPTlRFTklET1MgRU4gRVNUQSBMSUNFTkNJQSBDT05ESUNJT05BRE9TIEEgTEEgQUNFUFRBQ0nDk04gREUgU1VTIFRFUk1JTk9TIFkgQ09ORElDSU9ORVMuIAoKMS4gRGVmaW5pY2lvbmVzCmEuIE9icmEgQ29sZWN0aXZhIGVzIHVuYSBvYnJhLCB0YWwgY29tbyB1bmEgcHVibGljYWNpw7NuIHBlcmnDs2RpY2EsIHVuYSBhbnRvbG9nw61hLCBvIHVuYSBlbmNpY2xvcGVkaWEsIGVuIGxhIHF1ZSBsYSBvYnJhIGVuIHN1IHRvdGFsaWRhZCwgc2luIG1vZGlmaWNhY2nDs24gYWxndW5hLCBqdW50byBjb24gdW4gZ3J1cG8gZGUgb3RyYXMgY29udHJpYnVjaW9uZXMgcXVlIGNvbnN0aXR1eWVuIG9icmFzIHNlcGFyYWRhcyBlIGluZGVwZW5kaWVudGVzIGVuIHPDrSBtaXNtYXMsIHNlIGludGVncmFuIGVuIHVuIHRvZG8gY29sZWN0aXZvLiBVbmEgT2JyYSBxdWUgY29uc3RpdHV5ZSB1bmEgb2JyYSBjb2xlY3RpdmEgbm8gc2UgY29uc2lkZXJhcsOhIHVuYSBPYnJhIERlcml2YWRhIChjb21vIHNlIGRlZmluZSBhYmFqbykgcGFyYSBsb3MgcHJvcMOzc2l0b3MgZGUgZXN0YSBsaWNlbmNpYS4gYXF1ZWxsYSBwcm9kdWNpZGEgcG9yIHVuIGdydXBvIGRlIGF1dG9yZXMsIGVuIHF1ZSBsYSBPYnJhIHNlIGVuY3VlbnRyYSBzaW4gbW9kaWZpY2FjaW9uZXMsIGp1bnRvIGNvbiB1bmEgY2llcnRhIGNhbnRpZGFkIGRlIG90cmFzIGNvbnRyaWJ1Y2lvbmVzLCBxdWUgY29uc3RpdHV5ZW4gZW4gc8OtIG1pc21vcyB0cmFiYWpvcyBzZXBhcmFkb3MgZSBpbmRlcGVuZGllbnRlcywgcXVlIHNvbiBpbnRlZ3JhZG9zIGFsIHRvZG8gY29sZWN0aXZvLCB0YWxlcyBjb21vIHB1YmxpY2FjaW9uZXMgcGVyacOzZGljYXMsIGFudG9sb2fDrWFzIG8gZW5jaWNsb3BlZGlhcy4KYi4gT2JyYSBEZXJpdmFkYSBzaWduaWZpY2EgdW5hIG9icmEgYmFzYWRhIGVuIGxhIG9icmEgb2JqZXRvIGRlIGVzdGEgbGljZW5jaWEgbyBlbiDDqXN0YSB5IG90cmFzIG9icmFzIHByZWV4aXN0ZW50ZXMsIHRhbGVzIGNvbW8gdHJhZHVjY2lvbmVzLCBhcnJlZ2xvcyBtdXNpY2FsZXMsIGRyYW1hdGl6YWNpb25lcywg4oCcZmljY2lvbmFsaXphY2lvbmVz4oCdLCB2ZXJzaW9uZXMgcGFyYSBjaW5lLCDigJxncmFiYWNpb25lcyBkZSBzb25pZG/igJ0sIHJlcHJvZHVjY2lvbmVzIGRlIGFydGUsIHJlc8O6bWVuZXMsIGNvbmRlbnNhY2lvbmVzLCBvIGN1YWxxdWllciBvdHJhIGVuIGxhIHF1ZSBsYSBvYnJhIHB1ZWRhIHNlciB0cmFuc2Zvcm1hZGEsIGNhbWJpYWRhIG8gYWRhcHRhZGEsIGV4Y2VwdG8gYXF1ZWxsYXMgcXVlIGNvbnN0aXR1eWFuIHVuYSBvYnJhIGNvbGVjdGl2YSwgbGFzIHF1ZSBubyBzZXLDoW4gY29uc2lkZXJhZGFzIHVuYSBvYnJhIGRlcml2YWRhIHBhcmEgZWZlY3RvcyBkZSBlc3RhIGxpY2VuY2lhLiAoUGFyYSBldml0YXIgZHVkYXMsIGVuIGVsIGNhc28gZGUgcXVlIGxhIE9icmEgc2VhIHVuYSBjb21wb3NpY2nDs24gbXVzaWNhbCBvIHVuYSBncmFiYWNpw7NuIHNvbm9yYSwgcGFyYSBsb3MgZWZlY3RvcyBkZSBlc3RhIExpY2VuY2lhIGxhIHNpbmNyb25pemFjacOzbiB0ZW1wb3JhbCBkZSBsYSBPYnJhIGNvbiB1bmEgaW1hZ2VuIGVuIG1vdmltaWVudG8gc2UgY29uc2lkZXJhcsOhIHVuYSBPYnJhIERlcml2YWRhIHBhcmEgbG9zIGZpbmVzIGRlIGVzdGEgbGljZW5jaWEpLgpjLiBMaWNlbmNpYW50ZSwgZXMgZWwgaW5kaXZpZHVvIG8gbGEgZW50aWRhZCB0aXR1bGFyIGRlIGxvcyBkZXJlY2hvcyBkZSBhdXRvciBxdWUgb2ZyZWNlIGxhIE9icmEgZW4gY29uZm9ybWlkYWQgY29uIGxhcyBjb25kaWNpb25lcyBkZSBlc3RhIExpY2VuY2lhLgpkLiBBdXRvciBvcmlnaW5hbCwgZXMgZWwgaW5kaXZpZHVvIHF1ZSBjcmXDsyBsYSBPYnJhLgplLiBPYnJhLCBlcyBhcXVlbGxhIG9icmEgc3VzY2VwdGlibGUgZGUgcHJvdGVjY2nDs24gcG9yIGVsIHLDqWdpbWVuIGRlIERlcmVjaG8gZGUgQXV0b3IgeSBxdWUgZXMgb2ZyZWNpZGEgZW4gbG9zIHTDqXJtaW5vcyBkZSBlc3RhIGxpY2VuY2lhCmYuIFVzdGVkLCBlcyBlbCBpbmRpdmlkdW8gbyBsYSBlbnRpZGFkIHF1ZSBlamVyY2l0YSBsb3MgZGVyZWNob3Mgb3RvcmdhZG9zIGFsIGFtcGFybyBkZSBlc3RhIExpY2VuY2lhIHkgcXVlIGNvbiBhbnRlcmlvcmlkYWQgbm8gaGEgdmlvbGFkbyBsYXMgY29uZGljaW9uZXMgZGUgbGEgbWlzbWEgcmVzcGVjdG8gYSBsYSBPYnJhLCBvIHF1ZSBoYXlhIG9idGVuaWRvIGF1dG9yaXphY2nDs24gZXhwcmVzYSBwb3IgcGFydGUgZGVsIExpY2VuY2lhbnRlIHBhcmEgZWplcmNlciBsb3MgZGVyZWNob3MgYWwgYW1wYXJvIGRlIGVzdGEgTGljZW5jaWEgcGVzZSBhIHVuYSB2aW9sYWNpw7NuIGFudGVyaW9yLgoJICAKMi4gRGVyZWNob3MgZGUgVXNvcyBIb25yYWRvcyB5IGV4Y2VwY2lvbmVzIExlZ2FsZXMuCk5hZGEgZW4gZXN0YSBMaWNlbmNpYSBwb2Ryw6Egc2VyIGludGVycHJldGFkbyBjb21vIHVuYSBkaXNtaW51Y2nDs24sIGxpbWl0YWNpw7NuIG8gcmVzdHJpY2Npw7NuIGRlIGxvcyBkZXJlY2hvcyBkZXJpdmFkb3MgZGVsIHVzbyBob25yYWRvIHkgb3RyYXMgbGltaXRhY2lvbmVzIG8gZXhjZXBjaW9uZXMgYSBsb3MgZGVyZWNob3MgZGVsIGF1dG9yIGJham8gZWwgcsOpZ2ltZW4gbGVnYWwgdmlnZW50ZSBvIGRlcml2YWRvIGRlIGN1YWxxdWllciBvdHJhIG5vcm1hIHF1ZSBzZSBsZSBhcGxpcXVlLgogIAozLiBDb25jZXNpw7NuIGRlIGxhIExpY2VuY2lhLgpCYWpvIGxvcyB0w6lybWlub3MgeSBjb25kaWNpb25lcyBkZSBlc3RhIExpY2VuY2lhLCBlbCBMaWNlbmNpYW50ZSBvdG9yZ2EgYSBVc3RlZCB1bmEgbGljZW5jaWEgbXVuZGlhbCwgbGlicmUgZGUgcmVnYWzDrWFzLCBubyBleGNsdXNpdmEgeSBwZXJwZXR1YSAoZHVyYW50ZSB0b2RvIGVsIHBlcsOtb2RvIGRlIHZpZ2VuY2lhIGRlIGxvcyBkZXJlY2hvcyBkZSBhdXRvcikgcGFyYSBlamVyY2VyIGVzdG9zIGRlcmVjaG9zIHNvYnJlIGxhIE9icmEgdGFsIHkgY29tbyBzZSBpbmRpY2EgYSBjb250aW51YWNpw7NuOgphLiBSZXByb2R1Y2lyIGxhIE9icmEsIGluY29ycG9yYXIgbGEgT2JyYSBlbiB1bmEgbyBtw6FzIE9icmFzIENvbGVjdGl2YXMsIHkgcmVwcm9kdWNpciBsYSBPYnJhIGluY29ycG9yYWRhIGVuIGxhcyBPYnJhcyBDb2xlY3RpdmFzLgpiLiBEaXN0cmlidWlyIGNvcGlhcyBvIGZvbm9ncmFtYXMgZGUgbGFzIE9icmFzLCBleGhpYmlybGFzIHDDumJsaWNhbWVudGUsIGVqZWN1dGFybGFzIHDDumJsaWNhbWVudGUgeS9vIHBvbmVybGFzIGEgZGlzcG9zaWNpw7NuIHDDumJsaWNhLCBpbmNsdXnDqW5kb2xhcyBjb21vIGluY29ycG9yYWRhcyBlbiBPYnJhcyBDb2xlY3RpdmFzLCBzZWfDum4gY29ycmVzcG9uZGEuCmMuIERpc3RyaWJ1aXIgY29waWFzIGRlIGxhcyBPYnJhcyBEZXJpdmFkYXMgcXVlIHNlIGdlbmVyZW4sIGV4aGliaXJsYXMgcMO6YmxpY2FtZW50ZSwgZWplY3V0YXJsYXMgcMO6YmxpY2FtZW50ZSB5L28gcG9uZXJsYXMgYSBkaXNwb3NpY2nDs24gcMO6YmxpY2EuCgpMb3MgZGVyZWNob3MgbWVuY2lvbmFkb3MgYW50ZXJpb3JtZW50ZSBwdWVkZW4gc2VyIGVqZXJjaWRvcyBlbiB0b2RvcyBsb3MgbWVkaW9zIHkgZm9ybWF0b3MsIGFjdHVhbG1lbnRlIGNvbm9jaWRvcyBvIHF1ZSBzZSBpbnZlbnRlbiBlbiBlbCBmdXR1cm8uIExvcyBkZXJlY2hvcyBhbnRlcyBtZW5jaW9uYWRvcyBpbmNsdXllbiBlbCBkZXJlY2hvIGEgcmVhbGl6YXIgZGljaGFzIG1vZGlmaWNhY2lvbmVzIGVuIGxhIG1lZGlkYSBxdWUgc2VhbiB0w6ljbmljYW1lbnRlIG5lY2VzYXJpYXMgcGFyYSBlamVyY2VyIGxvcyBkZXJlY2hvcyBlbiBvdHJvIG1lZGlvIG8gZm9ybWF0b3MsIHBlcm8gZGUgb3RyYSBtYW5lcmEgdXN0ZWQgbm8gZXN0w6EgYXV0b3JpemFkbyBwYXJhIHJlYWxpemFyIG9icmFzIGRlcml2YWRhcy4gVG9kb3MgbG9zIGRlcmVjaG9zIG5vIG90b3JnYWRvcyBleHByZXNhbWVudGUgcG9yIGVsIExpY2VuY2lhbnRlIHF1ZWRhbiBwb3IgZXN0ZSBtZWRpbyByZXNlcnZhZG9zLCBpbmNsdXllbmRvIHBlcm8gc2luIGxpbWl0YXJzZSBhIGFxdWVsbG9zIHF1ZSBzZSBtZW5jaW9uYW4gZW4gbGFzIHNlY2Npb25lcyA0KGQpIHkgNChlKS4KICAgIAo0LiBSZXN0cmljY2lvbmVzLgpMYSBsaWNlbmNpYSBvdG9yZ2FkYSBlbiBsYSBhbnRlcmlvciBTZWNjacOzbiAzIGVzdMOhIGV4cHJlc2FtZW50ZSBzdWpldGEgeSBsaW1pdGFkYSBwb3IgbGFzIHNpZ3VpZW50ZXMgcmVzdHJpY2Npb25lczoKYS4gVXN0ZWQgcHVlZGUgZGlzdHJpYnVpciwgZXhoaWJpciBww7pibGljYW1lbnRlLCBlamVjdXRhciBww7pibGljYW1lbnRlLCBvIHBvbmVyIGEgZGlzcG9zaWNpw7NuIHDDumJsaWNhIGxhIE9icmEgc8OzbG8gYmFqbyBsYXMgY29uZGljaW9uZXMgZGUgZXN0YSBMaWNlbmNpYSwgeSBVc3RlZCBkZWJlIGluY2x1aXIgdW5hIGNvcGlhIGRlIGVzdGEgbGljZW5jaWEgbyBkZWwgSWRlbnRpZmljYWRvciBVbml2ZXJzYWwgZGUgUmVjdXJzb3MgZGUgbGEgbWlzbWEgY29uIGNhZGEgY29waWEgZGUgbGEgT2JyYSBxdWUgZGlzdHJpYnV5YSwgZXhoaWJhIHDDumJsaWNhbWVudGUsIGVqZWN1dGUgcMO6YmxpY2FtZW50ZSBvIHBvbmdhIGEgZGlzcG9zaWNpw7NuIHDDumJsaWNhLiBObyBlcyBwb3NpYmxlIG9mcmVjZXIgbyBpbXBvbmVyIG5pbmd1bmEgY29uZGljacOzbiBzb2JyZSBsYSBPYnJhIHF1ZSBhbHRlcmUgbyBsaW1pdGUgbGFzIGNvbmRpY2lvbmVzIGRlIGVzdGEgTGljZW5jaWEgbyBlbCBlamVyY2ljaW8gZGUgbG9zIGRlcmVjaG9zIGRlIGxvcyBkZXN0aW5hdGFyaW9zIG90b3JnYWRvcyBlbiBlc3RlIGRvY3VtZW50by4gTm8gZXMgcG9zaWJsZSBzdWJsaWNlbmNpYXIgbGEgT2JyYS4gVXN0ZWQgZGViZSBtYW50ZW5lciBpbnRhY3RvcyB0b2RvcyBsb3MgYXZpc29zIHF1ZSBoYWdhbiByZWZlcmVuY2lhIGEgZXN0YSBMaWNlbmNpYSB5IGEgbGEgY2zDoXVzdWxhIGRlIGxpbWl0YWNpw7NuIGRlIGdhcmFudMOtYXMuIFVzdGVkIG5vIHB1ZWRlIGRpc3RyaWJ1aXIsIGV4aGliaXIgcMO6YmxpY2FtZW50ZSwgZWplY3V0YXIgcMO6YmxpY2FtZW50ZSwgbyBwb25lciBhIGRpc3Bvc2ljacOzbiBww7pibGljYSBsYSBPYnJhIGNvbiBhbGd1bmEgbWVkaWRhIHRlY25vbMOzZ2ljYSBxdWUgY29udHJvbGUgZWwgYWNjZXNvIG8gbGEgdXRpbGl6YWNpw7NuIGRlIGVsbGEgZGUgdW5hIGZvcm1hIHF1ZSBzZWEgaW5jb25zaXN0ZW50ZSBjb24gbGFzIGNvbmRpY2lvbmVzIGRlIGVzdGEgTGljZW5jaWEuIExvIGFudGVyaW9yIHNlIGFwbGljYSBhIGxhIE9icmEgaW5jb3Jwb3JhZGEgYSB1bmEgT2JyYSBDb2xlY3RpdmEsIHBlcm8gZXN0byBubyBleGlnZSBxdWUgbGEgT2JyYSBDb2xlY3RpdmEgYXBhcnRlIGRlIGxhIG9icmEgbWlzbWEgcXVlZGUgc3VqZXRhIGEgbGFzIGNvbmRpY2lvbmVzIGRlIGVzdGEgTGljZW5jaWEuIFNpIFVzdGVkIGNyZWEgdW5hIE9icmEgQ29sZWN0aXZhLCBwcmV2aW8gYXZpc28gZGUgY3VhbHF1aWVyIExpY2VuY2lhbnRlIGRlYmUsIGVuIGxhIG1lZGlkYSBkZSBsbyBwb3NpYmxlLCBlbGltaW5hciBkZSBsYSBPYnJhIENvbGVjdGl2YSBjdWFscXVpZXIgcmVmZXJlbmNpYSBhIGRpY2hvIExpY2VuY2lhbnRlIG8gYWwgQXV0b3IgT3JpZ2luYWwsIHNlZ8O6biBsbyBzb2xpY2l0YWRvIHBvciBlbCBMaWNlbmNpYW50ZSB5IGNvbmZvcm1lIGxvIGV4aWdlIGxhIGNsw6F1c3VsYSA0KGMpLgpiLiBVc3RlZCBubyBwdWVkZSBlamVyY2VyIG5pbmd1bm8gZGUgbG9zIGRlcmVjaG9zIHF1ZSBsZSBoYW4gc2lkbyBvdG9yZ2Fkb3MgZW4gbGEgU2VjY2nDs24gMyBwcmVjZWRlbnRlIGRlIG1vZG8gcXVlIGVzdMOpbiBwcmluY2lwYWxtZW50ZSBkZXN0aW5hZG9zIG8gZGlyZWN0YW1lbnRlIGRpcmlnaWRvcyBhIGNvbnNlZ3VpciB1biBwcm92ZWNobyBjb21lcmNpYWwgbyB1bmEgY29tcGVuc2FjacOzbiBtb25ldGFyaWEgcHJpdmFkYS4gRWwgaW50ZXJjYW1iaW8gZGUgbGEgT2JyYSBwb3Igb3RyYXMgb2JyYXMgcHJvdGVnaWRhcyBwb3IgZGVyZWNob3MgZGUgYXV0b3IsIHlhIHNlYSBhIHRyYXbDqXMgZGUgdW4gc2lzdGVtYSBwYXJhIGNvbXBhcnRpciBhcmNoaXZvcyBkaWdpdGFsZXMgKGRpZ2l0YWwgZmlsZS1zaGFyaW5nKSBvIGRlIGN1YWxxdWllciBvdHJhIG1hbmVyYSBubyBzZXLDoSBjb25zaWRlcmFkbyBjb21vIGVzdGFyIGRlc3RpbmFkbyBwcmluY2lwYWxtZW50ZSBvIGRpcmlnaWRvIGRpcmVjdGFtZW50ZSBhIGNvbnNlZ3VpciB1biBwcm92ZWNobyBjb21lcmNpYWwgbyB1bmEgY29tcGVuc2FjacOzbiBtb25ldGFyaWEgcHJpdmFkYSwgc2llbXByZSBxdWUgbm8gc2UgcmVhbGljZSB1biBwYWdvIG1lZGlhbnRlIHVuYSBjb21wZW5zYWNpw7NuIG1vbmV0YXJpYSBlbiByZWxhY2nDs24gY29uIGVsIGludGVyY2FtYmlvIGRlIG9icmFzIHByb3RlZ2lkYXMgcG9yIGVsIGRlcmVjaG8gZGUgYXV0b3IuCmMuIFNpIHVzdGVkIGRpc3RyaWJ1eWUsIGV4aGliZSBww7pibGljYW1lbnRlLCBlamVjdXRhIHDDumJsaWNhbWVudGUgbyBlamVjdXRhIHDDumJsaWNhbWVudGUgZW4gZm9ybWEgZGlnaXRhbCBsYSBPYnJhIG8gY3VhbHF1aWVyIE9icmEgRGVyaXZhZGEgdSBPYnJhIENvbGVjdGl2YSwgVXN0ZWQgZGViZSBtYW50ZW5lciBpbnRhY3RhIHRvZGEgbGEgaW5mb3JtYWNpw7NuIGRlIGRlcmVjaG8gZGUgYXV0b3IgZGUgbGEgT2JyYSB5IHByb3BvcmNpb25hciwgZGUgZm9ybWEgcmF6b25hYmxlIHNlZ8O6biBlbCBtZWRpbyBvIG1hbmVyYSBxdWUgVXN0ZWQgZXN0w6kgdXRpbGl6YW5kbzogKGkpIGVsIG5vbWJyZSBkZWwgQXV0b3IgT3JpZ2luYWwgc2kgZXN0w6EgcHJvdmlzdG8gKG8gc2V1ZMOzbmltbywgc2kgZnVlcmUgYXBsaWNhYmxlKSwgeS9vIChpaSkgZWwgbm9tYnJlIGRlIGxhIHBhcnRlIG8gbGFzIHBhcnRlcyBxdWUgZWwgQXV0b3IgT3JpZ2luYWwgeS9vIGVsIExpY2VuY2lhbnRlIGh1YmllcmVuIGRlc2lnbmFkbyBwYXJhIGxhIGF0cmlidWNpw7NuICh2LmcuLCB1biBpbnN0aXR1dG8gcGF0cm9jaW5hZG9yLCBlZGl0b3JpYWwsIHB1YmxpY2FjacOzbikgZW4gbGEgaW5mb3JtYWNpw7NuIGRlIGxvcyBkZXJlY2hvcyBkZSBhdXRvciBkZWwgTGljZW5jaWFudGUsIHTDqXJtaW5vcyBkZSBzZXJ2aWNpb3MgbyBkZSBvdHJhcyBmb3JtYXMgcmF6b25hYmxlczsgZWwgdMOtdHVsbyBkZSBsYSBPYnJhIHNpIGVzdMOhIHByb3Zpc3RvOyBlbiBsYSBtZWRpZGEgZGUgbG8gcmF6b25hYmxlbWVudGUgZmFjdGlibGUgeSwgc2kgZXN0w6EgcHJvdmlzdG8sIGVsIElkZW50aWZpY2Fkb3IgVW5pZm9ybWUgZGUgUmVjdXJzb3MgKFVuaWZvcm0gUmVzb3VyY2UgSWRlbnRpZmllcikgcXVlIGVsIExpY2VuY2lhbnRlIGVzcGVjaWZpY2EgcGFyYSBzZXIgYXNvY2lhZG8gY29uIGxhIE9icmEsIHNhbHZvIHF1ZSB0YWwgVVJJIG5vIHNlIHJlZmllcmEgYSBsYSBub3RhIHNvYnJlIGxvcyBkZXJlY2hvcyBkZSBhdXRvciBvIGEgbGEgaW5mb3JtYWNpw7NuIHNvYnJlIGVsIGxpY2VuY2lhbWllbnRvIGRlIGxhIE9icmE7IHkgZW4gZWwgY2FzbyBkZSB1bmEgT2JyYSBEZXJpdmFkYSwgYXRyaWJ1aXIgZWwgY3LDqWRpdG8gaWRlbnRpZmljYW5kbyBlbCB1c28gZGUgbGEgT2JyYSBlbiBsYSBPYnJhIERlcml2YWRhICh2LmcuLCAiVHJhZHVjY2nDs24gRnJhbmNlc2EgZGUgbGEgT2JyYSBkZWwgQXV0b3IgT3JpZ2luYWwsIiBvICJHdWnDs24gQ2luZW1hdG9ncsOhZmljbyBiYXNhZG8gZW4gbGEgT2JyYSBvcmlnaW5hbCBkZWwgQXV0b3IgT3JpZ2luYWwiKS4gVGFsIGNyw6lkaXRvIHB1ZWRlIHNlciBpbXBsZW1lbnRhZG8gZGUgY3VhbHF1aWVyIGZvcm1hIHJhem9uYWJsZTsgZW4gZWwgY2Fzbywgc2luIGVtYmFyZ28sIGRlIE9icmFzIERlcml2YWRhcyB1IE9icmFzIENvbGVjdGl2YXMsIHRhbCBjcsOpZGl0byBhcGFyZWNlcsOhLCBjb21vIG3DrW5pbW8sIGRvbmRlIGFwYXJlY2UgZWwgY3LDqWRpdG8gZGUgY3VhbHF1aWVyIG90cm8gYXV0b3IgY29tcGFyYWJsZSB5IGRlIHVuYSBtYW5lcmEsIGFsIG1lbm9zLCB0YW4gZGVzdGFjYWRhIGNvbW8gZWwgY3LDqWRpdG8gZGUgb3RybyBhdXRvciBjb21wYXJhYmxlLiAgCmQuIFBhcmEgZXZpdGFyIHRvZGEgY29uZnVzacOzbiwgZWwgTGljZW5jaWFudGUgYWNsYXJhIHF1ZSwgY3VhbmRvIGxhIG9icmEgZXMgdW5hIGNvbXBvc2ljacOzbiBtdXNpY2FsOgoKaS4gUmVnYWzDrWFzIHBvciBpbnRlcnByZXRhY2nDs24geSBlamVjdWNpw7NuIGJham8gbGljZW5jaWFzIGdlbmVyYWxlcy4gRWwgTGljZW5jaWFudGUgc2UgcmVzZXJ2YSBlbCBkZXJlY2hvIGV4Y2x1c2l2byBkZSBhdXRvcml6YXIgbGEgZWplY3VjacOzbiBww7pibGljYSBvIGxhIGVqZWN1Y2nDs24gcMO6YmxpY2EgZGlnaXRhbCBkZSBsYSBvYnJhIHkgZGUgcmVjb2xlY3Rhciwgc2VhIGluZGl2aWR1YWxtZW50ZSBvIGEgdHJhdsOpcyBkZSB1bmEgc29jaWVkYWQgZGUgZ2VzdGnDs24gY29sZWN0aXZhIGRlIGRlcmVjaG9zIGRlIGF1dG9yIHkgZGVyZWNob3MgY29uZXhvcyAocG9yIGVqZW1wbG8sIFNBWUNPKSwgbGFzIHJlZ2Fsw61hcyBwb3IgbGEgZWplY3VjacOzbiBww7pibGljYSBvIHBvciBsYSBlamVjdWNpw7NuIHDDumJsaWNhIGRpZ2l0YWwgZGUgbGEgb2JyYSAocG9yIGVqZW1wbG8gV2ViY2FzdCkgbGljZW5jaWFkYSBiYWpvIGxpY2VuY2lhcyBnZW5lcmFsZXMsIHNpIGxhIGludGVycHJldGFjacOzbiBvIGVqZWN1Y2nDs24gZGUgbGEgb2JyYSBlc3TDoSBwcmltb3JkaWFsbWVudGUgb3JpZW50YWRhIHBvciBvIGRpcmlnaWRhIGEgbGEgb2J0ZW5jacOzbiBkZSB1bmEgdmVudGFqYSBjb21lcmNpYWwgbyB1bmEgY29tcGVuc2FjacOzbiBtb25ldGFyaWEgcHJpdmFkYS4KaWkuIFJlZ2Fsw61hcyBwb3IgRm9ub2dyYW1hcy4gRWwgTGljZW5jaWFudGUgc2UgcmVzZXJ2YSBlbCBkZXJlY2hvIGV4Y2x1c2l2byBkZSByZWNvbGVjdGFyLCBpbmRpdmlkdWFsbWVudGUgbyBhIHRyYXbDqXMgZGUgdW5hIHNvY2llZGFkIGRlIGdlc3Rpw7NuIGNvbGVjdGl2YSBkZSBkZXJlY2hvcyBkZSBhdXRvciB5IGRlcmVjaG9zIGNvbmV4b3MgKHBvciBlamVtcGxvLCBsb3MgY29uc2FncmFkb3MgcG9yIGxhIFNBWUNPKSwgdW5hIGFnZW5jaWEgZGUgZGVyZWNob3MgbXVzaWNhbGVzIG8gYWxnw7puIGFnZW50ZSBkZXNpZ25hZG8sIGxhcyByZWdhbMOtYXMgcG9yIGN1YWxxdWllciBmb25vZ3JhbWEgcXVlIFVzdGVkIGNyZWUgYSBwYXJ0aXIgZGUgbGEgb2JyYSAo4oCcdmVyc2nDs24gY292ZXLigJ0pIHkgZGlzdHJpYnV5YSwgZW4gbG9zIHTDqXJtaW5vcyBkZWwgcsOpZ2ltZW4gZGUgZGVyZWNob3MgZGUgYXV0b3IsIHNpIGxhIGNyZWFjacOzbiBvIGRpc3RyaWJ1Y2nDs24gZGUgZXNhIHZlcnNpw7NuIGNvdmVyIGVzdMOhIHByaW1vcmRpYWxtZW50ZSBkZXN0aW5hZGEgbyBkaXJpZ2lkYSBhIG9idGVuZXIgdW5hIHZlbnRhamEgY29tZXJjaWFsIG8gdW5hIGNvbXBlbnNhY2nDs24gbW9uZXRhcmlhIHByaXZhZGEuCiAgICAgIAplLiBHZXN0acOzbiBkZSBEZXJlY2hvcyBkZSBBdXRvciBzb2JyZSBJbnRlcnByZXRhY2lvbmVzIHkgRWplY3VjaW9uZXMgRGlnaXRhbGVzIChXZWJDYXN0aW5nKS4gUGFyYSBldml0YXIgdG9kYSBjb25mdXNpw7NuLCBlbCBMaWNlbmNpYW50ZSBhY2xhcmEgcXVlLCBjdWFuZG8gbGEgb2JyYSBzZWEgdW4gZm9ub2dyYW1hLCBlbCBMaWNlbmNpYW50ZSBzZSByZXNlcnZhIGVsIGRlcmVjaG8gZXhjbHVzaXZvIGRlIGF1dG9yaXphciBsYSBlamVjdWNpw7NuIHDDumJsaWNhIGRpZ2l0YWwgZGUgbGEgb2JyYSAocG9yIGVqZW1wbG8sIHdlYmNhc3QpIHkgZGUgcmVjb2xlY3RhciwgaW5kaXZpZHVhbG1lbnRlIG8gYSB0cmF2w6lzIGRlIHVuYSBzb2NpZWRhZCBkZSBnZXN0acOzbiBjb2xlY3RpdmEgZGUgZGVyZWNob3MgZGUgYXV0b3IgeSBkZXJlY2hvcyBjb25leG9zIChwb3IgZWplbXBsbywgQUNJTlBSTyksIGxhcyByZWdhbMOtYXMgcG9yIGxhIGVqZWN1Y2nDs24gcMO6YmxpY2EgZGlnaXRhbCBkZSBsYSBvYnJhIChwb3IgZWplbXBsbywgd2ViY2FzdCksIHN1amV0YSBhIGxhcyBkaXNwb3NpY2lvbmVzIGFwbGljYWJsZXMgZGVsIHLDqWdpbWVuIGRlIERlcmVjaG8gZGUgQXV0b3IsIHNpIGVzdGEgZWplY3VjacOzbiBww7pibGljYSBkaWdpdGFsIGVzdMOhIHByaW1vcmRpYWxtZW50ZSBkaXJpZ2lkYSBhIG9idGVuZXIgdW5hIHZlbnRhamEgY29tZXJjaWFsIG8gdW5hIGNvbXBlbnNhY2nDs24gbW9uZXRhcmlhIHByaXZhZGEuCiAgCjUuIFJlcHJlc2VudGFjaW9uZXMsIEdhcmFudMOtYXMgeSBMaW1pdGFjaW9uZXMgZGUgUmVzcG9uc2FiaWxpZGFkLgpBIE1FTk9TIFFVRSBMQVMgUEFSVEVTIExPIEFDT1JEQVJBTiBERSBPVFJBIEZPUk1BIFBPUiBFU0NSSVRPLCBFTCBMSUNFTkNJQU5URSBPRlJFQ0UgTEEgT0JSQSAoRU4gRUwgRVNUQURPIEVOIEVMIFFVRSBTRSBFTkNVRU5UUkEpIOKAnFRBTCBDVUFM4oCdLCBTSU4gQlJJTkRBUiBHQVJBTlTDjUFTIERFIENMQVNFIEFMR1VOQSBSRVNQRUNUTyBERSBMQSBPQlJBLCBZQSBTRUEgRVhQUkVTQSwgSU1QTMONQ0lUQSwgTEVHQUwgTyBDVUFMUVVJRVJBIE9UUkEsIElOQ0xVWUVORE8sIFNJTiBMSU1JVEFSU0UgQSBFTExBUywgR0FSQU5Uw41BUyBERSBUSVRVTEFSSURBRCwgQ09NRVJDSUFCSUxJREFELCBBREFQVEFCSUxJREFEIE8gQURFQ1VBQ0nDk04gQSBQUk9Qw5NTSVRPIERFVEVSTUlOQURPLCBBVVNFTkNJQSBERSBJTkZSQUNDScOTTiwgREUgQVVTRU5DSUEgREUgREVGRUNUT1MgTEFURU5URVMgTyBERSBPVFJPIFRJUE8sIE8gTEEgUFJFU0VOQ0lBIE8gQVVTRU5DSUEgREUgRVJST1JFUywgU0VBTiBPIE5PIERFU0NVQlJJQkxFUyAoUFVFREFOIE8gTk8gU0VSIEVTVE9TIERFU0NVQklFUlRPUykuIEFMR1VOQVMgSlVSSVNESUNDSU9ORVMgTk8gUEVSTUlURU4gTEEgRVhDTFVTScOTTiBERSBHQVJBTlTDjUFTIElNUEzDjUNJVEFTLCBFTiBDVVlPIENBU08gRVNUQSBFWENMVVNJw5NOIFBVRURFIE5PIEFQTElDQVJTRSBBIFVTVEVELgogIAo2LiBMaW1pdGFjacOzbiBkZSByZXNwb25zYWJpbGlkYWQuCkEgTUVOT1MgUVVFIExPIEVYSUpBIEVYUFJFU0FNRU5URSBMQSBMRVkgQVBMSUNBQkxFLCBFTCBMSUNFTkNJQU5URSBOTyBTRVLDgSBSRVNQT05TQUJMRSBBTlRFIFVTVEVEIFBPUiBEQcORTyBBTEdVTk8sIFNFQSBQT1IgUkVTUE9OU0FCSUxJREFEIEVYVFJBQ09OVFJBQ1RVQUwsIFBSRUNPTlRSQUNUVUFMIE8gQ09OVFJBQ1RVQUwsIE9CSkVUSVZBIE8gU1VCSkVUSVZBLCBTRSBUUkFURSBERSBEQcORT1MgTU9SQUxFUyBPIFBBVFJJTU9OSUFMRVMsIERJUkVDVE9TIE8gSU5ESVJFQ1RPUywgUFJFVklTVE9TIE8gSU1QUkVWSVNUT1MgUFJPRFVDSURPUyBQT1IgRUwgVVNPIERFIEVTVEEgTElDRU5DSUEgTyBERSBMQSBPQlJBLCBBVU4gQ1VBTkRPIEVMIExJQ0VOQ0lBTlRFIEhBWUEgU0lETyBBRFZFUlRJRE8gREUgTEEgUE9TSUJJTElEQUQgREUgRElDSE9TIERBw5FPUy4gQUxHVU5BUyBMRVlFUyBOTyBQRVJNSVRFTiBMQSBFWENMVVNJw5NOIERFIENJRVJUQSBSRVNQT05TQUJJTElEQUQsIEVOIENVWU8gQ0FTTyBFU1RBIEVYQ0xVU0nDk04gUFVFREUgTk8gQVBMSUNBUlNFIEEgVVNURUQuCiAgCjcuIFTDqXJtaW5vLgkKYS4gRXN0YSBMaWNlbmNpYSB5IGxvcyBkZXJlY2hvcyBvdG9yZ2Fkb3MgZW4gdmlydHVkIGRlIGVsbGEgdGVybWluYXLDoW4gYXV0b23DoXRpY2FtZW50ZSBzaSBVc3RlZCBpbmZyaW5nZSBhbGd1bmEgY29uZGljacOzbiBlc3RhYmxlY2lkYSBlbiBlbGxhLiBTaW4gZW1iYXJnbywgbG9zIGluZGl2aWR1b3MgbyBlbnRpZGFkZXMgcXVlIGhhbiByZWNpYmlkbyBPYnJhcyBEZXJpdmFkYXMgbyBDb2xlY3RpdmFzIGRlIFVzdGVkIGRlIGNvbmZvcm1pZGFkIGNvbiBlc3RhIExpY2VuY2lhLCBubyB2ZXLDoW4gdGVybWluYWRhcyBzdXMgbGljZW5jaWFzLCBzaWVtcHJlIHF1ZSBlc3RvcyBpbmRpdmlkdW9zIG8gZW50aWRhZGVzIHNpZ2FuIGN1bXBsaWVuZG8gw61udGVncmFtZW50ZSBsYXMgY29uZGljaW9uZXMgZGUgZXN0YXMgbGljZW5jaWFzLiBMYXMgU2VjY2lvbmVzIDEsIDIsIDUsIDYsIDcsIHkgOCBzdWJzaXN0aXLDoW4gYSBjdWFscXVpZXIgdGVybWluYWNpw7NuIGRlIGVzdGEgTGljZW5jaWEuCmIuIFN1amV0YSBhIGxhcyBjb25kaWNpb25lcyB5IHTDqXJtaW5vcyBhbnRlcmlvcmVzLCBsYSBsaWNlbmNpYSBvdG9yZ2FkYSBhcXXDrSBlcyBwZXJwZXR1YSAoZHVyYW50ZSBlbCBwZXLDrW9kbyBkZSB2aWdlbmNpYSBkZSBsb3MgZGVyZWNob3MgZGUgYXV0b3IgZGUgbGEgb2JyYSkuIE5vIG9ic3RhbnRlIGxvIGFudGVyaW9yLCBlbCBMaWNlbmNpYW50ZSBzZSByZXNlcnZhIGVsIGRlcmVjaG8gYSBwdWJsaWNhciB5L28gZXN0cmVuYXIgbGEgT2JyYSBiYWpvIGNvbmRpY2lvbmVzIGRlIGxpY2VuY2lhIGRpZmVyZW50ZXMgbyBhIGRlamFyIGRlIGRpc3RyaWJ1aXJsYSBlbiBsb3MgdMOpcm1pbm9zIGRlIGVzdGEgTGljZW5jaWEgZW4gY3VhbHF1aWVyIG1vbWVudG87IGVuIGVsIGVudGVuZGlkbywgc2luIGVtYmFyZ28sIHF1ZSBlc2EgZWxlY2Npw7NuIG5vIHNlcnZpcsOhIHBhcmEgcmV2b2NhciBlc3RhIGxpY2VuY2lhIG8gcXVlIGRlYmEgc2VyIG90b3JnYWRhICwgYmFqbyBsb3MgdMOpcm1pbm9zIGRlIGVzdGEgbGljZW5jaWEpLCB5IGVzdGEgbGljZW5jaWEgY29udGludWFyw6EgZW4gcGxlbm8gdmlnb3IgeSBlZmVjdG8gYSBtZW5vcyBxdWUgc2VhIHRlcm1pbmFkYSBjb21vIHNlIGV4cHJlc2EgYXRyw6FzLiBMYSBMaWNlbmNpYSByZXZvY2FkYSBjb250aW51YXLDoSBzaWVuZG8gcGxlbmFtZW50ZSB2aWdlbnRlIHkgZWZlY3RpdmEgc2kgbm8gc2UgbGUgZGEgdMOpcm1pbm8gZW4gbGFzIGNvbmRpY2lvbmVzIGluZGljYWRhcyBhbnRlcmlvcm1lbnRlLgogIAo4LiBWYXJpb3MuCmEuIENhZGEgdmV6IHF1ZSBVc3RlZCBkaXN0cmlidXlhIG8gcG9uZ2EgYSBkaXNwb3NpY2nDs24gcMO6YmxpY2EgbGEgT2JyYSBvIHVuYSBPYnJhIENvbGVjdGl2YSwgZWwgTGljZW5jaWFudGUgb2ZyZWNlcsOhIGFsIGRlc3RpbmF0YXJpbyB1bmEgbGljZW5jaWEgZW4gbG9zIG1pc21vcyB0w6lybWlub3MgeSBjb25kaWNpb25lcyBxdWUgbGEgbGljZW5jaWEgb3RvcmdhZGEgYSBVc3RlZCBiYWpvIGVzdGEgTGljZW5jaWEuCmIuIFNpIGFsZ3VuYSBkaXNwb3NpY2nDs24gZGUgZXN0YSBMaWNlbmNpYSByZXN1bHRhIGludmFsaWRhZGEgbyBubyBleGlnaWJsZSwgc2Vnw7puIGxhIGxlZ2lzbGFjacOzbiB2aWdlbnRlLCBlc3RvIG5vIGFmZWN0YXLDoSBuaSBsYSB2YWxpZGV6IG5pIGxhIGFwbGljYWJpbGlkYWQgZGVsIHJlc3RvIGRlIGNvbmRpY2lvbmVzIGRlIGVzdGEgTGljZW5jaWEgeSwgc2luIGFjY2nDs24gYWRpY2lvbmFsIHBvciBwYXJ0ZSBkZSBsb3Mgc3VqZXRvcyBkZSBlc3RlIGFjdWVyZG8sIGFxdcOpbGxhIHNlIGVudGVuZGVyw6EgcmVmb3JtYWRhIGxvIG3DrW5pbW8gbmVjZXNhcmlvIHBhcmEgaGFjZXIgcXVlIGRpY2hhIGRpc3Bvc2ljacOzbiBzZWEgdsOhbGlkYSB5IGV4aWdpYmxlLgpjLiBOaW5nw7puIHTDqXJtaW5vIG8gZGlzcG9zaWNpw7NuIGRlIGVzdGEgTGljZW5jaWEgc2UgZXN0aW1hcsOhIHJlbnVuY2lhZGEgeSBuaW5ndW5hIHZpb2xhY2nDs24gZGUgZWxsYSBzZXLDoSBjb25zZW50aWRhIGEgbWVub3MgcXVlIGVzYSByZW51bmNpYSBvIGNvbnNlbnRpbWllbnRvIHNlYSBvdG9yZ2FkbyBwb3IgZXNjcml0byB5IGZpcm1hZG8gcG9yIGxhIHBhcnRlIHF1ZSByZW51bmNpZSBvIGNvbnNpZW50YS4KZC4gRXN0YSBMaWNlbmNpYSByZWZsZWphIGVsIGFjdWVyZG8gcGxlbm8gZW50cmUgbGFzIHBhcnRlcyByZXNwZWN0byBhIGxhIE9icmEgYXF1w60gbGljZW5jaWFkYS4gTm8gaGF5IGFycmVnbG9zLCBhY3VlcmRvcyBvIGRlY2xhcmFjaW9uZXMgcmVzcGVjdG8gYSBsYSBPYnJhIHF1ZSBubyBlc3TDqW4gZXNwZWNpZmljYWRvcyBlbiBlc3RlIGRvY3VtZW50by4gRWwgTGljZW5jaWFudGUgbm8gc2UgdmVyw6EgbGltaXRhZG8gcG9yIG5pbmd1bmEgZGlzcG9zaWNpw7NuIGFkaWNpb25hbCBxdWUgcHVlZGEgc3VyZ2lyIGVuIGFsZ3VuYSBjb211bmljYWNpw7NuIGVtYW5hZGEgZGUgVXN0ZWQuIEVzdGEgTGljZW5jaWEgbm8gcHVlZGUgc2VyIG1vZGlmaWNhZGEgc2luIGVsIGNvbnNlbnRpbWllbnRvIG11dHVvIHBvciBlc2NyaXRvIGRlbCBMaWNlbmNpYW50ZSB5IFVzdGVkLgo=