Modelación del transporte y distribución de microplásticos en la ciénaga Guartinaja mediante el modelo EFDC EXPLORER

Se evaluó la dinámica de transporte y destino de microplásticos en la Ciénaga Guartinaja (Bajo Sinú, Colombia), un humedal somero conectado al río Sinú y a varios cauces secundarios. El estudio buscó identificar rutas principales y zonas de acumulación bajo condiciones hidroclimáticas contrastantes...

Full description

Autores:
Rojas Roqueme, María Ximena
Tipo de recurso:
Tesis
Fecha de publicación:
2025
Institución:
Universidad de Córdoba
Repositorio:
Repositorio Institucional Unicórdoba
Idioma:
spa
OAI Identifier:
oai:repositorio.unicordoba.edu.co:ucordoba/9616
Acceso en línea:
https://repositorio.unicordoba.edu.co/handle/ucordoba/9616
https://repositorio.unicordoba.edu.co
Palabra clave:
Modelación hidrodinámica
Modelo lagrangiano
Seguimiento de partículas
Hydrodynamic modeling
Lagrangian model
Particle tracking
Rights
openAccess
License
Copyright Universidad de Córdoba, 2025
id UCORDOBA2_b1e56eb0766eb07f4f2cdacd09b376ef
oai_identifier_str oai:repositorio.unicordoba.edu.co:ucordoba/9616
network_acronym_str UCORDOBA2
network_name_str Repositorio Institucional Unicórdoba
repository_id_str
dc.title.none.fl_str_mv Modelación del transporte y distribución de microplásticos en la ciénaga Guartinaja mediante el modelo EFDC EXPLORER
title Modelación del transporte y distribución de microplásticos en la ciénaga Guartinaja mediante el modelo EFDC EXPLORER
spellingShingle Modelación del transporte y distribución de microplásticos en la ciénaga Guartinaja mediante el modelo EFDC EXPLORER
Modelación hidrodinámica
Modelo lagrangiano
Seguimiento de partículas
Hydrodynamic modeling
Lagrangian model
Particle tracking
title_short Modelación del transporte y distribución de microplásticos en la ciénaga Guartinaja mediante el modelo EFDC EXPLORER
title_full Modelación del transporte y distribución de microplásticos en la ciénaga Guartinaja mediante el modelo EFDC EXPLORER
title_fullStr Modelación del transporte y distribución de microplásticos en la ciénaga Guartinaja mediante el modelo EFDC EXPLORER
title_full_unstemmed Modelación del transporte y distribución de microplásticos en la ciénaga Guartinaja mediante el modelo EFDC EXPLORER
title_sort Modelación del transporte y distribución de microplásticos en la ciénaga Guartinaja mediante el modelo EFDC EXPLORER
dc.creator.fl_str_mv Rojas Roqueme, María Ximena
dc.contributor.advisor.none.fl_str_mv Torres Bejarano, Franklin
dc.contributor.author.none.fl_str_mv Rojas Roqueme, María Ximena
dc.contributor.jury.none.fl_str_mv Montero Guevara, Carlos Alberto
Negrete Sierra, Ivonne Stella
dc.subject.proposal.none.fl_str_mv Modelación hidrodinámica
Modelo lagrangiano
Seguimiento de partículas
topic Modelación hidrodinámica
Modelo lagrangiano
Seguimiento de partículas
Hydrodynamic modeling
Lagrangian model
Particle tracking
dc.subject.keywords.none.fl_str_mv Hydrodynamic modeling
Lagrangian model
Particle tracking
description Se evaluó la dinámica de transporte y destino de microplásticos en la Ciénaga Guartinaja (Bajo Sinú, Colombia), un humedal somero conectado al río Sinú y a varios cauces secundarios. El estudio buscó identificar rutas principales y zonas de acumulación bajo condiciones hidroclimáticas contrastantes mediante un modelo hidrodinámico bidimensional (2D) implementado en el sistema EFDC+, que incluye un módulo lagrangiano de seguimiento de partículas, forzantes hidrometeorológicas representativas y una topobatimetría detallada. Se liberaron partículas en tres puntos de aporte (río y cauces principales) y se clasificaron en cuatro grupos según su velocidad de sedimentación en tres periodos de simulación (abril, junio y septiembre). Los resultados muestran que los mayores focos de acumulación se localizaron en el sector oriental de la ciénaga, adyacente al Caño Aguas Prietas (611 partículas en abril), y en el sector occidental, cerca de San Sebastián (347 partículas en junio), mientras que en septiembre se observó un patrón bimodal con dos zonas de retención. Más del 70 % de las partículas permanecieron en la capa media y entre el 15 % y 30 % en el fondo, predominando los polímeros con mayores velocidades de sedimentación (0.018 y 0.0085 m/s). Estos resultados evidencian que la dinámica de transporte y acumulación de microplásticos está controlada por la interacción entre los forzantes hidrológicos, el viento y las propiedades físicas de los polímeros, definiendo corredores advectivos y zonas críticas de retención.
publishDate 2025
dc.date.accessioned.none.fl_str_mv 2025-11-11T15:56:18Z
dc.date.issued.none.fl_str_mv 2025-11-10
dc.type.none.fl_str_mv Trabajo de grado - Pregrado
dc.type.coar.fl_str_mv http://purl.org/coar/resource_type/c_7a1f
dc.type.driver.none.fl_str_mv info:eu-repo/semantics/bachelorThesis
dc.type.coar.none.fl_str_mv http://purl.org/coar/resource_type/c_46ec
dc.type.version.none.fl_str_mv info:eu-repo/semantics/acceptedVersion
dc.type.content.none.fl_str_mv Text
format http://purl.org/coar/resource_type/c_46ec
status_str acceptedVersion
dc.identifier.uri.none.fl_str_mv https://repositorio.unicordoba.edu.co/handle/ucordoba/9616
dc.identifier.instname.none.fl_str_mv Universidad de Córdoba
dc.identifier.reponame.none.fl_str_mv Repositorio Institucional Unicórdoba
dc.identifier.repourl.none.fl_str_mv https://repositorio.unicordoba.edu.co
url https://repositorio.unicordoba.edu.co/handle/ucordoba/9616
https://repositorio.unicordoba.edu.co
identifier_str_mv Universidad de Córdoba
Repositorio Institucional Unicórdoba
dc.language.iso.none.fl_str_mv spa
language spa
dc.relation.references.none.fl_str_mv A. Arakawa, &nbsp, & V. Lamb. (1977). Computational Design of the Basic Dynamical Processes of the UCLA General Circulation Model. Environmental Science, Physics
Alosairi, Y., Al-Salem, S., & Al Ragum, A. (2020). Three-dimensional numerical modelling of transport, fate and distribution of microplastics in the northwestern Arabian/Persian Gulf. Marine Pollution Bulletin, 161, 111723. 10.1016/j.marpolbul.2020.111723
Ayat, B., Aydoğan, B., & Gündoğdu, S. (2022). Modeling the Fate and Transport of Microplastics in Coastal Areas. In M. Z. Hashmi (Ed.), Microplastic Pollution: Environmental Occurrence and Treatment Technologies (pp. 241–255). Springer International Publishing. 10.1007/978-3-030-89220-3_12
Besseling, E., Quik, J. T. K., Sun, M., & Koelmans, A. A. (2017). Fate of nano- and microplastic in freshwater systems: A modeling study. Environmental Pollution, 220, 540–548. 10.1016/j.envpol.2016.10.001
Buitrago, Hernández, & González&nbsp. (2018). Guía nacional de modelación del recurso hídrico para aguas superficiales continentales
Burns, E. E., & Boxall, A. B. A. (2018). Microplastics in the aquatic environment: Evidence for or against adverse impacts and major knowledge gaps. Environmental Toxicology and Chemistry, 37(11), 2776–2796. 10.1002/etc.4268
Correa Velásquez, P. L., Vélez Upegui, J. I., Smith Quintero, R. A., Vélez Flórez, A. J., Barrientos Zuluaga, A. E., & Gómez, J. D. (2006). Metodología de balance hídrico y de sedimentos como herramienta de apoyo para la gestión integral del Complejo Lagunar del Bajo Sinú. Universidad Nacional de Colombia Sede Medellin. Facultad de Minas. Escuela de Geociencias y Medio Ambiente. Posgrado en Recursos Hidr?icos.
Craig, P. M., D H Chung, N T Lam, P H Son, & N X Tinh. (2014). Sigma-Zed: A Computationally Efficient Approach to Reduce the Horizontal Gradient Error in the EFDC’S Vertical Sigma Grid
CVS. (2007). Complejo Cenagóso del Bajo Sinú_Acuerdo_del_Consejo_Directivo
Daily, J., & Hoffman, M. J. (2020). Modeling the three-dimensional transport and distribution of multiple microplastic polymer types in Lake Erie. Marine Pollution Bulletin, 154, 111024. 10.1016/j.marpolbul.2020.111024
Elagami, S., Kooi, M., Vermeiren, P., Lusher, A., & Koelmans, A. A. (2022). Measurement of microplastic settling velocities and implications for residence times in natural waters. Limnology and Oceanography, 67(9), 2018–2032. https://doi.org/10.1002/lno.12046
Everaert, G., Van Cauwenberghe, L., De Rijcke, M., Koelmans, A. A., Mees, J., Vandegehuchte, M., & Janssen, C. R. (2018). Risk assessment of microplastics in the ocean: Modelling approach and first conclusions. Environmental Pollution, 242, 1930– 1938. 10.1016/j.envpol.2018.07.069
Franco-Herrera, A., Polania-Zenner, P. I., Otálora-Rincón, C. D., & Tigreros-Benavides, P. C. (2023). Distribución espacial y temporal de microplásticos flotantes en aguas del Caribe central colombiano. Revista De La Academia Colombiana De Ciencias Exactas, Físicas Y Naturales, 46(179), 406–425. rg/10.18257/raccefyn.1578
Galperin, B., Kantha, L. H., Hassid, S., & Rosati, A. (1988). A Quasi-equilibrium Turbulent Energy Model for Geophysical Flows. Journal of Atmospheric Sciences, 45(1), 55–62. 10.1175/1520-0469(1988)045
Hersbach, H., Bell, B., Berrisford, P., Hirahara, S., Horányi, A., Muñoz-Sabater, J., Nicolas, J., Peubey, C., Radu, R., Schepers, D., Simmons, A., Soci, C., Abdalla, S., Abellan, X., Balsamo, G., Bechtold, P., Biavati, G., Bidlot, J., Bonavita, M., . . . Thépaut, J. (2020). The ERA5 global reanalysis. Quarterly Journal of the Royal Meteorological Society, 146(730), 1999–2049. 10.1002/qj.3803
J. Hamrick.Un código informático de dinámica de fluidos ambientales tridimensional: aspectos teóricos y computacionales. Ciencias Ambientales, Ciencias De La Computación, 10.21220/V5TT6C
Kaiser, D., Kowalski, N., & Waniek, J. J. (2017). Effects of biofouling on the sinking behavior of microplastics. Environmental Research Letters, 12(12), 124003. https://doi.org/10.1088/1748-9326/aa8e8b
Kooi, M., Reisser, J., Slat, B., Ferrari, F. F., Schmid, M. S., Cunsolo, S., Brambini, R., Noble, K., Sirks, L. -., & Linders, T. E. W. (2016). The effect of particle properties on the depth profile of buoyant plastics in the ocean. Sci.Rep., 6, 33882.
Kooi, M., Reisser, J., Slat, B., Ferrari, F. F., Schmid, M. S., Cunsolo, S., Brambini, R., Noble, K., Sirks, L., Linders, T. E. W., Schoeneich-Argent, R. I., & Koelmans, A. A. (2016). The effect of particle properties on the depth profile of buoyant plastics in the ocean. Scientific Reports, 6, 33882. 10.1038/srep33882
Li, J., Liu, H., & Paul Chen, J. (2018). Microplastics in freshwater systems: A review on occurrence, environmental effects, and methods for microplastics detection. Water Research, 137, 362–374. 10.1016/j.watres.2017.12.056
López Borja, P. A., & Tapia Urango, D. (2024). Caracterización de microplásticos en sedimentos de la Ciénaga la Guartinaja, complejo cenagoso del Bajo Sinú - Córdoba, Colombia
Malli, A., Corella-Puertas, E., Hajjar, C., & Boulay, A. (2022). Transport mechanisms and fate of microplastics in estuarine compartments: A review. Marine Pollution Bulletin, 177, 113553. 10.1016/j.marpolbul.2022.113553
Padilla-Mendoza, C., Torres-Bejarano, F., Campo-Daza, G., & González-Márquez, L. C. (2023). Potential of Sentinel Images to Evaluate Physicochemical Parameters Concentrations in Water Bodies—Application in a Wetlands System in Northern Colombia. MDPI AG. 10.3390/w15040789
Salazar. (2008). La economía de la Ciénaga Grande del Bajo Sinú: lugar encantado de las aguas
Scandrett. (2023, Mar 30). Seguimiento de partículas lagrangianas. https://eemodelingsystem.atlassian.net. https://eemodelingsystem.atlassian.net/wiki/spaces/EK/pages/240418962/Lagrangian+ Particle+Tracking
Tetra Tech. (2007). EFDC technical memorandum, theoretical and computational aspects of the generalized vertical coordinate option in the EFDC model
Waldschläger, K., & Schüttrumpf, H. (2019). Effects of Particle Properties on the Settling and Rise Velocities of Microplastics in Freshwater under Laboratory Conditions. Environmental Science & Technology, 53(4), 1958–1966. 10.1021/acs.est.8b06794
Waldschläger, K., Elagami, S., & Kooi, M. (2024). Settling velocities of small microplastic fragments and fibers. Environmental Science & Technology, 58(4), 2075–2087. https://doi.org/10.1021/acs.est.3c09602
Wu, G., & Xu, Z. (2011). Prediction of algal blooming using EFDC model: Case study in the Daoxiang Lake. Ecological Modelling, 222(6), 1245–1252. 10.1016/j.ecolmodel.2010.12.021
Yu, H., Qi, W., Cao, X., Hu, J., Li, Y., Peng, J., Hu, C., & Qu, J. (2021). Microplastic residues in wetland ecosystems: Do they truly threaten the plant-microbe-soil system? Environment International, 156, 106708. 10.1016/j.envint.2021.106708
Zamora. (2011). ECUACIONES DIFERENCIALES PARCIALES
Zhang, K., Shi, H., Peng, J., Wang, Y., Xiong, X., Wu, C., & Lam, P. K. S. (2018). Microplastic pollution in China's inland water systems: A review of findings, methods, characteristics, effects, and management. Science of the Total Environment, 630, 1641–1653. 10.1016/j.scitotenv.2018.02.300
dc.rights.none.fl_str_mv Copyright Universidad de Córdoba, 2025
dc.rights.uri.none.fl_str_mv https://creativecommons.org/licenses/by-nc-nd/4.0/
dc.rights.license.none.fl_str_mv Atribución-NoComercial-SinDerivadas 4.0 Internacional (CC BY-NC-ND 4.0)
dc.rights.accessrights.none.fl_str_mv info:eu-repo/semantics/openAccess
dc.rights.coar.none.fl_str_mv http://purl.org/coar/access_right/c_abf2
rights_invalid_str_mv Copyright Universidad de Córdoba, 2025
https://creativecommons.org/licenses/by-nc-nd/4.0/
Atribución-NoComercial-SinDerivadas 4.0 Internacional (CC BY-NC-ND 4.0)
http://purl.org/coar/access_right/c_abf2
eu_rights_str_mv openAccess
dc.format.mimetype.none.fl_str_mv application/pdf
dc.publisher.none.fl_str_mv Universidad de Córdoba
dc.publisher.faculty.none.fl_str_mv Facultad de Ingeniería
dc.publisher.place.none.fl_str_mv Monteria, Córdoba, Colombia
dc.publisher.program.none.fl_str_mv Ingeniería Ambiental
publisher.none.fl_str_mv Universidad de Córdoba
institution Universidad de Córdoba
bitstream.url.fl_str_mv https://repositorio.unicordoba.edu.co/bitstreams/05ef97aa-aa0d-44d1-886a-9a6e2f0cd06b/download
https://repositorio.unicordoba.edu.co/bitstreams/e69a6837-5b9c-498a-b132-691cab4fadcc/download
https://repositorio.unicordoba.edu.co/bitstreams/3ffe72d5-81d5-46e3-bb7d-41404da956e6/download
https://repositorio.unicordoba.edu.co/bitstreams/d8e5c2c2-cc59-430b-9bd9-643a12c6c427/download
https://repositorio.unicordoba.edu.co/bitstreams/05af6bfe-ad6b-41bf-9e86-5d99770a6d68/download
https://repositorio.unicordoba.edu.co/bitstreams/9834ffb3-9817-4686-92eb-f6c01818c32e/download
https://repositorio.unicordoba.edu.co/bitstreams/6dbc82a0-4336-4013-a358-cf70a2e1ab10/download
bitstream.checksum.fl_str_mv b76e7a76e24cf2f94b3ce0ae5ed275d0
2a9e2717b9102429514efdd0577aab4c
627adbbbddf3458886abf9278778d5fe
5c481be159ca785146a2a7ddba9d55db
ba25a7d3c11d3181ed239a45b4857006
2aef46ff982523d24b36e09d984e7a8c
4862b1fe2a72783bc73e3fdbdf6e20bf
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
MD5
MD5
MD5
MD5
repository.name.fl_str_mv Repositorio institucional Universidad de Córdoba
repository.mail.fl_str_mv bdigital@metabiblioteca.com
_version_ 1849968192113344512
spelling Torres Bejarano, FranklinRojas Roqueme, María XimenaMontero Guevara, Carlos AlbertoNegrete Sierra, Ivonne Stella2025-11-11T15:56:18Z2025-11-10https://repositorio.unicordoba.edu.co/handle/ucordoba/9616Universidad de CórdobaRepositorio Institucional Unicórdobahttps://repositorio.unicordoba.edu.coSe evaluó la dinámica de transporte y destino de microplásticos en la Ciénaga Guartinaja (Bajo Sinú, Colombia), un humedal somero conectado al río Sinú y a varios cauces secundarios. El estudio buscó identificar rutas principales y zonas de acumulación bajo condiciones hidroclimáticas contrastantes mediante un modelo hidrodinámico bidimensional (2D) implementado en el sistema EFDC+, que incluye un módulo lagrangiano de seguimiento de partículas, forzantes hidrometeorológicas representativas y una topobatimetría detallada. Se liberaron partículas en tres puntos de aporte (río y cauces principales) y se clasificaron en cuatro grupos según su velocidad de sedimentación en tres periodos de simulación (abril, junio y septiembre). Los resultados muestran que los mayores focos de acumulación se localizaron en el sector oriental de la ciénaga, adyacente al Caño Aguas Prietas (611 partículas en abril), y en el sector occidental, cerca de San Sebastián (347 partículas en junio), mientras que en septiembre se observó un patrón bimodal con dos zonas de retención. Más del 70 % de las partículas permanecieron en la capa media y entre el 15 % y 30 % en el fondo, predominando los polímeros con mayores velocidades de sedimentación (0.018 y 0.0085 m/s). Estos resultados evidencian que la dinámica de transporte y acumulación de microplásticos está controlada por la interacción entre los forzantes hidrológicos, el viento y las propiedades físicas de los polímeros, definiendo corredores advectivos y zonas críticas de retención.The dynamics of microplastic transport and fate were evaluated in the Guartinaja Lagoon (Bajo Sinú, Colombia), a shallow wetland connected to the Sinú River and several secondary channels. The study aimed to identify main transport routes and accumulation zones under contrasting hydroclimatic conditions using a two-dimensional (2D) hydrodynamic model implemented in the EFDC+ system, which includes a Lagrangian particle-tracking module, representative hydrometeorological forcings, and detailed topobathymetric data. Particles were released at three input points (the river and main channels) during three seasonal periods (April, June, and September). The results show that the main accumulation hotspots were located in the eastern sector of the lagoon, adjacent to Caño Aguas Prietas (611 particles in April), and in the western sector near San Sebastián (347 particles in June), while a bimodal retention pattern was observed in September. More than 70% of the particles remained in the middle layer and between 15% and 30% settled at the bottom, with polymers showing higher settling velocities (0.018 and 0.0085 m/s) predominating. These results demonstrate that the transport and accumulation dynamics of microplastics are controlled by the interaction between hydrological forcings, wind, and the physical properties of the polymers, defining advective corridors and critical retention zones.1. INTRODUCCIÓN.................................................32. MATERIALES Y MÉTODOS..............................52.1 Zona de estudio..................................................52.1.1 Datos hidrometeorológicos de la zona de estudio........................................62.2 Descripción del modelo numérico hidrodinámico.................................................72.3 Módulo lagrangiano de partículas.................................................72.4 Configuración del modelo.......................................82.4.1 Forzantes y condiciones de frontera ........................................82.4.2 Liberación microplasticos........................................92.4.3 Escenarios númericos........................................103. RESULTADOS........................................113.1 Hidrodinámica estacional en la Ciénaga Guartinaja........................................113.2 Trayectorias y acumulación........................................123.3 Distribución de microplásticos por estratos de profundidad........................................124. CONCLUSIONES........................................135. BIBLIOGRAFÍA........................................14PregradoIngeniero(a) AmbientalTrabajos de Investigación y/o Extensiónapplication/pdfspaUniversidad de CórdobaFacultad de IngenieríaMonteria, Córdoba, ColombiaIngeniería AmbientalCopyright Universidad de Córdoba, 2025https://creativecommons.org/licenses/by-nc-nd/4.0/Atribución-NoComercial-SinDerivadas 4.0 Internacional (CC BY-NC-ND 4.0)info:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2Modelación del transporte y distribución de microplásticos en la ciénaga Guartinaja mediante el modelo EFDC EXPLORERTrabajo de grado - Pregradoinfo:eu-repo/semantics/bachelorThesishttp://purl.org/coar/resource_type/c_46echttp://purl.org/coar/resource_type/c_7a1finfo:eu-repo/semantics/acceptedVersionTextA. Arakawa, &nbsp, & V. Lamb. (1977). Computational Design of the Basic Dynamical Processes of the UCLA General Circulation Model. Environmental Science, PhysicsAlosairi, Y., Al-Salem, S., & Al Ragum, A. (2020). Three-dimensional numerical modelling of transport, fate and distribution of microplastics in the northwestern Arabian/Persian Gulf. Marine Pollution Bulletin, 161, 111723. 10.1016/j.marpolbul.2020.111723Ayat, B., Aydoğan, B., & Gündoğdu, S. (2022). Modeling the Fate and Transport of Microplastics in Coastal Areas. In M. Z. Hashmi (Ed.), Microplastic Pollution: Environmental Occurrence and Treatment Technologies (pp. 241–255). Springer International Publishing. 10.1007/978-3-030-89220-3_12Besseling, E., Quik, J. T. K., Sun, M., & Koelmans, A. A. (2017). Fate of nano- and microplastic in freshwater systems: A modeling study. Environmental Pollution, 220, 540–548. 10.1016/j.envpol.2016.10.001Buitrago, Hernández, & González&nbsp. (2018). Guía nacional de modelación del recurso hídrico para aguas superficiales continentalesBurns, E. E., & Boxall, A. B. A. (2018). Microplastics in the aquatic environment: Evidence for or against adverse impacts and major knowledge gaps. Environmental Toxicology and Chemistry, 37(11), 2776–2796. 10.1002/etc.4268Correa Velásquez, P. L., Vélez Upegui, J. I., Smith Quintero, R. A., Vélez Flórez, A. J., Barrientos Zuluaga, A. E., & Gómez, J. D. (2006). Metodología de balance hídrico y de sedimentos como herramienta de apoyo para la gestión integral del Complejo Lagunar del Bajo Sinú. Universidad Nacional de Colombia Sede Medellin. Facultad de Minas. Escuela de Geociencias y Medio Ambiente. Posgrado en Recursos Hidr?icos.Craig, P. M., D H Chung, N T Lam, P H Son, & N X Tinh. (2014). Sigma-Zed: A Computationally Efficient Approach to Reduce the Horizontal Gradient Error in the EFDC’S Vertical Sigma GridCVS. (2007). Complejo Cenagóso del Bajo Sinú_Acuerdo_del_Consejo_DirectivoDaily, J., & Hoffman, M. J. (2020). Modeling the three-dimensional transport and distribution of multiple microplastic polymer types in Lake Erie. Marine Pollution Bulletin, 154, 111024. 10.1016/j.marpolbul.2020.111024Elagami, S., Kooi, M., Vermeiren, P., Lusher, A., & Koelmans, A. A. (2022). Measurement of microplastic settling velocities and implications for residence times in natural waters. Limnology and Oceanography, 67(9), 2018–2032. https://doi.org/10.1002/lno.12046Everaert, G., Van Cauwenberghe, L., De Rijcke, M., Koelmans, A. A., Mees, J., Vandegehuchte, M., & Janssen, C. R. (2018). Risk assessment of microplastics in the ocean: Modelling approach and first conclusions. Environmental Pollution, 242, 1930– 1938. 10.1016/j.envpol.2018.07.069Franco-Herrera, A., Polania-Zenner, P. I., Otálora-Rincón, C. D., & Tigreros-Benavides, P. C. (2023). Distribución espacial y temporal de microplásticos flotantes en aguas del Caribe central colombiano. Revista De La Academia Colombiana De Ciencias Exactas, Físicas Y Naturales, 46(179), 406–425. rg/10.18257/raccefyn.1578Galperin, B., Kantha, L. H., Hassid, S., & Rosati, A. (1988). A Quasi-equilibrium Turbulent Energy Model for Geophysical Flows. Journal of Atmospheric Sciences, 45(1), 55–62. 10.1175/1520-0469(1988)045Hersbach, H., Bell, B., Berrisford, P., Hirahara, S., Horányi, A., Muñoz-Sabater, J., Nicolas, J., Peubey, C., Radu, R., Schepers, D., Simmons, A., Soci, C., Abdalla, S., Abellan, X., Balsamo, G., Bechtold, P., Biavati, G., Bidlot, J., Bonavita, M., . . . Thépaut, J. (2020). The ERA5 global reanalysis. Quarterly Journal of the Royal Meteorological Society, 146(730), 1999–2049. 10.1002/qj.3803J. Hamrick.Un código informático de dinámica de fluidos ambientales tridimensional: aspectos teóricos y computacionales. Ciencias Ambientales, Ciencias De La Computación, 10.21220/V5TT6CKaiser, D., Kowalski, N., & Waniek, J. J. (2017). Effects of biofouling on the sinking behavior of microplastics. Environmental Research Letters, 12(12), 124003. https://doi.org/10.1088/1748-9326/aa8e8bKooi, M., Reisser, J., Slat, B., Ferrari, F. F., Schmid, M. S., Cunsolo, S., Brambini, R., Noble, K., Sirks, L. -., & Linders, T. E. W. (2016). The effect of particle properties on the depth profile of buoyant plastics in the ocean. Sci.Rep., 6, 33882.Kooi, M., Reisser, J., Slat, B., Ferrari, F. F., Schmid, M. S., Cunsolo, S., Brambini, R., Noble, K., Sirks, L., Linders, T. E. W., Schoeneich-Argent, R. I., & Koelmans, A. A. (2016). The effect of particle properties on the depth profile of buoyant plastics in the ocean. Scientific Reports, 6, 33882. 10.1038/srep33882Li, J., Liu, H., & Paul Chen, J. (2018). Microplastics in freshwater systems: A review on occurrence, environmental effects, and methods for microplastics detection. Water Research, 137, 362–374. 10.1016/j.watres.2017.12.056López Borja, P. A., & Tapia Urango, D. (2024). Caracterización de microplásticos en sedimentos de la Ciénaga la Guartinaja, complejo cenagoso del Bajo Sinú - Córdoba, ColombiaMalli, A., Corella-Puertas, E., Hajjar, C., & Boulay, A. (2022). Transport mechanisms and fate of microplastics in estuarine compartments: A review. Marine Pollution Bulletin, 177, 113553. 10.1016/j.marpolbul.2022.113553Padilla-Mendoza, C., Torres-Bejarano, F., Campo-Daza, G., & González-Márquez, L. C. (2023). Potential of Sentinel Images to Evaluate Physicochemical Parameters Concentrations in Water Bodies—Application in a Wetlands System in Northern Colombia. MDPI AG. 10.3390/w15040789Salazar. (2008). La economía de la Ciénaga Grande del Bajo Sinú: lugar encantado de las aguasScandrett. (2023, Mar 30). Seguimiento de partículas lagrangianas. https://eemodelingsystem.atlassian.net. https://eemodelingsystem.atlassian.net/wiki/spaces/EK/pages/240418962/Lagrangian+ Particle+TrackingTetra Tech. (2007). EFDC technical memorandum, theoretical and computational aspects of the generalized vertical coordinate option in the EFDC modelWaldschläger, K., & Schüttrumpf, H. (2019). Effects of Particle Properties on the Settling and Rise Velocities of Microplastics in Freshwater under Laboratory Conditions. Environmental Science & Technology, 53(4), 1958–1966. 10.1021/acs.est.8b06794Waldschläger, K., Elagami, S., & Kooi, M. (2024). Settling velocities of small microplastic fragments and fibers. Environmental Science & Technology, 58(4), 2075–2087. https://doi.org/10.1021/acs.est.3c09602Wu, G., & Xu, Z. (2011). Prediction of algal blooming using EFDC model: Case study in the Daoxiang Lake. Ecological Modelling, 222(6), 1245–1252. 10.1016/j.ecolmodel.2010.12.021Yu, H., Qi, W., Cao, X., Hu, J., Li, Y., Peng, J., Hu, C., & Qu, J. (2021). Microplastic residues in wetland ecosystems: Do they truly threaten the plant-microbe-soil system? Environment International, 156, 106708. 10.1016/j.envint.2021.106708Zamora. (2011). ECUACIONES DIFERENCIALES PARCIALESZhang, K., Shi, H., Peng, J., Wang, Y., Xiong, X., Wu, C., & Lam, P. K. S. (2018). Microplastic pollution in China's inland water systems: A review of findings, methods, characteristics, effects, and management. Science of the Total Environment, 630, 1641–1653. 10.1016/j.scitotenv.2018.02.300Modelación hidrodinámicaModelo lagrangianoSeguimiento de partículasHydrodynamic modelingLagrangian modelParticle trackingPublicationLICENSElicense.txtlicense.txttext/plain; charset=utf-814837https://repositorio.unicordoba.edu.co/bitstreams/05ef97aa-aa0d-44d1-886a-9a6e2f0cd06b/downloadb76e7a76e24cf2f94b3ce0ae5ed275d0MD51falseAnonymousREADORIGINALRojasRoqueme_MariaXimena.pdfRojasRoqueme_MariaXimena.pdfapplication/pdf13072531https://repositorio.unicordoba.edu.co/bitstreams/e69a6837-5b9c-498a-b132-691cab4fadcc/download2a9e2717b9102429514efdd0577aab4cMD54trueAnonymousREADAutorizaciónPublicación.pdfAutorizaciónPublicación.pdfapplication/pdf1181231https://repositorio.unicordoba.edu.co/bitstreams/3ffe72d5-81d5-46e3-bb7d-41404da956e6/download627adbbbddf3458886abf9278778d5feMD53falseTEXTRojasRoqueme_MariaXimena.pdf.txtRojasRoqueme_MariaXimena.pdf.txtExtracted texttext/plain38876https://repositorio.unicordoba.edu.co/bitstreams/d8e5c2c2-cc59-430b-9bd9-643a12c6c427/download5c481be159ca785146a2a7ddba9d55dbMD55falseAnonymousREADAutorizaciónPublicación.pdf.txtAutorizaciónPublicación.pdf.txtExtracted texttext/plain32https://repositorio.unicordoba.edu.co/bitstreams/05af6bfe-ad6b-41bf-9e86-5d99770a6d68/downloadba25a7d3c11d3181ed239a45b4857006MD57falseTHUMBNAILRojasRoqueme_MariaXimena.pdf.jpgRojasRoqueme_MariaXimena.pdf.jpgGenerated Thumbnailimage/jpeg16056https://repositorio.unicordoba.edu.co/bitstreams/9834ffb3-9817-4686-92eb-f6c01818c32e/download2aef46ff982523d24b36e09d984e7a8cMD56falseAnonymousREADAutorizaciónPublicación.pdf.jpgAutorizaciónPublicación.pdf.jpgGenerated Thumbnailimage/jpeg15847https://repositorio.unicordoba.edu.co/bitstreams/6dbc82a0-4336-4013-a358-cf70a2e1ab10/download4862b1fe2a72783bc73e3fdbdf6e20bfMD58falseucordoba/9616oai:repositorio.unicordoba.edu.co:ucordoba/96162025-11-12 04:00:24.611https://creativecommons.org/licenses/by-nc-nd/4.0/Copyright Universidad de Córdoba, 2025open.accesshttps://repositorio.unicordoba.edu.coRepositorio institucional Universidad de Córdobabdigital@metabiblioteca.comTEEgT0JSQSAoVEFMIFkgQ09NTyBTRSBERUZJTkUgTcOBUyBBREVMQU5URSkgU0UgT1RPUkdBIEJBSk8gTE9TIFRFUk1JTk9TIERFIEVTVEEgTElDRU5DSUEgUMOaQkxJQ0EgREUgQ1JFQVRJVkUgQ09NTU9OUyAo4oCcTFBDQ+KAnSBPIOKAnExJQ0VOQ0lB4oCdKS4gTEEgT0JSQSBFU1TDgSBQUk9URUdJREEgUE9SIERFUkVDSE9TIERFIEFVVE9SIFkvVSBPVFJBUyBMRVlFUyBBUExJQ0FCTEVTLiBRVUVEQSBQUk9ISUJJRE8gQ1VBTFFVSUVSIFVTTyBRVUUgU0UgSEFHQSBERSBMQSBPQlJBIFFVRSBOTyBDVUVOVEUgQ09OIExBIEFVVE9SSVpBQ0nDk04gUEVSVElORU5URSBERSBDT05GT1JNSURBRCBDT04gTE9TIFTDiVJNSU5PUyBERSBFU1RBIExJQ0VOQ0lBIFkgREUgTEEgTEVZIERFIERFUkVDSE8gREUgQVVUT1IuCgpNRURJQU5URSBFTCBFSkVSQ0lDSU8gREUgQ1VBTFFVSUVSQSBERSBMT1MgREVSRUNIT1MgUVVFIFNFIE9UT1JHQU4gRU4gRVNUQSBMSUNFTkNJQSwgVVNURUQgQUNFUFRBIFkgQUNVRVJEQSBRVUVEQVIgT0JMSUdBRE8gRU4gTE9TIFRFUk1JTk9TIFFVRSBTRSBTRcORQUxBTiBFTiBFTExBLiBFTCBMSUNFTkNJQU5URSBDT05DRURFIEEgVVNURUQgTE9TIERFUkVDSE9TIENPTlRFTklET1MgRU4gRVNUQSBMSUNFTkNJQSBDT05ESUNJT05BRE9TIEEgTEEgQUNFUFRBQ0nDk04gREUgU1VTIFRFUk1JTk9TIFkgQ09ORElDSU9ORVMuIAoKMS4gRGVmaW5pY2lvbmVzCmEuIE9icmEgQ29sZWN0aXZhIGVzIHVuYSBvYnJhLCB0YWwgY29tbyB1bmEgcHVibGljYWNpw7NuIHBlcmnDs2RpY2EsIHVuYSBhbnRvbG9nw61hLCBvIHVuYSBlbmNpY2xvcGVkaWEsIGVuIGxhIHF1ZSBsYSBvYnJhIGVuIHN1IHRvdGFsaWRhZCwgc2luIG1vZGlmaWNhY2nDs24gYWxndW5hLCBqdW50byBjb24gdW4gZ3J1cG8gZGUgb3RyYXMgY29udHJpYnVjaW9uZXMgcXVlIGNvbnN0aXR1eWVuIG9icmFzIHNlcGFyYWRhcyBlIGluZGVwZW5kaWVudGVzIGVuIHPDrSBtaXNtYXMsIHNlIGludGVncmFuIGVuIHVuIHRvZG8gY29sZWN0aXZvLiBVbmEgT2JyYSBxdWUgY29uc3RpdHV5ZSB1bmEgb2JyYSBjb2xlY3RpdmEgbm8gc2UgY29uc2lkZXJhcsOhIHVuYSBPYnJhIERlcml2YWRhIChjb21vIHNlIGRlZmluZSBhYmFqbykgcGFyYSBsb3MgcHJvcMOzc2l0b3MgZGUgZXN0YSBsaWNlbmNpYS4gYXF1ZWxsYSBwcm9kdWNpZGEgcG9yIHVuIGdydXBvIGRlIGF1dG9yZXMsIGVuIHF1ZSBsYSBPYnJhIHNlIGVuY3VlbnRyYSBzaW4gbW9kaWZpY2FjaW9uZXMsIGp1bnRvIGNvbiB1bmEgY2llcnRhIGNhbnRpZGFkIGRlIG90cmFzIGNvbnRyaWJ1Y2lvbmVzLCBxdWUgY29uc3RpdHV5ZW4gZW4gc8OtIG1pc21vcyB0cmFiYWpvcyBzZXBhcmFkb3MgZSBpbmRlcGVuZGllbnRlcywgcXVlIHNvbiBpbnRlZ3JhZG9zIGFsIHRvZG8gY29sZWN0aXZvLCB0YWxlcyBjb21vIHB1YmxpY2FjaW9uZXMgcGVyacOzZGljYXMsIGFudG9sb2fDrWFzIG8gZW5jaWNsb3BlZGlhcy4KYi4gT2JyYSBEZXJpdmFkYSBzaWduaWZpY2EgdW5hIG9icmEgYmFzYWRhIGVuIGxhIG9icmEgb2JqZXRvIGRlIGVzdGEgbGljZW5jaWEgbyBlbiDDqXN0YSB5IG90cmFzIG9icmFzIHByZWV4aXN0ZW50ZXMsIHRhbGVzIGNvbW8gdHJhZHVjY2lvbmVzLCBhcnJlZ2xvcyBtdXNpY2FsZXMsIGRyYW1hdGl6YWNpb25lcywg4oCcZmljY2lvbmFsaXphY2lvbmVz4oCdLCB2ZXJzaW9uZXMgcGFyYSBjaW5lLCDigJxncmFiYWNpb25lcyBkZSBzb25pZG/igJ0sIHJlcHJvZHVjY2lvbmVzIGRlIGFydGUsIHJlc8O6bWVuZXMsIGNvbmRlbnNhY2lvbmVzLCBvIGN1YWxxdWllciBvdHJhIGVuIGxhIHF1ZSBsYSBvYnJhIHB1ZWRhIHNlciB0cmFuc2Zvcm1hZGEsIGNhbWJpYWRhIG8gYWRhcHRhZGEsIGV4Y2VwdG8gYXF1ZWxsYXMgcXVlIGNvbnN0aXR1eWFuIHVuYSBvYnJhIGNvbGVjdGl2YSwgbGFzIHF1ZSBubyBzZXLDoW4gY29uc2lkZXJhZGFzIHVuYSBvYnJhIGRlcml2YWRhIHBhcmEgZWZlY3RvcyBkZSBlc3RhIGxpY2VuY2lhLiAoUGFyYSBldml0YXIgZHVkYXMsIGVuIGVsIGNhc28gZGUgcXVlIGxhIE9icmEgc2VhIHVuYSBjb21wb3NpY2nDs24gbXVzaWNhbCBvIHVuYSBncmFiYWNpw7NuIHNvbm9yYSwgcGFyYSBsb3MgZWZlY3RvcyBkZSBlc3RhIExpY2VuY2lhIGxhIHNpbmNyb25pemFjacOzbiB0ZW1wb3JhbCBkZSBsYSBPYnJhIGNvbiB1bmEgaW1hZ2VuIGVuIG1vdmltaWVudG8gc2UgY29uc2lkZXJhcsOhIHVuYSBPYnJhIERlcml2YWRhIHBhcmEgbG9zIGZpbmVzIGRlIGVzdGEgbGljZW5jaWEpLgpjLiBMaWNlbmNpYW50ZSwgZXMgZWwgaW5kaXZpZHVvIG8gbGEgZW50aWRhZCB0aXR1bGFyIGRlIGxvcyBkZXJlY2hvcyBkZSBhdXRvciBxdWUgb2ZyZWNlIGxhIE9icmEgZW4gY29uZm9ybWlkYWQgY29uIGxhcyBjb25kaWNpb25lcyBkZSBlc3RhIExpY2VuY2lhLgpkLiBBdXRvciBvcmlnaW5hbCwgZXMgZWwgaW5kaXZpZHVvIHF1ZSBjcmXDsyBsYSBPYnJhLgplLiBPYnJhLCBlcyBhcXVlbGxhIG9icmEgc3VzY2VwdGlibGUgZGUgcHJvdGVjY2nDs24gcG9yIGVsIHLDqWdpbWVuIGRlIERlcmVjaG8gZGUgQXV0b3IgeSBxdWUgZXMgb2ZyZWNpZGEgZW4gbG9zIHTDqXJtaW5vcyBkZSBlc3RhIGxpY2VuY2lhCmYuIFVzdGVkLCBlcyBlbCBpbmRpdmlkdW8gbyBsYSBlbnRpZGFkIHF1ZSBlamVyY2l0YSBsb3MgZGVyZWNob3Mgb3RvcmdhZG9zIGFsIGFtcGFybyBkZSBlc3RhIExpY2VuY2lhIHkgcXVlIGNvbiBhbnRlcmlvcmlkYWQgbm8gaGEgdmlvbGFkbyBsYXMgY29uZGljaW9uZXMgZGUgbGEgbWlzbWEgcmVzcGVjdG8gYSBsYSBPYnJhLCBvIHF1ZSBoYXlhIG9idGVuaWRvIGF1dG9yaXphY2nDs24gZXhwcmVzYSBwb3IgcGFydGUgZGVsIExpY2VuY2lhbnRlIHBhcmEgZWplcmNlciBsb3MgZGVyZWNob3MgYWwgYW1wYXJvIGRlIGVzdGEgTGljZW5jaWEgcGVzZSBhIHVuYSB2aW9sYWNpw7NuIGFudGVyaW9yLgoJICAKMi4gRGVyZWNob3MgZGUgVXNvcyBIb25yYWRvcyB5IGV4Y2VwY2lvbmVzIExlZ2FsZXMuCk5hZGEgZW4gZXN0YSBMaWNlbmNpYSBwb2Ryw6Egc2VyIGludGVycHJldGFkbyBjb21vIHVuYSBkaXNtaW51Y2nDs24sIGxpbWl0YWNpw7NuIG8gcmVzdHJpY2Npw7NuIGRlIGxvcyBkZXJlY2hvcyBkZXJpdmFkb3MgZGVsIHVzbyBob25yYWRvIHkgb3RyYXMgbGltaXRhY2lvbmVzIG8gZXhjZXBjaW9uZXMgYSBsb3MgZGVyZWNob3MgZGVsIGF1dG9yIGJham8gZWwgcsOpZ2ltZW4gbGVnYWwgdmlnZW50ZSBvIGRlcml2YWRvIGRlIGN1YWxxdWllciBvdHJhIG5vcm1hIHF1ZSBzZSBsZSBhcGxpcXVlLgogIAozLiBDb25jZXNpw7NuIGRlIGxhIExpY2VuY2lhLgpCYWpvIGxvcyB0w6lybWlub3MgeSBjb25kaWNpb25lcyBkZSBlc3RhIExpY2VuY2lhLCBlbCBMaWNlbmNpYW50ZSBvdG9yZ2EgYSBVc3RlZCB1bmEgbGljZW5jaWEgbXVuZGlhbCwgbGlicmUgZGUgcmVnYWzDrWFzLCBubyBleGNsdXNpdmEgeSBwZXJwZXR1YSAoZHVyYW50ZSB0b2RvIGVsIHBlcsOtb2RvIGRlIHZpZ2VuY2lhIGRlIGxvcyBkZXJlY2hvcyBkZSBhdXRvcikgcGFyYSBlamVyY2VyIGVzdG9zIGRlcmVjaG9zIHNvYnJlIGxhIE9icmEgdGFsIHkgY29tbyBzZSBpbmRpY2EgYSBjb250aW51YWNpw7NuOgphLiBSZXByb2R1Y2lyIGxhIE9icmEsIGluY29ycG9yYXIgbGEgT2JyYSBlbiB1bmEgbyBtw6FzIE9icmFzIENvbGVjdGl2YXMsIHkgcmVwcm9kdWNpciBsYSBPYnJhIGluY29ycG9yYWRhIGVuIGxhcyBPYnJhcyBDb2xlY3RpdmFzLgpiLiBEaXN0cmlidWlyIGNvcGlhcyBvIGZvbm9ncmFtYXMgZGUgbGFzIE9icmFzLCBleGhpYmlybGFzIHDDumJsaWNhbWVudGUsIGVqZWN1dGFybGFzIHDDumJsaWNhbWVudGUgeS9vIHBvbmVybGFzIGEgZGlzcG9zaWNpw7NuIHDDumJsaWNhLCBpbmNsdXnDqW5kb2xhcyBjb21vIGluY29ycG9yYWRhcyBlbiBPYnJhcyBDb2xlY3RpdmFzLCBzZWfDum4gY29ycmVzcG9uZGEuCmMuIERpc3RyaWJ1aXIgY29waWFzIGRlIGxhcyBPYnJhcyBEZXJpdmFkYXMgcXVlIHNlIGdlbmVyZW4sIGV4aGliaXJsYXMgcMO6YmxpY2FtZW50ZSwgZWplY3V0YXJsYXMgcMO6YmxpY2FtZW50ZSB5L28gcG9uZXJsYXMgYSBkaXNwb3NpY2nDs24gcMO6YmxpY2EuCgpMb3MgZGVyZWNob3MgbWVuY2lvbmFkb3MgYW50ZXJpb3JtZW50ZSBwdWVkZW4gc2VyIGVqZXJjaWRvcyBlbiB0b2RvcyBsb3MgbWVkaW9zIHkgZm9ybWF0b3MsIGFjdHVhbG1lbnRlIGNvbm9jaWRvcyBvIHF1ZSBzZSBpbnZlbnRlbiBlbiBlbCBmdXR1cm8uIExvcyBkZXJlY2hvcyBhbnRlcyBtZW5jaW9uYWRvcyBpbmNsdXllbiBlbCBkZXJlY2hvIGEgcmVhbGl6YXIgZGljaGFzIG1vZGlmaWNhY2lvbmVzIGVuIGxhIG1lZGlkYSBxdWUgc2VhbiB0w6ljbmljYW1lbnRlIG5lY2VzYXJpYXMgcGFyYSBlamVyY2VyIGxvcyBkZXJlY2hvcyBlbiBvdHJvIG1lZGlvIG8gZm9ybWF0b3MsIHBlcm8gZGUgb3RyYSBtYW5lcmEgdXN0ZWQgbm8gZXN0w6EgYXV0b3JpemFkbyBwYXJhIHJlYWxpemFyIG9icmFzIGRlcml2YWRhcy4gVG9kb3MgbG9zIGRlcmVjaG9zIG5vIG90b3JnYWRvcyBleHByZXNhbWVudGUgcG9yIGVsIExpY2VuY2lhbnRlIHF1ZWRhbiBwb3IgZXN0ZSBtZWRpbyByZXNlcnZhZG9zLCBpbmNsdXllbmRvIHBlcm8gc2luIGxpbWl0YXJzZSBhIGFxdWVsbG9zIHF1ZSBzZSBtZW5jaW9uYW4gZW4gbGFzIHNlY2Npb25lcyA0KGQpIHkgNChlKS4KICAgIAo0LiBSZXN0cmljY2lvbmVzLgpMYSBsaWNlbmNpYSBvdG9yZ2FkYSBlbiBsYSBhbnRlcmlvciBTZWNjacOzbiAzIGVzdMOhIGV4cHJlc2FtZW50ZSBzdWpldGEgeSBsaW1pdGFkYSBwb3IgbGFzIHNpZ3VpZW50ZXMgcmVzdHJpY2Npb25lczoKYS4gVXN0ZWQgcHVlZGUgZGlzdHJpYnVpciwgZXhoaWJpciBww7pibGljYW1lbnRlLCBlamVjdXRhciBww7pibGljYW1lbnRlLCBvIHBvbmVyIGEgZGlzcG9zaWNpw7NuIHDDumJsaWNhIGxhIE9icmEgc8OzbG8gYmFqbyBsYXMgY29uZGljaW9uZXMgZGUgZXN0YSBMaWNlbmNpYSwgeSBVc3RlZCBkZWJlIGluY2x1aXIgdW5hIGNvcGlhIGRlIGVzdGEgbGljZW5jaWEgbyBkZWwgSWRlbnRpZmljYWRvciBVbml2ZXJzYWwgZGUgUmVjdXJzb3MgZGUgbGEgbWlzbWEgY29uIGNhZGEgY29waWEgZGUgbGEgT2JyYSBxdWUgZGlzdHJpYnV5YSwgZXhoaWJhIHDDumJsaWNhbWVudGUsIGVqZWN1dGUgcMO6YmxpY2FtZW50ZSBvIHBvbmdhIGEgZGlzcG9zaWNpw7NuIHDDumJsaWNhLiBObyBlcyBwb3NpYmxlIG9mcmVjZXIgbyBpbXBvbmVyIG5pbmd1bmEgY29uZGljacOzbiBzb2JyZSBsYSBPYnJhIHF1ZSBhbHRlcmUgbyBsaW1pdGUgbGFzIGNvbmRpY2lvbmVzIGRlIGVzdGEgTGljZW5jaWEgbyBlbCBlamVyY2ljaW8gZGUgbG9zIGRlcmVjaG9zIGRlIGxvcyBkZXN0aW5hdGFyaW9zIG90b3JnYWRvcyBlbiBlc3RlIGRvY3VtZW50by4gTm8gZXMgcG9zaWJsZSBzdWJsaWNlbmNpYXIgbGEgT2JyYS4gVXN0ZWQgZGViZSBtYW50ZW5lciBpbnRhY3RvcyB0b2RvcyBsb3MgYXZpc29zIHF1ZSBoYWdhbiByZWZlcmVuY2lhIGEgZXN0YSBMaWNlbmNpYSB5IGEgbGEgY2zDoXVzdWxhIGRlIGxpbWl0YWNpw7NuIGRlIGdhcmFudMOtYXMuIFVzdGVkIG5vIHB1ZWRlIGRpc3RyaWJ1aXIsIGV4aGliaXIgcMO6YmxpY2FtZW50ZSwgZWplY3V0YXIgcMO6YmxpY2FtZW50ZSwgbyBwb25lciBhIGRpc3Bvc2ljacOzbiBww7pibGljYSBsYSBPYnJhIGNvbiBhbGd1bmEgbWVkaWRhIHRlY25vbMOzZ2ljYSBxdWUgY29udHJvbGUgZWwgYWNjZXNvIG8gbGEgdXRpbGl6YWNpw7NuIGRlIGVsbGEgZGUgdW5hIGZvcm1hIHF1ZSBzZWEgaW5jb25zaXN0ZW50ZSBjb24gbGFzIGNvbmRpY2lvbmVzIGRlIGVzdGEgTGljZW5jaWEuIExvIGFudGVyaW9yIHNlIGFwbGljYSBhIGxhIE9icmEgaW5jb3Jwb3JhZGEgYSB1bmEgT2JyYSBDb2xlY3RpdmEsIHBlcm8gZXN0byBubyBleGlnZSBxdWUgbGEgT2JyYSBDb2xlY3RpdmEgYXBhcnRlIGRlIGxhIG9icmEgbWlzbWEgcXVlZGUgc3VqZXRhIGEgbGFzIGNvbmRpY2lvbmVzIGRlIGVzdGEgTGljZW5jaWEuIFNpIFVzdGVkIGNyZWEgdW5hIE9icmEgQ29sZWN0aXZhLCBwcmV2aW8gYXZpc28gZGUgY3VhbHF1aWVyIExpY2VuY2lhbnRlIGRlYmUsIGVuIGxhIG1lZGlkYSBkZSBsbyBwb3NpYmxlLCBlbGltaW5hciBkZSBsYSBPYnJhIENvbGVjdGl2YSBjdWFscXVpZXIgcmVmZXJlbmNpYSBhIGRpY2hvIExpY2VuY2lhbnRlIG8gYWwgQXV0b3IgT3JpZ2luYWwsIHNlZ8O6biBsbyBzb2xpY2l0YWRvIHBvciBlbCBMaWNlbmNpYW50ZSB5IGNvbmZvcm1lIGxvIGV4aWdlIGxhIGNsw6F1c3VsYSA0KGMpLgpiLiBVc3RlZCBubyBwdWVkZSBlamVyY2VyIG5pbmd1bm8gZGUgbG9zIGRlcmVjaG9zIHF1ZSBsZSBoYW4gc2lkbyBvdG9yZ2Fkb3MgZW4gbGEgU2VjY2nDs24gMyBwcmVjZWRlbnRlIGRlIG1vZG8gcXVlIGVzdMOpbiBwcmluY2lwYWxtZW50ZSBkZXN0aW5hZG9zIG8gZGlyZWN0YW1lbnRlIGRpcmlnaWRvcyBhIGNvbnNlZ3VpciB1biBwcm92ZWNobyBjb21lcmNpYWwgbyB1bmEgY29tcGVuc2FjacOzbiBtb25ldGFyaWEgcHJpdmFkYS4gRWwgaW50ZXJjYW1iaW8gZGUgbGEgT2JyYSBwb3Igb3RyYXMgb2JyYXMgcHJvdGVnaWRhcyBwb3IgZGVyZWNob3MgZGUgYXV0b3IsIHlhIHNlYSBhIHRyYXbDqXMgZGUgdW4gc2lzdGVtYSBwYXJhIGNvbXBhcnRpciBhcmNoaXZvcyBkaWdpdGFsZXMgKGRpZ2l0YWwgZmlsZS1zaGFyaW5nKSBvIGRlIGN1YWxxdWllciBvdHJhIG1hbmVyYSBubyBzZXLDoSBjb25zaWRlcmFkbyBjb21vIGVzdGFyIGRlc3RpbmFkbyBwcmluY2lwYWxtZW50ZSBvIGRpcmlnaWRvIGRpcmVjdGFtZW50ZSBhIGNvbnNlZ3VpciB1biBwcm92ZWNobyBjb21lcmNpYWwgbyB1bmEgY29tcGVuc2FjacOzbiBtb25ldGFyaWEgcHJpdmFkYSwgc2llbXByZSBxdWUgbm8gc2UgcmVhbGljZSB1biBwYWdvIG1lZGlhbnRlIHVuYSBjb21wZW5zYWNpw7NuIG1vbmV0YXJpYSBlbiByZWxhY2nDs24gY29uIGVsIGludGVyY2FtYmlvIGRlIG9icmFzIHByb3RlZ2lkYXMgcG9yIGVsIGRlcmVjaG8gZGUgYXV0b3IuCmMuIFNpIHVzdGVkIGRpc3RyaWJ1eWUsIGV4aGliZSBww7pibGljYW1lbnRlLCBlamVjdXRhIHDDumJsaWNhbWVudGUgbyBlamVjdXRhIHDDumJsaWNhbWVudGUgZW4gZm9ybWEgZGlnaXRhbCBsYSBPYnJhIG8gY3VhbHF1aWVyIE9icmEgRGVyaXZhZGEgdSBPYnJhIENvbGVjdGl2YSwgVXN0ZWQgZGViZSBtYW50ZW5lciBpbnRhY3RhIHRvZGEgbGEgaW5mb3JtYWNpw7NuIGRlIGRlcmVjaG8gZGUgYXV0b3IgZGUgbGEgT2JyYSB5IHByb3BvcmNpb25hciwgZGUgZm9ybWEgcmF6b25hYmxlIHNlZ8O6biBlbCBtZWRpbyBvIG1hbmVyYSBxdWUgVXN0ZWQgZXN0w6kgdXRpbGl6YW5kbzogKGkpIGVsIG5vbWJyZSBkZWwgQXV0b3IgT3JpZ2luYWwgc2kgZXN0w6EgcHJvdmlzdG8gKG8gc2V1ZMOzbmltbywgc2kgZnVlcmUgYXBsaWNhYmxlKSwgeS9vIChpaSkgZWwgbm9tYnJlIGRlIGxhIHBhcnRlIG8gbGFzIHBhcnRlcyBxdWUgZWwgQXV0b3IgT3JpZ2luYWwgeS9vIGVsIExpY2VuY2lhbnRlIGh1YmllcmVuIGRlc2lnbmFkbyBwYXJhIGxhIGF0cmlidWNpw7NuICh2LmcuLCB1biBpbnN0aXR1dG8gcGF0cm9jaW5hZG9yLCBlZGl0b3JpYWwsIHB1YmxpY2FjacOzbikgZW4gbGEgaW5mb3JtYWNpw7NuIGRlIGxvcyBkZXJlY2hvcyBkZSBhdXRvciBkZWwgTGljZW5jaWFudGUsIHTDqXJtaW5vcyBkZSBzZXJ2aWNpb3MgbyBkZSBvdHJhcyBmb3JtYXMgcmF6b25hYmxlczsgZWwgdMOtdHVsbyBkZSBsYSBPYnJhIHNpIGVzdMOhIHByb3Zpc3RvOyBlbiBsYSBtZWRpZGEgZGUgbG8gcmF6b25hYmxlbWVudGUgZmFjdGlibGUgeSwgc2kgZXN0w6EgcHJvdmlzdG8sIGVsIElkZW50aWZpY2Fkb3IgVW5pZm9ybWUgZGUgUmVjdXJzb3MgKFVuaWZvcm0gUmVzb3VyY2UgSWRlbnRpZmllcikgcXVlIGVsIExpY2VuY2lhbnRlIGVzcGVjaWZpY2EgcGFyYSBzZXIgYXNvY2lhZG8gY29uIGxhIE9icmEsIHNhbHZvIHF1ZSB0YWwgVVJJIG5vIHNlIHJlZmllcmEgYSBsYSBub3RhIHNvYnJlIGxvcyBkZXJlY2hvcyBkZSBhdXRvciBvIGEgbGEgaW5mb3JtYWNpw7NuIHNvYnJlIGVsIGxpY2VuY2lhbWllbnRvIGRlIGxhIE9icmE7IHkgZW4gZWwgY2FzbyBkZSB1bmEgT2JyYSBEZXJpdmFkYSwgYXRyaWJ1aXIgZWwgY3LDqWRpdG8gaWRlbnRpZmljYW5kbyBlbCB1c28gZGUgbGEgT2JyYSBlbiBsYSBPYnJhIERlcml2YWRhICh2LmcuLCAiVHJhZHVjY2nDs24gRnJhbmNlc2EgZGUgbGEgT2JyYSBkZWwgQXV0b3IgT3JpZ2luYWwsIiBvICJHdWnDs24gQ2luZW1hdG9ncsOhZmljbyBiYXNhZG8gZW4gbGEgT2JyYSBvcmlnaW5hbCBkZWwgQXV0b3IgT3JpZ2luYWwiKS4gVGFsIGNyw6lkaXRvIHB1ZWRlIHNlciBpbXBsZW1lbnRhZG8gZGUgY3VhbHF1aWVyIGZvcm1hIHJhem9uYWJsZTsgZW4gZWwgY2Fzbywgc2luIGVtYmFyZ28sIGRlIE9icmFzIERlcml2YWRhcyB1IE9icmFzIENvbGVjdGl2YXMsIHRhbCBjcsOpZGl0byBhcGFyZWNlcsOhLCBjb21vIG3DrW5pbW8sIGRvbmRlIGFwYXJlY2UgZWwgY3LDqWRpdG8gZGUgY3VhbHF1aWVyIG90cm8gYXV0b3IgY29tcGFyYWJsZSB5IGRlIHVuYSBtYW5lcmEsIGFsIG1lbm9zLCB0YW4gZGVzdGFjYWRhIGNvbW8gZWwgY3LDqWRpdG8gZGUgb3RybyBhdXRvciBjb21wYXJhYmxlLiAgCmQuIFBhcmEgZXZpdGFyIHRvZGEgY29uZnVzacOzbiwgZWwgTGljZW5jaWFudGUgYWNsYXJhIHF1ZSwgY3VhbmRvIGxhIG9icmEgZXMgdW5hIGNvbXBvc2ljacOzbiBtdXNpY2FsOgoKaS4gUmVnYWzDrWFzIHBvciBpbnRlcnByZXRhY2nDs24geSBlamVjdWNpw7NuIGJham8gbGljZW5jaWFzIGdlbmVyYWxlcy4gRWwgTGljZW5jaWFudGUgc2UgcmVzZXJ2YSBlbCBkZXJlY2hvIGV4Y2x1c2l2byBkZSBhdXRvcml6YXIgbGEgZWplY3VjacOzbiBww7pibGljYSBvIGxhIGVqZWN1Y2nDs24gcMO6YmxpY2EgZGlnaXRhbCBkZSBsYSBvYnJhIHkgZGUgcmVjb2xlY3Rhciwgc2VhIGluZGl2aWR1YWxtZW50ZSBvIGEgdHJhdsOpcyBkZSB1bmEgc29jaWVkYWQgZGUgZ2VzdGnDs24gY29sZWN0aXZhIGRlIGRlcmVjaG9zIGRlIGF1dG9yIHkgZGVyZWNob3MgY29uZXhvcyAocG9yIGVqZW1wbG8sIFNBWUNPKSwgbGFzIHJlZ2Fsw61hcyBwb3IgbGEgZWplY3VjacOzbiBww7pibGljYSBvIHBvciBsYSBlamVjdWNpw7NuIHDDumJsaWNhIGRpZ2l0YWwgZGUgbGEgb2JyYSAocG9yIGVqZW1wbG8gV2ViY2FzdCkgbGljZW5jaWFkYSBiYWpvIGxpY2VuY2lhcyBnZW5lcmFsZXMsIHNpIGxhIGludGVycHJldGFjacOzbiBvIGVqZWN1Y2nDs24gZGUgbGEgb2JyYSBlc3TDoSBwcmltb3JkaWFsbWVudGUgb3JpZW50YWRhIHBvciBvIGRpcmlnaWRhIGEgbGEgb2J0ZW5jacOzbiBkZSB1bmEgdmVudGFqYSBjb21lcmNpYWwgbyB1bmEgY29tcGVuc2FjacOzbiBtb25ldGFyaWEgcHJpdmFkYS4KaWkuIFJlZ2Fsw61hcyBwb3IgRm9ub2dyYW1hcy4gRWwgTGljZW5jaWFudGUgc2UgcmVzZXJ2YSBlbCBkZXJlY2hvIGV4Y2x1c2l2byBkZSByZWNvbGVjdGFyLCBpbmRpdmlkdWFsbWVudGUgbyBhIHRyYXbDqXMgZGUgdW5hIHNvY2llZGFkIGRlIGdlc3Rpw7NuIGNvbGVjdGl2YSBkZSBkZXJlY2hvcyBkZSBhdXRvciB5IGRlcmVjaG9zIGNvbmV4b3MgKHBvciBlamVtcGxvLCBsb3MgY29uc2FncmFkb3MgcG9yIGxhIFNBWUNPKSwgdW5hIGFnZW5jaWEgZGUgZGVyZWNob3MgbXVzaWNhbGVzIG8gYWxnw7puIGFnZW50ZSBkZXNpZ25hZG8sIGxhcyByZWdhbMOtYXMgcG9yIGN1YWxxdWllciBmb25vZ3JhbWEgcXVlIFVzdGVkIGNyZWUgYSBwYXJ0aXIgZGUgbGEgb2JyYSAo4oCcdmVyc2nDs24gY292ZXLigJ0pIHkgZGlzdHJpYnV5YSwgZW4gbG9zIHTDqXJtaW5vcyBkZWwgcsOpZ2ltZW4gZGUgZGVyZWNob3MgZGUgYXV0b3IsIHNpIGxhIGNyZWFjacOzbiBvIGRpc3RyaWJ1Y2nDs24gZGUgZXNhIHZlcnNpw7NuIGNvdmVyIGVzdMOhIHByaW1vcmRpYWxtZW50ZSBkZXN0aW5hZGEgbyBkaXJpZ2lkYSBhIG9idGVuZXIgdW5hIHZlbnRhamEgY29tZXJjaWFsIG8gdW5hIGNvbXBlbnNhY2nDs24gbW9uZXRhcmlhIHByaXZhZGEuCiAgICAgIAplLiBHZXN0acOzbiBkZSBEZXJlY2hvcyBkZSBBdXRvciBzb2JyZSBJbnRlcnByZXRhY2lvbmVzIHkgRWplY3VjaW9uZXMgRGlnaXRhbGVzIChXZWJDYXN0aW5nKS4gUGFyYSBldml0YXIgdG9kYSBjb25mdXNpw7NuLCBlbCBMaWNlbmNpYW50ZSBhY2xhcmEgcXVlLCBjdWFuZG8gbGEgb2JyYSBzZWEgdW4gZm9ub2dyYW1hLCBlbCBMaWNlbmNpYW50ZSBzZSByZXNlcnZhIGVsIGRlcmVjaG8gZXhjbHVzaXZvIGRlIGF1dG9yaXphciBsYSBlamVjdWNpw7NuIHDDumJsaWNhIGRpZ2l0YWwgZGUgbGEgb2JyYSAocG9yIGVqZW1wbG8sIHdlYmNhc3QpIHkgZGUgcmVjb2xlY3RhciwgaW5kaXZpZHVhbG1lbnRlIG8gYSB0cmF2w6lzIGRlIHVuYSBzb2NpZWRhZCBkZSBnZXN0acOzbiBjb2xlY3RpdmEgZGUgZGVyZWNob3MgZGUgYXV0b3IgeSBkZXJlY2hvcyBjb25leG9zIChwb3IgZWplbXBsbywgQUNJTlBSTyksIGxhcyByZWdhbMOtYXMgcG9yIGxhIGVqZWN1Y2nDs24gcMO6YmxpY2EgZGlnaXRhbCBkZSBsYSBvYnJhIChwb3IgZWplbXBsbywgd2ViY2FzdCksIHN1amV0YSBhIGxhcyBkaXNwb3NpY2lvbmVzIGFwbGljYWJsZXMgZGVsIHLDqWdpbWVuIGRlIERlcmVjaG8gZGUgQXV0b3IsIHNpIGVzdGEgZWplY3VjacOzbiBww7pibGljYSBkaWdpdGFsIGVzdMOhIHByaW1vcmRpYWxtZW50ZSBkaXJpZ2lkYSBhIG9idGVuZXIgdW5hIHZlbnRhamEgY29tZXJjaWFsIG8gdW5hIGNvbXBlbnNhY2nDs24gbW9uZXRhcmlhIHByaXZhZGEuCiAgCjUuIFJlcHJlc2VudGFjaW9uZXMsIEdhcmFudMOtYXMgeSBMaW1pdGFjaW9uZXMgZGUgUmVzcG9uc2FiaWxpZGFkLgpBIE1FTk9TIFFVRSBMQVMgUEFSVEVTIExPIEFDT1JEQVJBTiBERSBPVFJBIEZPUk1BIFBPUiBFU0NSSVRPLCBFTCBMSUNFTkNJQU5URSBPRlJFQ0UgTEEgT0JSQSAoRU4gRUwgRVNUQURPIEVOIEVMIFFVRSBTRSBFTkNVRU5UUkEpIOKAnFRBTCBDVUFM4oCdLCBTSU4gQlJJTkRBUiBHQVJBTlTDjUFTIERFIENMQVNFIEFMR1VOQSBSRVNQRUNUTyBERSBMQSBPQlJBLCBZQSBTRUEgRVhQUkVTQSwgSU1QTMONQ0lUQSwgTEVHQUwgTyBDVUFMUVVJRVJBIE9UUkEsIElOQ0xVWUVORE8sIFNJTiBMSU1JVEFSU0UgQSBFTExBUywgR0FSQU5Uw41BUyBERSBUSVRVTEFSSURBRCwgQ09NRVJDSUFCSUxJREFELCBBREFQVEFCSUxJREFEIE8gQURFQ1VBQ0nDk04gQSBQUk9Qw5NTSVRPIERFVEVSTUlOQURPLCBBVVNFTkNJQSBERSBJTkZSQUNDScOTTiwgREUgQVVTRU5DSUEgREUgREVGRUNUT1MgTEFURU5URVMgTyBERSBPVFJPIFRJUE8sIE8gTEEgUFJFU0VOQ0lBIE8gQVVTRU5DSUEgREUgRVJST1JFUywgU0VBTiBPIE5PIERFU0NVQlJJQkxFUyAoUFVFREFOIE8gTk8gU0VSIEVTVE9TIERFU0NVQklFUlRPUykuIEFMR1VOQVMgSlVSSVNESUNDSU9ORVMgTk8gUEVSTUlURU4gTEEgRVhDTFVTScOTTiBERSBHQVJBTlTDjUFTIElNUEzDjUNJVEFTLCBFTiBDVVlPIENBU08gRVNUQSBFWENMVVNJw5NOIFBVRURFIE5PIEFQTElDQVJTRSBBIFVTVEVELgogIAo2LiBMaW1pdGFjacOzbiBkZSByZXNwb25zYWJpbGlkYWQuCkEgTUVOT1MgUVVFIExPIEVYSUpBIEVYUFJFU0FNRU5URSBMQSBMRVkgQVBMSUNBQkxFLCBFTCBMSUNFTkNJQU5URSBOTyBTRVLDgSBSRVNQT05TQUJMRSBBTlRFIFVTVEVEIFBPUiBEQcORTyBBTEdVTk8sIFNFQSBQT1IgUkVTUE9OU0FCSUxJREFEIEVYVFJBQ09OVFJBQ1RVQUwsIFBSRUNPTlRSQUNUVUFMIE8gQ09OVFJBQ1RVQUwsIE9CSkVUSVZBIE8gU1VCSkVUSVZBLCBTRSBUUkFURSBERSBEQcORT1MgTU9SQUxFUyBPIFBBVFJJTU9OSUFMRVMsIERJUkVDVE9TIE8gSU5ESVJFQ1RPUywgUFJFVklTVE9TIE8gSU1QUkVWSVNUT1MgUFJPRFVDSURPUyBQT1IgRUwgVVNPIERFIEVTVEEgTElDRU5DSUEgTyBERSBMQSBPQlJBLCBBVU4gQ1VBTkRPIEVMIExJQ0VOQ0lBTlRFIEhBWUEgU0lETyBBRFZFUlRJRE8gREUgTEEgUE9TSUJJTElEQUQgREUgRElDSE9TIERBw5FPUy4gQUxHVU5BUyBMRVlFUyBOTyBQRVJNSVRFTiBMQSBFWENMVVNJw5NOIERFIENJRVJUQSBSRVNQT05TQUJJTElEQUQsIEVOIENVWU8gQ0FTTyBFU1RBIEVYQ0xVU0nDk04gUFVFREUgTk8gQVBMSUNBUlNFIEEgVVNURUQuCiAgCjcuIFTDqXJtaW5vLgkKYS4gRXN0YSBMaWNlbmNpYSB5IGxvcyBkZXJlY2hvcyBvdG9yZ2Fkb3MgZW4gdmlydHVkIGRlIGVsbGEgdGVybWluYXLDoW4gYXV0b23DoXRpY2FtZW50ZSBzaSBVc3RlZCBpbmZyaW5nZSBhbGd1bmEgY29uZGljacOzbiBlc3RhYmxlY2lkYSBlbiBlbGxhLiBTaW4gZW1iYXJnbywgbG9zIGluZGl2aWR1b3MgbyBlbnRpZGFkZXMgcXVlIGhhbiByZWNpYmlkbyBPYnJhcyBEZXJpdmFkYXMgbyBDb2xlY3RpdmFzIGRlIFVzdGVkIGRlIGNvbmZvcm1pZGFkIGNvbiBlc3RhIExpY2VuY2lhLCBubyB2ZXLDoW4gdGVybWluYWRhcyBzdXMgbGljZW5jaWFzLCBzaWVtcHJlIHF1ZSBlc3RvcyBpbmRpdmlkdW9zIG8gZW50aWRhZGVzIHNpZ2FuIGN1bXBsaWVuZG8gw61udGVncmFtZW50ZSBsYXMgY29uZGljaW9uZXMgZGUgZXN0YXMgbGljZW5jaWFzLiBMYXMgU2VjY2lvbmVzIDEsIDIsIDUsIDYsIDcsIHkgOCBzdWJzaXN0aXLDoW4gYSBjdWFscXVpZXIgdGVybWluYWNpw7NuIGRlIGVzdGEgTGljZW5jaWEuCmIuIFN1amV0YSBhIGxhcyBjb25kaWNpb25lcyB5IHTDqXJtaW5vcyBhbnRlcmlvcmVzLCBsYSBsaWNlbmNpYSBvdG9yZ2FkYSBhcXXDrSBlcyBwZXJwZXR1YSAoZHVyYW50ZSBlbCBwZXLDrW9kbyBkZSB2aWdlbmNpYSBkZSBsb3MgZGVyZWNob3MgZGUgYXV0b3IgZGUgbGEgb2JyYSkuIE5vIG9ic3RhbnRlIGxvIGFudGVyaW9yLCBlbCBMaWNlbmNpYW50ZSBzZSByZXNlcnZhIGVsIGRlcmVjaG8gYSBwdWJsaWNhciB5L28gZXN0cmVuYXIgbGEgT2JyYSBiYWpvIGNvbmRpY2lvbmVzIGRlIGxpY2VuY2lhIGRpZmVyZW50ZXMgbyBhIGRlamFyIGRlIGRpc3RyaWJ1aXJsYSBlbiBsb3MgdMOpcm1pbm9zIGRlIGVzdGEgTGljZW5jaWEgZW4gY3VhbHF1aWVyIG1vbWVudG87IGVuIGVsIGVudGVuZGlkbywgc2luIGVtYmFyZ28sIHF1ZSBlc2EgZWxlY2Npw7NuIG5vIHNlcnZpcsOhIHBhcmEgcmV2b2NhciBlc3RhIGxpY2VuY2lhIG8gcXVlIGRlYmEgc2VyIG90b3JnYWRhICwgYmFqbyBsb3MgdMOpcm1pbm9zIGRlIGVzdGEgbGljZW5jaWEpLCB5IGVzdGEgbGljZW5jaWEgY29udGludWFyw6EgZW4gcGxlbm8gdmlnb3IgeSBlZmVjdG8gYSBtZW5vcyBxdWUgc2VhIHRlcm1pbmFkYSBjb21vIHNlIGV4cHJlc2EgYXRyw6FzLiBMYSBMaWNlbmNpYSByZXZvY2FkYSBjb250aW51YXLDoSBzaWVuZG8gcGxlbmFtZW50ZSB2aWdlbnRlIHkgZWZlY3RpdmEgc2kgbm8gc2UgbGUgZGEgdMOpcm1pbm8gZW4gbGFzIGNvbmRpY2lvbmVzIGluZGljYWRhcyBhbnRlcmlvcm1lbnRlLgogIAo4LiBWYXJpb3MuCmEuIENhZGEgdmV6IHF1ZSBVc3RlZCBkaXN0cmlidXlhIG8gcG9uZ2EgYSBkaXNwb3NpY2nDs24gcMO6YmxpY2EgbGEgT2JyYSBvIHVuYSBPYnJhIENvbGVjdGl2YSwgZWwgTGljZW5jaWFudGUgb2ZyZWNlcsOhIGFsIGRlc3RpbmF0YXJpbyB1bmEgbGljZW5jaWEgZW4gbG9zIG1pc21vcyB0w6lybWlub3MgeSBjb25kaWNpb25lcyBxdWUgbGEgbGljZW5jaWEgb3RvcmdhZGEgYSBVc3RlZCBiYWpvIGVzdGEgTGljZW5jaWEuCmIuIFNpIGFsZ3VuYSBkaXNwb3NpY2nDs24gZGUgZXN0YSBMaWNlbmNpYSByZXN1bHRhIGludmFsaWRhZGEgbyBubyBleGlnaWJsZSwgc2Vnw7puIGxhIGxlZ2lzbGFjacOzbiB2aWdlbnRlLCBlc3RvIG5vIGFmZWN0YXLDoSBuaSBsYSB2YWxpZGV6IG5pIGxhIGFwbGljYWJpbGlkYWQgZGVsIHJlc3RvIGRlIGNvbmRpY2lvbmVzIGRlIGVzdGEgTGljZW5jaWEgeSwgc2luIGFjY2nDs24gYWRpY2lvbmFsIHBvciBwYXJ0ZSBkZSBsb3Mgc3VqZXRvcyBkZSBlc3RlIGFjdWVyZG8sIGFxdcOpbGxhIHNlIGVudGVuZGVyw6EgcmVmb3JtYWRhIGxvIG3DrW5pbW8gbmVjZXNhcmlvIHBhcmEgaGFjZXIgcXVlIGRpY2hhIGRpc3Bvc2ljacOzbiBzZWEgdsOhbGlkYSB5IGV4aWdpYmxlLgpjLiBOaW5nw7puIHTDqXJtaW5vIG8gZGlzcG9zaWNpw7NuIGRlIGVzdGEgTGljZW5jaWEgc2UgZXN0aW1hcsOhIHJlbnVuY2lhZGEgeSBuaW5ndW5hIHZpb2xhY2nDs24gZGUgZWxsYSBzZXLDoSBjb25zZW50aWRhIGEgbWVub3MgcXVlIGVzYSByZW51bmNpYSBvIGNvbnNlbnRpbWllbnRvIHNlYSBvdG9yZ2FkbyBwb3IgZXNjcml0byB5IGZpcm1hZG8gcG9yIGxhIHBhcnRlIHF1ZSByZW51bmNpZSBvIGNvbnNpZW50YS4KZC4gRXN0YSBMaWNlbmNpYSByZWZsZWphIGVsIGFjdWVyZG8gcGxlbm8gZW50cmUgbGFzIHBhcnRlcyByZXNwZWN0byBhIGxhIE9icmEgYXF1w60gbGljZW5jaWFkYS4gTm8gaGF5IGFycmVnbG9zLCBhY3VlcmRvcyBvIGRlY2xhcmFjaW9uZXMgcmVzcGVjdG8gYSBsYSBPYnJhIHF1ZSBubyBlc3TDqW4gZXNwZWNpZmljYWRvcyBlbiBlc3RlIGRvY3VtZW50by4gRWwgTGljZW5jaWFudGUgbm8gc2UgdmVyw6EgbGltaXRhZG8gcG9yIG5pbmd1bmEgZGlzcG9zaWNpw7NuIGFkaWNpb25hbCBxdWUgcHVlZGEgc3VyZ2lyIGVuIGFsZ3VuYSBjb211bmljYWNpw7NuIGVtYW5hZGEgZGUgVXN0ZWQuIEVzdGEgTGljZW5jaWEgbm8gcHVlZGUgc2VyIG1vZGlmaWNhZGEgc2luIGVsIGNvbnNlbnRpbWllbnRvIG11dHVvIHBvciBlc2NyaXRvIGRlbCBMaWNlbmNpYW50ZSB5IFVzdGVkLgo=