Codopado estratégico para incrementar el magnetismo en la monocapa de nitruro aluminio hexagonal

En este trabajo, se hace un estudio sobre los co-dopados con manganeso (Mn) y oxigeno (O) en la monocapa AlN hexagonal planar, en la geometría 4x4 (h-4x4-AlN (0001)). Los cálculos se ejecutan usando la Teoría del Funcional de la Densidad junto con pseudopotenciales atómicos y una base de ondas plana...

Full description

Autores:
Pérez Rossi, Kevin David
Tipo de recurso:
Trabajo de grado de pregrado
Fecha de publicación:
2024
Institución:
Universidad de Córdoba
Repositorio:
Repositorio Institucional Unicórdoba
Idioma:
spa
OAI Identifier:
oai:repositorio.unicordoba.edu.co:ucordoba/8525
Acceso en línea:
https://repositorio.unicordoba.edu.co/handle/ucordoba/8525
https://repositorio.unicordoba.edu.co/
Palabra clave:
Monocapa
Codopado
Magnetizacion
Monolayer
Codoped
Magnetization
Rights
openAccess
License
Copyright Universidad de Córdoba, 2024
id UCORDOBA2_b0d87079788b2748f8844221a23525b4
oai_identifier_str oai:repositorio.unicordoba.edu.co:ucordoba/8525
network_acronym_str UCORDOBA2
network_name_str Repositorio Institucional Unicórdoba
repository_id_str
dc.title.spa.fl_str_mv Codopado estratégico para incrementar el magnetismo en la monocapa de nitruro aluminio hexagonal
title Codopado estratégico para incrementar el magnetismo en la monocapa de nitruro aluminio hexagonal
spellingShingle Codopado estratégico para incrementar el magnetismo en la monocapa de nitruro aluminio hexagonal
Monocapa
Codopado
Magnetizacion
Monolayer
Codoped
Magnetization
title_short Codopado estratégico para incrementar el magnetismo en la monocapa de nitruro aluminio hexagonal
title_full Codopado estratégico para incrementar el magnetismo en la monocapa de nitruro aluminio hexagonal
title_fullStr Codopado estratégico para incrementar el magnetismo en la monocapa de nitruro aluminio hexagonal
title_full_unstemmed Codopado estratégico para incrementar el magnetismo en la monocapa de nitruro aluminio hexagonal
title_sort Codopado estratégico para incrementar el magnetismo en la monocapa de nitruro aluminio hexagonal
dc.creator.fl_str_mv Pérez Rossi, Kevin David
dc.contributor.advisor.none.fl_str_mv Ortega López, Cesar
dc.contributor.author.none.fl_str_mv Pérez Rossi, Kevin David
dc.contributor.projectmember.none.fl_str_mv Meléndez Martínez, Raul Francisco
Lara Martínez, Ronald Steven
Arteaga Calderón, Mario
dc.contributor.jury.none.fl_str_mv Espriella Vélez, Nicolás De la
Murillo García, Jean Fred
dc.subject.proposal.spa.fl_str_mv Monocapa
Codopado
Magnetizacion
topic Monocapa
Codopado
Magnetizacion
Monolayer
Codoped
Magnetization
dc.subject.keywords.eng.fl_str_mv Monolayer
Codoped
Magnetization
description En este trabajo, se hace un estudio sobre los co-dopados con manganeso (Mn) y oxigeno (O) en la monocapa AlN hexagonal planar, en la geometría 4x4 (h-4x4-AlN (0001)). Los cálculos se ejecutan usando la Teoría del Funcional de la Densidad junto con pseudopotenciales atómicos y una base de ondas planas. La monocapa se modela usando el esquema del slab periódico. Aquí, se hacen, por separado, dos co-sustituciones de los átomos Al y N por Mn y O, respectivamente. En el primer caso, los átomos sustitutos, se colocan a una distancia lo suficiente grande de modo que las impurezas, no interactúen, es decir no forman la molécula Mn-O. En el segundo caso, los átomos sustitutos, se colocan a una distancia lo suficiente pequeña de modo que las impurezas, interactúen, es decir se forma la molécula Mn-O. Se encuentra que las propiedades estructurales de la monocapa con impurezas, no interactuantes, no cambian significativamente, con respecto a la monocapa prístina, mientras que, en el caso de las impurezas, interactuantes, sí cambian significativamente, con respecto a la monocapa prístina. En particular, la distancia optima entre las impurezas interactuantes del par atómico, es ≈2.4 Å, mientras que la longitud de enlace del par atómico, en las impurezas, no interactuantes, es ≈2.1 Å. En todos los casos, se establece la estabilidad termodinámica y analizan las propiedades electrónicas de la monocapa h-AlN con y sin impurezas de Mn y O, a través de cálculos de la energía de formación y DOS/carga Löwdin , respectivamente. En ambos casos, pares atómicos (Mn y O) interactuantes y no interactuantes, la monocapa presenta propiedades magnéticas, con una magnetización total de 5.0 μ_0/cell y 4.9 μ_0/cell, respectivamente. De estos resultados, se infiere que, en el caso en el que las impurezas interactúan, la magnetización en la monocapa AlN codopada, se incrementa significativamente, con respecto al caso en que las co-impurezas, no interactúan.
publishDate 2024
dc.date.accessioned.none.fl_str_mv 2024-08-14T21:10:31Z
dc.date.available.none.fl_str_mv 2024-08-14T21:10:31Z
dc.date.issued.none.fl_str_mv 2024-08-14
dc.type.none.fl_str_mv Trabajo de grado - Pregrado
dc.type.driver.none.fl_str_mv info:eu-repo/semantics/bachelorThesis
dc.type.coar.none.fl_str_mv http://purl.org/coar/resource_type/c_7a1f
dc.type.version.none.fl_str_mv info:eu-repo/semantics/acceptedVersion
dc.type.content.none.fl_str_mv Text
format http://purl.org/coar/resource_type/c_7a1f
status_str acceptedVersion
dc.identifier.uri.none.fl_str_mv https://repositorio.unicordoba.edu.co/handle/ucordoba/8525
dc.identifier.instname.none.fl_str_mv Universidad de Córdoba
dc.identifier.reponame.none.fl_str_mv Repositorio Universidad de Córdoba
dc.identifier.repourl.none.fl_str_mv https://repositorio.unicordoba.edu.co/
url https://repositorio.unicordoba.edu.co/handle/ucordoba/8525
https://repositorio.unicordoba.edu.co/
identifier_str_mv Universidad de Córdoba
Repositorio Universidad de Córdoba
dc.language.iso.none.fl_str_mv spa
language spa
dc.relation.references.none.fl_str_mv [1] Novoselov , K., y otros. Electric Field Effect in Atomically Thin Carbon Films. s.l. : Science , 2004. págs. 666-669. Vol. 306.
[2] Vahedi Fakhrabad, D., Shahtahmasebi, N., & Ashhadi, M. (2015). Optical excitations and quasiparticle energies in the AlN monolayer honeycomb structure. Superlattices and Microstructures, 79, 38–44. doi:10.1016/j.spmi.2014.12.012
[3] Ganji, M. D., Jameh-Bozorgi, S., & Rezvani, M. (2016). A comparative study of structural and electronic properties of formaldehyde molecule on monolayer honeycomb structures based on vdW-DF prospective. Applied Surface Science, 384, 175–181. doi:10.1016/j.apsusc.2016.05.011
[4] Han, R., Chen, X., & Yan, Y. (2017). Magnetic properties of AlN monolayer doped with group 1ª or 2ª nonmagnetic element: First-principles study. Chinese Physics B, 26(9), 097503. doi:10.1088/1674-1056/26/9/097503
[5] Wang, S., An, Y., Xie, C., Zhang, H., & Zeng, Q. (2018). First-principles prediction of ferromagnetism in transition-metal doped monolayer AlN. Superlattices and Microstructures. doi:10.1016/j.spmi.2018.08.009
[6] Dai, Y., Chen, X., & Jiang, C. (2012). Electronic structures of zigzag AlN, GaN nanoribbons and AlxGa1−xN nanoribbon heterojunctions: First-principles study. Physica B: Condensed Matter, 407(3), 515–518. doi:10.1016/j.physb.2011.11.026
[7] S. Strite and H. Morkoc, J. Vac. Sci. Technol.B 10 (1992) 1237.
[8] Núñez-González, Roberto; Reyes-Serrato, Armando; Posada-Amarillas, Alvaro; Galván, Donald H. First-principles calculation of the band gap of AlxGa1¡-xN and InxGa1¡-xN Revista Mexicana de Física, vol. 54, núm. 2, noviembre, 2008, pp. 111-118 Sociedad Mexicana de Física A.C.Distrito Federal, México Disponible en: http://www.redalyc.org/articulo.oa?id=57019061017
[9] Zhao, L., Xu, S., Wang, M., & Lin, S. (2016). Probing the Thermodynamic Stability and Phonon Transport in Two-Dimensional Hexagonal Aluminum Nitride Monolayer. The Journal of Physical Chemistry C, 120(48), 27675–27681. doi:10.1021/acs.jpcc.6b09706
[10] Bacaksiz, C., Sahin, H., Ozaydin, H. D., Horzum, S., Senger, R. T., & Peeters, F. M. (2015). Hexagonal AlN: Dimensional-crossover-driven band-gap transition. Physical Review B, 91(8).
[11] C.J. Neufeld, N.G. Toledo, S.C. Cruz, M. Iza, S.P. DenBaars, U.K. Mishra, Highquantum efficiency InGaN/GaN solar cells with 2.95 eV band gap, Appl. Phys.Lett. 93 (2008) 143502
[12] Y. Taniyasu, M. Kasu, T. Makimoto, Nature 441 (2006) 325.
[13] A. Khan, Nature 441 (2006) 299.
[14] E.F. de Almeida Junior, F. de Brito Mota, C.M.C. de Castilho, A. Kakanakova-Georgieva, and G.K. Gueorguiev. Defects in hexagonal-AlN sheets by first-principles calculations.
[15] Beshkova, M., & Yakimova, R. (2020). Properties and potential applications of two-dimensional AlN. Vacuum, 109231. doi:10.1016/j.vacuum.2020.109231
[16] Bai Y J, Deng K M and Kan E J 2015 RSC Adv. 5 18352
[17] Van Gog, H., Li, W.-F., Fang, C., Koster, R. S., Dijkstra, M., & van Huis, M. (2019). Thermal stability and electronic and magnetic properties of atomically thin 2D transition metal oxides. Npj 2D Materials and Applications, 3(1). doi:10.1038/s41699-019-0100-z
[18] Kan, E., Li, M., Hu, S., Xiao, C., Xiang, H., & Deng, K. (2013). Two-Dimensional Hexagonal Transition-Metal Oxide for Spintronics. The Journal of Physical Chemistry Letters, 4(7), 1120–1125. doi:10.1021/jz4000559
[19] Gopal, P., Spaldin, N. A., & Waghmare, U. V. (2004). First-principles study of wurtzite-structure MnO. Physical Review B, 70(20). doi:10.1103/physrevb.70.205104
[20]. HAN Han (2013) Elastic, Piezoelectric and Acoustic Properties of Wurtzite MnO from Density Functional Calculation
[21]Nam, K. M., Kim, Y.-I., Jo, Y., Lee, S. M., Kim, B. G., Choi, R., … Park, J. T. (2012). New Crystal Structure: Synthesis and Characterization of Hexagonal Wurtzite MnO. Journal of the American Chemical Society, 134(20), 8392–8395. doi:10.1021/ja302440y
[22] Max Born; J. Robert Oppenheimer (1927). “Zur Quantentheorie der Molekeln” [On the Quantum Theory of Molecules]. Annalen der Physik (in German). 389 (20):
[23] Hartree, D. R. (1928). “The Wave Mechanics of an Atom with a Non-Coulomb Central Field. Part I. Theory and Methods”. Mathematical Proceedings of the Cambridge Philosophical Society. Cambridge University Press (CUP). 24 (1): 89–110. Bibcode:1928PCPS...24...89H. doi:10.1017/s0305004100011919. ISSN 0305-0041. S2CID 122077124
[24] Slater, J. C. (1928). “The Self Consistent Field and the Structure of Atoms”. Phys. Rev. 32 (3): 339–348. Bibcode:1928PhRv...32..339S. doi:10.1103/PhysRev.32.339
[25] Slater, J. C. (1930). “Note on Hartree’s Method”. Phys. Rev. 35 (2): 210–211. Bibcode:1930PhRv...35..210S. doi:10.1103/PhysRev.35.210.2
[26] Hohenberg, P.; Kohn, W. (1964). “Inhomogeneous Electron Gas”. Physical Review. 136 (3B): B864. Bibcode:1964PhRv..136..864H. doi:10.1103/PhysRev.136.B864.
[27] Kohn, W.; Sham, L. J. (1965). “Self-Consistent Equations Including Exchange and Correlation Effects”. Physical Review. 140 (4ª): A1133.
[28] Hohenberg, P., & Kohn, W. (1964). Inhomogeneous electron gas. Physica review,136(3B), B864.
[29]J. Kohanoff and N.I. Gidopoulos. Density functional theory: Basics, new trends and applications. Handbook of Molecular Physics and Quantum Chemistry, 2,part 5(26):532–568, October 2003.https://scinapse.io/papers/1570346971. 12, 13
[30] Perdew, J.P., Burke, K. and Ernzerhof, M. (1996) Generalized Gradient Approximation Made Simple. Physical Review Letter, 77, 3865-3868. http://dx.doi.org/10.1103/PhysRevLett.77.3865
[31]Ortega, C. Rodríguez, J. (2009) Adsorción de átomos de Ru sobre la superficie (0001)GaN y superredes hexagonales (0001)GaN/RuN.
[32]Hamann, D., Schluter, M., & Chiang, C. (1979). Norm-Conserving Pseudopotentials. Phys. Rev. Lett., 43, 1494–1497.
[33] Vanderbilt, D. (1990). Soft self-consistent pseudopotentials in a generalized eigenvalue formalism. Phys. Rev. B, 41, 7892–7895.
[34] Laasonen K. Car, R. et al. Implementation of ultrasoft pseudopotentials in ab initio molecular dynamics. Phys. Rev. B 43:6796, 1991.
[35] Laasonen K., Pasquarello, A., et al. Car-Parrinello molecular dynamics with Vanderbilt ultrasoft pseudopotentials. Phys. Rev. B 47:10142, 1993.
[36] QUANTUM ESPRESSO: a modular and open-source software project for quantum. Giannozzi, P., y otros. 39, 2009, Journal of Physics: Condensed Matter, Vol. 21, pág. 395502.
[37] Electronic energy minimisation with ultrasoft pseudopotentials. Hasnip, P.J. y Pickard, C.J. 1, 2006, Computer Physics Communications, Vol. 174. 0010-4655.
[38]Perdew, J. P., Burke, K., & Ernzerhof, M. (1996). Generalized gradient approximation made simple. Physical Review Letters, 77(18), 3865–3868.
[39] Kan, M., Zhou, J., Sun, Q., Kawazoe, Y., & Jena, P. (2013). The Intrinsic Ferromagnetism in a MnO2 Monolayer. The Journal of Physical Chemistry Letters, 4(20), 3382–3386.
[40] Methfessel, M., & Paxton, A. (1989). High-precision sampling for Brillouin-zone integration in metals. Physical Review, 40(6), 3616–3621.
[41] Estudio de la interfaz grafeno/BN mediante DFT (2019-11-29) Casiano Jiménez, Gladys Rocío; Ortega López, César; González Hernández, Rafael
[42] Laurent Pizzagalli, I. Belabbas, J. Kioseoglou, Jie Chen. First-principles calculations of threading screw dislocations in AlN and InN. Physical Review Materials, American Physical Society, 2018, 2 (6), 10.1103/PhysRevMaterials.2.064607
[43] B.Ahmed, B. I. Sharma. Structural and electronic properties of AlN in rocksalt, Zinc blende and wurtzite: a DFT study. January - March 2021, p. 125 – 133
[44] J. Ruiz-González, G. H. Cocoletzi, and L. Morales de la Garza. Modeling the electronic structure and stability of three aluminum nitride phases
[45] David Holec, Paul H. Mayrhofer. Surface energies of AlN allotropes from first principles. Montanuniversiat Leoben, Franz-Josef-Straße 18, Leoben A-8700, Austria
[46] Jain, A., Ong, S., Hautier, G., Chen, W., Richards, W., Dacek, S., Cholia, S., Gunter, D., Skinner, D., Ceder, G., & Persson, K. (2013). Commentary: The Materials Project: A materials genome approach to accelerating materials innovation. APL Materials, 1(1), 011002.
[47] van der Waals Bonding in Layered Compounds from Advanced Density-Functional First-Principles Calculations. Björkman, T., y otros. 5, Phys. Rev. Lett., Vol. 108, pág. 235502
[48]L. I. Bendavid and E. A. Carter, First principles study of bonding, adhesion, and electronic structure at the Cu2O(111)/ZnO(1010) interface. Surface Science 618 (2013) 62–71
[49] Sun, S., Sun, S., Ren, Y., Tan, X., & Xu, P. (2019). First principle calculations study of AlN surface terminal structure evolution under different conditions. Surface and Interface Analysis.
[50] A Rigorous Method of Calculating Exfoliation Energies from First Principles. Jung, J., Park, C. y Ihm, J. 5, 2018, Nano Letters, Vol. 18, págs. 2759-2765.
[51] Y. Kadioglu, F.Ersan, D. Kecik, O. U. Akturk, E. Akturk and S. Ciraci, Phys. Chem. Chem. Phys., 2018
[52] F. Ersan, A. Akcay, G. Gkoglu, E. Akturk. Interactions of h-AlN monolayer with platinum, oxygen, and their clusters. Chemical Physics 455 (2015) 73–80.
[53] Qi-Zhi Lang et al 2020 Mater. Res. Express 7 116301
[54] Ling-Yun Xie and Jian-Min Zhang. The Structure, Electronic, Magnetic and Optical Properties of the Mn-X (X = B, C, N and O) Co-Doped Monolayer WS2. 2017 The Minerals, Metals & Materials Society
[55] Woldesenbet, M.S., Debelo, N.G. & Woldemariam, M.M. The effect of Mn-doping on structural, electronic, ferromagnetic, and optical properties of monolayer-WSe2 using first-principles calculations. Eur. Phys. J. B 97, 104 (2024). https://doi.org/10.1140/epjb/s10051-024-00748-7
[56] J. Vac. Sci. Technol. A 31, 061515 (2013) https://doi.org/10.1116/1.4824163
dc.rights.none.fl_str_mv Copyright Universidad de Córdoba, 2024
dc.rights.uri.none.fl_str_mv https://creativecommons.org/licenses/by-nc-nd/4.0/
dc.rights.license.none.fl_str_mv Atribución-NoComercial-SinDerivadas 4.0 Internacional (CC BY-NC-ND 4.0)
dc.rights.accessrights.none.fl_str_mv info:eu-repo/semantics/openAccess
dc.rights.coar.none.fl_str_mv http://purl.org/coar/access_right/c_abf2
rights_invalid_str_mv Copyright Universidad de Córdoba, 2024
https://creativecommons.org/licenses/by-nc-nd/4.0/
Atribución-NoComercial-SinDerivadas 4.0 Internacional (CC BY-NC-ND 4.0)
http://purl.org/coar/access_right/c_abf2
eu_rights_str_mv openAccess
dc.format.mimetype.none.fl_str_mv application/pdf
dc.publisher.none.fl_str_mv Universidad de Córdoba
dc.publisher.faculty.none.fl_str_mv Facultad de Ciencias Básicas
dc.publisher.place.none.fl_str_mv Montería, Córdoba, Colombia
dc.publisher.program.none.fl_str_mv Física
publisher.none.fl_str_mv Universidad de Córdoba
institution Universidad de Córdoba
bitstream.url.fl_str_mv https://repositorio.unicordoba.edu.co/bitstreams/fbbb649a-81d8-4978-91aa-371b46b1d475/download
https://repositorio.unicordoba.edu.co/bitstreams/5fdba441-e529-4829-a763-2f53c8304a12/download
https://repositorio.unicordoba.edu.co/bitstreams/c0d84b77-370e-414d-abbf-b696acdf98d2/download
https://repositorio.unicordoba.edu.co/bitstreams/e5adf3e5-b003-4c1a-bee2-3e8b0b3bc577/download
https://repositorio.unicordoba.edu.co/bitstreams/ac74e45f-d854-4a9d-9299-b1697653bd24/download
https://repositorio.unicordoba.edu.co/bitstreams/940f950a-bdca-4f0e-9ae8-071195d6421a/download
https://repositorio.unicordoba.edu.co/bitstreams/492156a7-c241-4131-a39b-ab10a13e93f9/download
bitstream.checksum.fl_str_mv 73a5432e0b76442b22b026844140d683
932121e80c58ed1af337d84ad0411ee7
669bf148a82cd9cf4e463c3b98ed4654
31535da388c2e5d241ff45d0ee52b0d5
61fb5469d36dba1d227b513912d01997
22b6e47ee1a4641f73f8cbf7276a2a72
d47cf458cb62ca48ffbc1bf048d4e989
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
MD5
MD5
MD5
MD5
repository.name.fl_str_mv Repositorio Universidad de Córdoba
repository.mail.fl_str_mv bdigital@metabiblioteca.com
_version_ 1839636187854143488
spelling Ortega López, Cesar31f464ec-e77f-4e98-a7e6-00f948ccc3b2-1Pérez Rossi, Kevin David622ad8ff-0382-406c-98d8-b4a626380c56-1Meléndez Martínez, Raul FranciscoLara Martínez, Ronald StevenArteaga Calderón, MarioEspriella Vélez, Nicolás De laa03551e2-900b-45ea-bcce-dfd7149951c4-1Murillo García, Jean Fredbf362242-ed94-481b-be6f-3debc5e9bb7e-12024-08-14T21:10:31Z2024-08-14T21:10:31Z2024-08-14https://repositorio.unicordoba.edu.co/handle/ucordoba/8525Universidad de CórdobaRepositorio Universidad de Córdobahttps://repositorio.unicordoba.edu.co/En este trabajo, se hace un estudio sobre los co-dopados con manganeso (Mn) y oxigeno (O) en la monocapa AlN hexagonal planar, en la geometría 4x4 (h-4x4-AlN (0001)). Los cálculos se ejecutan usando la Teoría del Funcional de la Densidad junto con pseudopotenciales atómicos y una base de ondas planas. La monocapa se modela usando el esquema del slab periódico. Aquí, se hacen, por separado, dos co-sustituciones de los átomos Al y N por Mn y O, respectivamente. En el primer caso, los átomos sustitutos, se colocan a una distancia lo suficiente grande de modo que las impurezas, no interactúen, es decir no forman la molécula Mn-O. En el segundo caso, los átomos sustitutos, se colocan a una distancia lo suficiente pequeña de modo que las impurezas, interactúen, es decir se forma la molécula Mn-O. Se encuentra que las propiedades estructurales de la monocapa con impurezas, no interactuantes, no cambian significativamente, con respecto a la monocapa prístina, mientras que, en el caso de las impurezas, interactuantes, sí cambian significativamente, con respecto a la monocapa prístina. En particular, la distancia optima entre las impurezas interactuantes del par atómico, es ≈2.4 Å, mientras que la longitud de enlace del par atómico, en las impurezas, no interactuantes, es ≈2.1 Å. En todos los casos, se establece la estabilidad termodinámica y analizan las propiedades electrónicas de la monocapa h-AlN con y sin impurezas de Mn y O, a través de cálculos de la energía de formación y DOS/carga Löwdin , respectivamente. En ambos casos, pares atómicos (Mn y O) interactuantes y no interactuantes, la monocapa presenta propiedades magnéticas, con una magnetización total de 5.0 μ_0/cell y 4.9 μ_0/cell, respectivamente. De estos resultados, se infiere que, en el caso en el que las impurezas interactúan, la magnetización en la monocapa AlN codopada, se incrementa significativamente, con respecto al caso en que las co-impurezas, no interactúan.1. Introduccion..........42. Marco Teórica..................62.1. Fundamentación teórica...............62.2. Aproximación adiabatica(Born-Oppenheiner)...............72.3. Enfoques quimicos.......82.4. Teoria funcional de la densidad (DFT)..........92.5. Aproximación densidad local (LDA)...............112.6. Aproximación gradiente generalizado (GGA)...............122.7. Teoria de pseudopotenciales.................133. Detalles computacionales………144.Análisis y resultados……………….. 155.Conclusiones……………………………366.Referencias………………………..36PregradoFísico(a)Trabajos de Investigación y/o Extensiónapplication/pdfspaUniversidad de CórdobaFacultad de Ciencias BásicasMontería, Córdoba, ColombiaFísicaCopyright Universidad de Córdoba, 2024https://creativecommons.org/licenses/by-nc-nd/4.0/Atribución-NoComercial-SinDerivadas 4.0 Internacional (CC BY-NC-ND 4.0)info:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2Codopado estratégico para incrementar el magnetismo en la monocapa de nitruro aluminio hexagonalTrabajo de grado - Pregradoinfo:eu-repo/semantics/bachelorThesishttp://purl.org/coar/resource_type/c_7a1finfo:eu-repo/semantics/acceptedVersionText[1] Novoselov , K., y otros. Electric Field Effect in Atomically Thin Carbon Films. s.l. : Science , 2004. págs. 666-669. Vol. 306.[2] Vahedi Fakhrabad, D., Shahtahmasebi, N., & Ashhadi, M. (2015). Optical excitations and quasiparticle energies in the AlN monolayer honeycomb structure. Superlattices and Microstructures, 79, 38–44. doi:10.1016/j.spmi.2014.12.012[3] Ganji, M. D., Jameh-Bozorgi, S., & Rezvani, M. (2016). A comparative study of structural and electronic properties of formaldehyde molecule on monolayer honeycomb structures based on vdW-DF prospective. Applied Surface Science, 384, 175–181. doi:10.1016/j.apsusc.2016.05.011[4] Han, R., Chen, X., & Yan, Y. (2017). Magnetic properties of AlN monolayer doped with group 1ª or 2ª nonmagnetic element: First-principles study. Chinese Physics B, 26(9), 097503. doi:10.1088/1674-1056/26/9/097503[5] Wang, S., An, Y., Xie, C., Zhang, H., & Zeng, Q. (2018). First-principles prediction of ferromagnetism in transition-metal doped monolayer AlN. Superlattices and Microstructures. doi:10.1016/j.spmi.2018.08.009[6] Dai, Y., Chen, X., & Jiang, C. (2012). Electronic structures of zigzag AlN, GaN nanoribbons and AlxGa1−xN nanoribbon heterojunctions: First-principles study. Physica B: Condensed Matter, 407(3), 515–518. doi:10.1016/j.physb.2011.11.026[7] S. Strite and H. Morkoc, J. Vac. Sci. Technol.B 10 (1992) 1237.[8] Núñez-González, Roberto; Reyes-Serrato, Armando; Posada-Amarillas, Alvaro; Galván, Donald H. First-principles calculation of the band gap of AlxGa1¡-xN and InxGa1¡-xN Revista Mexicana de Física, vol. 54, núm. 2, noviembre, 2008, pp. 111-118 Sociedad Mexicana de Física A.C.Distrito Federal, México Disponible en: http://www.redalyc.org/articulo.oa?id=57019061017[9] Zhao, L., Xu, S., Wang, M., & Lin, S. (2016). Probing the Thermodynamic Stability and Phonon Transport in Two-Dimensional Hexagonal Aluminum Nitride Monolayer. The Journal of Physical Chemistry C, 120(48), 27675–27681. doi:10.1021/acs.jpcc.6b09706[10] Bacaksiz, C., Sahin, H., Ozaydin, H. D., Horzum, S., Senger, R. T., & Peeters, F. M. (2015). Hexagonal AlN: Dimensional-crossover-driven band-gap transition. Physical Review B, 91(8).[11] C.J. Neufeld, N.G. Toledo, S.C. Cruz, M. Iza, S.P. DenBaars, U.K. Mishra, Highquantum efficiency InGaN/GaN solar cells with 2.95 eV band gap, Appl. Phys.Lett. 93 (2008) 143502[12] Y. Taniyasu, M. Kasu, T. Makimoto, Nature 441 (2006) 325.[13] A. Khan, Nature 441 (2006) 299.[14] E.F. de Almeida Junior, F. de Brito Mota, C.M.C. de Castilho, A. Kakanakova-Georgieva, and G.K. Gueorguiev. Defects in hexagonal-AlN sheets by first-principles calculations.[15] Beshkova, M., & Yakimova, R. (2020). Properties and potential applications of two-dimensional AlN. Vacuum, 109231. doi:10.1016/j.vacuum.2020.109231[16] Bai Y J, Deng K M and Kan E J 2015 RSC Adv. 5 18352[17] Van Gog, H., Li, W.-F., Fang, C., Koster, R. S., Dijkstra, M., & van Huis, M. (2019). Thermal stability and electronic and magnetic properties of atomically thin 2D transition metal oxides. Npj 2D Materials and Applications, 3(1). doi:10.1038/s41699-019-0100-z[18] Kan, E., Li, M., Hu, S., Xiao, C., Xiang, H., & Deng, K. (2013). Two-Dimensional Hexagonal Transition-Metal Oxide for Spintronics. The Journal of Physical Chemistry Letters, 4(7), 1120–1125. doi:10.1021/jz4000559[19] Gopal, P., Spaldin, N. A., & Waghmare, U. V. (2004). First-principles study of wurtzite-structure MnO. Physical Review B, 70(20). doi:10.1103/physrevb.70.205104[20]. HAN Han (2013) Elastic, Piezoelectric and Acoustic Properties of Wurtzite MnO from Density Functional Calculation[21]Nam, K. M., Kim, Y.-I., Jo, Y., Lee, S. M., Kim, B. G., Choi, R., … Park, J. T. (2012). New Crystal Structure: Synthesis and Characterization of Hexagonal Wurtzite MnO. Journal of the American Chemical Society, 134(20), 8392–8395. doi:10.1021/ja302440y[22] Max Born; J. Robert Oppenheimer (1927). “Zur Quantentheorie der Molekeln” [On the Quantum Theory of Molecules]. Annalen der Physik (in German). 389 (20):[23] Hartree, D. R. (1928). “The Wave Mechanics of an Atom with a Non-Coulomb Central Field. Part I. Theory and Methods”. Mathematical Proceedings of the Cambridge Philosophical Society. Cambridge University Press (CUP). 24 (1): 89–110. Bibcode:1928PCPS...24...89H. doi:10.1017/s0305004100011919. ISSN 0305-0041. S2CID 122077124[24] Slater, J. C. (1928). “The Self Consistent Field and the Structure of Atoms”. Phys. Rev. 32 (3): 339–348. Bibcode:1928PhRv...32..339S. doi:10.1103/PhysRev.32.339[25] Slater, J. C. (1930). “Note on Hartree’s Method”. Phys. Rev. 35 (2): 210–211. Bibcode:1930PhRv...35..210S. doi:10.1103/PhysRev.35.210.2[26] Hohenberg, P.; Kohn, W. (1964). “Inhomogeneous Electron Gas”. Physical Review. 136 (3B): B864. Bibcode:1964PhRv..136..864H. doi:10.1103/PhysRev.136.B864.[27] Kohn, W.; Sham, L. J. (1965). “Self-Consistent Equations Including Exchange and Correlation Effects”. Physical Review. 140 (4ª): A1133.[28] Hohenberg, P., & Kohn, W. (1964). Inhomogeneous electron gas. Physica review,136(3B), B864.[29]J. Kohanoff and N.I. Gidopoulos. Density functional theory: Basics, new trends and applications. Handbook of Molecular Physics and Quantum Chemistry, 2,part 5(26):532–568, October 2003.https://scinapse.io/papers/1570346971. 12, 13[30] Perdew, J.P., Burke, K. and Ernzerhof, M. (1996) Generalized Gradient Approximation Made Simple. Physical Review Letter, 77, 3865-3868. http://dx.doi.org/10.1103/PhysRevLett.77.3865[31]Ortega, C. Rodríguez, J. (2009) Adsorción de átomos de Ru sobre la superficie (0001)GaN y superredes hexagonales (0001)GaN/RuN.[32]Hamann, D., Schluter, M., & Chiang, C. (1979). Norm-Conserving Pseudopotentials. Phys. Rev. Lett., 43, 1494–1497.[33] Vanderbilt, D. (1990). Soft self-consistent pseudopotentials in a generalized eigenvalue formalism. Phys. Rev. B, 41, 7892–7895.[34] Laasonen K. Car, R. et al. Implementation of ultrasoft pseudopotentials in ab initio molecular dynamics. Phys. Rev. B 43:6796, 1991.[35] Laasonen K., Pasquarello, A., et al. Car-Parrinello molecular dynamics with Vanderbilt ultrasoft pseudopotentials. Phys. Rev. B 47:10142, 1993.[36] QUANTUM ESPRESSO: a modular and open-source software project for quantum. Giannozzi, P., y otros. 39, 2009, Journal of Physics: Condensed Matter, Vol. 21, pág. 395502.[37] Electronic energy minimisation with ultrasoft pseudopotentials. Hasnip, P.J. y Pickard, C.J. 1, 2006, Computer Physics Communications, Vol. 174. 0010-4655.[38]Perdew, J. P., Burke, K., & Ernzerhof, M. (1996). Generalized gradient approximation made simple. Physical Review Letters, 77(18), 3865–3868.[39] Kan, M., Zhou, J., Sun, Q., Kawazoe, Y., & Jena, P. (2013). The Intrinsic Ferromagnetism in a MnO2 Monolayer. The Journal of Physical Chemistry Letters, 4(20), 3382–3386.[40] Methfessel, M., & Paxton, A. (1989). High-precision sampling for Brillouin-zone integration in metals. Physical Review, 40(6), 3616–3621.[41] Estudio de la interfaz grafeno/BN mediante DFT (2019-11-29) Casiano Jiménez, Gladys Rocío; Ortega López, César; González Hernández, Rafael[42] Laurent Pizzagalli, I. Belabbas, J. Kioseoglou, Jie Chen. First-principles calculations of threading screw dislocations in AlN and InN. Physical Review Materials, American Physical Society, 2018, 2 (6), 10.1103/PhysRevMaterials.2.064607[43] B.Ahmed, B. I. Sharma. Structural and electronic properties of AlN in rocksalt, Zinc blende and wurtzite: a DFT study. January - March 2021, p. 125 – 133[44] J. Ruiz-González, G. H. Cocoletzi, and L. Morales de la Garza. Modeling the electronic structure and stability of three aluminum nitride phases[45] David Holec, Paul H. Mayrhofer. Surface energies of AlN allotropes from first principles. Montanuniversiat Leoben, Franz-Josef-Straße 18, Leoben A-8700, Austria[46] Jain, A., Ong, S., Hautier, G., Chen, W., Richards, W., Dacek, S., Cholia, S., Gunter, D., Skinner, D., Ceder, G., & Persson, K. (2013). Commentary: The Materials Project: A materials genome approach to accelerating materials innovation. APL Materials, 1(1), 011002.[47] van der Waals Bonding in Layered Compounds from Advanced Density-Functional First-Principles Calculations. Björkman, T., y otros. 5, Phys. Rev. Lett., Vol. 108, pág. 235502[48]L. I. Bendavid and E. A. Carter, First principles study of bonding, adhesion, and electronic structure at the Cu2O(111)/ZnO(1010) interface. Surface Science 618 (2013) 62–71[49] Sun, S., Sun, S., Ren, Y., Tan, X., & Xu, P. (2019). First principle calculations study of AlN surface terminal structure evolution under different conditions. Surface and Interface Analysis.[50] A Rigorous Method of Calculating Exfoliation Energies from First Principles. Jung, J., Park, C. y Ihm, J. 5, 2018, Nano Letters, Vol. 18, págs. 2759-2765.[51] Y. Kadioglu, F.Ersan, D. Kecik, O. U. Akturk, E. Akturk and S. Ciraci, Phys. Chem. Chem. Phys., 2018[52] F. Ersan, A. Akcay, G. Gkoglu, E. Akturk. Interactions of h-AlN monolayer with platinum, oxygen, and their clusters. Chemical Physics 455 (2015) 73–80.[53] Qi-Zhi Lang et al 2020 Mater. Res. Express 7 116301[54] Ling-Yun Xie and Jian-Min Zhang. The Structure, Electronic, Magnetic and Optical Properties of the Mn-X (X = B, C, N and O) Co-Doped Monolayer WS2. 2017 The Minerals, Metals & Materials Society[55] Woldesenbet, M.S., Debelo, N.G. & Woldemariam, M.M. The effect of Mn-doping on structural, electronic, ferromagnetic, and optical properties of monolayer-WSe2 using first-principles calculations. Eur. Phys. J. B 97, 104 (2024). https://doi.org/10.1140/epjb/s10051-024-00748-7[56] J. Vac. Sci. Technol. A 31, 061515 (2013) https://doi.org/10.1116/1.4824163MonocapaCodopadoMagnetizacionMonolayerCodopedMagnetizationPublicationLICENSElicense.txtlicense.txttext/plain; charset=utf-815543https://repositorio.unicordoba.edu.co/bitstreams/fbbb649a-81d8-4978-91aa-371b46b1d475/download73a5432e0b76442b22b026844140d683MD51ORIGINALPérezRossiKevin.pdfPérezRossiKevin.pdfapplication/pdf1247898https://repositorio.unicordoba.edu.co/bitstreams/5fdba441-e529-4829-a763-2f53c8304a12/download932121e80c58ed1af337d84ad0411ee7MD52FORMATO DE AUTORIZACIÓN.pdfFORMATO DE AUTORIZACIÓN.pdfapplication/pdf501723https://repositorio.unicordoba.edu.co/bitstreams/c0d84b77-370e-414d-abbf-b696acdf98d2/download669bf148a82cd9cf4e463c3b98ed4654MD54TEXTPérezRossiKevin.pdf.txtPérezRossiKevin.pdf.txtExtracted texttext/plain81896https://repositorio.unicordoba.edu.co/bitstreams/e5adf3e5-b003-4c1a-bee2-3e8b0b3bc577/download31535da388c2e5d241ff45d0ee52b0d5MD55FORMATO DE AUTORIZACIÓN.pdf.txtFORMATO DE AUTORIZACIÓN.pdf.txtExtracted texttext/plain5682https://repositorio.unicordoba.edu.co/bitstreams/ac74e45f-d854-4a9d-9299-b1697653bd24/download61fb5469d36dba1d227b513912d01997MD57THUMBNAILPérezRossiKevin.pdf.jpgPérezRossiKevin.pdf.jpgGenerated Thumbnailimage/jpeg7250https://repositorio.unicordoba.edu.co/bitstreams/940f950a-bdca-4f0e-9ae8-071195d6421a/download22b6e47ee1a4641f73f8cbf7276a2a72MD56FORMATO DE AUTORIZACIÓN.pdf.jpgFORMATO DE AUTORIZACIÓN.pdf.jpgGenerated Thumbnailimage/jpeg14040https://repositorio.unicordoba.edu.co/bitstreams/492156a7-c241-4131-a39b-ab10a13e93f9/downloadd47cf458cb62ca48ffbc1bf048d4e989MD58ucordoba/8525oai:repositorio.unicordoba.edu.co:ucordoba/85252024-08-15 03:01:34.119https://creativecommons.org/licenses/by-nc-nd/4.0/Copyright Universidad de Córdoba, 2024open.accesshttps://repositorio.unicordoba.edu.coRepositorio Universidad de Córdobabdigital@metabiblioteca.comPHA+TEEgT0JSQSAoVEFMIFkgQ09NTyBTRSBERUZJTkUgTcOBUyBBREVMQU5URSkgU0UgT1RPUkdBIEJBSk8gTE9TIFRFUk1JTk9TIERFIEVTVEEgTElDRU5DSUEgUMOaQkxJQ0EgREUgQ1JFQVRJVkUgQ09NTU9OUyAo4oCcTFBDQ+KAnSBPIOKAnExJQ0VOQ0lB4oCdKS4gTEEgT0JSQSBFU1TDgSBQUk9URUdJREEgUE9SIERFUkVDSE9TIERFIEFVVE9SIFkvVSBPVFJBUyBMRVlFUyBBUExJQ0FCTEVTLiBRVUVEQSBQUk9ISUJJRE8gQ1VBTFFVSUVSIFVTTyBRVUUgU0UgSEFHQSBERSBMQSBPQlJBIFFVRSBOTyBDVUVOVEUgQ09OIExBIEFVVE9SSVpBQ0nDk04gUEVSVElORU5URSBERSBDT05GT1JNSURBRCBDT04gTE9TIFTDiVJNSU5PUyBERSBFU1RBIExJQ0VOQ0lBIFkgREUgTEEgTEVZIERFIERFUkVDSE8gREUgQVVUT1IuPC9wPgo8cD5NRURJQU5URSBFTCBFSkVSQ0lDSU8gREUgQ1VBTFFVSUVSQSBERSBMT1MgREVSRUNIT1MgUVVFIFNFIE9UT1JHQU4gRU4gRVNUQSBMSUNFTkNJQSwgVVNURUQgQUNFUFRBIFkgQUNVRVJEQSBRVUVEQVIgT0JMSUdBRE8gRU4gTE9TIFRFUk1JTk9TIFFVRSBTRSBTRcORQUxBTiBFTiBFTExBLiBFTCBMSUNFTkNJQU5URSBDT05DRURFIEEgVVNURUQgTE9TIERFUkVDSE9TIENPTlRFTklET1MgRU4gRVNUQSBMSUNFTkNJQSBDT05ESUNJT05BRE9TIEEgTEEgQUNFUFRBQ0nDk04gREUgU1VTIFRFUk1JTk9TIFkgQ09ORElDSU9ORVMuPC9wPgo8b2wgdHlwZT0iMSI+CiAgPGxpPgogICAgRGVmaW5pY2lvbmVzCiAgICA8b2wgdHlwZT1hPgogICAgICA8bGk+T2JyYSBDb2xlY3RpdmEgZXMgdW5hIG9icmEsIHRhbCBjb21vIHVuYSBwdWJsaWNhY2nDs24gcGVyacOzZGljYSwgdW5hIGFudG9sb2fDrWEsIG8gdW5hIGVuY2ljbG9wZWRpYSwgZW4gbGEgcXVlIGxhIG9icmEgZW4gc3UgdG90YWxpZGFkLCBzaW4gbW9kaWZpY2FjacOzbiBhbGd1bmEsIGp1bnRvIGNvbiB1biBncnVwbyBkZSBvdHJhcyBjb250cmlidWNpb25lcyBxdWUgY29uc3RpdHV5ZW4gb2JyYXMgc2VwYXJhZGFzIGUgaW5kZXBlbmRpZW50ZXMgZW4gc8OtIG1pc21hcywgc2UgaW50ZWdyYW4gZW4gdW4gdG9kbyBjb2xlY3Rpdm8uIFVuYSBPYnJhIHF1ZSBjb25zdGl0dXllIHVuYSBvYnJhIGNvbGVjdGl2YSBubyBzZSBjb25zaWRlcmFyw6EgdW5hIE9icmEgRGVyaXZhZGEgKGNvbW8gc2UgZGVmaW5lIGFiYWpvKSBwYXJhIGxvcyBwcm9ww7NzaXRvcyBkZSBlc3RhIGxpY2VuY2lhLiBhcXVlbGxhIHByb2R1Y2lkYSBwb3IgdW4gZ3J1cG8gZGUgYXV0b3JlcywgZW4gcXVlIGxhIE9icmEgc2UgZW5jdWVudHJhIHNpbiBtb2RpZmljYWNpb25lcywganVudG8gY29uIHVuYSBjaWVydGEgY2FudGlkYWQgZGUgb3RyYXMgY29udHJpYnVjaW9uZXMsIHF1ZSBjb25zdGl0dXllbiBlbiBzw60gbWlzbW9zIHRyYWJham9zIHNlcGFyYWRvcyBlIGluZGVwZW5kaWVudGVzLCBxdWUgc29uIGludGVncmFkb3MgYWwgdG9kbyBjb2xlY3Rpdm8sIHRhbGVzIGNvbW8gcHVibGljYWNpb25lcyBwZXJpw7NkaWNhcywgYW50b2xvZ8OtYXMgbyBlbmNpY2xvcGVkaWFzLjwvbGk+CiAgICAgIDxsaT5PYnJhIERlcml2YWRhIHNpZ25pZmljYSB1bmEgb2JyYSBiYXNhZGEgZW4gbGEgb2JyYSBvYmpldG8gZGUgZXN0YSBsaWNlbmNpYSBvIGVuIMOpc3RhIHkgb3RyYXMgb2JyYXMgcHJlZXhpc3RlbnRlcywgdGFsZXMgY29tbyB0cmFkdWNjaW9uZXMsIGFycmVnbG9zIG11c2ljYWxlcywgZHJhbWF0aXphY2lvbmVzLCDigJxmaWNjaW9uYWxpemFjaW9uZXPigJ0sIHZlcnNpb25lcyBwYXJhIGNpbmUsIOKAnGdyYWJhY2lvbmVzIGRlIHNvbmlkb+KAnSwgcmVwcm9kdWNjaW9uZXMgZGUgYXJ0ZSwgcmVzw7ptZW5lcywgY29uZGVuc2FjaW9uZXMsIG8gY3VhbHF1aWVyIG90cmEgZW4gbGEgcXVlIGxhIG9icmEgcHVlZGEgc2VyIHRyYW5zZm9ybWFkYSwgY2FtYmlhZGEgbyBhZGFwdGFkYSwgZXhjZXB0byBhcXVlbGxhcyBxdWUgY29uc3RpdHV5YW4gdW5hIG9icmEgY29sZWN0aXZhLCBsYXMgcXVlIG5vIHNlcsOhbiBjb25zaWRlcmFkYXMgdW5hIG9icmEgZGVyaXZhZGEgcGFyYSBlZmVjdG9zIGRlIGVzdGEgbGljZW5jaWEuIChQYXJhIGV2aXRhciBkdWRhcywgZW4gZWwgY2FzbyBkZSBxdWUgbGEgT2JyYSBzZWEgdW5hIGNvbXBvc2ljacOzbiBtdXNpY2FsIG8gdW5hIGdyYWJhY2nDs24gc29ub3JhLCBwYXJhIGxvcyBlZmVjdG9zIGRlIGVzdGEgTGljZW5jaWEgbGEgc2luY3Jvbml6YWNpw7NuIHRlbXBvcmFsIGRlIGxhIE9icmEgY29uIHVuYSBpbWFnZW4gZW4gbW92aW1pZW50byBzZSBjb25zaWRlcmFyw6EgdW5hIE9icmEgRGVyaXZhZGEgcGFyYSBsb3MgZmluZXMgZGUgZXN0YSBsaWNlbmNpYSkuPC9saT4KICAgICAgPGxpPkxpY2VuY2lhbnRlLCBlcyBlbCBpbmRpdmlkdW8gbyBsYSBlbnRpZGFkIHRpdHVsYXIgZGUgbG9zIGRlcmVjaG9zIGRlIGF1dG9yIHF1ZSBvZnJlY2UgbGEgT2JyYSBlbiBjb25mb3JtaWRhZCBjb24gbGFzIGNvbmRpY2lvbmVzIGRlIGVzdGEgTGljZW5jaWEuPC9saT4KICAgICAgPGxpPkF1dG9yIG9yaWdpbmFsLCBlcyBlbCBpbmRpdmlkdW8gcXVlIGNyZcOzIGxhIE9icmEuPC9saT4KICAgICAgPGxpPk9icmEsIGVzIGFxdWVsbGEgb2JyYSBzdXNjZXB0aWJsZSBkZSBwcm90ZWNjacOzbiBwb3IgZWwgcsOpZ2ltZW4gZGUgRGVyZWNobyBkZSBBdXRvciB5IHF1ZSBlcyBvZnJlY2lkYSBlbiBsb3MgdMOpcm1pbm9zIGRlIGVzdGEgbGljZW5jaWE8L2xpPgogICAgICA8bGk+VXN0ZWQsIGVzIGVsIGluZGl2aWR1byBvIGxhIGVudGlkYWQgcXVlIGVqZXJjaXRhIGxvcyBkZXJlY2hvcyBvdG9yZ2Fkb3MgYWwgYW1wYXJvIGRlIGVzdGEgTGljZW5jaWEgeSBxdWUgY29uIGFudGVyaW9yaWRhZCBubyBoYSB2aW9sYWRvIGxhcyBjb25kaWNpb25lcyBkZSBsYSBtaXNtYSByZXNwZWN0byBhIGxhIE9icmEsIG8gcXVlIGhheWEgb2J0ZW5pZG8gYXV0b3JpemFjacOzbiBleHByZXNhIHBvciBwYXJ0ZSBkZWwgTGljZW5jaWFudGUgcGFyYSBlamVyY2VyIGxvcyBkZXJlY2hvcyBhbCBhbXBhcm8gZGUgZXN0YSBMaWNlbmNpYSBwZXNlIGEgdW5hIHZpb2xhY2nDs24gYW50ZXJpb3IuPC9saT4KICAgIDwvb2w+CiAgPC9saT4KICA8YnIvPgogIDxsaT4KICAgIERlcmVjaG9zIGRlIFVzb3MgSG9ucmFkb3MgeSBleGNlcGNpb25lcyBMZWdhbGVzLgogICAgPHA+TmFkYSBlbiBlc3RhIExpY2VuY2lhIHBvZHLDoSBzZXIgaW50ZXJwcmV0YWRvIGNvbW8gdW5hIGRpc21pbnVjacOzbiwgbGltaXRhY2nDs24gbyByZXN0cmljY2nDs24gZGUgbG9zIGRlcmVjaG9zIGRlcml2YWRvcyBkZWwgdXNvIGhvbnJhZG8geSBvdHJhcyBsaW1pdGFjaW9uZXMgbyBleGNlcGNpb25lcyBhIGxvcyBkZXJlY2hvcyBkZWwgYXV0b3IgYmFqbyBlbCByw6lnaW1lbiBsZWdhbCB2aWdlbnRlIG8gZGVyaXZhZG8gZGUgY3VhbHF1aWVyIG90cmEgbm9ybWEgcXVlIHNlIGxlIGFwbGlxdWUuPC9wPgogIDwvbGk+CiAgPGxpPgogICAgQ29uY2VzacOzbiBkZSBsYSBMaWNlbmNpYS4KICAgIDxwPkJham8gbG9zIHTDqXJtaW5vcyB5IGNvbmRpY2lvbmVzIGRlIGVzdGEgTGljZW5jaWEsIGVsIExpY2VuY2lhbnRlIG90b3JnYSBhIFVzdGVkIHVuYSBsaWNlbmNpYSBtdW5kaWFsLCBsaWJyZSBkZSByZWdhbMOtYXMsIG5vIGV4Y2x1c2l2YSB5IHBlcnBldHVhIChkdXJhbnRlIHRvZG8gZWwgcGVyw61vZG8gZGUgdmlnZW5jaWEgZGUgbG9zIGRlcmVjaG9zIGRlIGF1dG9yKSBwYXJhIGVqZXJjZXIgZXN0b3MgZGVyZWNob3Mgc29icmUgbGEgT2JyYSB0YWwgeSBjb21vIHNlIGluZGljYSBhIGNvbnRpbnVhY2nDs246PC9wPgogICAgPG9sIHR5cGU9ImEiPgogICAgICA8bGk+UmVwcm9kdWNpciBsYSBPYnJhLCBpbmNvcnBvcmFyIGxhIE9icmEgZW4gdW5hIG8gbcOhcyBPYnJhcyBDb2xlY3RpdmFzLCB5IHJlcHJvZHVjaXIgbGEgT2JyYSBpbmNvcnBvcmFkYSBlbiBsYXMgT2JyYXMgQ29sZWN0aXZhcy48L2xpPgogICAgICA8bGk+RGlzdHJpYnVpciBjb3BpYXMgbyBmb25vZ3JhbWFzIGRlIGxhcyBPYnJhcywgZXhoaWJpcmxhcyBww7pibGljYW1lbnRlLCBlamVjdXRhcmxhcyBww7pibGljYW1lbnRlIHkvbyBwb25lcmxhcyBhIGRpc3Bvc2ljacOzbiBww7pibGljYSwgaW5jbHV5w6luZG9sYXMgY29tbyBpbmNvcnBvcmFkYXMgZW4gT2JyYXMgQ29sZWN0aXZhcywgc2Vnw7puIGNvcnJlc3BvbmRhLjwvbGk+CiAgICAgIDxsaT5EaXN0cmlidWlyIGNvcGlhcyBkZSBsYXMgT2JyYXMgRGVyaXZhZGFzIHF1ZSBzZSBnZW5lcmVuLCBleGhpYmlybGFzIHDDumJsaWNhbWVudGUsIGVqZWN1dGFybGFzIHDDumJsaWNhbWVudGUgeS9vIHBvbmVybGFzIGEgZGlzcG9zaWNpw7NuIHDDumJsaWNhLjwvbGk+CiAgICA8L29sPgogICAgPHA+TG9zIGRlcmVjaG9zIG1lbmNpb25hZG9zIGFudGVyaW9ybWVudGUgcHVlZGVuIHNlciBlamVyY2lkb3MgZW4gdG9kb3MgbG9zIG1lZGlvcyB5IGZvcm1hdG9zLCBhY3R1YWxtZW50ZSBjb25vY2lkb3MgbyBxdWUgc2UgaW52ZW50ZW4gZW4gZWwgZnV0dXJvLiBMb3MgZGVyZWNob3MgYW50ZXMgbWVuY2lvbmFkb3MgaW5jbHV5ZW4gZWwgZGVyZWNobyBhIHJlYWxpemFyIGRpY2hhcyBtb2RpZmljYWNpb25lcyBlbiBsYSBtZWRpZGEgcXVlIHNlYW4gdMOpY25pY2FtZW50ZSBuZWNlc2FyaWFzIHBhcmEgZWplcmNlciBsb3MgZGVyZWNob3MgZW4gb3RybyBtZWRpbyBvIGZvcm1hdG9zLCBwZXJvIGRlIG90cmEgbWFuZXJhIHVzdGVkIG5vIGVzdMOhIGF1dG9yaXphZG8gcGFyYSByZWFsaXphciBvYnJhcyBkZXJpdmFkYXMuIFRvZG9zIGxvcyBkZXJlY2hvcyBubyBvdG9yZ2Fkb3MgZXhwcmVzYW1lbnRlIHBvciBlbCBMaWNlbmNpYW50ZSBxdWVkYW4gcG9yIGVzdGUgbWVkaW8gcmVzZXJ2YWRvcywgaW5jbHV5ZW5kbyBwZXJvIHNpbiBsaW1pdGFyc2UgYSBhcXVlbGxvcyBxdWUgc2UgbWVuY2lvbmFuIGVuIGxhcyBzZWNjaW9uZXMgNChkKSB5IDQoZSkuPC9wPgogIDwvbGk+CiAgPGJyLz4KICA8bGk+CiAgICBSZXN0cmljY2lvbmVzLgogICAgPHA+TGEgbGljZW5jaWEgb3RvcmdhZGEgZW4gbGEgYW50ZXJpb3IgU2VjY2nDs24gMyBlc3TDoSBleHByZXNhbWVudGUgc3VqZXRhIHkgbGltaXRhZGEgcG9yIGxhcyBzaWd1aWVudGVzIHJlc3RyaWNjaW9uZXM6PC9wPgogICAgPG9sIHR5cGU9ImEiPgogICAgICA8bGk+VXN0ZWQgcHVlZGUgZGlzdHJpYnVpciwgZXhoaWJpciBww7pibGljYW1lbnRlLCBlamVjdXRhciBww7pibGljYW1lbnRlLCBvIHBvbmVyIGEgZGlzcG9zaWNpw7NuIHDDumJsaWNhIGxhIE9icmEgc8OzbG8gYmFqbyBsYXMgY29uZGljaW9uZXMgZGUgZXN0YSBMaWNlbmNpYSwgeSBVc3RlZCBkZWJlIGluY2x1aXIgdW5hIGNvcGlhIGRlIGVzdGEgbGljZW5jaWEgbyBkZWwgSWRlbnRpZmljYWRvciBVbml2ZXJzYWwgZGUgUmVjdXJzb3MgZGUgbGEgbWlzbWEgY29uIGNhZGEgY29waWEgZGUgbGEgT2JyYSBxdWUgZGlzdHJpYnV5YSwgZXhoaWJhIHDDumJsaWNhbWVudGUsIGVqZWN1dGUgcMO6YmxpY2FtZW50ZSBvIHBvbmdhIGEgZGlzcG9zaWNpw7NuIHDDumJsaWNhLiBObyBlcyBwb3NpYmxlIG9mcmVjZXIgbyBpbXBvbmVyIG5pbmd1bmEgY29uZGljacOzbiBzb2JyZSBsYSBPYnJhIHF1ZSBhbHRlcmUgbyBsaW1pdGUgbGFzIGNvbmRpY2lvbmVzIGRlIGVzdGEgTGljZW5jaWEgbyBlbCBlamVyY2ljaW8gZGUgbG9zIGRlcmVjaG9zIGRlIGxvcyBkZXN0aW5hdGFyaW9zIG90b3JnYWRvcyBlbiBlc3RlIGRvY3VtZW50by4gTm8gZXMgcG9zaWJsZSBzdWJsaWNlbmNpYXIgbGEgT2JyYS4gVXN0ZWQgZGViZSBtYW50ZW5lciBpbnRhY3RvcyB0b2RvcyBsb3MgYXZpc29zIHF1ZSBoYWdhbiByZWZlcmVuY2lhIGEgZXN0YSBMaWNlbmNpYSB5IGEgbGEgY2zDoXVzdWxhIGRlIGxpbWl0YWNpw7NuIGRlIGdhcmFudMOtYXMuIFVzdGVkIG5vIHB1ZWRlIGRpc3RyaWJ1aXIsIGV4aGliaXIgcMO6YmxpY2FtZW50ZSwgZWplY3V0YXIgcMO6YmxpY2FtZW50ZSwgbyBwb25lciBhIGRpc3Bvc2ljacOzbiBww7pibGljYSBsYSBPYnJhIGNvbiBhbGd1bmEgbWVkaWRhIHRlY25vbMOzZ2ljYSBxdWUgY29udHJvbGUgZWwgYWNjZXNvIG8gbGEgdXRpbGl6YWNpw7NuIGRlIGVsbGEgZGUgdW5hIGZvcm1hIHF1ZSBzZWEgaW5jb25zaXN0ZW50ZSBjb24gbGFzIGNvbmRpY2lvbmVzIGRlIGVzdGEgTGljZW5jaWEuIExvIGFudGVyaW9yIHNlIGFwbGljYSBhIGxhIE9icmEgaW5jb3Jwb3JhZGEgYSB1bmEgT2JyYSBDb2xlY3RpdmEsIHBlcm8gZXN0byBubyBleGlnZSBxdWUgbGEgT2JyYSBDb2xlY3RpdmEgYXBhcnRlIGRlIGxhIG9icmEgbWlzbWEgcXVlZGUgc3VqZXRhIGEgbGFzIGNvbmRpY2lvbmVzIGRlIGVzdGEgTGljZW5jaWEuIFNpIFVzdGVkIGNyZWEgdW5hIE9icmEgQ29sZWN0aXZhLCBwcmV2aW8gYXZpc28gZGUgY3VhbHF1aWVyIExpY2VuY2lhbnRlIGRlYmUsIGVuIGxhIG1lZGlkYSBkZSBsbyBwb3NpYmxlLCBlbGltaW5hciBkZSBsYSBPYnJhIENvbGVjdGl2YSBjdWFscXVpZXIgcmVmZXJlbmNpYSBhIGRpY2hvIExpY2VuY2lhbnRlIG8gYWwgQXV0b3IgT3JpZ2luYWwsIHNlZ8O6biBsbyBzb2xpY2l0YWRvIHBvciBlbCBMaWNlbmNpYW50ZSB5IGNvbmZvcm1lIGxvIGV4aWdlIGxhIGNsw6F1c3VsYSA0KGMpLjwvbGk+CiAgICAgIDxsaT5Vc3RlZCBubyBwdWVkZSBlamVyY2VyIG5pbmd1bm8gZGUgbG9zIGRlcmVjaG9zIHF1ZSBsZSBoYW4gc2lkbyBvdG9yZ2Fkb3MgZW4gbGEgU2VjY2nDs24gMyBwcmVjZWRlbnRlIGRlIG1vZG8gcXVlIGVzdMOpbiBwcmluY2lwYWxtZW50ZSBkZXN0aW5hZG9zIG8gZGlyZWN0YW1lbnRlIGRpcmlnaWRvcyBhIGNvbnNlZ3VpciB1biBwcm92ZWNobyBjb21lcmNpYWwgbyB1bmEgY29tcGVuc2FjacOzbiBtb25ldGFyaWEgcHJpdmFkYS4gRWwgaW50ZXJjYW1iaW8gZGUgbGEgT2JyYSBwb3Igb3RyYXMgb2JyYXMgcHJvdGVnaWRhcyBwb3IgZGVyZWNob3MgZGUgYXV0b3IsIHlhIHNlYSBhIHRyYXbDqXMgZGUgdW4gc2lzdGVtYSBwYXJhIGNvbXBhcnRpciBhcmNoaXZvcyBkaWdpdGFsZXMgKGRpZ2l0YWwgZmlsZS1zaGFyaW5nKSBvIGRlIGN1YWxxdWllciBvdHJhIG1hbmVyYSBubyBzZXLDoSBjb25zaWRlcmFkbyBjb21vIGVzdGFyIGRlc3RpbmFkbyBwcmluY2lwYWxtZW50ZSBvIGRpcmlnaWRvIGRpcmVjdGFtZW50ZSBhIGNvbnNlZ3VpciB1biBwcm92ZWNobyBjb21lcmNpYWwgbyB1bmEgY29tcGVuc2FjacOzbiBtb25ldGFyaWEgcHJpdmFkYSwgc2llbXByZSBxdWUgbm8gc2UgcmVhbGljZSB1biBwYWdvIG1lZGlhbnRlIHVuYSBjb21wZW5zYWNpw7NuIG1vbmV0YXJpYSBlbiByZWxhY2nDs24gY29uIGVsIGludGVyY2FtYmlvIGRlIG9icmFzIHByb3RlZ2lkYXMgcG9yIGVsIGRlcmVjaG8gZGUgYXV0b3IuPC9saT4KICAgICAgPGxpPlNpIHVzdGVkIGRpc3RyaWJ1eWUsIGV4aGliZSBww7pibGljYW1lbnRlLCBlamVjdXRhIHDDumJsaWNhbWVudGUgbyBlamVjdXRhIHDDumJsaWNhbWVudGUgZW4gZm9ybWEgZGlnaXRhbCBsYSBPYnJhIG8gY3VhbHF1aWVyIE9icmEgRGVyaXZhZGEgdSBPYnJhIENvbGVjdGl2YSwgVXN0ZWQgZGViZSBtYW50ZW5lciBpbnRhY3RhIHRvZGEgbGEgaW5mb3JtYWNpw7NuIGRlIGRlcmVjaG8gZGUgYXV0b3IgZGUgbGEgT2JyYSB5IHByb3BvcmNpb25hciwgZGUgZm9ybWEgcmF6b25hYmxlIHNlZ8O6biBlbCBtZWRpbyBvIG1hbmVyYSBxdWUgVXN0ZWQgZXN0w6kgdXRpbGl6YW5kbzogKGkpIGVsIG5vbWJyZSBkZWwgQXV0b3IgT3JpZ2luYWwgc2kgZXN0w6EgcHJvdmlzdG8gKG8gc2V1ZMOzbmltbywgc2kgZnVlcmUgYXBsaWNhYmxlKSwgeS9vIChpaSkgZWwgbm9tYnJlIGRlIGxhIHBhcnRlIG8gbGFzIHBhcnRlcyBxdWUgZWwgQXV0b3IgT3JpZ2luYWwgeS9vIGVsIExpY2VuY2lhbnRlIGh1YmllcmVuIGRlc2lnbmFkbyBwYXJhIGxhIGF0cmlidWNpw7NuICh2LmcuLCB1biBpbnN0aXR1dG8gcGF0cm9jaW5hZG9yLCBlZGl0b3JpYWwsIHB1YmxpY2FjacOzbikgZW4gbGEgaW5mb3JtYWNpw7NuIGRlIGxvcyBkZXJlY2hvcyBkZSBhdXRvciBkZWwgTGljZW5jaWFudGUsIHTDqXJtaW5vcyBkZSBzZXJ2aWNpb3MgbyBkZSBvdHJhcyBmb3JtYXMgcmF6b25hYmxlczsgZWwgdMOtdHVsbyBkZSBsYSBPYnJhIHNpIGVzdMOhIHByb3Zpc3RvOyBlbiBsYSBtZWRpZGEgZGUgbG8gcmF6b25hYmxlbWVudGUgZmFjdGlibGUgeSwgc2kgZXN0w6EgcHJvdmlzdG8sIGVsIElkZW50aWZpY2Fkb3IgVW5pZm9ybWUgZGUgUmVjdXJzb3MgKFVuaWZvcm0gUmVzb3VyY2UgSWRlbnRpZmllcikgcXVlIGVsIExpY2VuY2lhbnRlIGVzcGVjaWZpY2EgcGFyYSBzZXIgYXNvY2lhZG8gY29uIGxhIE9icmEsIHNhbHZvIHF1ZSB0YWwgVVJJIG5vIHNlIHJlZmllcmEgYSBsYSBub3RhIHNvYnJlIGxvcyBkZXJlY2hvcyBkZSBhdXRvciBvIGEgbGEgaW5mb3JtYWNpw7NuIHNvYnJlIGVsIGxpY2VuY2lhbWllbnRvIGRlIGxhIE9icmE7IHkgZW4gZWwgY2FzbyBkZSB1bmEgT2JyYSBEZXJpdmFkYSwgYXRyaWJ1aXIgZWwgY3LDqWRpdG8gaWRlbnRpZmljYW5kbyBlbCB1c28gZGUgbGEgT2JyYSBlbiBsYSBPYnJhIERlcml2YWRhICh2LmcuLCAiVHJhZHVjY2nDs24gRnJhbmNlc2EgZGUgbGEgT2JyYSBkZWwgQXV0b3IgT3JpZ2luYWwsIiBvICJHdWnDs24gQ2luZW1hdG9ncsOhZmljbyBiYXNhZG8gZW4gbGEgT2JyYSBvcmlnaW5hbCBkZWwgQXV0b3IgT3JpZ2luYWwiKS4gVGFsIGNyw6lkaXRvIHB1ZWRlIHNlciBpbXBsZW1lbnRhZG8gZGUgY3VhbHF1aWVyIGZvcm1hIHJhem9uYWJsZTsgZW4gZWwgY2Fzbywgc2luIGVtYmFyZ28sIGRlIE9icmFzIERlcml2YWRhcyB1IE9icmFzIENvbGVjdGl2YXMsIHRhbCBjcsOpZGl0byBhcGFyZWNlcsOhLCBjb21vIG3DrW5pbW8sIGRvbmRlIGFwYXJlY2UgZWwgY3LDqWRpdG8gZGUgY3VhbHF1aWVyIG90cm8gYXV0b3IgY29tcGFyYWJsZSB5IGRlIHVuYSBtYW5lcmEsIGFsIG1lbm9zLCB0YW4gZGVzdGFjYWRhIGNvbW8gZWwgY3LDqWRpdG8gZGUgb3RybyBhdXRvciBjb21wYXJhYmxlLjwvbGk+CiAgICAgIDxsaT4KICAgICAgICBQYXJhIGV2aXRhciB0b2RhIGNvbmZ1c2nDs24sIGVsIExpY2VuY2lhbnRlIGFjbGFyYSBxdWUsIGN1YW5kbyBsYSBvYnJhIGVzIHVuYSBjb21wb3NpY2nDs24gbXVzaWNhbDoKICAgICAgICA8b2wgdHlwZT0iaSI+CiAgICAgICAgICA8bGk+UmVnYWzDrWFzIHBvciBpbnRlcnByZXRhY2nDs24geSBlamVjdWNpw7NuIGJham8gbGljZW5jaWFzIGdlbmVyYWxlcy4gRWwgTGljZW5jaWFudGUgc2UgcmVzZXJ2YSBlbCBkZXJlY2hvIGV4Y2x1c2l2byBkZSBhdXRvcml6YXIgbGEgZWplY3VjacOzbiBww7pibGljYSBvIGxhIGVqZWN1Y2nDs24gcMO6YmxpY2EgZGlnaXRhbCBkZSBsYSBvYnJhIHkgZGUgcmVjb2xlY3Rhciwgc2VhIGluZGl2aWR1YWxtZW50ZSBvIGEgdHJhdsOpcyBkZSB1bmEgc29jaWVkYWQgZGUgZ2VzdGnDs24gY29sZWN0aXZhIGRlIGRlcmVjaG9zIGRlIGF1dG9yIHkgZGVyZWNob3MgY29uZXhvcyAocG9yIGVqZW1wbG8sIFNBWUNPKSwgbGFzIHJlZ2Fsw61hcyBwb3IgbGEgZWplY3VjacOzbiBww7pibGljYSBvIHBvciBsYSBlamVjdWNpw7NuIHDDumJsaWNhIGRpZ2l0YWwgZGUgbGEgb2JyYSAocG9yIGVqZW1wbG8gV2ViY2FzdCkgbGljZW5jaWFkYSBiYWpvIGxpY2VuY2lhcyBnZW5lcmFsZXMsIHNpIGxhIGludGVycHJldGFjacOzbiBvIGVqZWN1Y2nDs24gZGUgbGEgb2JyYSBlc3TDoSBwcmltb3JkaWFsbWVudGUgb3JpZW50YWRhIHBvciBvIGRpcmlnaWRhIGEgbGEgb2J0ZW5jacOzbiBkZSB1bmEgdmVudGFqYSBjb21lcmNpYWwgbyB1bmEgY29tcGVuc2FjacOzbiBtb25ldGFyaWEgcHJpdmFkYS48L2xpPgogICAgICAgICAgPGxpPlJlZ2Fsw61hcyBwb3IgRm9ub2dyYW1hcy4gRWwgTGljZW5jaWFudGUgc2UgcmVzZXJ2YSBlbCBkZXJlY2hvIGV4Y2x1c2l2byBkZSByZWNvbGVjdGFyLCBpbmRpdmlkdWFsbWVudGUgbyBhIHRyYXbDqXMgZGUgdW5hIHNvY2llZGFkIGRlIGdlc3Rpw7NuIGNvbGVjdGl2YSBkZSBkZXJlY2hvcyBkZSBhdXRvciB5IGRlcmVjaG9zIGNvbmV4b3MgKHBvciBlamVtcGxvLCBsb3MgY29uc2FncmFkb3MgcG9yIGxhIFNBWUNPKSwgdW5hIGFnZW5jaWEgZGUgZGVyZWNob3MgbXVzaWNhbGVzIG8gYWxnw7puIGFnZW50ZSBkZXNpZ25hZG8sIGxhcyByZWdhbMOtYXMgcG9yIGN1YWxxdWllciBmb25vZ3JhbWEgcXVlIFVzdGVkIGNyZWUgYSBwYXJ0aXIgZGUgbGEgb2JyYSAo4oCcdmVyc2nDs24gY292ZXLigJ0pIHkgZGlzdHJpYnV5YSwgZW4gbG9zIHTDqXJtaW5vcyBkZWwgcsOpZ2ltZW4gZGUgZGVyZWNob3MgZGUgYXV0b3IsIHNpIGxhIGNyZWFjacOzbiBvIGRpc3RyaWJ1Y2nDs24gZGUgZXNhIHZlcnNpw7NuIGNvdmVyIGVzdMOhIHByaW1vcmRpYWxtZW50ZSBkZXN0aW5hZGEgbyBkaXJpZ2lkYSBhIG9idGVuZXIgdW5hIHZlbnRhamEgY29tZXJjaWFsIG8gdW5hIGNvbXBlbnNhY2nDs24gbW9uZXRhcmlhIHByaXZhZGEuPC9saT4KICAgICAgICA8L29sPgogICAgICA8L2xpPgogICAgICA8bGk+R2VzdGnDs24gZGUgRGVyZWNob3MgZGUgQXV0b3Igc29icmUgSW50ZXJwcmV0YWNpb25lcyB5IEVqZWN1Y2lvbmVzIERpZ2l0YWxlcyAoV2ViQ2FzdGluZykuIFBhcmEgZXZpdGFyIHRvZGEgY29uZnVzacOzbiwgZWwgTGljZW5jaWFudGUgYWNsYXJhIHF1ZSwgY3VhbmRvIGxhIG9icmEgc2VhIHVuIGZvbm9ncmFtYSwgZWwgTGljZW5jaWFudGUgc2UgcmVzZXJ2YSBlbCBkZXJlY2hvIGV4Y2x1c2l2byBkZSBhdXRvcml6YXIgbGEgZWplY3VjacOzbiBww7pibGljYSBkaWdpdGFsIGRlIGxhIG9icmEgKHBvciBlamVtcGxvLCB3ZWJjYXN0KSB5IGRlIHJlY29sZWN0YXIsIGluZGl2aWR1YWxtZW50ZSBvIGEgdHJhdsOpcyBkZSB1bmEgc29jaWVkYWQgZGUgZ2VzdGnDs24gY29sZWN0aXZhIGRlIGRlcmVjaG9zIGRlIGF1dG9yIHkgZGVyZWNob3MgY29uZXhvcyAocG9yIGVqZW1wbG8sIEFDSU5QUk8pLCBsYXMgcmVnYWzDrWFzIHBvciBsYSBlamVjdWNpw7NuIHDDumJsaWNhIGRpZ2l0YWwgZGUgbGEgb2JyYSAocG9yIGVqZW1wbG8sIHdlYmNhc3QpLCBzdWpldGEgYSBsYXMgZGlzcG9zaWNpb25lcyBhcGxpY2FibGVzIGRlbCByw6lnaW1lbiBkZSBEZXJlY2hvIGRlIEF1dG9yLCBzaSBlc3RhIGVqZWN1Y2nDs24gcMO6YmxpY2EgZGlnaXRhbCBlc3TDoSBwcmltb3JkaWFsbWVudGUgZGlyaWdpZGEgYSBvYnRlbmVyIHVuYSB2ZW50YWphIGNvbWVyY2lhbCBvIHVuYSBjb21wZW5zYWNpw7NuIG1vbmV0YXJpYSBwcml2YWRhLjwvbGk+CiAgICA8L29sPgogIDwvbGk+CiAgPGJyLz4KICA8bGk+CiAgICBSZXByZXNlbnRhY2lvbmVzLCBHYXJhbnTDrWFzIHkgTGltaXRhY2lvbmVzIGRlIFJlc3BvbnNhYmlsaWRhZC4KICAgIDxwPkEgTUVOT1MgUVVFIExBUyBQQVJURVMgTE8gQUNPUkRBUkFOIERFIE9UUkEgRk9STUEgUE9SIEVTQ1JJVE8sIEVMIExJQ0VOQ0lBTlRFIE9GUkVDRSBMQSBPQlJBIChFTiBFTCBFU1RBRE8gRU4gRUwgUVVFIFNFIEVOQ1VFTlRSQSkg4oCcVEFMIENVQUzigJ0sIFNJTiBCUklOREFSIEdBUkFOVMONQVMgREUgQ0xBU0UgQUxHVU5BIFJFU1BFQ1RPIERFIExBIE9CUkEsIFlBIFNFQSBFWFBSRVNBLCBJTVBMw41DSVRBLCBMRUdBTCBPIENVQUxRVUlFUkEgT1RSQSwgSU5DTFVZRU5ETywgU0lOIExJTUlUQVJTRSBBIEVMTEFTLCBHQVJBTlTDjUFTIERFIFRJVFVMQVJJREFELCBDT01FUkNJQUJJTElEQUQsIEFEQVBUQUJJTElEQUQgTyBBREVDVUFDScOTTiBBIFBST1DDk1NJVE8gREVURVJNSU5BRE8sIEFVU0VOQ0lBIERFIElORlJBQ0NJw5NOLCBERSBBVVNFTkNJQSBERSBERUZFQ1RPUyBMQVRFTlRFUyBPIERFIE9UUk8gVElQTywgTyBMQSBQUkVTRU5DSUEgTyBBVVNFTkNJQSBERSBFUlJPUkVTLCBTRUFOIE8gTk8gREVTQ1VCUklCTEVTIChQVUVEQU4gTyBOTyBTRVIgRVNUT1MgREVTQ1VCSUVSVE9TKS4gQUxHVU5BUyBKVVJJU0RJQ0NJT05FUyBOTyBQRVJNSVRFTiBMQSBFWENMVVNJw5NOIERFIEdBUkFOVMONQVMgSU1QTMONQ0lUQVMsIEVOIENVWU8gQ0FTTyBFU1RBIEVYQ0xVU0nDk04gUFVFREUgTk8gQVBMSUNBUlNFIEEgVVNURUQuPC9wPgogIDwvbGk+CiAgPGJyLz4KICA8bGk+CiAgICBMaW1pdGFjacOzbiBkZSByZXNwb25zYWJpbGlkYWQuCiAgICA8cD5BIE1FTk9TIFFVRSBMTyBFWElKQSBFWFBSRVNBTUVOVEUgTEEgTEVZIEFQTElDQUJMRSwgRUwgTElDRU5DSUFOVEUgTk8gU0VSw4EgUkVTUE9OU0FCTEUgQU5URSBVU1RFRCBQT1IgREHDkU8gQUxHVU5PLCBTRUEgUE9SIFJFU1BPTlNBQklMSURBRCBFWFRSQUNPTlRSQUNUVUFMLCBQUkVDT05UUkFDVFVBTCBPIENPTlRSQUNUVUFMLCBPQkpFVElWQSBPIFNVQkpFVElWQSwgU0UgVFJBVEUgREUgREHDkU9TIE1PUkFMRVMgTyBQQVRSSU1PTklBTEVTLCBESVJFQ1RPUyBPIElORElSRUNUT1MsIFBSRVZJU1RPUyBPIElNUFJFVklTVE9TIFBST0RVQ0lET1MgUE9SIEVMIFVTTyBERSBFU1RBIExJQ0VOQ0lBIE8gREUgTEEgT0JSQSwgQVVOIENVQU5ETyBFTCBMSUNFTkNJQU5URSBIQVlBIFNJRE8gQURWRVJUSURPIERFIExBIFBPU0lCSUxJREFEIERFIERJQ0hPUyBEQcORT1MuIEFMR1VOQVMgTEVZRVMgTk8gUEVSTUlURU4gTEEgRVhDTFVTScOTTiBERSBDSUVSVEEgUkVTUE9OU0FCSUxJREFELCBFTiBDVVlPIENBU08gRVNUQSBFWENMVVNJw5NOIFBVRURFIE5PIEFQTElDQVJTRSBBIFVTVEVELjwvcD4KICA8L2xpPgogIDxici8+CiAgPGxpPgogICAgVMOpcm1pbm8uCiAgICA8b2wgdHlwZT0iYSI+CiAgICAgIDxsaT5Fc3RhIExpY2VuY2lhIHkgbG9zIGRlcmVjaG9zIG90b3JnYWRvcyBlbiB2aXJ0dWQgZGUgZWxsYSB0ZXJtaW5hcsOhbiBhdXRvbcOhdGljYW1lbnRlIHNpIFVzdGVkIGluZnJpbmdlIGFsZ3VuYSBjb25kaWNpw7NuIGVzdGFibGVjaWRhIGVuIGVsbGEuIFNpbiBlbWJhcmdvLCBsb3MgaW5kaXZpZHVvcyBvIGVudGlkYWRlcyBxdWUgaGFuIHJlY2liaWRvIE9icmFzIERlcml2YWRhcyBvIENvbGVjdGl2YXMgZGUgVXN0ZWQgZGUgY29uZm9ybWlkYWQgY29uIGVzdGEgTGljZW5jaWEsIG5vIHZlcsOhbiB0ZXJtaW5hZGFzIHN1cyBsaWNlbmNpYXMsIHNpZW1wcmUgcXVlIGVzdG9zIGluZGl2aWR1b3MgbyBlbnRpZGFkZXMgc2lnYW4gY3VtcGxpZW5kbyDDrW50ZWdyYW1lbnRlIGxhcyBjb25kaWNpb25lcyBkZSBlc3RhcyBsaWNlbmNpYXMuIExhcyBTZWNjaW9uZXMgMSwgMiwgNSwgNiwgNywgeSA4IHN1YnNpc3RpcsOhbiBhIGN1YWxxdWllciB0ZXJtaW5hY2nDs24gZGUgZXN0YSBMaWNlbmNpYS48L2xpPgogICAgICA8bGk+U3VqZXRhIGEgbGFzIGNvbmRpY2lvbmVzIHkgdMOpcm1pbm9zIGFudGVyaW9yZXMsIGxhIGxpY2VuY2lhIG90b3JnYWRhIGFxdcOtIGVzIHBlcnBldHVhIChkdXJhbnRlIGVsIHBlcsOtb2RvIGRlIHZpZ2VuY2lhIGRlIGxvcyBkZXJlY2hvcyBkZSBhdXRvciBkZSBsYSBvYnJhKS4gTm8gb2JzdGFudGUgbG8gYW50ZXJpb3IsIGVsIExpY2VuY2lhbnRlIHNlIHJlc2VydmEgZWwgZGVyZWNobyBhIHB1YmxpY2FyIHkvbyBlc3RyZW5hciBsYSBPYnJhIGJham8gY29uZGljaW9uZXMgZGUgbGljZW5jaWEgZGlmZXJlbnRlcyBvIGEgZGVqYXIgZGUgZGlzdHJpYnVpcmxhIGVuIGxvcyB0w6lybWlub3MgZGUgZXN0YSBMaWNlbmNpYSBlbiBjdWFscXVpZXIgbW9tZW50bzsgZW4gZWwgZW50ZW5kaWRvLCBzaW4gZW1iYXJnbywgcXVlIGVzYSBlbGVjY2nDs24gbm8gc2Vydmlyw6EgcGFyYSByZXZvY2FyIGVzdGEgbGljZW5jaWEgbyBxdWUgZGViYSBzZXIgb3RvcmdhZGEgLCBiYWpvIGxvcyB0w6lybWlub3MgZGUgZXN0YSBsaWNlbmNpYSksIHkgZXN0YSBsaWNlbmNpYSBjb250aW51YXLDoSBlbiBwbGVubyB2aWdvciB5IGVmZWN0byBhIG1lbm9zIHF1ZSBzZWEgdGVybWluYWRhIGNvbW8gc2UgZXhwcmVzYSBhdHLDoXMuIExhIExpY2VuY2lhIHJldm9jYWRhIGNvbnRpbnVhcsOhIHNpZW5kbyBwbGVuYW1lbnRlIHZpZ2VudGUgeSBlZmVjdGl2YSBzaSBubyBzZSBsZSBkYSB0w6lybWlubyBlbiBsYXMgY29uZGljaW9uZXMgaW5kaWNhZGFzIGFudGVyaW9ybWVudGUuPC9saT4KICAgIDwvb2w+CiAgPC9saT4KICA8YnIvPgogIDxsaT4KICAgIFZhcmlvcy4KICAgIDxvbCB0eXBlPSJhIj4KICAgICAgPGxpPkNhZGEgdmV6IHF1ZSBVc3RlZCBkaXN0cmlidXlhIG8gcG9uZ2EgYSBkaXNwb3NpY2nDs24gcMO6YmxpY2EgbGEgT2JyYSBvIHVuYSBPYnJhIENvbGVjdGl2YSwgZWwgTGljZW5jaWFudGUgb2ZyZWNlcsOhIGFsIGRlc3RpbmF0YXJpbyB1bmEgbGljZW5jaWEgZW4gbG9zIG1pc21vcyB0w6lybWlub3MgeSBjb25kaWNpb25lcyBxdWUgbGEgbGljZW5jaWEgb3RvcmdhZGEgYSBVc3RlZCBiYWpvIGVzdGEgTGljZW5jaWEuPC9saT4KICAgICAgPGxpPlNpIGFsZ3VuYSBkaXNwb3NpY2nDs24gZGUgZXN0YSBMaWNlbmNpYSByZXN1bHRhIGludmFsaWRhZGEgbyBubyBleGlnaWJsZSwgc2Vnw7puIGxhIGxlZ2lzbGFjacOzbiB2aWdlbnRlLCBlc3RvIG5vIGFmZWN0YXLDoSBuaSBsYSB2YWxpZGV6IG5pIGxhIGFwbGljYWJpbGlkYWQgZGVsIHJlc3RvIGRlIGNvbmRpY2lvbmVzIGRlIGVzdGEgTGljZW5jaWEgeSwgc2luIGFjY2nDs24gYWRpY2lvbmFsIHBvciBwYXJ0ZSBkZSBsb3Mgc3VqZXRvcyBkZSBlc3RlIGFjdWVyZG8sIGFxdcOpbGxhIHNlIGVudGVuZGVyw6EgcmVmb3JtYWRhIGxvIG3DrW5pbW8gbmVjZXNhcmlvIHBhcmEgaGFjZXIgcXVlIGRpY2hhIGRpc3Bvc2ljacOzbiBzZWEgdsOhbGlkYSB5IGV4aWdpYmxlLjwvbGk+CiAgICAgIDxsaT5OaW5nw7puIHTDqXJtaW5vIG8gZGlzcG9zaWNpw7NuIGRlIGVzdGEgTGljZW5jaWEgc2UgZXN0aW1hcsOhIHJlbnVuY2lhZGEgeSBuaW5ndW5hIHZpb2xhY2nDs24gZGUgZWxsYSBzZXLDoSBjb25zZW50aWRhIGEgbWVub3MgcXVlIGVzYSByZW51bmNpYSBvIGNvbnNlbnRpbWllbnRvIHNlYSBvdG9yZ2FkbyBwb3IgZXNjcml0byB5IGZpcm1hZG8gcG9yIGxhIHBhcnRlIHF1ZSByZW51bmNpZSBvIGNvbnNpZW50YS48L2xpPgogICAgICA8bGk+RXN0YSBMaWNlbmNpYSByZWZsZWphIGVsIGFjdWVyZG8gcGxlbm8gZW50cmUgbGFzIHBhcnRlcyByZXNwZWN0byBhIGxhIE9icmEgYXF1w60gbGljZW5jaWFkYS4gTm8gaGF5IGFycmVnbG9zLCBhY3VlcmRvcyBvIGRlY2xhcmFjaW9uZXMgcmVzcGVjdG8gYSBsYSBPYnJhIHF1ZSBubyBlc3TDqW4gZXNwZWNpZmljYWRvcyBlbiBlc3RlIGRvY3VtZW50by4gRWwgTGljZW5jaWFudGUgbm8gc2UgdmVyw6EgbGltaXRhZG8gcG9yIG5pbmd1bmEgZGlzcG9zaWNpw7NuIGFkaWNpb25hbCBxdWUgcHVlZGEgc3VyZ2lyIGVuIGFsZ3VuYSBjb211bmljYWNpw7NuIGVtYW5hZGEgZGUgVXN0ZWQuIEVzdGEgTGljZW5jaWEgbm8gcHVlZGUgc2VyIG1vZGlmaWNhZGEgc2luIGVsIGNvbnNlbnRpbWllbnRvIG11dHVvIHBvciBlc2NyaXRvIGRlbCBMaWNlbmNpYW50ZSB5IFVzdGVkLjwvbGk+CiAgICA8L29sPgogIDwvbGk+CiAgPGJyLz4KPC9vbD4K