Producción de vino de corozo chiquito (Bactris minor/guinensis) a partir de diferentes sustratos teniendo en cuenta la normatividad vigente en Colombia.
Ante la tendencia de diversificar la producción enológica en contextos tropicales y valorizar especies frutales nativas como el corozo chiquito (Bactris minor/guinensis), reconocido por su color violáceo variable y su riqueza en antocianinas con efectos terapéuticos. Esta investigación evaluó el efe...
- Autores:
-
Durango Castilla, Licet Vanessa
- Tipo de recurso:
- Fecha de publicación:
- 2025
- Institución:
- Universidad de Córdoba
- Repositorio:
- Repositorio Institucional Unicórdoba
- Idioma:
- spa
- OAI Identifier:
- oai:repositorio.unicordoba.edu.co:ucordoba/9663
- Acceso en línea:
- https://repositorio.unicordoba.edu.co/handle/ucordoba/9663
https://repositorio.unicordoba.edu.co/
- Palabra clave:
- Bactris minor/guinensis
Vinificación no convencional
Sustratos alternativos
Modelamiento cinético
Fermentación alcohólica
Polifenoles
Bactris minor/guinensis
Non-conventional winemaking
Alternative substrates
Kinetic modeling
Alcoholic fermentation
Polyphenols
- Rights
- embargoedAccess
- License
- Copyright Universidad de Córdoba, 2025
| id |
UCORDOBA2_9a04dd88b2f66b6ac91401910c3155e9 |
|---|---|
| oai_identifier_str |
oai:repositorio.unicordoba.edu.co:ucordoba/9663 |
| network_acronym_str |
UCORDOBA2 |
| network_name_str |
Repositorio Institucional Unicórdoba |
| repository_id_str |
|
| dc.title.spa.fl_str_mv |
Producción de vino de corozo chiquito (Bactris minor/guinensis) a partir de diferentes sustratos teniendo en cuenta la normatividad vigente en Colombia. |
| title |
Producción de vino de corozo chiquito (Bactris minor/guinensis) a partir de diferentes sustratos teniendo en cuenta la normatividad vigente en Colombia. |
| spellingShingle |
Producción de vino de corozo chiquito (Bactris minor/guinensis) a partir de diferentes sustratos teniendo en cuenta la normatividad vigente en Colombia. Bactris minor/guinensis Vinificación no convencional Sustratos alternativos Modelamiento cinético Fermentación alcohólica Polifenoles Bactris minor/guinensis Non-conventional winemaking Alternative substrates Kinetic modeling Alcoholic fermentation Polyphenols |
| title_short |
Producción de vino de corozo chiquito (Bactris minor/guinensis) a partir de diferentes sustratos teniendo en cuenta la normatividad vigente en Colombia. |
| title_full |
Producción de vino de corozo chiquito (Bactris minor/guinensis) a partir de diferentes sustratos teniendo en cuenta la normatividad vigente en Colombia. |
| title_fullStr |
Producción de vino de corozo chiquito (Bactris minor/guinensis) a partir de diferentes sustratos teniendo en cuenta la normatividad vigente en Colombia. |
| title_full_unstemmed |
Producción de vino de corozo chiquito (Bactris minor/guinensis) a partir de diferentes sustratos teniendo en cuenta la normatividad vigente en Colombia. |
| title_sort |
Producción de vino de corozo chiquito (Bactris minor/guinensis) a partir de diferentes sustratos teniendo en cuenta la normatividad vigente en Colombia. |
| dc.creator.fl_str_mv |
Durango Castilla, Licet Vanessa |
| dc.contributor.advisor.none.fl_str_mv |
Luján Rhenals, Deivis Enrique Ortega Quintana, Fábian |
| dc.contributor.author.none.fl_str_mv |
Durango Castilla, Licet Vanessa |
| dc.contributor.jury.none.fl_str_mv |
Vélez Hernández, Gabriel Cabrera, Juan Carlos |
| dc.subject.proposal.spa.fl_str_mv |
Bactris minor/guinensis Vinificación no convencional Sustratos alternativos Modelamiento cinético Fermentación alcohólica Polifenoles |
| topic |
Bactris minor/guinensis Vinificación no convencional Sustratos alternativos Modelamiento cinético Fermentación alcohólica Polifenoles Bactris minor/guinensis Non-conventional winemaking Alternative substrates Kinetic modeling Alcoholic fermentation Polyphenols |
| dc.subject.keywords.eng.fl_str_mv |
Bactris minor/guinensis Non-conventional winemaking Alternative substrates Kinetic modeling Alcoholic fermentation Polyphenols |
| description |
Ante la tendencia de diversificar la producción enológica en contextos tropicales y valorizar especies frutales nativas como el corozo chiquito (Bactris minor/guinensis), reconocido por su color violáceo variable y su riqueza en antocianinas con efectos terapéuticos. Esta investigación evaluó el efecto de distintos sustratos y sus concentraciones iniciales en la producción de vino a partir de esta fruta. Se emplearon tres sustratos (sacarosa, melaza y azúcar invertido) en concentraciones de 12,5°, 18,8° y 25°Brix. La caracterización del fruto en seis subregiones del departamento de Córdoba evidenció diferencias agroclimáticas significativas. El Medio Sinú presentó condiciones favorables para la fermentación, destacando por su elevada concentración de antioxidantes (192,74 ± 1,04 µmol ET/100g), sólidos solubles (21,5 ± 3,5 °Brix) y densidad (1,07 ± 0,010 g/cm³); la Región Costanera sobresalió por su contenido de polifenoles (785,67 ± 1,4 mg GAF/g). El modelamiento cinético indicó que la melaza a 25°Brix mostró los parámetros más estables (µmax = 0,0196 h⁻¹; Ks = 62,5 g/L), mientras que la sacarosa a 12,5°Brix alcanzó la mayor µmax (0,0244 h⁻¹), aunque con menor rendimiento. El azúcar invertido evidenció mayor variabilidad cinética, posiblemente por limitaciones nutricionales o estrés osmótico. La melaza a 25°Brix generó el mejor rendimiento fermentativo, con 11,90 ± 2,3 % v/v de etanol y 1130 ± 2,5 mg GAF/g de polifenoles. Estos resultados destacan el potencial del corozo como materia prima alternativa para vinos tropicales y respaldan la necesidad de actualizar la legislación enológica actual de Colombia, incorporando criterios diferenciales para vinos elaborados a partir de frutas tropicales, se recomienda promover marcos normativos específicos que reconozcan la autenticidad y valor cultural de estos productos, garanticen su inocuidad y calidad, fomentando su inclusión en mercados formales, impulsando así la bioeconomía y el desarrollo agroindustrial en regiones donde históricamente la viticultura no era considerada viable. |
| publishDate |
2025 |
| dc.date.accessioned.none.fl_str_mv |
2025-11-14T12:27:57Z |
| dc.date.issued.none.fl_str_mv |
2025-11-13 |
| dc.date.available.none.fl_str_mv |
2026-11-14 |
| dc.type.none.fl_str_mv |
Trabajo de grado - Maestría |
| dc.type.driver.none.fl_str_mv |
info:eu-repo/semantics/masterThesis |
| dc.type.version.none.fl_str_mv |
info:eu-repo/semantics/acceptedVersion |
| dc.type.content.none.fl_str_mv |
Text |
| dc.type.redcol.none.fl_str_mv |
http://purl.org/redcol/resource_type/TM |
| status_str |
acceptedVersion |
| dc.identifier.uri.none.fl_str_mv |
https://repositorio.unicordoba.edu.co/handle/ucordoba/9663 |
| dc.identifier.instname.none.fl_str_mv |
Universidad de Córdoba |
| dc.identifier.reponame.none.fl_str_mv |
Repositorio Universidad de Córdoba |
| dc.identifier.repourl.none.fl_str_mv |
https://repositorio.unicordoba.edu.co/ |
| url |
https://repositorio.unicordoba.edu.co/handle/ucordoba/9663 https://repositorio.unicordoba.edu.co/ |
| identifier_str_mv |
Universidad de Córdoba Repositorio Universidad de Córdoba |
| dc.language.iso.none.fl_str_mv |
spa |
| language |
spa |
| dc.relation.references.none.fl_str_mv |
Acikgoz, I. A., & Erkmen, O. (2022). Physico-chemical Characterization and Polyphenolic Composition of Red Wines Produced from Autochthonous Grapes Varieties (Vitis vinifera) in Turkey. Biotechnology Journal International, 41–53. https://doi.org/10.9734/BJI/2022/V26I6664 Acuña, H. (2009a). Evaluación del comportamiento de tres enzimas comerciales en la fermentación y clarificación de mosto del fruto de corozo Bactris minor para obtener vino de fruta. Acuña, H. (2009b). Evaluación del comportamiento de tres enzimas comerciales en la fermentación y clarificación de mosto del fruto de corozo Bactris minor para obtener vino de fruta. Ahmad, M., Pathania, R., Chowdhury, A., Gupta, J. K., Dev, C., & Srivastava, S. (2021). Salt-stress adaptation of yeast as a simple method to improve high-gravity fermentation in an industrial medium. Applied Microbiology and Biotechnology, 105(20), 8009–8018. https://doi.org/10.1007/S00253-021-11566-7 Alabere, A., & Adebayo-Olajide, T. C. (2022). Proximate Composition of Banana and Pineapple Wine Fermented by Meyerozyma guilliermondii and Pichia guilliermondii. Microbiology Research Journal International, 71–77. https://doi.org/10.9734/MRJI/2022/V32I11-121357 Alarcón, J., & Zeledón, A. (2018). Efecto de inclusión de diferentes niveles de zeolita sobre la Fermentación en estado sólido de la caña de azúcar (Saccharum officinarum) y Marango (Moringa oleifera). Albiol, J., Barreiro Vázquez, A., Beltran, G., & Chiva, R. (2010). LÍNEA TRONCAL METABOLÓMICA SACCHAROMYCES CEREVISIAE. https://www.researchgate.net/publication/228558844 Ali, S. E., El Gedaily, R. A., Mocan, A., Farag, M. A., & El-Seedi, H. R. (2019). Profiling metabolites and biological activities of sugarcane (saccharum officinarum linn.) juice and its product molasses via a multiplex metabolomics approach. Molecules, 24(5). https://doi.org/10.3390/MOLECULES24050934 Amerine, M. A., Ough, C. S., & Gavilán. (1976). Análisis de vinos y mostos. 25(1), 142–170. Andrade-Erazo, V., & Galeano, G. (2016). La palma amarga (Sabal mauritiiformis, Arecaceae) en sistemas productivos del caribe Colombiano: Estudio de caso en Piojó, Atlántico. Acta Biologica Colombiana, 21(1), 141–150. https://doi.org/10.15446/abc.v21n1.47280 Andrés Becerra Mejía, C., & Villegas Escobar, V. (2007). Optimización de un medio de cultivo para la producción de biomasa de la cepa pseudomonas putida ua 44 aislada del suelo bananero de uraba-antioquia. Anglès, G., Moliner, R. C., Quiles, E., & Gisbert, M. G. (2019). Evaluación de diferentes fuentes de azúcar para la segunda fermentación de los vinos espumosos tipo cava. AOAC 962.12-1963. (2012). AOAC 962.12-2012, Acidez (titulable) de los vinos. http://www.aoacofficialmethod.org/index.php?main_page=product_info&products_id=2 Apolo, A. (2021). Efectos del uso de azúcar invertido en el proceso de elaboración de mermelada de banano. Araujo, K., Cáceres, A., Berradre, M., Mármol, Z., Raga, J., & Rincón, M. (2019). Perfil fisicoquímico de vino blanco producido con cepas resultantes de la fusión de protoplastos de levaduras (SACCHAROMYCES CEREVISIAE Y HANSENIASPORA GUILLIERMONDII). Revista Bases de La Ciencia. e-ISSN 2588-0764, 4(2), 1. https://doi.org/10.33936/REV_BAS_DE_LA_CIENCIA.V4I2.1599 Arias, C., & Molina, J. (2018). Proceso de producción de bioetanol a partir de la biomasa hidrolizada de la Eichhornia Crassipes con la levadura (Cándida Utilis). Institución Universitaria los libertadores. Arvisenet, G., Ballester, J., Ayed, C., Sémon, E., Andriot, I., Le Quere, J. L., & Guichard, E. (2019). Effect of sugar and acid composition, aroma release, and assessment conditions on aroma enhancement by taste in model wines. Food Quality and Preference, 71, 172–180. https://doi.org/10.1016/J.FOODQUAL.2018.07.001 Asikin, Y., Takahashi, M., Mishima, T., Mizu, M., Takara, K., & Wada, K. (2013). Antioxidant activity of sugarcane molasses against 2,2’-azobis(2-amidinopropane) dihydrochloride-induced peroxyl radicals. Food Chemistry, 141(1), 466–472. https://doi.org/10.1016/J.FOODCHEM.2013.03.045 Association of official analytical chemists., Latimer, G. W., & Horwitz, William. (2005). Official methods of analysis of AOAC international. AOAC International. Baharudin, F. N., Ramadhan, F. N., Samsuri, M., & Kurniawan, R. (2024). Effect of Substrate Concentration (Glucose) on Ethanol Fermentation Continue with Immobilized Fixed Bed Fermenter for 2/3 Mesh Pumice Anchoring Size. E3S Web of Conferences, 484. https://doi.org/10.1051/E3SCONF/202448403008 Balga, I., Leskó, A., Ladányi, M., & Kállay, M. (2014). Influence of ageing on changes in polyphenolic compounds in red wines. Https://Cjfs.Agriculturejournals.Cz/Doi/10.17221/138/2014-CJFS.Html, 32(6), 563–569. https://doi.org/10.17221/138/2014-CJFS Barrera, A. (2011). Evaluación de la actividad antioxidante de extractos de cuatro frutos de interés comercial en Colombia y actividad citotóxica In vitro en la línea celular de fibrosarcoma HT1080. [Investigación ]. In Pontificia Universidad Javeriana. (Issue 571). Pontificia Universidad Javeriana. Basa, K., Papanikolaou, S., Dimopoulou, M., Terpou, A., Kallithraka, S., & Nychas, G. J. E. (2022). Trials of Commercial-and Wild-Type Saccharomyces cerevisiae Strains under Aerobic and Microaerophilic/Anaerobic Conditions: Ethanol Production and Must Fermentation from Grapes of Santorini (Greece) Native Varieties. Fermentation, 8(6). https://doi.org/10.3390/FERMENTATION8060249 Bassey, N. S., Whong, C. M. Z., Adegoke, A. A., Ado, S. A., & Inyang, C. U. (2023). Microbiological analysis of wine produced in the laboratory using pineapple and watermelon fruits fermented by Kloeckera apiculata. World Journal of Applied Science & Technology, 14(1b), 51–55. https://doi.org/10.4314/WOJAST.V14I1B.51 Bautista, J. (2023). Impacto del programa el Campo emprende (ECE) en el desarrollo de los emprendimientos agroindustriales para la reducción de la pobreza en el departamento del Caquetá durante el periodo 2020 al 2022. [Investigación]. Universidad del Externado de Colombia. Bedoya, D., Gomez, E., Luján, D., & Salcedo, J. (2005). Producción de vino de naranja dulce (Citrus sinensis Osbeck) por fermentación inducida comparando dos cepas de Saccharomyces cerevisiae. Temas Agrarios, 2, 26–36. https://doi.org/doi.org/10.21897/rta.v10i2.632 Beigbeder, J. B., de Medeiros Dantas, J. M., & Lavoie, J. M. (2021). Optimization of yeast, sugar and nutrient concentrations for high ethanol production rate using industrial sugar beet molasses and response surface methodology. Fermentation, 7(2), 86. https://doi.org/10.3390/FERMENTATION7020086/S1 Biswas, B., & Biswas, A. B. (2022). Effects of some chemical nutrients on bio-ethanol production from water hyacinth (Eichhorniacrassipes) hydrolyzed by heat and ethanol resistant strain of Saccharomyces cerevisiaeAB810. Journal of the Indian Chemical Society, 99(10). https://doi.org/10.1016/J.JICS.2022.100725 Boondaeng, A., Kasemsumran, S., Ngowsuwan, K., Vaithanomsat, P., Apiwatanapiwat, W., Trakunjae, C., Janchai, P., Jungtheerapanich, S., & Niyomvong, N. (2022). Comparison of the Chemical Properties of Pineapple Vinegar and Mixed Pineapple and Dragon Fruit Vinegar. Fermentation, 8(11). https://doi.org/10.3390/FERMENTATION8110597 Botezatu, A., Essary, A., & Bajec, M. (2022). Glucose Oxidase in Conjunction with Catalase – An Effective System of Wine pH Management in Red Wine. American Journal of Enology and Viticulture, 74(1). https://doi.org/10.5344/AJEV.2022.22001C Brand-Williams, W., Cuvelier, M. E., & Berset, C. (1995). Use of a Free Radical Method to Evaluate Antioxidant Activity (Vol. 28). Brar, J. S., Sharma, S., Kaur, H., Singh, H., Naik, E. K., & Adhikary, T. (2023). Phytochemical properties, antioxidant potential and fatty acids profiling of three dragon fruit species grown under sub-tropical climate. Notulae Botanicae Horti Agrobotanici Cluj-Napoca, 51(3). https://doi.org/10.15835/NBHA51312993 Breidt, F., & Skinner, C. (2022a). Buffer models for pH and acid changes occurring in cucumber juice fermented with Lactiplantibacillus pentosus and Leuconostoc mesenteroides. Journal of Food Protection, 85(9), 1273–1281. https://doi.org/10.4315/JFP-22-068 Breidt, F., & Skinner, C. (2022b). Buffer models for pH and acid changes occurring in cucumber juice fermented with Lactiplantibacillus pentosus and Leuconostoc mesenteroides. Journal of Food Protection, 85(9), 1273–1281. https://doi.org/10.4315/JFP-22-068 Brenna, O. V., & Pagliarini, E. (2001). Multivariate analysis of antioxidant power and polyphenolic composition in red wines. Journal of Agricultural and Food Chemistry, 49(10), 4841–4844. https://doi.org/10.1021/jf0104376 Brieva, E. (2021a). Fenología reproductiva y ecología de la polinización de dos palmas de importancia económica de la costa caribe colombiana. Universidad de Sucre. Brieva, E. (2021b). Fenología reproductiva y ecología de la polinización de dos palmas de importancia económica de la costa caribe colombiana. Universidad de Sucre. Brieva-Oviedo, E., Maia, A. C. D., & Núñez-Avellaneda, L. A. (2020). Pollination of Bactris guineensis (Arecaceae), a potential economically exploitable fruit palm from the Colombian Caribbean. Flora: Morphology, Distribution, Functional Ecology of Plants, 269. https://doi.org/10.1016/J.FLORA.2020.151628 Buelvas, E., & Serna, M. (2017). Determinación del perfil sensorial y caracterización fisicoquímica del vino de marañón (Anacardium Occidentale) producido artesanalmente en el municipio de Chinú (Córdoba). Universidad de Córdoba. Cabezas-Zabala, C. C., Hernández-Torres, B. C., & Vargas-Zárate, M. (2016). Sugars added in food: Health effects and global regulation. In Revista Facultad de Medicina (Vol. 64, Issue 2, pp. 319–329). Universidad Nacional de Colombia. https://doi.org/10.15446/revfacmed.v64n2.52143 Călugăr, P. C., Coldea, T. E., Pop, C. R., Stan, L., Gal, E., Ranga, F., Hegheș, S. C., & Mudura, E. (2023). Mixed Fermentations of Yeasts and Lactic Acid Bacteria as Sustainable Processes to Enhance the Chemical Composition of Cider Made of Topaz and Red Topaz Apple Varieties. Agronomy 2023, Vol. 13, Page 2485, 13(10), 2485. https://doi.org/10.3390/AGRONOMY13102485 Cano, luis, & Gutiérrez, J. (2020). Análisis del potencial agropecuario en Colombia. Universidad Pontificia Bolivariana. Cardias, B. B., Trevisol, T. C., Bertuol, G. G., Costa, J. A. V., & Santos, L. O. (2020). Hydrolyzed Spirulina Biomass and Molasses as Substrate in Alcoholic Fermentation with Application of Magnetic Fields. Waste and Biomass Valorization, 12(1), 175–183. https://doi.org/10.1007/S12649-020-00966-X Casas, L., & Gamba-Trimiño. (2013a). Cosechar sin destruir, aprovechamiento sostenible de palmas colombianas - Corozo de lata (Bactris guineensis). 1–245. https://www.researchgate.net/publication/315481703 Casas, L., & Gamba-Trimiño, C. (2013b). Corozo de lata (Bactris guineensis) (pp. 1–245). https://www.researchgate.net/publication/315481703 Cendrowski, A., Królak, M., & Kalisz, S. (2021). Polyphenols, L-Ascorbic Acid, and Antioxidant Activity in Wines from Rose Fruits (Rosa rugosa). Molecules, 26(9). https://doi.org/10.3390/MOLECULES26092561 CEPAL, FAO, & IICA. (2019). Perspectivas de la agricultura y del desarrollo rural en las Américas: una mirada hacia América Latina y el Caribe 2019-2020. www.fao.org/americas Chairul, Muria, S. R., & Rohaya. (2020). The Effect of Sugar Concentration and Time for Nypa Sap Fermentation into Acetic Acid using Acetobacter pasteurianus. Journal of Physics: Conference Series, 1655(1). https://doi.org/10.1088/1742-6596/1655/1/012105 Charoenchai, C. (2019). Yeasts in Fruit Wine Fermentation. Yeasts in the Production of Wine, 461–476. https://doi.org/10.1007/978-1-4939-9782-4_15 Combatt, M., Martinez, G., & Polo Janer. (2005). Physical-chemical characterization of the highland forest soils of córdoba. Temas Agrarios, 10, 5–14. Comelli, R. N., Seluy, L. G., & Isla, M. A. (2016). Performance of several Saccharomyces strains for the alcoholic fermentation of sugar-sweetened high-strength wastewaters: Comparative analysis and kinetic modelling. New Biotechnology, 33(6), 874–882. https://doi.org/10.1016/j.nbt.2016.09.007 Comitini, F., Agarbati, A., Canonico, L., & Ciani, M. (2021). Yeast interactions and molecular mechanisms in wine fermentation: A comprehensive review. In International Journal of Molecular Sciences (Vol. 22, Issue 14). MDPI. https://doi.org/10.3390/ijms22147754 Cortes, C. (2019). Determinación del efecto del procesamiento sobre el contenido de compuestos bioactivos, capacidad antioxidante (ORAC) y el perfil de compuestos polifenólicos del jugo de Huiscoyol (Bactris Guineensis). Universidad Rodrigo Facio. Cruz-Cansino, N. del S., Cariño-Cortés, R., Cruz, R. N. de la, Sandoval-Gallegos, E. M., Sumaya-Martínez, M. T., Ramírez-Moreno, E., & Fernández-Martínez, E. (2023). Ultrasound with controlled temperature as an emerging technology for extraction of antioxidant compounds from by-products of mango (Mangifera indica L. var Ataulfo) juice. Emirates Journal of Food and Agriculture 35(2): 162-169, 35(2), 162–169. https://doi.org/10.9755/EJFA.2023.V35.I2.3013 Cuenca, M., Blanco, A., Quicazán, M., & Zuluaga-Domínguez, C. (2021). Optimization and Kinetic Modeling of Honey Fermentation for Laboratory and Pilot-Scale Mead Production. Journal of the American Society of Brewing Chemists, 80(3), 248–257. https://doi.org/10.1080/03610470.2021.1966590 Daniel, C., & Antoce, A. (2021). Preliminary study on the inhibition of alcoholic fermentation using octanoic and decanoic acids to obtain aromatic wines with residual sugar. De la trinidad, K. (2021). Modelado de un reactor de fermentación para producción de etanol como biocombustible. Universidad nacional autónoma de méxico. Decreto 1686 de 2012, 1 (2012). Decreto 1686 de 2012: Por el cual se establece el reglamento técnico sobre los requisitos sanitarios que deben cumplir las bebidas alcohólicas destinadas al consumo humano. Diario Oficial No. 48.517, 9 de agosto de 2012. https://faolex.fao.org/docs/pdf/col115864.pdf Deng, H., Wang, M., & Li, E. (2023). Continuous fed-batch strategy decreases acetic acid production and increases volatile ester formation in wines under high-gravity fermentation. OENO One, 57(1), 363–374. https://doi.org/10.20870/OENO-ONE.2023.57.1.7238 Dennis-Eboh, U., Achuba, F. I., & George, B. O. (2023a). Wine Making: Influence of pH on Physicochemical Parameters of Wine Must Produce from Hot Water Extract of Broom-cluster Fig (Ficus capensis) Leaf using Saccharomyces cerevisiae. Journal of Applied Sciences and Environmental Management, 27(1), 177–182. https://doi.org/10.4314/JASEM.V27I1.25 Dennis-Eboh, U., Achuba, F. I., & George, B. O. (2023b). Wine Making: Influence of pH on Physicochemical Parameters of Wine Must Produce from Hot Water Extract of Broom-cluster Fig (Ficus capensis) Leaf using Saccharomyces cerevisiae. Journal of Applied Sciences and Environmental Management, 27(1), 177–182. https://doi.org/10.4314/JASEM.V27I1.25 Deseo, M. A., Elkins, A., Rochfort, S., & Kitchen, B. (2020). Antioxidant activity and polyphenol composition of sugarcane molasses extract. Food Chemistry, 314. https://doi.org/10.1016/J.FOODCHEM.2020.126180 Detman, A., Laubitz, D., Chojnacka, A., Kiela, P. R., Salamon, A., Barberán, A., Chen, Y., Yang, F., Błaszczyk, M. K., & Sikora, A. (2021). Dynamics of dark fermentation microbial communities in the light of lactate and butyrate production. Microbiome, 9(1), 1–21. https://doi.org/10.1186/S40168-021-01105-X/FIGURES/7 Du Plessis, C. S., & Van Rooyen, P. C. (2017). Grape Maturity and Wine Quality. South African Journal of Enology & Viticulture, 3(2). https://doi.org/10.21548/3-2-2380 Durango, A., Cogollo, Y., Echeverry, D., Luján, D., & Arrázola, G. (2011). c (bactris minor) cultivado en el departamento de córdoba utilizando cepas nativas aisladas del propio fruto. http://web.www3.unicordoba.edu.co/es/calidad/documentosasegúresequ eéstaeslaversiónvigente Elejalde, E., Villarán, M. C., Esquivel, A., & Alonso, R. M. (2024). Bioaccessibility and Antioxidant Capacity of Grape Seed and Grape Skin Phenolic Compounds After Simulated In Vitro Gastrointestinal Digestion. Plant Foods for Human Nutrition, 79(2), 432–439. https://doi.org/10.1007/S11130-024-01164-Z Erşan, S., Berning, J. C., Esquivel, P., Jiménez, V. M., Carle, R., May, B., Schweiggert, R., & Steingass, C. B. (2020a). Phytochemical and mineral composition of fruits and seeds of wild-growing Bactris guineensis (L.) H.E. Moore palms from Costa Rica. Journal of Food Composition and Analysis, 94. https://doi.org/10.1016/j.jfca.2020.103611 Erşan, S., Berning, J. C., Esquivel, P., Jiménez, V. M., Carle, R., May, B., Schweiggert, R., & Steingass, C. B. (2020b). Phytochemical and mineral composition of fruits and seeds of wild-growing Bactris guineensis (L.) H.E. Moore palms from Costa Rica. Journal of Food Composition and Analysis, 94. https://doi.org/10.1016/j.jfca.2020.103611 Ezemba, C. C., Archibong, E. J., & Okeke, C. A. (2022). Wine Production from Banana (Musa sapientum) Using Yeast (Saccharomyces cerevisiae) Isolated from Grape (Vitis vinifera). Journal of Advances in Microbiology, 64–71. https://doi.org/10.9734/JAMB/2022/V22I230439 Fajardo, E., & Sarmiento, S. (2007). Evaluación de melaza de caña como sustrato para la producción de Saccharomyces cerevisiae. Felipe, O., Barrada, M., De Economía, E., Negocios, A. Y., De, F., & Medellín, E. (2016). ANÁLISIS DEL SECTOR AGROINDUSTRIAL EN COLOMBIA. Fernández, F., Montaño, D., García, Á., & López, H. (2009). Modelo cinético de la fermentación: estudio de dos cepas tequileras. http://www.naun.org/journals/mcs/mcs-1.pdf Ferreira, A. M., & Mendes-Faia, A. (2020). The role of yeasts and lactic acid bacteria on the metabolism of organic acids during winemaking. Foods, 9(9). https://doi.org/10.3390/FOODS9091231 Ferretti, C. G., & Febbroni, S. (2022). Terroir Traceability in Grapes, Musts and Gewürztraminer Wines from the South Tyrol Wine Region. Horticulturae, 8(7). https://doi.org/10.3390/HORTICULTURAE8070586 Filimon, R. V., Bunea, C. I., Nechita, A., Bora, F. D., Dunca, S. I., Mocan, A., & Filimon, R. M. (2022). New Malolactic Bacteria Strains Isolated from Wine Microbiota: Characterization and Technological Properties. Fermentation, 8(1). https://doi.org/10.3390/FERMENTATION8010031 Flores, I. R., Vásquez-Murrieta, M. S., Franco-Hernández, M. O., Márquez-Herrera, C. E., Ponce-Mendoza, A., & del Socorro López-Cortéz, M. (2021). Bioactive compounds in tomato (Solanum lycopersicum) variety saladette and their relationship with soil mineral content. Food Chemistry, 344, 128608. https://doi.org/10.1016/J.FOODCHEM.2020.128608 Fonseca, H. C., Melo, D. de S., Ramos, C. L., Dias, D. R., & Schwan, R. F. (2021). Lactiplantibacillus plantarum CCMA 0743 and Lacticaseibacillus paracasei subsp. paracasei LBC-81 metabolism during the single and mixed fermentation of tropical fruit juices. Brazilian Journal of Microbiology, 52(4), 2307–2317. https://doi.org/10.1007/S42770-021-00628-7 Franco, D. S. P., Georgin, J., Ramos, C. G., Eljaiek, S. M., Badillo, D. R., de Oliveira, A. H. P., Allasia, D., & Meili, L. (2023a). The Synthesis and Evaluation of Porous Carbon Material from Corozo Fruit (Bactris guineensis) for Efficient Propranolol Hydrochloride Adsorption. Molecules, 28(13). https://doi.org/10.3390/MOLECULES28135232 Franco, D. S. P., Georgin, J., Ramos, C. G., Eljaiek, S. M., Badillo, D. R., de Oliveira, A. H. P., Allasia, D., & Meili, L. (2023b). The Synthesis and Evaluation of Porous Carbon Material from Corozo Fruit (Bactris guineensis) for Efficient Propranolol Hydrochloride Adsorption. Molecules, 28(13). https://doi.org/10.3390/MOLECULES28135232 Frost, S. C., Harbertson, J. F., & Heymann, H. (2017). A full factorial study on the effect of tannins, acidity, and ethanol on the temporal perception of taste and mouthfeel in red wine. Food Quality and Preference, 62, 1–7. https://doi.org/10.1016/J.FOODQUAL.2017.05.010 Frost, S. C., Sanchez, J. M., Merrell, C., Larsen, R., Heymann, H., & Harbertson, J. F. (2020). Sensory Evaluation of Syrah and Cabernet Sauvignon Wines: Effects of Harvest Maturity and Prefermentation Soluble Solids. American Journal of Enology and Viticulture, 72(1), 36–45. https://doi.org/10.5344/AJEV.2020.20035 Galeano, G., Bernal, R., Estupiñán, A. C., Carolina Vásquez, A., Brieva, E., & García, N. (2016). Biología y dinámica poblacional del corozo de lata (Bactris guineensis: Arecaceae) en el Caribe colombiano. Galeano, G., Bernal, R., Estupiñán, A. C., Carolina Vásquez, A., Brieva, E., & García, N. (2023). Biología y dinámica poblacional del corozo de lata (Bactris guineensis: Arecaceae) en el Caribe colombiano. 1–37. Gambuti, A., Picariello, L., Forino, M., Errichiello, F., Guerriero, A., & Moio, L. (2022). How the Management of pH during Winemaking Affects Acetaldehyde, Polymeric Pigments and Color Evolution of Red Wine. Applied Sciences, 12(5). https://doi.org/10.3390/APP12052555 Gasmalla, M. A. A., Yang, R., Nikoo, M., & Man, S. (2017). Production of Ethanol from Sudanese Sugar Cane Molasses andEvaluation of Its Quality. Journal of Food Processing and Technology, 03(07). https://doi.org/10.4172/2157-7110.1000163 Gastelbondo, E. (2022). Vino artesanal de corozo chiquito: bio-emprendimiento con potencial de crecimiento. www.unicordoba.edu.co Gaviria, A., Ruiz, F., Carmen, D., Bernal, G., Osorio, E., Heredia, A., Zabala, C., Hernández, B., & Zárate, M. (2015). Azúcares Adicionados. Gil-Campos, M., San José González, M. A., & Díaz Martín, J. J. (2015). Use of sugars and sweeteners in children’s diets. Recommendations of the Nutrition Committee of the Spanish Paediatric Association. Anales de Pediatria, 83(5), 353.e1-353.e7. https://doi.org/10.1016/j.anpedi.2015.02.013 Girardi-Piva, G., Casalta, E., Legras, J. L., Nidelet, T., Pradal, M., Macna, F., Ferreira, D., Ortiz-Julien, A., Tesnière, C., Galeote, V., & Mouret, J. R. (2022). Influence of ergosterol and phytosterols on wine alcoholic fermentation with Saccharomyces cerevisiae strains. Frontiers in Microbiology, 13. https://doi.org/10.3389/FMICB.2022.966245/PDF González, G. R. (2020). Estudio de crecimiento y de producción de frutos de Bactris guineensis (güiscoyol) en Sistemas Agroforestales como potencial de desarrollo en la Región Chorotega. Oriolus, 1(1), 39–46. https://doi.org/10.47633/ORIOLUS.V1I1.272 Guevara, K., & Hernández, L. (2021). Elaboración de un vino de frutas de uvita de lata (BACTRIS MINOR) en el municipio de San Alberto, Cesar. Gutiérrez-Escobar, R., Aliaño-González, M. J., & Cantos-Villar, E. (2021a). Wine polyphenol content and its influence on wine quality and properties: A review. In Molecules (Vol. 26, Issue 3). MDPI AG. https://doi.org/10.3390/molecules26030718 Gutiérrez-Escobar, R., Aliaño-González, M. J., & Cantos-Villar, E. (2021b). Wine polyphenol content and its influence on wine quality and properties: A review. In Molecules (Vol. 26, Issue 3). MDPI AG. https://doi.org/10.3390/molecules26030718 Haack, T., Olivares, H., & Gallegos, P. (2017). Melaza invertida tratada en condiciones alcalinas como agente dispersivo para suspensiones minerales. (Patent 2625102). Henriques, D., & Balsa-Canto, E. (2021). The Monod Model Is Insufficient To Explain Biomass Growth in Nitrogen-Limited Yeast Fermentation. BioRxiv, 87(20), 1–22. https://doi.org/10.1128/AEM.01084-21 Herazo, I., Ruiz, D., & Arrázola, G. (2011). Utilización de Candida guilliermondii aislada del corozo chiquito (Bactris guineensis) en la producción de xilitol. Revista Colombiana de Biotecnología, XIII, 52–57. Herazo, I., Ruiz, D., & Arrázola, G. (2011). Utilización de Candida guilliermondii aislada del corozo chiquito (Bactris guineensis) en la producción de xilitol. Revista Colombiana de Biotecnología, XIII, 52–57. ICONTEC. (2000). Norma técnica ntc colombiana 708 - bebidas alcohólicas. Vinos de frutas. ICONTEC. (2003). NTC 5114. Bebidas alcohólicas – Métodos para determinar la acidez y el pH. Bogotá, D.C. Ivanova, K. R., & Privalova, E. A. (2024). Pine nut shell as a sorbent in fruit winemaking. Vestnik MGTU, 27(4), 621–630. https://doi.org/10.21443/1560-9278-2024-27-4-621-630 Jaimes-Gualdron, T., Florez-Alvarez, L., Zapata-Cardona, M. I., Rojano, B. A., Rugeles, M. T., & Zapata-Builes, W. (2022). Corozo (Bactris guineensis) fruit extract has antiviral activity in vitro against SARS-CoV-2. Functional Foods in Health and Disease, 12(9), 534–546. https://doi.org/10.31989/FFHD.V12I9.918 Jang, M. S., & Lee, G. L. (2020). Metabolic profiling of mulberry (Morus alba) wine fermented using Saccharomyces cerevisiae JIS strain. Korean Journal of Food Preservation, 27(2), 232–241. https://doi.org/10.11002/KJFP.2020.27.2.232 Jardín Botánico de Cartagena, Pacifico Consulting, Universidad de Florida, & Tropical Research & Education Center. (2021). Cultivo Agroforestal Sostenible de Frutos Promisorios Nativos y Rehabilitación Ecológica del Bosque Seco Tropical del Caribe Colombiano. Jiménez-Martí, E., Gomar-Alba, M., Palacios, A., Ortiz-Julien, A., & Del Olmo, M. L. (2011). Towards an understanding of the adaptation of wine yeasts to must: relevance of the osmotic stress response. Applied Microbiology and Biotechnology, 89(5), 1551–1561. https://doi.org/10.1007/S00253-010-2909-4 Jiménez-Martí, E., Zuzuarregui, A., Gomar-Alba, M., Gutiérrez, D., Gil, C., & Del Olmo, M. (2011). Molecular response of Saccharomyces cerevisiae wine and laboratory strains to high sugar stress conditions. International Journal of Food Microbiology, 145(1), 211–220. https://doi.org/10.1016/J.IJFOODMICRO.2010.12.023 Jordão, A. M., Vilela, A., & Cosme, F. (2015). From sugar of grape to alcohol of wine: Sensorial impact of alcohol in wine. Beverages, 1(4), 292–310. https://doi.org/10.3390/BEVERAGES1040292 José Rodriguez-Velasquez, J., Andrea Gómez-Grimaldos, N., Milena Castillo-León, Y., & Isabel Mejía-Fajardo, A. (2021). Parámetros sensoriales y la capacidad antioxidante de vinos de frutas a partir de Averrhoa carambola y de Bactris guineensis Sensory parameters and antioxidant capacity of fruit wines of Averrhoa carambola and Bactris guineensis (Vol. 29, Issue 54). https://orcid.org/0000-0001-1234-56783yasleth.castillo@udea.edu.co;https://orcid.org/0000-0002-7273 08174aisabel .mejia@ udea.edu. co;https://orcid.org/0000-0002-3444-6882 Julián-Ricardo, M., Ramos-Sánchez, L., & Gómez-Atanay, A. (2014). Modelación matemática del proceso de enriquecimiento proteico del bagazo de caña de azúcar en un biorreactor de lecho fijo. Tecnología Química, XXXIV(3), 207–216. Juliastuti, S. R., Laily, F. N., & Darmawan, R. (2024). Performance of a Batch Operation Microbial Fuel Cell (MFC) with Cobalt Micronutrient Addition Based on Kinetic Models. Bulletin of Chemical Reaction Engineering & Catalysis, 20(1), 1–19. https://doi.org/10.9767/BCREC.20259 Junior, D. R. C., De Brito, L. T., Pocahy, F., & Amaro, I. (2019). Melanoidins from Chinese Distilled Spent Grain: Content, Preliminary Structure, Antioxidant, and ACE-Inhibitory Activities In Vitro. Foods 2019, Vol. 8, Page 516, 8(10), 516. https://doi.org/10.3390/FOODS8100516 Juul, F., Vaidean, G., Lin, Y., Deierlein, A. L., & Parekh, N. (2021). Ultra-Processed Foods and Incident Cardiovascular Disease in the Framingham Offspring Study. Journal of the American College of Cardiology, 77(12), 1520–1531. https://doi.org/10.1016/J.JACC.2021.01.047 Juul, F., Vaidean, G., & Parekh, N. (2021). Ultra-processed Foods and Cardiovascular Diseases: Potential Mechanisms of Action. In Advances in Nutrition (Vol. 12, Issue 5, pp. 1673–1680). Oxford University Press. https://doi.org/10.1093/advances/nmab049 Kalmykova, N. N., Kalmykova, E. N., & Gaponova, T. V. (2022). Characteristic of organic acids composition of musts and wines from red grapevine varieties of interspecific origin. Russian Vine, 20, 59–64. https://doi.org/10.32904/2712-8245-2022-20-59-64 Kalopesa, E., Gkrimpizis, T., Samarinas, N., Tsakiridis, N. L., & Zalidis, G. C. (2023). Rapid Determination of Wine Grape Maturity Level from pH, Titratable Acidity, and Sugar Content Using Non-Destructive In Situ Infrared Spectroscopy and Multi-Head Attention Convolutional Neural Networks. Italian National Conference on Sensors, 23(23). https://doi.org/10.3390/S23239536 Karim, A. A., Martínez-Cartas, M. L., & Cuevas-Aranda, M. (2024). Fermentation of Sugar by Thermotolerant Hansenula polymorpha Yeast for Ethanol Production. Fermentation 2024, Vol. 10, Page 260, 10(5), 260. https://doi.org/10.3390/FERMENTATION10050260 Kelly, J. M., van Dyk, S. A., Dowling, L. K., Pickering, G. J., Kemp, B., & Inglis, D. L. (2020). Saccharomyces uvarum yeast isolate consumes acetic acid during fermentation of high sugar juice and juice with high starting volatile acidity. OENO One, 54(2), 199–211. https://doi.org/10.20870/OENO-ONE.2020.54.2.2594 Keng, A., Symoneaux, R., Lyne, A., & Botezatu, A. (2025). Comparative Study of the Sensory Impacts of Acidifiers for Red Wine Production. Beverages, 11(1). https://doi.org/10.3390/BEVERAGES11010020 Kern, M., Orduna, O., & Roberts, T. (2017). Acute metabolic and satiety responses to ingestion of molasses versus sucrose in healthy adults. The FASEB Journal, 31(S1). https://doi.org/10.1096/FASEBJ.31.1_SUPPLEMENT.798.11 Kokkinomagoulos, E., & Kandylis, P. (2024). Sustainable Exploitation of Wine Lees as Yeast Extract Supplement for Application in Food Industry and Its Effect on the Growth and Fermentative Ability of Lactiplantibacillus plantarum and Saccharomyces cerevisiae. Sustainability, 16(19). https://doi.org/10.3390/SU16198449 Kramer, Y. V., Clement, C. R., de Carvalho, J. C., Fernandes, A. V., da Silva, C. V. A., Koolen, H. H. F., Aguiar, J. P. L., Nunes-Nesi, A., Ramos, M. V., Araújo, W. L., & Gonçalves, J. F. de C. (2023). Understanding the Technical-Scientific Gaps of Underutilized Tropical Species: The Case of Bactris gasipaes Kunth. Plants 2023, Vol. 12, Page 337, 12(2), 337. https://doi.org/10.3390/PLANTS12020337 KRIEGER-WEBER, S., BARTOWSKY, E., HERAS, J. M., & DÉLÉRIS-BOU, M. (2020). Co-inoculación de bacterias durante la fermentación alcohólica: una práctica reconocida. Productos Biológicos, 1–8. Lairón-Peris, M., Routledge, S. J., Linney, J. A., Alonso-del-Real, J., Spickett, C. M., Pitt, A. R., Guillamón, J. M., Barrio, E., Goddard, A. D., & Querol, A. (2021). Lipid Composition Analysis Reveals Mechanisms of Ethanol Tolerance in the Model Yeast Saccharomyces cerevisiae. Applied and Environmental Microbiology, 87(12), 1–22. https://doi.org/10.1128/AEM.00440-21 Leiva García, J. A., & Lora Suarez, M. F. (2020). Desarrollo de una jalea a base de corozo (Bactris guineensis) con inclusión de Inulina y Lactobacillus casei. Universidad de La Salle. Facultad de Ingeniería. Ingeniería de Alimentos. https://hdl.handle.net/20.500.14625/33141 Li, F., Bai, W., Zhang, Y., Zhang, Z., Zhang, D., Shen, N., Yuan, J., Zhao, G., & Wang, X. (2024). Construction of an economical xylose-utilizing Saccharomyces cerevisiae and its ethanol fermentation. FEMS Yeast Research, 24. https://doi.org/10.1093/FEMSYR/FOAE001 Li, M., & Zeng, L. (2024). The effect of sterilization treatment on the synthesis of key biomolecules and microbial communities in fruit wine fermentation. Molecular & Cellular Biomechanics, 21(3). https://doi.org/10.62617/MCB479 Li, M., Zhao, X., Sun, Y., Yang, Z., Han, G., & Yang, X. (2021). Evaluation of anthocyanin profile and color in sweet cherry wine: Effect of sinapic acid and grape tannins during aging. Molecules, 26(10). https://doi.org/10.3390/MOLECULES26102923 Liu, J., Wang, Q., Weng, L., Zou, L., Jiang, H., Qiu, J., & Fu, J. (2023a). Analysis of sucrose addition on the physicochemical properties of blueberry wine in the main fermentation. Frontiers in Nutrition, 9. https://doi.org/10.3389/FNUT.2022.1092696/PDF Liu, J., Wang, Q., Weng, L., Zou, L., Jiang, H., Qiu, J., & Fu, J. (2023b). Analysis of sucrose addition on the physicochemical properties of blueberry wine in the main fermentation. Frontiers in Nutrition, 9. https://doi.org/10.3389/FNUT.2022.1092696/PDF Liu, R., Liu, Y., Zhu, Y., Kortesniemi, M., Zhu, B., & Li, H. (2022). Aromatic Characteristics of Passion Fruit Wines Measured by E-Nose, GC-Quadrupole MS, GC-Orbitrap-MS and Sensory Evaluation. Foods, 11(23). https://doi.org/10.3390/FOODS11233789 Liu, Z., Jiang, F., Mo, Y., Liao, H., Chen, P., & Zhang, H. (2022). Effects of Ethanol Treatment on Storage Quality and Antioxidant System of Postharvest Papaya. Frontiers in Plant Science, 13. https://doi.org/10.3389/FPLS.2022.856499/PDF Lopez, J., & Theran, N. (2004). Evaluacion De La Sacarosa Y La Harina De Batata Como Sustratos En La Elaboracion Del Vino De Corozo (Bactris minor). Mabika, B. M., Pambou-Tobi, N. P. G., Sompila, A. W. G. T., Matima, L. D. D., Elenga, M., & Thiery, V. (2024a). Evaluation of the physico-chemical and microbiological quality of tshui wine made from the fruit of Grewia coriacea Mast. World Journal of Advanced Research and Reviews, 21(3), 1766–1778. https://doi.org/10.30574/WJARR.2024.21.3.0914 Mabika, B. M., Pambou-Tobi, N. P. G., Sompila, A. W. G. T., Matima, L. D. D., Elenga, M., & Thiery, V. (2024b). Evaluation of the physico-chemical and microbiological quality of tshui wine made from the fruit of Grewia coriacea Mast. World Journal of Advanced Research and Reviews, 21(3), 1766–1778. https://doi.org/10.30574/WJARR.2024.21.3.0914 Maicas, S. (2020). The Role of Yeasts in Fermentation Processes. Microorganisms 2020, Vol. 8, Page 1142, 8(8), 1142. https://doi.org/10.3390/MICROORGANISMS8081142 Mangas, R., González, M. R., Martín, P., & Rodríguez-Nogales, J. M. (2023). Impact of glucose oxidase treatment in high sugar and pH musts on volatile composition of white wines. LWT, 184. https://doi.org/10.1016/J.LWT.2023.114975 Martin, N. (2002). Sweet/sour balance in champagne wine and dependence on taste/odour interactions. Food Quality and Preference, 13(5), 295–305. https://doi.org/10.1016/S0950-3293(02)00042-3 Martínez-Ruiz, A., Tovar-Castro, L., Aguilar, C. N., Saucedo-Castañeda, G., & Favela-Torres, E. (2021). Sucrose Hydrolysis in a Continuous Packed-Bed Reactor with Auto-immobilise Aspergillus niger Biocatalyst Obtained by Solid-State Fermentation. Applied Biochemistry and Biotechnology, 194(3), 1327–1339. https://doi.org/10.1007/S12010-021-03737-Z Martín-Gómez, J., García-Martínez, T., Varo, M. Á., Mérida, J., & Serratosa, M. P. (2023). Enhance Wine Production Potential by Using Fresh and Dried Red Grape and Blueberry Mixtures with Different Yeast Strains for Fermentation. Foods, 12(21). https://doi.org/10.3390/FOODS12213925 Martini, S., Conte, A., & Tagliazucchi, D. (2017). Phenolic compounds profile and antioxidant properties of six sweet cherry (Prunus avium) cultivars. Food Research International, 97, 15–26. https://doi.org/10.1016/j.foodres.2017.03.030 Mas, A., Beltrán, G., Sancho, M., Gutiérrez, A., Chiva, ,Rosana, & Guillamón, J. M. (2013). Metabolismo nitrogenado de Saccharomyces cerevisiae durante la fermentación vínica - Acenología. Revista de Enológica Científica y Profesional. https://www.acenologia.com/metabolismo_nitrogenado_scerevisiae_cienc1013/ McHargue, J. S., & Calfee, R. K. (1931). Effect of Manganese, Copper and Zinc on the Growth of Yeast. Plant Physiology, 6(3), 559–566. https://doi.org/10.1104/PP.6.3.559 McMahon, K. M., Diako, C., Aplin, J., Mattinson, D. S., Culver, C., & Ross, C. F. (2017). Trained and consumer panel evaluation of sparkling wines sweetened to brut or demi sec residual sugar levels with three different sugars. Food Research International, 99, 173–185. https://doi.org/10.1016/J.FOODRES.2017.05.020 Medel-Marabolí, M., López-Solís, R., Valenzuela-Prieto, D., Vargas-Silva, S., & Obreque-Slier, E. (2021). Limited relationship between temporality of sensory perception and phenolic composition of red wines. LWT, 142, 111028. https://doi.org/10.1016/J.LWT.2021.111028 Meelua, W., & Jitonnom, J. (2024). DFT study of sucrose hydrolysis by a GH32 cell-wall invertase, a key enzyme in carbohydrate metabolism. Molecular Simulation, 50(4), 298–307. https://doi.org/10.1080/08927022.2024.2302023 Méndez, J., Molina, E., Valdiviezo, R., Cătălina, Armendariz, & Portilla, A. (2022). Study of the oenological properties of naranjilla for gastronomy uses. Ciencias Agrícolas y Alimentarias. https://doi.org/ Mesa-Vanegas, A. M., Zapata-Uribe, S., Arana, L. M., Zapata, I. C., Monsalve, Z., & Rojano, B. (2015). Actividad antioxidante de extractos de diferente polaridad de Ageratum conyzoides L. Boletin Latinoamericano y Del Caribe de Plantas Medicinales y Aromaticas, 14(1), 1–10. Método oficial de la AOAC 920.57. (1998). AOAC 920.57-1998, Alcohol en vinos. Por volumen a partir de la gravedad específica. http://www.aoacofficialmethod.org/index.php?main_page=product_info&products_id=1882 Michelini, S., Tomada, S., Kadison, A. E., Pichler, F., Hinz, F., Zejfart, M., Iannone, F., Lazazzara, V., Sanoll, C., Robatscher, P., Pedri, U., & Haas, F. (2021). Modeling malic acid dynamics to ensure quality, aroma and freshness of Pinot blanc wines in South Tyrol (Italy). OENO One, 55(2), 159–179. https://doi.org/10.20870/OENO-ONE.2021.55.2.4570 Mikolajczyk, A. P., Fortela, D. L. B., Berry, J. C., Chirdon, W. M., Hernandez, R. A., Gang, D. D., & Zappi, M. E. (2024). Evaluating the Suitability of Linear and Nonlinear Regression Approaches for the Langmuir Adsorption Model as Applied toward Biomass-Based Adsorbents: Testing Residuals and Assessing Model Validity. Langmuir, 40(39). https://doi.org/10.1021/ACS.LANGMUIR.4C01786 Miller, G. (1959). Use of Dinitrosalicylic Acid Reagent for Determination of Reducing Sugar. Analytical Chemistry, 31, 426. Ministerio de salud y protección social. (2012). Decreto 1686 de 2012. Reglamento técnico sobre los requisitos sanitarios que se deben cumplir para la fabricación, elaboración, hidratación, envase, almacenamiento, distribución, transporte comercialización, expendio, exportación e importación de bebidas alcohólicas destinadas para consumo humano. Ministerio Salud y Protección Social. (2021). Decreto 162 de 2021-modifica el decreto 1681 de 2012 se establecen los requisitos que se deben cumplir para la fabricación, elaboración, hidratación, envase, almacenamiento, distribución, transporte, comercialización, expendio, exportación e importación, las bebidas alcohólicas destinadas para el consumo humano. Minnaar, P., Nyobo, L., Jolly, N., Ntushelo, N., & Meiring, S. (2018). Anthocyanins and polyphenols in Cabernet Franc wines produced with Saccharomyces cerevisiae and Torulaspora delbrueckii yeast strains: Spectrophotometric analysis and effect on selected sensory attributes. Food Chemistry, 268, 287–291. https://doi.org/10.1016/J.FOODCHEM.2018.06.074 Mohammed, S. S. D. (2020). Bacteriological Quality And Sensory Evaluation Of Wine Produced From Blends Of Date Palm Fruit And Cucumber Juice Using Saccharomyces cerevesiae. Bacterial Empire, 3(3), 25–31. https://doi.org/10.36547/BE.2020.3.3.25-31 Monteros, J. (2015). Determinación de parámetros óptimos para la estabilidad de sacarosa invertida líquida con fines industriales. [Ingeniería Agroindustrial]. Universidad Técnica del Norte. Morata, A., Escott, C., Loira, I., Manuel Del Fresno, J., Vaquero, C., Antonia Bañuelos, M., Palomero, F., López, C., & González, C. (2021). pH Control and Aroma Improvement Using the Non-Saccharomyces Lachancea thermotolerans and Hanseniaspora spp. Yeasts to Improve Wine Freshness in Warm Areas. Grapes and Wine [Working Title]. https://doi.org/10.5772/INTECHOPEN.100538 Moreno, J., Medina, M., & García, M. (2017). Optimization of the fermentation conditions of musts from Pedro Ximenez grapes grown in Southern Spain. Production of higher alcohols and esters. South African Journal of Enology and Viticulture, 9(2). https://doi.org/10.21548/9-2-2298 Muneeshwari, P., Post, M. B., Fellow, D., Baskar, M., & Hemalatha, G. (2020). Fermentation of wine from tropical and subtropical fruits: A review. International Journal of Chemical Studies, 8(5), 118–126. https://doi.org/10.22271/CHEMI.2020.V8.I5B.10287 Murillo, M., Alvis, A., & Arrazola, G. (2021). Propiedades fisicoquímicas y funcionales del almidón obtenido de dos variedades de batata ( Ipomoea batatas )* Physicochemical and functional properties of almidon obtained from two varieties of sweet potatoes ( Ipomoea batatas ) Propriedades físico-quími. Biotegnología En El Sector Agropecuario y Agroindustrial, 19(1), 117–127. Muscolo, A., Sidari, M., Settineri, G., Papalia, T., Mallamaci, C., & Attinà, E. (2019). Influence of Soil Properties on Bioactive Compounds and Antioxidant Capacity of Brassica rupestris Raf. Journal of Soil Science and Plant Nutrition, 19(4), 808–815. https://doi.org/10.1007/S42729-019-00080-5/METRICS Nascimento, V. M., Antoniolli, G. T. U., Leite, R. S. R., & Fonseca, G. G. (2020). Effects of the carbon source on the physiology and invertase activity of the yeast Saccharomyces cerevisiae FT858. 3 Biotech, 10(8). https://doi.org/10.1007/S13205-020-02335-W Nguyet, V. T. A., Furutani, N., Ando, R., & Izawa, S. (2022). Acquired resistance to severe ethanol stress-induced inhibition of proteasomal proteolysis in Saccharomyces cerevisiae. Biochimica et Biophysica Acta. General Subjects, 1866(12). https://doi.org/10.1016/J.BBAGEN.2022.130241 Niculescu, V.-C., Paun, N., Ionete, R.-E., Niculescu, V.-C., Paun, N., & Ionete, R.-E. (2017). The Evolution of Polyphenols from Grapes to Wines. Grapes and Wines - Advances in Production, Processing, Analysis and Valorization. https://doi.org/10.5772/INTECHOPEN.72800 Obiekezie, O. P., Efiuvwevwere, B. J. O., & Eruteya, O. C. (2020). Production, Preservation and Shelf-Life Evaluation of Wine from Banana Fruit (Musa acuminata Colla). Journal of Advances in Microbiology, 47–61. https://doi.org/10.9734/JAMB/2020/V20I930280 Olivero, rafael, Aguas, yelitza, & Cury, K. (2011). Evaluación del efecto de diferentes cepas de levadura (Montrachet, K1-V1116, EC-1118, 71B-1122 y IVC-GRE ®) y clarificantes sobre los atributos sensoriales del vino de naranja criolla (Citrus sinensis). Onache, P. A., Florea, A., Geana, E. I., Ciucure, C. T., Ionete, R. E., Sumedrea, D. I., & Tița, O. (2023). Assessment of Bioactive Phenolic Compounds in Musts and the Corresponding Wines of White and Red Grape Varieties. Applied Sciences, 13(9). https://doi.org/10.3390/APP13095722 Ortega, F. A., Pérez, O. A., & López, E. A. (2016). Modelo Semifísico de Base Fenomenológica del Proceso Continuo de Fermentación Alcohólica. Informacion Tecnologica, 27(1), 21–32. https://doi.org/10.4067/S0718-07642016000100004 Osorio, C., Carriazo, J. G., & Almanza, O. (2011). Antioxidant activity of corozo (Bactris guineensis) fruit by electron paramagnetic resonance (EPR) spectroscopy. European Food Research and Technology, 233(1), 103–108. https://doi.org/10.1007/S00217-011-1499-4 Ozmihci, S., & Kargi, F. (2007). Kinetics of batch ethanol fermentation of cheese-whey powder (CWP) solution as function of substrate and yeast concentrations. Bioresource Technology, 98(16), 2978–2984. https://doi.org/10.1016/J.BIORTECH.2006.10.005 Patil, P. S., Deshannavar, U. B., Ramasamy, M., & Emani, S. (2021). Production, optimization, and characterization of sugarcane (Saccharum officinarum)–papaya (Carica papaya) wine using Saccharomyces cerevisiae. Environmental Technology & Innovation, 21. https://doi.org/10.1016/J.ETI.2020.101290 Payan, C., Gancel, A. L., Jourdes, M., Christmann, M., & Teissedre, P. L. (2023). Wine acidification methods: a review. OENO One, 57(3), 113–126. https://doi.org/10.20870/OENO-ONE.2023.57.3.7476 Perez, L., & Canter, D. (1991). Development of a Kinetic Model for the Alcoholic Fermentation of Must. Pérez-Ramírez, I. F., Castaño-Tostado, E., Ramírez-De León, J. A., Rocha-Guzmán, N. E., & Reynoso-Camacho, R. (2015). Effect of stevia and citric acid on the stability of phenolic compounds and in vitro antioxidant and antidiabetic capacity of a roselle (Hibiscus sabdariffa L.) beverage. Food Chemistry, 172, 885–892. https://doi.org/10.1016/J.FOODCHEM.2014.09.126 Perfetti, J., Balcázar, Á., Hernández, A., & Leibovich, J. (2013). Políticas para el desarrollo de la agricultura en Colombia (Formas Finales Ltda., Ed.; Primera edición). La Imprenta Editores, Fedesarrollo, Sociedad de Agricultores de Colombia, Finagro, Incoder, Banco Agrario. Phaiboonsilpa, N., Chysirichote, T., Champreda, V., & Laosiripojana, N. (2020). Fermentation of xylose, arabinose, glucose, their mixtures and sugarcane bagasse hydrolyzate by yeast Pichia stipitis for ethanol production. Energy Reports, 6, 710–713. https://doi.org/10.1016/J.EGYR.2019.11.142 Pinto, D., Vieira, E., Peixoto, A. F., Freire, C., Freitas, V., Costa, P., Delerue-Matos, C., & Rodrigues, F. (2020). Optimizing the extraction of phenolic antioxidants from chestnut shells by subcritical water extraction using response surface methodology 2 3. Pretelt, A., & Pérez, J. (2015). Plan De Exportacion De Vino De Corozo Hacia Argentina Ana Paola Pretelt Garcia Jamy Carolina Perez Herrera Electiva De Profundizacion Ii Integración y cooperación económica. Price, R. E., Longtin, M., Conley-Payton, S., Osborne, J. A., Johanningsmeier, S. D., Bitzer, D., & Breidt, F. (2020). Modeling buffer capacity and pH in acid and acidified foods. Journal of Food Science, 85(4), 918–925. https://doi.org/10.1111/1750-3841.15091 Putu Andriana Sastrawan, I., Selamet Duniaji, A., Wayan Wisaniyasa, N., Studi Teknologi Pangan, P., Teknologi Pertanian, F., Udayana Kampus Bukit Jimbaran, U., & korespondensi, P. (2022). Pengaruh Konsentrasi Sukrosa Terhadap Karakteristik WineKopi Arabika Kintaman. In / Itepa (Vol. 11, Issue 3). Quesada, M. S., Azofeifa, G., Campone, L., Pagano, I., Pérez, A. M., Cortés, C., Rastrelli, L., & Quesada, S. (2020). Bactris guineensis (Arecaceae) extract: Polyphenol characterization, antioxidant capacity and cytotoxicity against cancer cell lines. Journal of Berry Research, 10(3), 329–344. https://doi.org/10.3233/JBR190449 R Core Team. (2023). CRAN: Mirrors. https://cran.r-project.org/mirrors.html Rahmasari, E., Wisaniyasa, N. W., & Kencana Putra, I. N. (2022). Pengaruh Konsentrasi Starter dan Gula terhadap Karakteristik Wine Jahe. Jurnal Ilmu Dan Teknologi Pangan (ITEPA), 11(3), 555. https://doi.org/10.24843/ITEPA.2022.V11.I03.P15 Ramil, Ma. D. I., DC. Mendoza, A. M., & D. Ramil, R. J. (2021a). Assessment on the Physicochemical and Phytochemical Properties, Nutritional and Heavy Metal Contents, and Antioxidant Activities of Hylocereus polyrhizus Peel from Northern Philippines. Indian Journal of Science and Technology, 14(14), 1097–1104. https://doi.org/10.17485/IJST/V14I14.2286 Ramil, Ma. D. I., DC. Mendoza, A. M., & D. Ramil, R. J. (2021b). Assessment on the Physicochemical and Phytochemical Properties, Nutritional and Heavy Metal Contents, and Antioxidant Activities of Hylocereus polyrhizus Peel from Northern Philippines. Indian Journal of Science and Technology, 14(14), 1097–1104. https://doi.org/10.17485/IJST/V14I14.2286 Ramoba, L., Monyama, M. C., & Moganedi, K. (2022). Storage Potential of the Cactus Pear (Opuntia ficus-indica) Fruit Juice and Its Biological and Chemical Evaluation during Fermentation into Cactus Pear Wine. Beverages, 8(4). https://doi.org/10.3390/BEVERAGES8040067 Reddy, L. V. A., Joshi, V. K., & Reddy, O. V. S. (2012). Utilization of Tropical Fruits for Wine Production with Special Emphasis on Mango (Mangifera indica L.) Wine. Microorganisms in Sustainable Agriculture and Biotechnology, 9789400722149, 679–710. https://doi.org/10.1007/978-94-007-2214-9_30 Regino, A., & Rengifo, E. (2021). Evaluación De Los Métodos De Extracción De Compuestos Fenólicos (Antocianinas) A Partir Del Fruto Del Corozo (Bactris guineensis). Rettenmaier, R., Gerbaulet, M., Liebl, W., & Zverlov, V. V. (2019). Hungateiclostridium mesophilum sp. Nov., a mesophilic, cellulolytic and spore-forming bacterium isolated from a biogas fermenter fed with maize silage. International Journal of Systematic and Evolutionary Microbiology, 69(11), 3567–3573. https://doi.org/10.1099/IJSEM.0.003663/CITE/REFWORKS Ríos Rojas, J. (2020). Bebidas tradicionales y ancestrales del Caribe colombiano. Sosquua, 2(1), 48–56. https://doi.org/10.52948/SOSQUUA.V2I1.138 Rodrigues, C. I. S., Wahl, A., & Gombert, A. K. (2021). Aerobic growth physiology of Saccharomyces cerevisiae on sucrose is strain-dependent. BioRxiv. https://doi.org/10.1101/2021.02.25.432870 Rodríguez-Cure, D., Luján-Rhenals, D., & Ortega-Quintana, F. (2024). Obtención de un concentrado para bebida aromática con Propiedades antioxidantes a partir de corozo Chiquito (Bactris minor/guineensis). Rohaya, S., Anwar, S. H., Amhar, A. B., Sutriana, A., & Muzaifa, M. (2023). Antioxidant activity and physicochemical composition of coffee pulp obtained from three coffee varieties in Aceh, Indonesia. IOP Conference Series: Earth and Environmental Science, 1182(1). https://doi.org/10.1088/1755-1315/1182/1/012063 Rojano, B., Zapata, I. C., & Cortés, F. (2012). Anthocyanin stability and the oxygen radical absorbance capacity (ORAC) values of Corozo aqueous extracts (Bactris guineensis). Rojano, M. B., Isabel, I., Zapata, C., Farid, C., & Cortes, B. (2012). Anthocyanin stability and the oxygen radical absorbance capacity (ORAC) values of Corozo aqueous extracts (Bactris guineensis). In Revista Cubana de Plantas Medicinales (Vol. 17, Issue 3). http://scielo.sld.cu Rojas, margarita. (2004). estandarización del proceso de clarificación del vino de feijoa (feijoa sellowiana berg) en el municipio de tibasosa. Rollero, S., Bloem, A., Brand, J., Ortiz-Julien, A., Camarasa, C., & Divol, B. (2021). Nitrogen metabolism in three non-conventional wine yeast species: A tool to modulate wine aroma profiles. Food Microbiology, 94. https://doi.org/10.1016/j.fm.2020.103650 Sajib, M., Hoque, M. M., & Khatun, A. K. (2014). Minerals and heavy metals concentration in selected tropical fruits of Bangladesh. International Food Research Journal, 5(1731–1736), 1–7. https://www.researchgate.net/publication/269280116 Salakkam, A., Phukoetphim, N., Laopaiboon, P., & Laopaiboon, L. (2023). Mathematical modeling of bioethanol production from sweet sorghum juice under high gravity fermentation: applicability of Monod-based, logistic, modified Gompertz and Weibull models. Electronic Journal of Biotechnology, 64, 18–26. https://doi.org/10.1016/J.EJBT.2023.03.004 Salas-Millán, J. Á., Aznar, A., Conesa, E., Conesa-Bueno, A., & Aguayo, E. (2022). Fruit Wine Obtained from Melon by-Products: Physico-Chemical and Sensory Analysis, and Characterization of Key Aromas by GC-MS. Foods 2022, Vol. 11, Page 3619, 11(22), 3619. https://doi.org/10.3390/FOODS11223619 Sánchez, K., & Laiton, Y. (2021). Elaboración de un vino de frutas de uvita de lata (BACTRIS MINOR) en el municipio de San Alberto, Cesar. Sancho-Galán, P., Amores-Arrocha, A., Palacios, V., & Jiménez-Cantizano, A. (2020). Identification and characterization of white grape varieties autochthonous of a warm climate region (Andalusia, Spain). Agronomy, 10(2). https://doi.org/10.3390/AGRONOMY10020205 Sangadah, H. A., Machfud, & Anggraeni, E. (2020). An integrated conceptual framework for sustainable agroindustry. IOP Conference Series: Earth and Environmental Science, 472(1). https://doi.org/10.1088/1755-1315/472/1/012057 Santos, L. D. (2022). Kinetics of Bio-ethanol production on the molasses-based medium by Saccharomyces cerevisiae By. https://doi.org/ Saothong, P., Ninchan, B., Sriroth, K., Rattanaporn, K., & Vanichsriratana, W. (2021). Kinetics of Saccharomyces cerevisiae Fermentation under Metal Ions Stress during Ethanol Production. Walailak Journal of Science and Technology, 18(6). https://doi.org/10.48048/WJST.2021.9133 Schwarz, L. V., Marcon, A. R., Delamare, A. P. L., & Echeverrigaray, S. (2021). Influence of nitrogen, minerals and vitamins supplementation on honey wine production using response surface methodology. Journal of Apicultural Research, 60(1), 57–66. https://doi.org/10.1080/00218839.2020.1793277 Sellamén Garzón, A. (2013). Estado del arte sobre los fondos parafiscales agropecuarios. (Spanish). Etat de l’art sur les fonds agricoles parafiscaux. (French), 11(18),73–112.http://search.ebscohost.com/login.aspx?direct=true&db=fua&AN=8963 9372&lang=es&site=ehost-live Shafiqa-Atikah, M. K., Nor-Khaizura, M. A. R., Mahyudin, N. A., Abas, F., Nur-Syifa’, J., & Ummul-Izzatul, Y. (2020). Evaluation of phenolic constituent, antioxidant and antibacterial activities of sugarcane molasses towards foodborne pathogens. Food Research, 4, 40–47. https://doi.org/10.26656/FR.2017.4(S2).S05 Shuler, M., & Kargi, F. (2002). Bioprocess Engineering Basic Concepts (Vol. 2). Soto Mora, J. E., Charry Roa, S., & Amorocho Cruz, C. M. (2021). Evaluación del comportamiento del color del vino artesanal de curuba “Son del Alba.” Ingeniería y Región, 26, 4–19. https://doi.org/10.25054/22161325.2915 Stoica, F., Muntean, C., & Băducă Cîmpeanu, C. (2024). Study of the polyphenolic potential of red wine grape varieties cultivated in different vineyard areas in oltenia. Annals of the university of craiova, Biology, Horticulture, Food Products Processing Technology, Environmental Engineering, 29(65). https://doi.org/10.52846/BIHPT.V29I65.184 Styger, G., Prior, B., & Bauer, F. F. (2011). Wine flavor and aroma. In Journal of Industrial Microbiology and Biotechnology (Vol. 38, Issue 9, pp. 1145–1159). https://doi.org/10.1007/s10295-011-1018-4 Suárez, J., & Leydi, G. (2013). Hidrólisis ácida y concentración por evaporación de jugo de caña panelera (Variedad CC 8592) para la elaboración de miel invertida. Universidad del valle. Suárez-Rebaza, L. A., de Albuquerque, R. D. D. G., Zavala, E., Alva-Plasencia, P. M., Ganoza-Suárez, M. M., Ganoza-Yupanqui, M. L., & Bussmann, R. W. (2023). Chemical composition and antioxidant capacity of purified extracts of Prosopis pallida(Humb. & Bonpl. ex Willd.) Kunth (Fabaceae) fruits from Northern Peru. Boletin Latinoamericano y Del Caribe de Plantas Medicinales y Aromaticas, 22(5), 594–606. https://doi.org/10.37360/BLACPMA.23.22.5.43 Tafur, P., & Cristina, M. (2019). Efecto de diferentes tratamientos químicos sobre la producción de azúcares reductores y etanol en la fermentación alcohólica de la cáscara de la mazorca del cacao. Takara, K., Ushijima, K., Wada, K., Iwasaki, H., & Yamashita, M. (2007). Phenolic compounds from sugarcane molasses possessing antibacterial activity against cariogenic bacteria. Journal of Oleo Science, 56(11), 611–614. https://doi.org/10.5650/JOS.56.611 Tareen, A. K., Punsuvon, V., Sultan, I. N., Khan, M. W., & Parakulsuksatid, P. (2021). Cellulase Addition and Pre-hydrolysis Effect of High Solid Fed-Batch Simultaneous Saccharification and Ethanol Fermentation from a Combined Pretreated Oil Palm Trunk. ACS Omega, 6(40), 26119–26129. https://doi.org/10.1021/ACSOMEGA.1C03111 Tatah, S. V., Shadrach, P., & Abah, M. A. (2024). Nutritional and Biochemical Analysis of Locally Produced Wine from a Blend of Banana (Musa sapientum) and Date Palm Fruit (Phoenix dactylifera L.). Asian Journal of Science, Technology, Engineering, and Art, 2(3), 444–461. https://doi.org/10.58578/AJSTEA.V2I3.3210 Teng, B., Petrie, P. R., Nandorfy, D. E., Smith, P., & Bindon, K. (2020). Pre-Fermentation Water Addition to High-Sugar Shiraz Must: Effects on Wine Composition and Sensory Properties. Foods, 9(9). https://doi.org/10.3390/FOODS9091193 Tokar, A. Yu., Haidai, I. V., Voitsekhivskyi, V. I., & Voitsekhivska, O. V. (2024). ASCORBIC ACID AND PHENOLIC SUBSTANCES IN FRUIT AND BERRY UNFORCED WINES. Naukovì Dopovìdì Nacìonalʹnogo Unìversitetu Bìoresursiv ì Prirodokoristuvannâ Ukraïni, 109(3). https://doi.org/10.31548/DOPOVIDI.3(109).2024.013 Trioli, G. (2010). MICROBIAL CONTAMINATION IN WINE. Udeagha, E. C., Ishiwu, C. N., Obiora, C. U., & Iwouno, J. O. (2020). Effects of Yeast Concentration and Total Soluble Solids on the Quality of Wine Produced from Pineapple. Current Journal of Applied Science and Technology, 28–42. https://doi.org/10.9734/CJAST/2020/V39I3030968 Ünsal, S. B. E., Tufan, H. N. G., Canatar, M., Yatmaz, E., Yavuz, I., Germec, M., & Turhan, I. (2025). An Evaluation of Mathematical Modeling of Ethanol Fermentation with Immobilized Saccharomyces cerevisiae in the Presence of Different Inhibitors. Processes, 13(3). https://doi.org/10.3390/PR13030656 Urrialde, R., Gómez Cifuentes, A., Pintos, B., Gómez-Garay, M. A., & Cifuentes, B. (2023). Los edulcorantes como herramienta de reducción de la densidad energética en los productos alimenticios. Una alternativa para ayudar a poder controlar y reducir el sobrepeso y la obesidad. Nutricion Hospitalaria, 40(2), 62–66. https://doi.org/10.20960/nh.04958 Vamvakas, S. S., & Kapolos, J. (2020). Factors affecting yeast ethanol tolerance and fermentation efficiency. World Journal of Microbiology & Biotechnology, 36(8). https://doi.org/10.1007/S11274-020-02881-8 Vaquero, C., Loira, I., Bañuelos, M. A., Heras, J. M., Cuerda, R., & Morata, A. (2020a). Industrial performance of several lachancea thermotolerans strains for ph control in white wines from warm areas. Microorganisms, 8(6). https://doi.org/10.3390/MICROORGANISMS8060830 Vaquero, C., Loira, I., Bañuelos, M. A., Heras, J. M., Cuerda, R., & Morata, A. (2020b). Industrial performance of several lachancea thermotolerans strains for ph control in white wines from warm areas. Microorganisms, 8(6). https://doi.org/10.3390/MICROORGANISMS8060830 Vaquero, C., Loira, I., Heras, J. M., Carrau, F., González, C., & Morata, A. (2021). Biocompatibility in Ternary Fermentations With Lachancea thermotolerans, Other Non-Saccharomyces and Saccharomyces cerevisiae to Control pH and Improve the Sensory Profile of Wines From Warm Areas. Frontiers in Microbiology, 12. https://doi.org/10.3389/FMICB.2021.656262/PDF Veloso, I. I. K., Rodrigues, K. C. S., Sonego, J. L. S., Cruz, A. J. G., & Badino, A. C. (2019a). Fed-batch ethanol fermentation at low temperature as a way to obtain highly concentrated alcoholic wines: Modeling and optimization. Biochemical Engineering Journal, 141, 60–70. https://doi.org/10.1016/J.BEJ.2018.10.005 Veloso, I. I. K., Rodrigues, K. C. S., Sonego, J. L. S., Cruz, A. J. G., & Badino, A. C. (2019b). Fed-batch ethanol fermentation at low temperature as a way to obtain highly concentrated alcoholic wines: Modeling and optimization. Biochem Eng J, 141, 60–70. https://doi.org/10.1016/j.bej.2018.10.005 Vieira, R. C., De Farias Silva, C. E., da Silva, L. O. M., Almeida, R. M. R. G., de Oliveira Carvalho, F., & dos Santos Silva, M. C. (2020). Kinetic modelling of ethanolic fermented tomato must (Lycopersicon esculentum Mill) in batch system: influence of sugar content in the chaptalization step and inoculum concentration. Reaction Kinetics, Mechanisms and Catalysis, 130(2), 837–862. https://doi.org/10.1007/S11144-020-01810-Y Villadsen, J., Nielsen, J., & Lidén, G. (2011). Thermodynamics of Bioreactions. In Bioreaction Engineering Principles (pp. 119–150). Springer US. https://doi.org/10.1007/978-1-4419-9688-6_4 Vitolo, M. (2021). Immobilization on chitin and polyethylene of invertase obtained from yeast grown in molasses by fed-batch process. Walker, G. M. (2004). Metals in yeast fermentation processes. Advances in Applied Microbiology, 54, 197–229. https://doi.org/10.1016/S0065-2164(04)54008-X Wegmann-Herr, P., & Nickolaus, P. (2023). Verification of the practical suitability of cation exchangers for lowering the pH value in must and wine. BIO Web of Conferences, 56. https://doi.org/10.1051/BIOCONF/20235602008 Xynas, B., Barnes, C., & Howell, K. (2024). Amending high sugar in V. vinifera cv. Shiraz wine must by pre-fermentation water treatments results in subtle sensory differences for naïve wine consumers. OENO One, 58(3). https://doi.org/10.20870/OENO-ONE.2024.58.3.8009 Yaa’ri, R., Schneiderman, E., Ben Aharon, V., Stanevsky, M., & Drori, E. (2024). Development of a Novel Approach for Controlling and Predicting Residual Sugars in Wines. Fermentation, 10(3), 125. https://doi.org/10.3390/FERMENTATION10030125/S1 Yilmaz, T., Ates, F., Turan, M., Hatterman-Valenti, H., & Kaya, O. (2024). Dynamics of Sugars, Organic Acids, Hormones, and Antioxidants in Grape Varieties ‘Italia’ and ‘Bronx Seedless’ during Berry Development and Ripening. Horticulturae, 10(3). https://doi.org/10.3390/HORTICULTURAE10030229 Yin, W. (2014). Comparison between Lineweaver-Burk Plot and Genetic Algorithms Using for Parameter Estimation of Monod Equation. Journal of Qingdao Agricultural University. Yoshida, M., Furutani, N., Imai, F., Miki, T., & Izawa, S. (2022). Wine Yeast Cells Acquire Resistance to Severe Ethanol Stress and Suppress Insoluble Protein Accumulation during Alcoholic Fermentation. Microbiology Spectrum, 10(5). https://doi.org/10.1128/SPECTRUM.00901-22 Zapata, K., Cortes, F. B., & Rojano, B. A. (2013). Polifenoles y Actividad Antioxidante del Fruto de Guayaba Agria (Psidium araca). Informacion Tecnologica, 24(5), 103–112. https://doi.org/10.4067/S0718-07642013000500012 Zapata M, J. E., Hoyos, M. R., & Quinchía B, L. A. (2005). parámetros cinéticos de crecimiento de saccharomyces cerevisiae en presencia de un campo magnético variable de baja intensidad y alta frecuencia kinetic parameters of growth of saccharomyces cerevisiae affected by a varying magnetic field of low intensity and high frequency. Vitae, 12, 39–44. Zapateiro, G., Alberto, L., Mendoza, F., Inés, C., & Ligardo, M. (2016). Elaboración y caracterización fisicoquímica de un vino joven de fruta de borojó (B patinoi Cuatrec). Zeng, Q., Ha, S., Chen, M., Zhang, C., & Yang, H. (2025). Common organic acids in fruit wine and the deacidification strategies. Systems Microbiology and Biomanufacturing. https://doi.org/10.1007/S43393-025-00333-8 Zentou, H., Abidin, Z. Z., Yunus, R., Biak, D. R. A., Zouanti, M., & Hassani, A. (2019). Modelling of molasses fermentation for bioethanol production: A comparative investigation of monod and andrews models accuracy assessment. Biomolecules, 9(8). https://doi.org/10.3390/biom9080308 Zhang, H. L., Xia, N. Y., Yao, X. C., Duan, C. Q., & Pan, Q. H. (2024). Effects of Phenolic Evolution on Color Characteristics of Single-Cultivar Vitis vinifera L. Marselan and Merlot Wines during Vinification and Aging. Foods, 13(3). https://doi.org/10.3390/FOODS13030494 Zi, X., Liu, Y., Chen, T., Li, M., Zhou, H., & Tang, J. (2022). Effects of Sucrose, Glucose and Molasses on Fermentation Quality and Bacterial Community of Stylo Silage. Fermentation, 8(5). https://doi.org/10.3390/fermentation8050191 |
| dc.rights.none.fl_str_mv |
Copyright Universidad de Córdoba, 2025 |
| dc.rights.uri.none.fl_str_mv |
https://creativecommons.org/licenses/by-nc-nd/4.0/ |
| dc.rights.license.none.fl_str_mv |
Atribución-NoComercial-SinDerivadas 4.0 Internacional (CC BY-NC-ND 4.0) |
| dc.rights.accessrights.none.fl_str_mv |
info:eu-repo/semantics/embargoedAccess |
| dc.rights.coar.none.fl_str_mv |
http://purl.org/coar/access_right/c_f1cf |
| rights_invalid_str_mv |
Copyright Universidad de Córdoba, 2025 https://creativecommons.org/licenses/by-nc-nd/4.0/ Atribución-NoComercial-SinDerivadas 4.0 Internacional (CC BY-NC-ND 4.0) http://purl.org/coar/access_right/c_f1cf |
| eu_rights_str_mv |
embargoedAccess |
| dc.format.mimetype.none.fl_str_mv |
application/pdf |
| dc.publisher.none.fl_str_mv |
Universidad de Córdoba |
| dc.publisher.faculty.none.fl_str_mv |
Facultad de Ingeniería |
| dc.publisher.place.none.fl_str_mv |
Berástegui, Córdoba, Colombia |
| dc.publisher.program.none.fl_str_mv |
Maestría en Ciencias Agroalimentarias |
| publisher.none.fl_str_mv |
Universidad de Córdoba |
| institution |
Universidad de Córdoba |
| bitstream.url.fl_str_mv |
https://repositorio.unicordoba.edu.co/bitstreams/42babef5-a33e-4ea8-b4d8-47ff094bbec0/download https://repositorio.unicordoba.edu.co/bitstreams/88739466-32fe-4e54-8e32-4824adb71c2f/download https://repositorio.unicordoba.edu.co/bitstreams/37998bd8-02a8-4b0d-ada2-8c6e280c2755/download https://repositorio.unicordoba.edu.co/bitstreams/c6af37a2-fffc-43d7-ba94-041004df4feb/download https://repositorio.unicordoba.edu.co/bitstreams/6748897a-8457-4892-8b16-3a32bcb483e2/download https://repositorio.unicordoba.edu.co/bitstreams/8a885b41-0b76-4131-844f-ff7b98bc5a38/download https://repositorio.unicordoba.edu.co/bitstreams/8bbf7785-1fca-4494-b3d3-f7761f1c9ca9/download |
| bitstream.checksum.fl_str_mv |
0b49f9ac7390573381a9f9431edffa1f 1b31f04b7f0c89b470a5e5a3780e4fcf b76e7a76e24cf2f94b3ce0ae5ed275d0 6d93d3216dc4a7f5df47d4876fbec4d3 0479d32b88f842769104a3427a5e2c4b 2f3271868e6833aa3d7827cdf38f9777 59df214be5ac372687cf25f4623d252c |
| bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 MD5 MD5 MD5 MD5 MD5 |
| repository.name.fl_str_mv |
Repositorio institucional Universidad de Córdoba |
| repository.mail.fl_str_mv |
bdigital@metabiblioteca.com |
| _version_ |
1849968285301342208 |
| spelling |
Luján Rhenals, Deivis EnriqueOrtega Quintana, FábianDurango Castilla, Licet VanessaVélez Hernández, GabrielCabrera, Juan Carlos2025-11-14T12:27:57Z2026-11-142025-11-13https://repositorio.unicordoba.edu.co/handle/ucordoba/9663Universidad de CórdobaRepositorio Universidad de Córdobahttps://repositorio.unicordoba.edu.co/Ante la tendencia de diversificar la producción enológica en contextos tropicales y valorizar especies frutales nativas como el corozo chiquito (Bactris minor/guinensis), reconocido por su color violáceo variable y su riqueza en antocianinas con efectos terapéuticos. Esta investigación evaluó el efecto de distintos sustratos y sus concentraciones iniciales en la producción de vino a partir de esta fruta. Se emplearon tres sustratos (sacarosa, melaza y azúcar invertido) en concentraciones de 12,5°, 18,8° y 25°Brix. La caracterización del fruto en seis subregiones del departamento de Córdoba evidenció diferencias agroclimáticas significativas. El Medio Sinú presentó condiciones favorables para la fermentación, destacando por su elevada concentración de antioxidantes (192,74 ± 1,04 µmol ET/100g), sólidos solubles (21,5 ± 3,5 °Brix) y densidad (1,07 ± 0,010 g/cm³); la Región Costanera sobresalió por su contenido de polifenoles (785,67 ± 1,4 mg GAF/g). El modelamiento cinético indicó que la melaza a 25°Brix mostró los parámetros más estables (µmax = 0,0196 h⁻¹; Ks = 62,5 g/L), mientras que la sacarosa a 12,5°Brix alcanzó la mayor µmax (0,0244 h⁻¹), aunque con menor rendimiento. El azúcar invertido evidenció mayor variabilidad cinética, posiblemente por limitaciones nutricionales o estrés osmótico. La melaza a 25°Brix generó el mejor rendimiento fermentativo, con 11,90 ± 2,3 % v/v de etanol y 1130 ± 2,5 mg GAF/g de polifenoles. Estos resultados destacan el potencial del corozo como materia prima alternativa para vinos tropicales y respaldan la necesidad de actualizar la legislación enológica actual de Colombia, incorporando criterios diferenciales para vinos elaborados a partir de frutas tropicales, se recomienda promover marcos normativos específicos que reconozcan la autenticidad y valor cultural de estos productos, garanticen su inocuidad y calidad, fomentando su inclusión en mercados formales, impulsando así la bioeconomía y el desarrollo agroindustrial en regiones donde históricamente la viticultura no era considerada viable.In response to the growing trend of diversifying oenological production in tropical environments and valorizing native fruits such as Bactris minor/guinensis commonly known as corozo chiquito and notable for its anthocyanin-rich pigmentation. This study evaluated the influence of different substrates (sucrose, molasses, and inverted sugar) at three concentrations (12.5°, 18.8°, and 25° Brix) on the fermentation performance of this fruit. Fruit characterization in six subregions of Córdoba, Colombia, revealed significant agroclimatic variation. The Medio Sinú region showed the most favorable profile for fermentation, with elevated antioxidant content (192.74 ± 1.04 µmol TE/100g), high soluble solids (21.5 ± 3.5 °Brix), and density (1.07 ± 0.010 g/cm³). Conversely, the Coastal Region had the highest polyphenol content (785.67 ± 1.4 mg GAE/g). Kinetic modeling indicated that molasses at 25° Brix provided the most stable fermentation parameters (µmax = 0.0196 h⁻¹; Ks = 62.5 g/L). Although sucrose at 12.5° Brix showed a higher specific growth rate (µmax = 0.0244 h⁻¹), it resulted in lower yields. Inverted sugar exhibited greater kinetic variability, possibly due to osmotic stress or limited nutrient availability. Fermentation with molasses at 25° Brix yielded the highest ethanol content (11.90 ± 2.3 % v/v) and polyphenol concentration (1130 ± 2.5 mg GAE/g). These findings affirm corozo’s potential as a viable raw material for tropical wine production and highlight the need to update Colombian oenological legislation. It is proposed that new regulatory frameworks be adopted to recognize the authenticity, safety, and cultural value of tropical fruit-based wines, promoting formal market integration and supporting bioeconomic and agro-industrial development in non-traditional viticultural regions.INTRODUCCIÓN 152 REVISIÓN DE LITERATURA 162.1 MARCO TEORICO 192.1.1. Agroindustria y desarrollo sostenible 192.1.2. El corozo chiquito o uvita de lata (Bactris minor/guineensis) 202.1.3. Cadena de valor 212.1.4. Producción 222.1.5. Mercado 232.1.6. Perspectivas de Crecimiento 232.1.7. Fermentación 242.1.8. Vino de frutas 262.1.9. Edulcorantes y azúcares adicionados o añadidos 273 OBJETIVOS 293.1. Objetivo General 293.2. Objetivos Específicos 304 METODOLOGÍA 304.1 Caracterización fisicoquímica del fruto de corozo chiquito (Bactris minor/guinensis) según la región de origen del Departamento de Córdoba. 304.1.1 Materia prima 314.1.2 Acidez total titulable. 314.1.3 Cenizas 314.1.4 Densidad 314.1.5 Determinación de actividad antioxidante por DPPH 314.1.6 Humedad 314.1.7 Índice de madurez 324.1.8 pH 324.1.9 Sólidos solubles (°Brix) 324.2.1 Elaboración del vino 324.2.2 Curado de los fermentadores 334.2.3 Chaptalización 334.2.4 Pasteurización del mosto 334.2.5 Fermentación 344.2.6 Trasiego 344.2.7 Maduración 344.2.8 Clarificación 344.2.9 Envasado 354.3 Evaluación de parámetros cinéticos en la fermentación alcohólica 354.3.1 Diseño Experimental. 354.4 Determinación de las propiedades fisicoquímicas, microbiológicas y sensoriales del vino de corozo chiquito. 364.4.1 Propiedades fisicoquímicas 364.4.2 Acidez Volátil 364.4.3 Azúcares reductores 364.4.4 Color 364.4.5 Grados alcoholimétricos. 374.4.6 Propiedades microbiológicas 374.4.7 Análisis sensorial 375 RESULTADOS 395.1 Caracterización fisicoquímica del fruto de corozo chiquito (Bactris minor/guinensis) según la región de origen en el departamento de Córdoba. 395.2 Desarrollo de una metodología aplicada en el proceso de la fermentación y evaluación de sus parámetros cinéticos para obtener vino de corozo chiquito acorde a lo establecido por la normatividad nacional vigente. 465.2.1 Cinética microbiana 465.2.2 Evaluación de los parámetros cinéticos. 555.2.3 Rendimiento de conversión sustrato/producto bajo diferentes condiciones fermentativas 585.2.4 Maduración 605.3 Evaluación de las propiedades fisicoquímicas, microbiológicas, sensoriales y capacidad antioxidante de los vinos obtenidos a partir del corozo chiquito (Bactris minor/ guinensis). 645.3.1 Propiedades fisicoquímicas de los vinos obtenidos a partir del corozo chiquito (Bactris minor) 645.3.2 Colorimetría 665.3.3 Análisis sensorial 685.3.4 Propiedades microbiológicas 705.3.5 Capacidad antioxidante 71CONCLUSIONES 73RECOMENDACIONES 75BIBLIOGRAFIA 76MaestríaMagíster en Ciencias AgroalimentariasTrabajos de Investigación y/o Extensiónapplication/pdfspaUniversidad de CórdobaFacultad de IngenieríaBerástegui, Córdoba, ColombiaMaestría en Ciencias AgroalimentariasCopyright Universidad de Córdoba, 2025https://creativecommons.org/licenses/by-nc-nd/4.0/Atribución-NoComercial-SinDerivadas 4.0 Internacional (CC BY-NC-ND 4.0)info:eu-repo/semantics/embargoedAccesshttp://purl.org/coar/access_right/c_f1cfProducción de vino de corozo chiquito (Bactris minor/guinensis) a partir de diferentes sustratos teniendo en cuenta la normatividad vigente en Colombia.Trabajo de grado - Maestríainfo:eu-repo/semantics/masterThesisinfo:eu-repo/semantics/acceptedVersionTexthttp://purl.org/redcol/resource_type/TMAcikgoz, I. A., & Erkmen, O. (2022). Physico-chemical Characterization and Polyphenolic Composition of Red Wines Produced from Autochthonous Grapes Varieties (Vitis vinifera) in Turkey. Biotechnology Journal International, 41–53. https://doi.org/10.9734/BJI/2022/V26I6664Acuña, H. (2009a). Evaluación del comportamiento de tres enzimas comerciales en la fermentación y clarificación de mosto del fruto de corozo Bactris minor para obtener vino de fruta.Acuña, H. (2009b). Evaluación del comportamiento de tres enzimas comerciales en la fermentación y clarificación de mosto del fruto de corozo Bactris minor para obtener vino de fruta.Ahmad, M., Pathania, R., Chowdhury, A., Gupta, J. K., Dev, C., & Srivastava, S. (2021). Salt-stress adaptation of yeast as a simple method to improve high-gravity fermentation in an industrial medium. Applied Microbiology and Biotechnology, 105(20), 8009–8018. https://doi.org/10.1007/S00253-021-11566-7Alabere, A., & Adebayo-Olajide, T. C. (2022). Proximate Composition of Banana and Pineapple Wine Fermented by Meyerozyma guilliermondii and Pichia guilliermondii. Microbiology Research Journal International, 71–77. https://doi.org/10.9734/MRJI/2022/V32I11-121357Alarcón, J., & Zeledón, A. (2018). Efecto de inclusión de diferentes niveles de zeolita sobre la Fermentación en estado sólido de la caña de azúcar (Saccharum officinarum) y Marango (Moringa oleifera).Albiol, J., Barreiro Vázquez, A., Beltran, G., & Chiva, R. (2010). LÍNEA TRONCAL METABOLÓMICA SACCHAROMYCES CEREVISIAE. https://www.researchgate.net/publication/228558844Ali, S. E., El Gedaily, R. A., Mocan, A., Farag, M. A., & El-Seedi, H. R. (2019). Profiling metabolites and biological activities of sugarcane (saccharum officinarum linn.) juice and its product molasses via a multiplex metabolomics approach. Molecules, 24(5). https://doi.org/10.3390/MOLECULES24050934Amerine, M. A., Ough, C. S., & Gavilán. (1976). Análisis de vinos y mostos. 25(1), 142–170.Andrade-Erazo, V., & Galeano, G. (2016). La palma amarga (Sabal mauritiiformis, Arecaceae) en sistemas productivos del caribe Colombiano: Estudio de caso en Piojó, Atlántico. Acta Biologica Colombiana, 21(1), 141–150. https://doi.org/10.15446/abc.v21n1.47280Andrés Becerra Mejía, C., & Villegas Escobar, V. (2007). Optimización de un medio de cultivo para la producción de biomasa de la cepa pseudomonas putida ua 44 aislada del suelo bananero de uraba-antioquia.Anglès, G., Moliner, R. C., Quiles, E., & Gisbert, M. G. (2019). Evaluación de diferentes fuentes de azúcar para la segunda fermentación de los vinos espumosos tipo cava.AOAC 962.12-1963. (2012). AOAC 962.12-2012, Acidez (titulable) de los vinos. http://www.aoacofficialmethod.org/index.php?main_page=product_info&products_id=2Apolo, A. (2021). Efectos del uso de azúcar invertido en el proceso de elaboración de mermelada de banano.Araujo, K., Cáceres, A., Berradre, M., Mármol, Z., Raga, J., & Rincón, M. (2019). Perfil fisicoquímico de vino blanco producido con cepas resultantes de la fusión de protoplastos de levaduras (SACCHAROMYCES CEREVISIAE Y HANSENIASPORA GUILLIERMONDII). Revista Bases de La Ciencia. e-ISSN 2588-0764, 4(2), 1. https://doi.org/10.33936/REV_BAS_DE_LA_CIENCIA.V4I2.1599Arias, C., & Molina, J. (2018). Proceso de producción de bioetanol a partir de la biomasa hidrolizada de la Eichhornia Crassipes con la levadura (Cándida Utilis). Institución Universitaria los libertadores.Arvisenet, G., Ballester, J., Ayed, C., Sémon, E., Andriot, I., Le Quere, J. L., & Guichard, E. (2019). Effect of sugar and acid composition, aroma release, and assessment conditions on aroma enhancement by taste in model wines. Food Quality and Preference, 71, 172–180. https://doi.org/10.1016/J.FOODQUAL.2018.07.001Asikin, Y., Takahashi, M., Mishima, T., Mizu, M., Takara, K., & Wada, K. (2013). Antioxidant activity of sugarcane molasses against 2,2’-azobis(2-amidinopropane) dihydrochloride-induced peroxyl radicals. Food Chemistry, 141(1), 466–472. https://doi.org/10.1016/J.FOODCHEM.2013.03.045Association of official analytical chemists., Latimer, G. W., & Horwitz, William. (2005). Official methods of analysis of AOAC international. AOAC International.Baharudin, F. N., Ramadhan, F. N., Samsuri, M., & Kurniawan, R. (2024). Effect of Substrate Concentration (Glucose) on Ethanol Fermentation Continue with Immobilized Fixed Bed Fermenter for 2/3 Mesh Pumice Anchoring Size. E3S Web of Conferences, 484. https://doi.org/10.1051/E3SCONF/202448403008Balga, I., Leskó, A., Ladányi, M., & Kállay, M. (2014). Influence of ageing on changes in polyphenolic compounds in red wines. Https://Cjfs.Agriculturejournals.Cz/Doi/10.17221/138/2014-CJFS.Html, 32(6), 563–569. https://doi.org/10.17221/138/2014-CJFSBarrera, A. (2011). Evaluación de la actividad antioxidante de extractos de cuatro frutos de interés comercial en Colombia y actividad citotóxica In vitro en la línea celular de fibrosarcoma HT1080. [Investigación ]. In Pontificia Universidad Javeriana. (Issue 571). Pontificia Universidad Javeriana.Basa, K., Papanikolaou, S., Dimopoulou, M., Terpou, A., Kallithraka, S., & Nychas, G. J. E. (2022). Trials of Commercial-and Wild-Type Saccharomyces cerevisiae Strains under Aerobic and Microaerophilic/Anaerobic Conditions: Ethanol Production and Must Fermentation from Grapes of Santorini (Greece) Native Varieties. Fermentation, 8(6). https://doi.org/10.3390/FERMENTATION8060249Bassey, N. S., Whong, C. M. Z., Adegoke, A. A., Ado, S. A., & Inyang, C. U. (2023). Microbiological analysis of wine produced in the laboratory using pineapple and watermelon fruits fermented by Kloeckera apiculata. World Journal of Applied Science & Technology, 14(1b), 51–55. https://doi.org/10.4314/WOJAST.V14I1B.51Bautista, J. (2023). Impacto del programa el Campo emprende (ECE) en el desarrollo de los emprendimientos agroindustriales para la reducción de la pobreza en el departamento del Caquetá durante el periodo 2020 al 2022. [Investigación]. Universidad del Externado de Colombia.Bedoya, D., Gomez, E., Luján, D., & Salcedo, J. (2005). Producción de vino de naranja dulce (Citrus sinensis Osbeck) por fermentación inducida comparando dos cepas de Saccharomyces cerevisiae. Temas Agrarios, 2, 26–36. https://doi.org/doi.org/10.21897/rta.v10i2.632Beigbeder, J. B., de Medeiros Dantas, J. M., & Lavoie, J. M. (2021). Optimization of yeast, sugar and nutrient concentrations for high ethanol production rate using industrial sugar beet molasses and response surface methodology. Fermentation, 7(2), 86. https://doi.org/10.3390/FERMENTATION7020086/S1Biswas, B., & Biswas, A. B. (2022). Effects of some chemical nutrients on bio-ethanol production from water hyacinth (Eichhorniacrassipes) hydrolyzed by heat and ethanol resistant strain of Saccharomyces cerevisiaeAB810. Journal of the Indian Chemical Society, 99(10). https://doi.org/10.1016/J.JICS.2022.100725Boondaeng, A., Kasemsumran, S., Ngowsuwan, K., Vaithanomsat, P., Apiwatanapiwat, W., Trakunjae, C., Janchai, P., Jungtheerapanich, S., & Niyomvong, N. (2022). Comparison of the Chemical Properties of Pineapple Vinegar and Mixed Pineapple and Dragon Fruit Vinegar. Fermentation, 8(11). https://doi.org/10.3390/FERMENTATION8110597Botezatu, A., Essary, A., & Bajec, M. (2022). Glucose Oxidase in Conjunction with Catalase – An Effective System of Wine pH Management in Red Wine. American Journal of Enology and Viticulture, 74(1). https://doi.org/10.5344/AJEV.2022.22001CBrand-Williams, W., Cuvelier, M. E., & Berset, C. (1995). Use of a Free Radical Method to Evaluate Antioxidant Activity (Vol. 28).Brar, J. S., Sharma, S., Kaur, H., Singh, H., Naik, E. K., & Adhikary, T. (2023). Phytochemical properties, antioxidant potential and fatty acids profiling of three dragon fruit species grown under sub-tropical climate. Notulae Botanicae Horti Agrobotanici Cluj-Napoca, 51(3). https://doi.org/10.15835/NBHA51312993Breidt, F., & Skinner, C. (2022a). Buffer models for pH and acid changes occurring in cucumber juice fermented with Lactiplantibacillus pentosus and Leuconostoc mesenteroides. Journal of Food Protection, 85(9), 1273–1281. https://doi.org/10.4315/JFP-22-068Breidt, F., & Skinner, C. (2022b). Buffer models for pH and acid changes occurring in cucumber juice fermented with Lactiplantibacillus pentosus and Leuconostoc mesenteroides. Journal of Food Protection, 85(9), 1273–1281. https://doi.org/10.4315/JFP-22-068Brenna, O. V., & Pagliarini, E. (2001). Multivariate analysis of antioxidant power and polyphenolic composition in red wines. Journal of Agricultural and Food Chemistry, 49(10), 4841–4844. https://doi.org/10.1021/jf0104376Brieva, E. (2021a). Fenología reproductiva y ecología de la polinización de dos palmas de importancia económica de la costa caribe colombiana. Universidad de Sucre.Brieva, E. (2021b). Fenología reproductiva y ecología de la polinización de dos palmas de importancia económica de la costa caribe colombiana. Universidad de Sucre.Brieva-Oviedo, E., Maia, A. C. D., & Núñez-Avellaneda, L. A. (2020). Pollination of Bactris guineensis (Arecaceae), a potential economically exploitable fruit palm from the Colombian Caribbean. Flora: Morphology, Distribution, Functional Ecology of Plants, 269. https://doi.org/10.1016/J.FLORA.2020.151628Buelvas, E., & Serna, M. (2017). Determinación del perfil sensorial y caracterización fisicoquímica del vino de marañón (Anacardium Occidentale) producido artesanalmente en el municipio de Chinú (Córdoba). Universidad de Córdoba.Cabezas-Zabala, C. C., Hernández-Torres, B. C., & Vargas-Zárate, M. (2016). Sugars added in food: Health effects and global regulation. In Revista Facultad de Medicina (Vol. 64, Issue 2, pp. 319–329). Universidad Nacional de Colombia. https://doi.org/10.15446/revfacmed.v64n2.52143Călugăr, P. C., Coldea, T. E., Pop, C. R., Stan, L., Gal, E., Ranga, F., Hegheș, S. C., & Mudura, E. (2023). Mixed Fermentations of Yeasts and Lactic Acid Bacteria as Sustainable Processes to Enhance the Chemical Composition of Cider Made of Topaz and Red Topaz Apple Varieties. Agronomy 2023, Vol. 13, Page 2485, 13(10), 2485. https://doi.org/10.3390/AGRONOMY13102485Cano, luis, & Gutiérrez, J. (2020). Análisis del potencial agropecuario en Colombia. Universidad Pontificia Bolivariana.Cardias, B. B., Trevisol, T. C., Bertuol, G. G., Costa, J. A. V., & Santos, L. O. (2020). Hydrolyzed Spirulina Biomass and Molasses as Substrate in Alcoholic Fermentation with Application of Magnetic Fields. Waste and Biomass Valorization, 12(1), 175–183. https://doi.org/10.1007/S12649-020-00966-XCasas, L., & Gamba-Trimiño. (2013a). Cosechar sin destruir, aprovechamiento sostenible de palmas colombianas - Corozo de lata (Bactris guineensis). 1–245. https://www.researchgate.net/publication/315481703Casas, L., & Gamba-Trimiño, C. (2013b). Corozo de lata (Bactris guineensis) (pp. 1–245). https://www.researchgate.net/publication/315481703Cendrowski, A., Królak, M., & Kalisz, S. (2021). Polyphenols, L-Ascorbic Acid, and Antioxidant Activity in Wines from Rose Fruits (Rosa rugosa). Molecules, 26(9). https://doi.org/10.3390/MOLECULES26092561CEPAL, FAO, & IICA. (2019). Perspectivas de la agricultura y del desarrollo rural en las Américas: una mirada hacia América Latina y el Caribe 2019-2020. www.fao.org/americasChairul, Muria, S. R., & Rohaya. (2020). The Effect of Sugar Concentration and Time for Nypa Sap Fermentation into Acetic Acid using Acetobacter pasteurianus. Journal of Physics: Conference Series, 1655(1). https://doi.org/10.1088/1742-6596/1655/1/012105Charoenchai, C. (2019). Yeasts in Fruit Wine Fermentation. Yeasts in the Production of Wine, 461–476. https://doi.org/10.1007/978-1-4939-9782-4_15Combatt, M., Martinez, G., & Polo Janer. (2005). Physical-chemical characterization of the highland forest soils of córdoba. Temas Agrarios, 10, 5–14.Comelli, R. N., Seluy, L. G., & Isla, M. A. (2016). Performance of several Saccharomyces strains for the alcoholic fermentation of sugar-sweetened high-strength wastewaters: Comparative analysis and kinetic modelling. New Biotechnology, 33(6), 874–882. https://doi.org/10.1016/j.nbt.2016.09.007Comitini, F., Agarbati, A., Canonico, L., & Ciani, M. (2021). Yeast interactions and molecular mechanisms in wine fermentation: A comprehensive review. In International Journal of Molecular Sciences (Vol. 22, Issue 14). MDPI. https://doi.org/10.3390/ijms22147754Cortes, C. (2019). Determinación del efecto del procesamiento sobre el contenido de compuestos bioactivos, capacidad antioxidante (ORAC) y el perfil de compuestos polifenólicos del jugo de Huiscoyol (Bactris Guineensis). Universidad Rodrigo Facio.Cruz-Cansino, N. del S., Cariño-Cortés, R., Cruz, R. N. de la, Sandoval-Gallegos, E. M., Sumaya-Martínez, M. T., Ramírez-Moreno, E., & Fernández-Martínez, E. (2023). Ultrasound with controlled temperature as an emerging technology for extraction of antioxidant compounds from by-products of mango (Mangifera indica L. var Ataulfo) juice. Emirates Journal of Food and Agriculture 35(2): 162-169, 35(2), 162–169. https://doi.org/10.9755/EJFA.2023.V35.I2.3013Cuenca, M., Blanco, A., Quicazán, M., & Zuluaga-Domínguez, C. (2021). Optimization and Kinetic Modeling of Honey Fermentation for Laboratory and Pilot-Scale Mead Production. Journal of the American Society of Brewing Chemists, 80(3), 248–257. https://doi.org/10.1080/03610470.2021.1966590Daniel, C., & Antoce, A. (2021). Preliminary study on the inhibition of alcoholic fermentation using octanoic and decanoic acids to obtain aromatic wines with residual sugar.De la trinidad, K. (2021). Modelado de un reactor de fermentación para producción de etanol como biocombustible. Universidad nacional autónoma de méxico.Decreto 1686 de 2012, 1 (2012). Decreto 1686 de 2012: Por el cual se establece el reglamento técnico sobre los requisitos sanitarios que deben cumplir las bebidas alcohólicas destinadas al consumo humano. Diario Oficial No. 48.517, 9 de agosto de 2012. https://faolex.fao.org/docs/pdf/col115864.pdfDeng, H., Wang, M., & Li, E. (2023). Continuous fed-batch strategy decreases acetic acid production and increases volatile ester formation in wines under high-gravity fermentation. OENO One, 57(1), 363–374. https://doi.org/10.20870/OENO-ONE.2023.57.1.7238Dennis-Eboh, U., Achuba, F. I., & George, B. O. (2023a). Wine Making: Influence of pH on Physicochemical Parameters of Wine Must Produce from Hot Water Extract of Broom-cluster Fig (Ficus capensis) Leaf using Saccharomyces cerevisiae. Journal of Applied Sciences and Environmental Management, 27(1), 177–182. https://doi.org/10.4314/JASEM.V27I1.25Dennis-Eboh, U., Achuba, F. I., & George, B. O. (2023b). Wine Making: Influence of pH on Physicochemical Parameters of Wine Must Produce from Hot Water Extract of Broom-cluster Fig (Ficus capensis) Leaf using Saccharomyces cerevisiae. Journal of Applied Sciences and Environmental Management, 27(1), 177–182. https://doi.org/10.4314/JASEM.V27I1.25Deseo, M. A., Elkins, A., Rochfort, S., & Kitchen, B. (2020). Antioxidant activity and polyphenol composition of sugarcane molasses extract. Food Chemistry, 314. https://doi.org/10.1016/J.FOODCHEM.2020.126180Detman, A., Laubitz, D., Chojnacka, A., Kiela, P. R., Salamon, A., Barberán, A., Chen, Y., Yang, F., Błaszczyk, M. K., & Sikora, A. (2021). Dynamics of dark fermentation microbial communities in the light of lactate and butyrate production. Microbiome, 9(1), 1–21. https://doi.org/10.1186/S40168-021-01105-X/FIGURES/7Du Plessis, C. S., & Van Rooyen, P. C. (2017). Grape Maturity and Wine Quality. South African Journal of Enology & Viticulture, 3(2). https://doi.org/10.21548/3-2-2380Durango, A., Cogollo, Y., Echeverry, D., Luján, D., & Arrázola, G. (2011). c (bactris minor) cultivado en el departamento de córdoba utilizando cepas nativas aisladas del propio fruto. http://web.www3.unicordoba.edu.co/es/calidad/documentosasegúresequ eéstaeslaversiónvigenteElejalde, E., Villarán, M. C., Esquivel, A., & Alonso, R. M. (2024). Bioaccessibility and Antioxidant Capacity of Grape Seed and Grape Skin Phenolic Compounds After Simulated In Vitro Gastrointestinal Digestion. Plant Foods for Human Nutrition, 79(2), 432–439. https://doi.org/10.1007/S11130-024-01164-ZErşan, S., Berning, J. C., Esquivel, P., Jiménez, V. M., Carle, R., May, B., Schweiggert, R., & Steingass, C. B. (2020a). Phytochemical and mineral composition of fruits and seeds of wild-growing Bactris guineensis (L.) H.E. Moore palms from Costa Rica. Journal of Food Composition and Analysis, 94. https://doi.org/10.1016/j.jfca.2020.103611Erşan, S., Berning, J. C., Esquivel, P., Jiménez, V. M., Carle, R., May, B., Schweiggert, R., & Steingass, C. B. (2020b). Phytochemical and mineral composition of fruits and seeds of wild-growing Bactris guineensis (L.) H.E. Moore palms from Costa Rica. Journal of Food Composition and Analysis, 94. https://doi.org/10.1016/j.jfca.2020.103611Ezemba, C. C., Archibong, E. J., & Okeke, C. A. (2022). Wine Production from Banana (Musa sapientum) Using Yeast (Saccharomyces cerevisiae) Isolated from Grape (Vitis vinifera). Journal of Advances in Microbiology, 64–71. https://doi.org/10.9734/JAMB/2022/V22I230439Fajardo, E., & Sarmiento, S. (2007). Evaluación de melaza de caña como sustrato para la producción de Saccharomyces cerevisiae.Felipe, O., Barrada, M., De Economía, E., Negocios, A. Y., De, F., & Medellín, E. (2016). ANÁLISIS DEL SECTOR AGROINDUSTRIAL EN COLOMBIA.Fernández, F., Montaño, D., García, Á., & López, H. (2009). Modelo cinético de la fermentación: estudio de dos cepas tequileras. http://www.naun.org/journals/mcs/mcs-1.pdfFerreira, A. M., & Mendes-Faia, A. (2020). The role of yeasts and lactic acid bacteria on the metabolism of organic acids during winemaking. Foods, 9(9). https://doi.org/10.3390/FOODS9091231Ferretti, C. G., & Febbroni, S. (2022). Terroir Traceability in Grapes, Musts and Gewürztraminer Wines from the South Tyrol Wine Region. Horticulturae, 8(7). https://doi.org/10.3390/HORTICULTURAE8070586Filimon, R. V., Bunea, C. I., Nechita, A., Bora, F. D., Dunca, S. I., Mocan, A., & Filimon, R. M. (2022). New Malolactic Bacteria Strains Isolated from Wine Microbiota: Characterization and Technological Properties. Fermentation, 8(1). https://doi.org/10.3390/FERMENTATION8010031Flores, I. R., Vásquez-Murrieta, M. S., Franco-Hernández, M. O., Márquez-Herrera, C. E., Ponce-Mendoza, A., & del Socorro López-Cortéz, M. (2021). Bioactive compounds in tomato (Solanum lycopersicum) variety saladette and their relationship with soil mineral content. Food Chemistry, 344, 128608. https://doi.org/10.1016/J.FOODCHEM.2020.128608Fonseca, H. C., Melo, D. de S., Ramos, C. L., Dias, D. R., & Schwan, R. F. (2021). Lactiplantibacillus plantarum CCMA 0743 and Lacticaseibacillus paracasei subsp. paracasei LBC-81 metabolism during the single and mixed fermentation of tropical fruit juices. Brazilian Journal of Microbiology, 52(4), 2307–2317. https://doi.org/10.1007/S42770-021-00628-7Franco, D. S. P., Georgin, J., Ramos, C. G., Eljaiek, S. M., Badillo, D. R., de Oliveira, A. H. P., Allasia, D., & Meili, L. (2023a). The Synthesis and Evaluation of Porous Carbon Material from Corozo Fruit (Bactris guineensis) for Efficient Propranolol Hydrochloride Adsorption. Molecules, 28(13). https://doi.org/10.3390/MOLECULES28135232Franco, D. S. P., Georgin, J., Ramos, C. G., Eljaiek, S. M., Badillo, D. R., de Oliveira, A. H. P., Allasia, D., & Meili, L. (2023b). The Synthesis and Evaluation of Porous Carbon Material from Corozo Fruit (Bactris guineensis) for Efficient Propranolol Hydrochloride Adsorption. Molecules, 28(13). https://doi.org/10.3390/MOLECULES28135232Frost, S. C., Harbertson, J. F., & Heymann, H. (2017). A full factorial study on the effect of tannins, acidity, and ethanol on the temporal perception of taste and mouthfeel in red wine. Food Quality and Preference, 62, 1–7. https://doi.org/10.1016/J.FOODQUAL.2017.05.010Frost, S. C., Sanchez, J. M., Merrell, C., Larsen, R., Heymann, H., & Harbertson, J. F. (2020). Sensory Evaluation of Syrah and Cabernet Sauvignon Wines: Effects of Harvest Maturity and Prefermentation Soluble Solids. American Journal of Enology and Viticulture, 72(1), 36–45. https://doi.org/10.5344/AJEV.2020.20035Galeano, G., Bernal, R., Estupiñán, A. C., Carolina Vásquez, A., Brieva, E., & García, N. (2016). Biología y dinámica poblacional del corozo de lata (Bactris guineensis: Arecaceae) en el Caribe colombiano.Galeano, G., Bernal, R., Estupiñán, A. C., Carolina Vásquez, A., Brieva, E., & García, N. (2023). Biología y dinámica poblacional del corozo de lata (Bactris guineensis: Arecaceae) en el Caribe colombiano. 1–37.Gambuti, A., Picariello, L., Forino, M., Errichiello, F., Guerriero, A., & Moio, L. (2022). How the Management of pH during Winemaking Affects Acetaldehyde, Polymeric Pigments and Color Evolution of Red Wine. Applied Sciences, 12(5). https://doi.org/10.3390/APP12052555Gasmalla, M. A. A., Yang, R., Nikoo, M., & Man, S. (2017). Production of Ethanol from Sudanese Sugar Cane Molasses andEvaluation of Its Quality. Journal of Food Processing and Technology, 03(07). https://doi.org/10.4172/2157-7110.1000163Gastelbondo, E. (2022). Vino artesanal de corozo chiquito: bio-emprendimiento con potencial de crecimiento. www.unicordoba.edu.coGaviria, A., Ruiz, F., Carmen, D., Bernal, G., Osorio, E., Heredia, A., Zabala, C., Hernández, B., & Zárate, M. (2015). Azúcares Adicionados.Gil-Campos, M., San José González, M. A., & Díaz Martín, J. J. (2015). Use of sugars and sweeteners in children’s diets. Recommendations of the Nutrition Committee of the Spanish Paediatric Association. Anales de Pediatria, 83(5), 353.e1-353.e7. https://doi.org/10.1016/j.anpedi.2015.02.013Girardi-Piva, G., Casalta, E., Legras, J. L., Nidelet, T., Pradal, M., Macna, F., Ferreira, D., Ortiz-Julien, A., Tesnière, C., Galeote, V., & Mouret, J. R. (2022). Influence of ergosterol and phytosterols on wine alcoholic fermentation with Saccharomyces cerevisiae strains. Frontiers in Microbiology, 13. https://doi.org/10.3389/FMICB.2022.966245/PDFGonzález, G. R. (2020). Estudio de crecimiento y de producción de frutos de Bactris guineensis (güiscoyol) en Sistemas Agroforestales como potencial de desarrollo en la Región Chorotega. Oriolus, 1(1), 39–46. https://doi.org/10.47633/ORIOLUS.V1I1.272Guevara, K., & Hernández, L. (2021). Elaboración de un vino de frutas de uvita de lata (BACTRIS MINOR) en el municipio de San Alberto, Cesar.Gutiérrez-Escobar, R., Aliaño-González, M. J., & Cantos-Villar, E. (2021a). Wine polyphenol content and its influence on wine quality and properties: A review. In Molecules (Vol. 26, Issue 3). MDPI AG. https://doi.org/10.3390/molecules26030718Gutiérrez-Escobar, R., Aliaño-González, M. J., & Cantos-Villar, E. (2021b). Wine polyphenol content and its influence on wine quality and properties: A review. In Molecules (Vol. 26, Issue 3). MDPI AG. https://doi.org/10.3390/molecules26030718Haack, T., Olivares, H., & Gallegos, P. (2017). Melaza invertida tratada en condiciones alcalinas como agente dispersivo para suspensiones minerales. (Patent 2625102).Henriques, D., & Balsa-Canto, E. (2021). The Monod Model Is Insufficient To Explain Biomass Growth in Nitrogen-Limited Yeast Fermentation. BioRxiv, 87(20), 1–22. https://doi.org/10.1128/AEM.01084-21Herazo, I., Ruiz, D., & Arrázola, G. (2011). Utilización de Candida guilliermondii aislada del corozo chiquito (Bactris guineensis) en la producción de xilitol. Revista Colombiana de Biotecnología, XIII, 52–57.Herazo, I., Ruiz, D., & Arrázola, G. (2011). Utilización de Candida guilliermondii aislada del corozo chiquito (Bactris guineensis) en la producción de xilitol. Revista Colombiana de Biotecnología, XIII, 52–57.ICONTEC. (2000). Norma técnica ntc colombiana 708 - bebidas alcohólicas. Vinos de frutas.ICONTEC. (2003). NTC 5114. Bebidas alcohólicas – Métodos para determinar la acidez y el pH. Bogotá, D.C.Ivanova, K. R., & Privalova, E. A. (2024). Pine nut shell as a sorbent in fruit winemaking. Vestnik MGTU, 27(4), 621–630. https://doi.org/10.21443/1560-9278-2024-27-4-621-630Jaimes-Gualdron, T., Florez-Alvarez, L., Zapata-Cardona, M. I., Rojano, B. A., Rugeles, M. T., & Zapata-Builes, W. (2022). Corozo (Bactris guineensis) fruit extract has antiviral activity in vitro against SARS-CoV-2. Functional Foods in Health and Disease, 12(9), 534–546. https://doi.org/10.31989/FFHD.V12I9.918Jang, M. S., & Lee, G. L. (2020). Metabolic profiling of mulberry (Morus alba) wine fermented using Saccharomyces cerevisiae JIS strain. Korean Journal of Food Preservation, 27(2), 232–241. https://doi.org/10.11002/KJFP.2020.27.2.232Jardín Botánico de Cartagena, Pacifico Consulting, Universidad de Florida, & Tropical Research & Education Center. (2021). Cultivo Agroforestal Sostenible de Frutos Promisorios Nativos y Rehabilitación Ecológica del Bosque Seco Tropical del Caribe Colombiano.Jiménez-Martí, E., Gomar-Alba, M., Palacios, A., Ortiz-Julien, A., & Del Olmo, M. L. (2011). Towards an understanding of the adaptation of wine yeasts to must: relevance of the osmotic stress response. Applied Microbiology and Biotechnology, 89(5), 1551–1561. https://doi.org/10.1007/S00253-010-2909-4Jiménez-Martí, E., Zuzuarregui, A., Gomar-Alba, M., Gutiérrez, D., Gil, C., & Del Olmo, M. (2011). Molecular response of Saccharomyces cerevisiae wine and laboratory strains to high sugar stress conditions. International Journal of Food Microbiology, 145(1), 211–220. https://doi.org/10.1016/J.IJFOODMICRO.2010.12.023Jordão, A. M., Vilela, A., & Cosme, F. (2015). From sugar of grape to alcohol of wine: Sensorial impact of alcohol in wine. Beverages, 1(4), 292–310. https://doi.org/10.3390/BEVERAGES1040292José Rodriguez-Velasquez, J., Andrea Gómez-Grimaldos, N., Milena Castillo-León, Y., & Isabel Mejía-Fajardo, A. (2021). Parámetros sensoriales y la capacidad antioxidante de vinos de frutas a partir de Averrhoa carambola y de Bactris guineensis Sensory parameters and antioxidant capacity of fruit wines of Averrhoa carambola and Bactris guineensis (Vol. 29, Issue 54). https://orcid.org/0000-0001-1234-56783yasleth.castillo@udea.edu.co;https://orcid.org/0000-0002-7273 08174aisabel .mejia@ udea.edu. co;https://orcid.org/0000-0002-3444-6882Julián-Ricardo, M., Ramos-Sánchez, L., & Gómez-Atanay, A. (2014). Modelación matemática del proceso de enriquecimiento proteico del bagazo de caña de azúcar en un biorreactor de lecho fijo. Tecnología Química, XXXIV(3), 207–216.Juliastuti, S. R., Laily, F. N., & Darmawan, R. (2024). Performance of a Batch Operation Microbial Fuel Cell (MFC) with Cobalt Micronutrient Addition Based on Kinetic Models. Bulletin of Chemical Reaction Engineering & Catalysis, 20(1), 1–19. https://doi.org/10.9767/BCREC.20259Junior, D. R. C., De Brito, L. T., Pocahy, F., & Amaro, I. (2019). Melanoidins from Chinese Distilled Spent Grain: Content, Preliminary Structure, Antioxidant, and ACE-Inhibitory Activities In Vitro. Foods 2019, Vol. 8, Page 516, 8(10), 516. https://doi.org/10.3390/FOODS8100516Juul, F., Vaidean, G., Lin, Y., Deierlein, A. L., & Parekh, N. (2021). Ultra-Processed Foods and Incident Cardiovascular Disease in the Framingham Offspring Study. Journal of the American College of Cardiology, 77(12), 1520–1531. https://doi.org/10.1016/J.JACC.2021.01.047Juul, F., Vaidean, G., & Parekh, N. (2021). Ultra-processed Foods and Cardiovascular Diseases: Potential Mechanisms of Action. In Advances in Nutrition (Vol. 12, Issue 5, pp. 1673–1680). Oxford University Press. https://doi.org/10.1093/advances/nmab049Kalmykova, N. N., Kalmykova, E. N., & Gaponova, T. V. (2022). Characteristic of organic acids composition of musts and wines from red grapevine varieties of interspecific origin. Russian Vine, 20, 59–64. https://doi.org/10.32904/2712-8245-2022-20-59-64Kalopesa, E., Gkrimpizis, T., Samarinas, N., Tsakiridis, N. L., & Zalidis, G. C. (2023). Rapid Determination of Wine Grape Maturity Level from pH, Titratable Acidity, and Sugar Content Using Non-Destructive In Situ Infrared Spectroscopy and Multi-Head Attention Convolutional Neural Networks. Italian National Conference on Sensors, 23(23). https://doi.org/10.3390/S23239536Karim, A. A., Martínez-Cartas, M. L., & Cuevas-Aranda, M. (2024). Fermentation of Sugar by Thermotolerant Hansenula polymorpha Yeast for Ethanol Production. Fermentation 2024, Vol. 10, Page 260, 10(5), 260. https://doi.org/10.3390/FERMENTATION10050260Kelly, J. M., van Dyk, S. A., Dowling, L. K., Pickering, G. J., Kemp, B., & Inglis, D. L. (2020). Saccharomyces uvarum yeast isolate consumes acetic acid during fermentation of high sugar juice and juice with high starting volatile acidity. OENO One, 54(2), 199–211. https://doi.org/10.20870/OENO-ONE.2020.54.2.2594Keng, A., Symoneaux, R., Lyne, A., & Botezatu, A. (2025). Comparative Study of the Sensory Impacts of Acidifiers for Red Wine Production. Beverages, 11(1). https://doi.org/10.3390/BEVERAGES11010020Kern, M., Orduna, O., & Roberts, T. (2017). Acute metabolic and satiety responses to ingestion of molasses versus sucrose in healthy adults. The FASEB Journal, 31(S1). https://doi.org/10.1096/FASEBJ.31.1_SUPPLEMENT.798.11Kokkinomagoulos, E., & Kandylis, P. (2024). Sustainable Exploitation of Wine Lees as Yeast Extract Supplement for Application in Food Industry and Its Effect on the Growth and Fermentative Ability of Lactiplantibacillus plantarum and Saccharomyces cerevisiae. Sustainability, 16(19). https://doi.org/10.3390/SU16198449Kramer, Y. V., Clement, C. R., de Carvalho, J. C., Fernandes, A. V., da Silva, C. V. A., Koolen, H. H. F., Aguiar, J. P. L., Nunes-Nesi, A., Ramos, M. V., Araújo, W. L., & Gonçalves, J. F. de C. (2023). Understanding the Technical-Scientific Gaps of Underutilized Tropical Species: The Case of Bactris gasipaes Kunth. Plants 2023, Vol. 12, Page 337, 12(2), 337. https://doi.org/10.3390/PLANTS12020337KRIEGER-WEBER, S., BARTOWSKY, E., HERAS, J. M., & DÉLÉRIS-BOU, M. (2020). Co-inoculación de bacterias durante la fermentación alcohólica: una práctica reconocida. Productos Biológicos, 1–8.Lairón-Peris, M., Routledge, S. J., Linney, J. A., Alonso-del-Real, J., Spickett, C. M., Pitt, A. R., Guillamón, J. M., Barrio, E., Goddard, A. D., & Querol, A. (2021). Lipid Composition Analysis Reveals Mechanisms of Ethanol Tolerance in the Model Yeast Saccharomyces cerevisiae. Applied and Environmental Microbiology, 87(12), 1–22. https://doi.org/10.1128/AEM.00440-21Leiva García, J. A., & Lora Suarez, M. F. (2020). Desarrollo de una jalea a base de corozo (Bactris guineensis) con inclusión de Inulina y Lactobacillus casei. Universidad de La Salle. Facultad de Ingeniería. Ingeniería de Alimentos. https://hdl.handle.net/20.500.14625/33141Li, F., Bai, W., Zhang, Y., Zhang, Z., Zhang, D., Shen, N., Yuan, J., Zhao, G., & Wang, X. (2024). Construction of an economical xylose-utilizing Saccharomyces cerevisiae and its ethanol fermentation. FEMS Yeast Research, 24. https://doi.org/10.1093/FEMSYR/FOAE001Li, M., & Zeng, L. (2024). The effect of sterilization treatment on the synthesis of key biomolecules and microbial communities in fruit wine fermentation. Molecular & Cellular Biomechanics, 21(3). https://doi.org/10.62617/MCB479Li, M., Zhao, X., Sun, Y., Yang, Z., Han, G., & Yang, X. (2021). Evaluation of anthocyanin profile and color in sweet cherry wine: Effect of sinapic acid and grape tannins during aging. Molecules, 26(10). https://doi.org/10.3390/MOLECULES26102923Liu, J., Wang, Q., Weng, L., Zou, L., Jiang, H., Qiu, J., & Fu, J. (2023a). Analysis of sucrose addition on the physicochemical properties of blueberry wine in the main fermentation. Frontiers in Nutrition, 9. https://doi.org/10.3389/FNUT.2022.1092696/PDFLiu, J., Wang, Q., Weng, L., Zou, L., Jiang, H., Qiu, J., & Fu, J. (2023b). Analysis of sucrose addition on the physicochemical properties of blueberry wine in the main fermentation. Frontiers in Nutrition, 9. https://doi.org/10.3389/FNUT.2022.1092696/PDFLiu, R., Liu, Y., Zhu, Y., Kortesniemi, M., Zhu, B., & Li, H. (2022). Aromatic Characteristics of Passion Fruit Wines Measured by E-Nose, GC-Quadrupole MS, GC-Orbitrap-MS and Sensory Evaluation. Foods, 11(23). https://doi.org/10.3390/FOODS11233789Liu, Z., Jiang, F., Mo, Y., Liao, H., Chen, P., & Zhang, H. (2022). Effects of Ethanol Treatment on Storage Quality and Antioxidant System of Postharvest Papaya. Frontiers in Plant Science, 13. https://doi.org/10.3389/FPLS.2022.856499/PDFLopez, J., & Theran, N. (2004). Evaluacion De La Sacarosa Y La Harina De Batata Como Sustratos En La Elaboracion Del Vino De Corozo (Bactris minor).Mabika, B. M., Pambou-Tobi, N. P. G., Sompila, A. W. G. T., Matima, L. D. D., Elenga, M., & Thiery, V. (2024a). Evaluation of the physico-chemical and microbiological quality of tshui wine made from the fruit of Grewia coriacea Mast. World Journal of Advanced Research and Reviews, 21(3), 1766–1778. https://doi.org/10.30574/WJARR.2024.21.3.0914Mabika, B. M., Pambou-Tobi, N. P. G., Sompila, A. W. G. T., Matima, L. D. D., Elenga, M., & Thiery, V. (2024b). Evaluation of the physico-chemical and microbiological quality of tshui wine made from the fruit of Grewia coriacea Mast. World Journal of Advanced Research and Reviews, 21(3), 1766–1778. https://doi.org/10.30574/WJARR.2024.21.3.0914Maicas, S. (2020). The Role of Yeasts in Fermentation Processes. Microorganisms 2020, Vol. 8, Page 1142, 8(8), 1142. https://doi.org/10.3390/MICROORGANISMS8081142Mangas, R., González, M. R., Martín, P., & Rodríguez-Nogales, J. M. (2023). Impact of glucose oxidase treatment in high sugar and pH musts on volatile composition of white wines. LWT, 184. https://doi.org/10.1016/J.LWT.2023.114975Martin, N. (2002). Sweet/sour balance in champagne wine and dependence on taste/odour interactions. Food Quality and Preference, 13(5), 295–305. https://doi.org/10.1016/S0950-3293(02)00042-3Martínez-Ruiz, A., Tovar-Castro, L., Aguilar, C. N., Saucedo-Castañeda, G., & Favela-Torres, E. (2021). Sucrose Hydrolysis in a Continuous Packed-Bed Reactor with Auto-immobilise Aspergillus niger Biocatalyst Obtained by Solid-State Fermentation. Applied Biochemistry and Biotechnology, 194(3), 1327–1339. https://doi.org/10.1007/S12010-021-03737-ZMartín-Gómez, J., García-Martínez, T., Varo, M. Á., Mérida, J., & Serratosa, M. P. (2023). Enhance Wine Production Potential by Using Fresh and Dried Red Grape and Blueberry Mixtures with Different Yeast Strains for Fermentation. Foods, 12(21). https://doi.org/10.3390/FOODS12213925Martini, S., Conte, A., & Tagliazucchi, D. (2017). Phenolic compounds profile and antioxidant properties of six sweet cherry (Prunus avium) cultivars. Food Research International, 97, 15–26. https://doi.org/10.1016/j.foodres.2017.03.030Mas, A., Beltrán, G., Sancho, M., Gutiérrez, A., Chiva, ,Rosana, & Guillamón, J. M. (2013). Metabolismo nitrogenado de Saccharomyces cerevisiae durante la fermentación vínica - Acenología. Revista de Enológica Científica y Profesional. https://www.acenologia.com/metabolismo_nitrogenado_scerevisiae_cienc1013/McHargue, J. S., & Calfee, R. K. (1931). Effect of Manganese, Copper and Zinc on the Growth of Yeast. Plant Physiology, 6(3), 559–566. https://doi.org/10.1104/PP.6.3.559McMahon, K. M., Diako, C., Aplin, J., Mattinson, D. S., Culver, C., & Ross, C. F. (2017). Trained and consumer panel evaluation of sparkling wines sweetened to brut or demi sec residual sugar levels with three different sugars. Food Research International, 99, 173–185. https://doi.org/10.1016/J.FOODRES.2017.05.020Medel-Marabolí, M., López-Solís, R., Valenzuela-Prieto, D., Vargas-Silva, S., & Obreque-Slier, E. (2021). Limited relationship between temporality of sensory perception and phenolic composition of red wines. LWT, 142, 111028. https://doi.org/10.1016/J.LWT.2021.111028Meelua, W., & Jitonnom, J. (2024). DFT study of sucrose hydrolysis by a GH32 cell-wall invertase, a key enzyme in carbohydrate metabolism. Molecular Simulation, 50(4), 298–307. https://doi.org/10.1080/08927022.2024.2302023Méndez, J., Molina, E., Valdiviezo, R., Cătălina, Armendariz, & Portilla, A. (2022). Study of the oenological properties of naranjilla for gastronomy uses. Ciencias Agrícolas y Alimentarias. https://doi.org/Mesa-Vanegas, A. M., Zapata-Uribe, S., Arana, L. M., Zapata, I. C., Monsalve, Z., & Rojano, B. (2015). Actividad antioxidante de extractos de diferente polaridad de Ageratum conyzoides L. Boletin Latinoamericano y Del Caribe de Plantas Medicinales y Aromaticas, 14(1), 1–10.Método oficial de la AOAC 920.57. (1998). AOAC 920.57-1998, Alcohol en vinos. Por volumen a partir de la gravedad específica. http://www.aoacofficialmethod.org/index.php?main_page=product_info&products_id=1882Michelini, S., Tomada, S., Kadison, A. E., Pichler, F., Hinz, F., Zejfart, M., Iannone, F., Lazazzara, V., Sanoll, C., Robatscher, P., Pedri, U., & Haas, F. (2021). Modeling malic acid dynamics to ensure quality, aroma and freshness of Pinot blanc wines in South Tyrol (Italy). OENO One, 55(2), 159–179. https://doi.org/10.20870/OENO-ONE.2021.55.2.4570Mikolajczyk, A. P., Fortela, D. L. B., Berry, J. C., Chirdon, W. M., Hernandez, R. A., Gang, D. D., & Zappi, M. E. (2024). Evaluating the Suitability of Linear and Nonlinear Regression Approaches for the Langmuir Adsorption Model as Applied toward Biomass-Based Adsorbents: Testing Residuals and Assessing Model Validity. Langmuir, 40(39). https://doi.org/10.1021/ACS.LANGMUIR.4C01786Miller, G. (1959). Use of Dinitrosalicylic Acid Reagent for Determination of Reducing Sugar. Analytical Chemistry, 31, 426.Ministerio de salud y protección social. (2012). Decreto 1686 de 2012. Reglamento técnico sobre los requisitos sanitarios que se deben cumplir para la fabricación, elaboración, hidratación, envase, almacenamiento, distribución, transporte comercialización, expendio, exportación e importación de bebidas alcohólicas destinadas para consumo humano.Ministerio Salud y Protección Social. (2021). Decreto 162 de 2021-modifica el decreto 1681 de 2012 se establecen los requisitos que se deben cumplir para la fabricación, elaboración, hidratación, envase, almacenamiento, distribución, transporte, comercialización, expendio, exportación e importación, las bebidas alcohólicas destinadas para el consumo humano.Minnaar, P., Nyobo, L., Jolly, N., Ntushelo, N., & Meiring, S. (2018). Anthocyanins and polyphenols in Cabernet Franc wines produced with Saccharomyces cerevisiae and Torulaspora delbrueckii yeast strains: Spectrophotometric analysis and effect on selected sensory attributes. Food Chemistry, 268, 287–291. https://doi.org/10.1016/J.FOODCHEM.2018.06.074Mohammed, S. S. D. (2020). Bacteriological Quality And Sensory Evaluation Of Wine Produced From Blends Of Date Palm Fruit And Cucumber Juice Using Saccharomyces cerevesiae. Bacterial Empire, 3(3), 25–31. https://doi.org/10.36547/BE.2020.3.3.25-31Monteros, J. (2015). Determinación de parámetros óptimos para la estabilidad de sacarosa invertida líquida con fines industriales. [Ingeniería Agroindustrial]. Universidad Técnica del Norte.Morata, A., Escott, C., Loira, I., Manuel Del Fresno, J., Vaquero, C., Antonia Bañuelos, M., Palomero, F., López, C., & González, C. (2021). pH Control and Aroma Improvement Using the Non-Saccharomyces Lachancea thermotolerans and Hanseniaspora spp. Yeasts to Improve Wine Freshness in Warm Areas. Grapes and Wine [Working Title]. https://doi.org/10.5772/INTECHOPEN.100538Moreno, J., Medina, M., & García, M. (2017). Optimization of the fermentation conditions of musts from Pedro Ximenez grapes grown in Southern Spain. Production of higher alcohols and esters. South African Journal of Enology and Viticulture, 9(2). https://doi.org/10.21548/9-2-2298Muneeshwari, P., Post, M. B., Fellow, D., Baskar, M., & Hemalatha, G. (2020). Fermentation of wine from tropical and subtropical fruits: A review. International Journal of Chemical Studies, 8(5), 118–126. https://doi.org/10.22271/CHEMI.2020.V8.I5B.10287Murillo, M., Alvis, A., & Arrazola, G. (2021). Propiedades fisicoquímicas y funcionales del almidón obtenido de dos variedades de batata ( Ipomoea batatas )* Physicochemical and functional properties of almidon obtained from two varieties of sweet potatoes ( Ipomoea batatas ) Propriedades físico-quími. Biotegnología En El Sector Agropecuario y Agroindustrial, 19(1), 117–127.Muscolo, A., Sidari, M., Settineri, G., Papalia, T., Mallamaci, C., & Attinà, E. (2019). Influence of Soil Properties on Bioactive Compounds and Antioxidant Capacity of Brassica rupestris Raf. Journal of Soil Science and Plant Nutrition, 19(4), 808–815. https://doi.org/10.1007/S42729-019-00080-5/METRICSNascimento, V. M., Antoniolli, G. T. U., Leite, R. S. R., & Fonseca, G. G. (2020). Effects of the carbon source on the physiology and invertase activity of the yeast Saccharomyces cerevisiae FT858. 3 Biotech, 10(8). https://doi.org/10.1007/S13205-020-02335-WNguyet, V. T. A., Furutani, N., Ando, R., & Izawa, S. (2022). Acquired resistance to severe ethanol stress-induced inhibition of proteasomal proteolysis in Saccharomyces cerevisiae. Biochimica et Biophysica Acta. General Subjects, 1866(12). https://doi.org/10.1016/J.BBAGEN.2022.130241Niculescu, V.-C., Paun, N., Ionete, R.-E., Niculescu, V.-C., Paun, N., & Ionete, R.-E. (2017). The Evolution of Polyphenols from Grapes to Wines. Grapes and Wines - Advances in Production, Processing, Analysis and Valorization. https://doi.org/10.5772/INTECHOPEN.72800Obiekezie, O. P., Efiuvwevwere, B. J. O., & Eruteya, O. C. (2020). Production, Preservation and Shelf-Life Evaluation of Wine from Banana Fruit (Musa acuminata Colla). Journal of Advances in Microbiology, 47–61. https://doi.org/10.9734/JAMB/2020/V20I930280Olivero, rafael, Aguas, yelitza, & Cury, K. (2011). Evaluación del efecto de diferentes cepas de levadura (Montrachet, K1-V1116, EC-1118, 71B-1122 y IVC-GRE ®) y clarificantes sobre los atributos sensoriales del vino de naranja criolla (Citrus sinensis).Onache, P. A., Florea, A., Geana, E. I., Ciucure, C. T., Ionete, R. E., Sumedrea, D. I., & Tița, O. (2023). Assessment of Bioactive Phenolic Compounds in Musts and the Corresponding Wines of White and Red Grape Varieties. Applied Sciences, 13(9). https://doi.org/10.3390/APP13095722Ortega, F. A., Pérez, O. A., & López, E. A. (2016). Modelo Semifísico de Base Fenomenológica del Proceso Continuo de Fermentación Alcohólica. Informacion Tecnologica, 27(1), 21–32. https://doi.org/10.4067/S0718-07642016000100004Osorio, C., Carriazo, J. G., & Almanza, O. (2011). Antioxidant activity of corozo (Bactris guineensis) fruit by electron paramagnetic resonance (EPR) spectroscopy. European Food Research and Technology, 233(1), 103–108. https://doi.org/10.1007/S00217-011-1499-4Ozmihci, S., & Kargi, F. (2007). Kinetics of batch ethanol fermentation of cheese-whey powder (CWP) solution as function of substrate and yeast concentrations. Bioresource Technology, 98(16), 2978–2984. https://doi.org/10.1016/J.BIORTECH.2006.10.005Patil, P. S., Deshannavar, U. B., Ramasamy, M., & Emani, S. (2021). Production, optimization, and characterization of sugarcane (Saccharum officinarum)–papaya (Carica papaya) wine using Saccharomyces cerevisiae. Environmental Technology & Innovation, 21. https://doi.org/10.1016/J.ETI.2020.101290Payan, C., Gancel, A. L., Jourdes, M., Christmann, M., & Teissedre, P. L. (2023). Wine acidification methods: a review. OENO One, 57(3), 113–126. https://doi.org/10.20870/OENO-ONE.2023.57.3.7476Perez, L., & Canter, D. (1991). Development of a Kinetic Model for the Alcoholic Fermentation of Must.Pérez-Ramírez, I. F., Castaño-Tostado, E., Ramírez-De León, J. A., Rocha-Guzmán, N. E., & Reynoso-Camacho, R. (2015). Effect of stevia and citric acid on the stability of phenolic compounds and in vitro antioxidant and antidiabetic capacity of a roselle (Hibiscus sabdariffa L.) beverage. Food Chemistry, 172, 885–892. https://doi.org/10.1016/J.FOODCHEM.2014.09.126Perfetti, J., Balcázar, Á., Hernández, A., & Leibovich, J. (2013). Políticas para el desarrollo de la agricultura en Colombia (Formas Finales Ltda., Ed.; Primera edición). La Imprenta Editores, Fedesarrollo, Sociedad de Agricultores de Colombia, Finagro, Incoder, Banco Agrario.Phaiboonsilpa, N., Chysirichote, T., Champreda, V., & Laosiripojana, N. (2020). Fermentation of xylose, arabinose, glucose, their mixtures and sugarcane bagasse hydrolyzate by yeast Pichia stipitis for ethanol production. Energy Reports, 6, 710–713. https://doi.org/10.1016/J.EGYR.2019.11.142Pinto, D., Vieira, E., Peixoto, A. F., Freire, C., Freitas, V., Costa, P., Delerue-Matos, C., & Rodrigues, F. (2020). Optimizing the extraction of phenolic antioxidants from chestnut shells by subcritical water extraction using response surface methodology 2 3.Pretelt, A., & Pérez, J. (2015). Plan De Exportacion De Vino De Corozo Hacia Argentina Ana Paola Pretelt Garcia Jamy Carolina Perez Herrera Electiva De Profundizacion Ii Integración y cooperación económica.Price, R. E., Longtin, M., Conley-Payton, S., Osborne, J. A., Johanningsmeier, S. D., Bitzer, D., & Breidt, F. (2020). Modeling buffer capacity and pH in acid and acidified foods. Journal of Food Science, 85(4), 918–925. https://doi.org/10.1111/1750-3841.15091Putu Andriana Sastrawan, I., Selamet Duniaji, A., Wayan Wisaniyasa, N., Studi Teknologi Pangan, P., Teknologi Pertanian, F., Udayana Kampus Bukit Jimbaran, U., & korespondensi, P. (2022). Pengaruh Konsentrasi Sukrosa Terhadap Karakteristik WineKopi Arabika Kintaman. In / Itepa (Vol. 11, Issue 3).Quesada, M. S., Azofeifa, G., Campone, L., Pagano, I., Pérez, A. M., Cortés, C., Rastrelli, L., & Quesada, S. (2020). Bactris guineensis (Arecaceae) extract: Polyphenol characterization, antioxidant capacity and cytotoxicity against cancer cell lines. Journal of Berry Research, 10(3), 329–344. https://doi.org/10.3233/JBR190449R Core Team. (2023). CRAN: Mirrors. https://cran.r-project.org/mirrors.htmlRahmasari, E., Wisaniyasa, N. W., & Kencana Putra, I. N. (2022). Pengaruh Konsentrasi Starter dan Gula terhadap Karakteristik Wine Jahe. Jurnal Ilmu Dan Teknologi Pangan (ITEPA), 11(3), 555. https://doi.org/10.24843/ITEPA.2022.V11.I03.P15Ramil, Ma. D. I., DC. Mendoza, A. M., & D. Ramil, R. J. (2021a). Assessment on the Physicochemical and Phytochemical Properties, Nutritional and Heavy Metal Contents, and Antioxidant Activities of Hylocereus polyrhizus Peel from Northern Philippines. Indian Journal of Science and Technology, 14(14), 1097–1104. https://doi.org/10.17485/IJST/V14I14.2286Ramil, Ma. D. I., DC. Mendoza, A. M., & D. Ramil, R. J. (2021b). Assessment on the Physicochemical and Phytochemical Properties, Nutritional and Heavy Metal Contents, and Antioxidant Activities of Hylocereus polyrhizus Peel from Northern Philippines. Indian Journal of Science and Technology, 14(14), 1097–1104. https://doi.org/10.17485/IJST/V14I14.2286Ramoba, L., Monyama, M. C., & Moganedi, K. (2022). Storage Potential of the Cactus Pear (Opuntia ficus-indica) Fruit Juice and Its Biological and Chemical Evaluation during Fermentation into Cactus Pear Wine. Beverages, 8(4). https://doi.org/10.3390/BEVERAGES8040067Reddy, L. V. A., Joshi, V. K., & Reddy, O. V. S. (2012). Utilization of Tropical Fruits for Wine Production with Special Emphasis on Mango (Mangifera indica L.) Wine. Microorganisms in Sustainable Agriculture and Biotechnology, 9789400722149, 679–710. https://doi.org/10.1007/978-94-007-2214-9_30Regino, A., & Rengifo, E. (2021). Evaluación De Los Métodos De Extracción De Compuestos Fenólicos (Antocianinas) A Partir Del Fruto Del Corozo (Bactris guineensis).Rettenmaier, R., Gerbaulet, M., Liebl, W., & Zverlov, V. V. (2019). Hungateiclostridium mesophilum sp. Nov., a mesophilic, cellulolytic and spore-forming bacterium isolated from a biogas fermenter fed with maize silage. International Journal of Systematic and Evolutionary Microbiology, 69(11), 3567–3573. https://doi.org/10.1099/IJSEM.0.003663/CITE/REFWORKSRíos Rojas, J. (2020). Bebidas tradicionales y ancestrales del Caribe colombiano. Sosquua, 2(1), 48–56. https://doi.org/10.52948/SOSQUUA.V2I1.138Rodrigues, C. I. S., Wahl, A., & Gombert, A. K. (2021). Aerobic growth physiology of Saccharomyces cerevisiae on sucrose is strain-dependent. BioRxiv. https://doi.org/10.1101/2021.02.25.432870Rodríguez-Cure, D., Luján-Rhenals, D., & Ortega-Quintana, F. (2024). Obtención de un concentrado para bebida aromática con Propiedades antioxidantes a partir de corozo Chiquito (Bactris minor/guineensis).Rohaya, S., Anwar, S. H., Amhar, A. B., Sutriana, A., & Muzaifa, M. (2023). Antioxidant activity and physicochemical composition of coffee pulp obtained from three coffee varieties in Aceh, Indonesia. IOP Conference Series: Earth and Environmental Science, 1182(1). https://doi.org/10.1088/1755-1315/1182/1/012063Rojano, B., Zapata, I. C., & Cortés, F. (2012). Anthocyanin stability and the oxygen radical absorbance capacity (ORAC) values of Corozo aqueous extracts (Bactris guineensis).Rojano, M. B., Isabel, I., Zapata, C., Farid, C., & Cortes, B. (2012). Anthocyanin stability and the oxygen radical absorbance capacity (ORAC) values of Corozo aqueous extracts (Bactris guineensis). In Revista Cubana de Plantas Medicinales (Vol. 17, Issue 3). http://scielo.sld.cuRojas, margarita. (2004). estandarización del proceso de clarificación del vino de feijoa (feijoa sellowiana berg) en el municipio de tibasosa.Rollero, S., Bloem, A., Brand, J., Ortiz-Julien, A., Camarasa, C., & Divol, B. (2021). Nitrogen metabolism in three non-conventional wine yeast species: A tool to modulate wine aroma profiles. Food Microbiology, 94. https://doi.org/10.1016/j.fm.2020.103650Sajib, M., Hoque, M. M., & Khatun, A. K. (2014). Minerals and heavy metals concentration in selected tropical fruits of Bangladesh. International Food Research Journal, 5(1731–1736), 1–7. https://www.researchgate.net/publication/269280116Salakkam, A., Phukoetphim, N., Laopaiboon, P., & Laopaiboon, L. (2023). Mathematical modeling of bioethanol production from sweet sorghum juice under high gravity fermentation: applicability of Monod-based, logistic, modified Gompertz and Weibull models. Electronic Journal of Biotechnology, 64, 18–26. https://doi.org/10.1016/J.EJBT.2023.03.004Salas-Millán, J. Á., Aznar, A., Conesa, E., Conesa-Bueno, A., & Aguayo, E. (2022). Fruit Wine Obtained from Melon by-Products: Physico-Chemical and Sensory Analysis, and Characterization of Key Aromas by GC-MS. Foods 2022, Vol. 11, Page 3619, 11(22), 3619. https://doi.org/10.3390/FOODS11223619Sánchez, K., & Laiton, Y. (2021). Elaboración de un vino de frutas de uvita de lata (BACTRIS MINOR) en el municipio de San Alberto, Cesar.Sancho-Galán, P., Amores-Arrocha, A., Palacios, V., & Jiménez-Cantizano, A. (2020). Identification and characterization of white grape varieties autochthonous of a warm climate region (Andalusia, Spain). Agronomy, 10(2). https://doi.org/10.3390/AGRONOMY10020205Sangadah, H. A., Machfud, & Anggraeni, E. (2020). An integrated conceptual framework for sustainable agroindustry. IOP Conference Series: Earth and Environmental Science, 472(1). https://doi.org/10.1088/1755-1315/472/1/012057Santos, L. D. (2022). Kinetics of Bio-ethanol production on the molasses-based medium by Saccharomyces cerevisiae By. https://doi.org/Saothong, P., Ninchan, B., Sriroth, K., Rattanaporn, K., & Vanichsriratana, W. (2021). Kinetics of Saccharomyces cerevisiae Fermentation under Metal Ions Stress during Ethanol Production. Walailak Journal of Science and Technology, 18(6). https://doi.org/10.48048/WJST.2021.9133Schwarz, L. V., Marcon, A. R., Delamare, A. P. L., & Echeverrigaray, S. (2021). Influence of nitrogen, minerals and vitamins supplementation on honey wine production using response surface methodology. Journal of Apicultural Research, 60(1), 57–66. https://doi.org/10.1080/00218839.2020.1793277Sellamén Garzón, A. (2013). Estado del arte sobre los fondos parafiscales agropecuarios. (Spanish). Etat de l’art sur les fonds agricoles parafiscaux. (French), 11(18),73–112.http://search.ebscohost.com/login.aspx?direct=true&db=fua&AN=8963 9372&lang=es&site=ehost-liveShafiqa-Atikah, M. K., Nor-Khaizura, M. A. R., Mahyudin, N. A., Abas, F., Nur-Syifa’, J., & Ummul-Izzatul, Y. (2020). Evaluation of phenolic constituent, antioxidant and antibacterial activities of sugarcane molasses towards foodborne pathogens. Food Research, 4, 40–47. https://doi.org/10.26656/FR.2017.4(S2).S05Shuler, M., & Kargi, F. (2002). Bioprocess Engineering Basic Concepts (Vol. 2).Soto Mora, J. E., Charry Roa, S., & Amorocho Cruz, C. M. (2021). Evaluación del comportamiento del color del vino artesanal de curuba “Son del Alba.” Ingeniería y Región, 26, 4–19. https://doi.org/10.25054/22161325.2915Stoica, F., Muntean, C., & Băducă Cîmpeanu, C. (2024). Study of the polyphenolic potential of red wine grape varieties cultivated in different vineyard areas in oltenia. Annals of the university of craiova, Biology, Horticulture, Food Products Processing Technology, Environmental Engineering, 29(65). https://doi.org/10.52846/BIHPT.V29I65.184Styger, G., Prior, B., & Bauer, F. F. (2011). Wine flavor and aroma. In Journal of Industrial Microbiology and Biotechnology (Vol. 38, Issue 9, pp. 1145–1159). https://doi.org/10.1007/s10295-011-1018-4Suárez, J., & Leydi, G. (2013). Hidrólisis ácida y concentración por evaporación de jugo de caña panelera (Variedad CC 8592) para la elaboración de miel invertida. Universidad del valle.Suárez-Rebaza, L. A., de Albuquerque, R. D. D. G., Zavala, E., Alva-Plasencia, P. M., Ganoza-Suárez, M. M., Ganoza-Yupanqui, M. L., & Bussmann, R. W. (2023). Chemical composition and antioxidant capacity of purified extracts of Prosopis pallida(Humb. & Bonpl. ex Willd.) Kunth (Fabaceae) fruits from Northern Peru. Boletin Latinoamericano y Del Caribe de Plantas Medicinales y Aromaticas, 22(5), 594–606. https://doi.org/10.37360/BLACPMA.23.22.5.43Tafur, P., & Cristina, M. (2019). Efecto de diferentes tratamientos químicos sobre la producción de azúcares reductores y etanol en la fermentación alcohólica de la cáscara de la mazorca del cacao.Takara, K., Ushijima, K., Wada, K., Iwasaki, H., & Yamashita, M. (2007). Phenolic compounds from sugarcane molasses possessing antibacterial activity against cariogenic bacteria. Journal of Oleo Science, 56(11), 611–614. https://doi.org/10.5650/JOS.56.611Tareen, A. K., Punsuvon, V., Sultan, I. N., Khan, M. W., & Parakulsuksatid, P. (2021). Cellulase Addition and Pre-hydrolysis Effect of High Solid Fed-Batch Simultaneous Saccharification and Ethanol Fermentation from a Combined Pretreated Oil Palm Trunk. ACS Omega, 6(40), 26119–26129. https://doi.org/10.1021/ACSOMEGA.1C03111Tatah, S. V., Shadrach, P., & Abah, M. A. (2024). Nutritional and Biochemical Analysis of Locally Produced Wine from a Blend of Banana (Musa sapientum) and Date Palm Fruit (Phoenix dactylifera L.). Asian Journal of Science, Technology, Engineering, and Art, 2(3), 444–461. https://doi.org/10.58578/AJSTEA.V2I3.3210Teng, B., Petrie, P. R., Nandorfy, D. E., Smith, P., & Bindon, K. (2020). Pre-Fermentation Water Addition to High-Sugar Shiraz Must: Effects on Wine Composition and Sensory Properties. Foods, 9(9). https://doi.org/10.3390/FOODS9091193Tokar, A. Yu., Haidai, I. V., Voitsekhivskyi, V. I., & Voitsekhivska, O. V. (2024). ASCORBIC ACID AND PHENOLIC SUBSTANCES IN FRUIT AND BERRY UNFORCED WINES. Naukovì Dopovìdì Nacìonalʹnogo Unìversitetu Bìoresursiv ì Prirodokoristuvannâ Ukraïni, 109(3). https://doi.org/10.31548/DOPOVIDI.3(109).2024.013Trioli, G. (2010). MICROBIAL CONTAMINATION IN WINE.Udeagha, E. C., Ishiwu, C. N., Obiora, C. U., & Iwouno, J. O. (2020). Effects of Yeast Concentration and Total Soluble Solids on the Quality of Wine Produced from Pineapple. Current Journal of Applied Science and Technology, 28–42. https://doi.org/10.9734/CJAST/2020/V39I3030968Ünsal, S. B. E., Tufan, H. N. G., Canatar, M., Yatmaz, E., Yavuz, I., Germec, M., & Turhan, I. (2025). An Evaluation of Mathematical Modeling of Ethanol Fermentation with Immobilized Saccharomyces cerevisiae in the Presence of Different Inhibitors. Processes, 13(3). https://doi.org/10.3390/PR13030656Urrialde, R., Gómez Cifuentes, A., Pintos, B., Gómez-Garay, M. A., & Cifuentes, B. (2023). Los edulcorantes como herramienta de reducción de la densidad energética en los productos alimenticios. Una alternativa para ayudar a poder controlar y reducir el sobrepeso y la obesidad. Nutricion Hospitalaria, 40(2), 62–66. https://doi.org/10.20960/nh.04958Vamvakas, S. S., & Kapolos, J. (2020). Factors affecting yeast ethanol tolerance and fermentation efficiency. World Journal of Microbiology & Biotechnology, 36(8). https://doi.org/10.1007/S11274-020-02881-8Vaquero, C., Loira, I., Bañuelos, M. A., Heras, J. M., Cuerda, R., & Morata, A. (2020a). Industrial performance of several lachancea thermotolerans strains for ph control in white wines from warm areas. Microorganisms, 8(6). https://doi.org/10.3390/MICROORGANISMS8060830Vaquero, C., Loira, I., Bañuelos, M. A., Heras, J. M., Cuerda, R., & Morata, A. (2020b). Industrial performance of several lachancea thermotolerans strains for ph control in white wines from warm areas. Microorganisms, 8(6). https://doi.org/10.3390/MICROORGANISMS8060830Vaquero, C., Loira, I., Heras, J. M., Carrau, F., González, C., & Morata, A. (2021). Biocompatibility in Ternary Fermentations With Lachancea thermotolerans, Other Non-Saccharomyces and Saccharomyces cerevisiae to Control pH and Improve the Sensory Profile of Wines From Warm Areas. Frontiers in Microbiology, 12. https://doi.org/10.3389/FMICB.2021.656262/PDFVeloso, I. I. K., Rodrigues, K. C. S., Sonego, J. L. S., Cruz, A. J. G., & Badino, A. C. (2019a). Fed-batch ethanol fermentation at low temperature as a way to obtain highly concentrated alcoholic wines: Modeling and optimization. Biochemical Engineering Journal, 141, 60–70. https://doi.org/10.1016/J.BEJ.2018.10.005Veloso, I. I. K., Rodrigues, K. C. S., Sonego, J. L. S., Cruz, A. J. G., & Badino, A. C. (2019b). Fed-batch ethanol fermentation at low temperature as a way to obtain highly concentrated alcoholic wines: Modeling and optimization. Biochem Eng J, 141, 60–70. https://doi.org/10.1016/j.bej.2018.10.005Vieira, R. C., De Farias Silva, C. E., da Silva, L. O. M., Almeida, R. M. R. G., de Oliveira Carvalho, F., & dos Santos Silva, M. C. (2020). Kinetic modelling of ethanolic fermented tomato must (Lycopersicon esculentum Mill) in batch system: influence of sugar content in the chaptalization step and inoculum concentration. Reaction Kinetics, Mechanisms and Catalysis, 130(2), 837–862. https://doi.org/10.1007/S11144-020-01810-YVilladsen, J., Nielsen, J., & Lidén, G. (2011). Thermodynamics of Bioreactions. In Bioreaction Engineering Principles (pp. 119–150). Springer US. https://doi.org/10.1007/978-1-4419-9688-6_4Vitolo, M. (2021). Immobilization on chitin and polyethylene of invertase obtained from yeast grown in molasses by fed-batch process.Walker, G. M. (2004). Metals in yeast fermentation processes. Advances in Applied Microbiology, 54, 197–229. https://doi.org/10.1016/S0065-2164(04)54008-XWegmann-Herr, P., & Nickolaus, P. (2023). Verification of the practical suitability of cation exchangers for lowering the pH value in must and wine. BIO Web of Conferences, 56. https://doi.org/10.1051/BIOCONF/20235602008Xynas, B., Barnes, C., & Howell, K. (2024). Amending high sugar in V. vinifera cv. Shiraz wine must by pre-fermentation water treatments results in subtle sensory differences for naïve wine consumers. OENO One, 58(3). https://doi.org/10.20870/OENO-ONE.2024.58.3.8009Yaa’ri, R., Schneiderman, E., Ben Aharon, V., Stanevsky, M., & Drori, E. (2024). Development of a Novel Approach for Controlling and Predicting Residual Sugars in Wines. Fermentation, 10(3), 125. https://doi.org/10.3390/FERMENTATION10030125/S1Yilmaz, T., Ates, F., Turan, M., Hatterman-Valenti, H., & Kaya, O. (2024). Dynamics of Sugars, Organic Acids, Hormones, and Antioxidants in Grape Varieties ‘Italia’ and ‘Bronx Seedless’ during Berry Development and Ripening. Horticulturae, 10(3). https://doi.org/10.3390/HORTICULTURAE10030229Yin, W. (2014). Comparison between Lineweaver-Burk Plot and Genetic Algorithms Using for Parameter Estimation of Monod Equation. Journal of Qingdao Agricultural University.Yoshida, M., Furutani, N., Imai, F., Miki, T., & Izawa, S. (2022). Wine Yeast Cells Acquire Resistance to Severe Ethanol Stress and Suppress Insoluble Protein Accumulation during Alcoholic Fermentation. Microbiology Spectrum, 10(5). https://doi.org/10.1128/SPECTRUM.00901-22Zapata, K., Cortes, F. B., & Rojano, B. A. (2013). Polifenoles y Actividad Antioxidante del Fruto de Guayaba Agria (Psidium araca). Informacion Tecnologica, 24(5), 103–112. https://doi.org/10.4067/S0718-07642013000500012Zapata M, J. E., Hoyos, M. R., & Quinchía B, L. A. (2005). parámetros cinéticos de crecimiento de saccharomyces cerevisiae en presencia de un campo magnético variable de baja intensidad y alta frecuencia kinetic parameters of growth of saccharomyces cerevisiae affected by a varying magnetic field of low intensity and high frequency. Vitae, 12, 39–44.Zapateiro, G., Alberto, L., Mendoza, F., Inés, C., & Ligardo, M. (2016). Elaboración y caracterización fisicoquímica de un vino joven de fruta de borojó (B patinoi Cuatrec).Zeng, Q., Ha, S., Chen, M., Zhang, C., & Yang, H. (2025). Common organic acids in fruit wine and the deacidification strategies. Systems Microbiology and Biomanufacturing. https://doi.org/10.1007/S43393-025-00333-8Zentou, H., Abidin, Z. Z., Yunus, R., Biak, D. R. A., Zouanti, M., & Hassani, A. (2019). Modelling of molasses fermentation for bioethanol production: A comparative investigation of monod and andrews models accuracy assessment. Biomolecules, 9(8). https://doi.org/10.3390/biom9080308Zhang, H. L., Xia, N. Y., Yao, X. C., Duan, C. Q., & Pan, Q. H. (2024). Effects of Phenolic Evolution on Color Characteristics of Single-Cultivar Vitis vinifera L. Marselan and Merlot Wines during Vinification and Aging. Foods, 13(3). https://doi.org/10.3390/FOODS13030494Zi, X., Liu, Y., Chen, T., Li, M., Zhou, H., & Tang, J. (2022). Effects of Sucrose, Glucose and Molasses on Fermentation Quality and Bacterial Community of Stylo Silage. Fermentation, 8(5). https://doi.org/10.3390/fermentation8050191Bactris minor/guinensisVinificación no convencionalSustratos alternativosModelamiento cinéticoFermentación alcohólicaPolifenolesBactris minor/guinensisNon-conventional winemakingAlternative substratesKinetic modelingAlcoholic fermentationPolyphenolsPublicationORIGINALDurangoCastillaLicetVanessa.pdfDurangoCastillaLicetVanessa.pdfapplication/pdf1230888https://repositorio.unicordoba.edu.co/bitstreams/42babef5-a33e-4ea8-b4d8-47ff094bbec0/download0b49f9ac7390573381a9f9431edffa1fMD51falseAnonymousREAD2026-11-12Formato de autorización.pdfFormato de autorización.pdfapplication/pdf983302https://repositorio.unicordoba.edu.co/bitstreams/88739466-32fe-4e54-8e32-4824adb71c2f/download1b31f04b7f0c89b470a5e5a3780e4fcfMD53trueLICENSElicense.txtlicense.txttext/plain; charset=utf-814837https://repositorio.unicordoba.edu.co/bitstreams/37998bd8-02a8-4b0d-ada2-8c6e280c2755/downloadb76e7a76e24cf2f94b3ce0ae5ed275d0MD52falseAnonymousREADTEXTDurangoCastillaLicetVanessa.pdf.txtDurangoCastillaLicetVanessa.pdf.txtExtracted texttext/plain6https://repositorio.unicordoba.edu.co/bitstreams/c6af37a2-fffc-43d7-ba94-041004df4feb/download6d93d3216dc4a7f5df47d4876fbec4d3MD54falseAnonymousREAD2026-11-12Formato de autorización.pdf.txtFormato de autorización.pdf.txtExtracted texttext/plain101896https://repositorio.unicordoba.edu.co/bitstreams/6748897a-8457-4892-8b16-3a32bcb483e2/download0479d32b88f842769104a3427a5e2c4bMD56falseTHUMBNAILDurangoCastillaLicetVanessa.pdf.jpgDurangoCastillaLicetVanessa.pdf.jpgGenerated Thumbnailimage/jpeg13810https://repositorio.unicordoba.edu.co/bitstreams/8a885b41-0b76-4131-844f-ff7b98bc5a38/download2f3271868e6833aa3d7827cdf38f9777MD55falseAnonymousREAD2026-11-12Formato de autorización.pdf.jpgFormato de autorización.pdf.jpgGenerated Thumbnailimage/jpeg6782https://repositorio.unicordoba.edu.co/bitstreams/8bbf7785-1fca-4494-b3d3-f7761f1c9ca9/download59df214be5ac372687cf25f4623d252cMD57falseucordoba/9663oai:repositorio.unicordoba.edu.co:ucordoba/96632025-11-15 04:01:16.751https://creativecommons.org/licenses/by-nc-nd/4.0/Copyright Universidad de Córdoba, 2025restrictedhttps://repositorio.unicordoba.edu.coRepositorio institucional Universidad de Córdobabdigital@metabiblioteca.comTEEgT0JSQSAoVEFMIFkgQ09NTyBTRSBERUZJTkUgTcOBUyBBREVMQU5URSkgU0UgT1RPUkdBIEJBSk8gTE9TIFRFUk1JTk9TIERFIEVTVEEgTElDRU5DSUEgUMOaQkxJQ0EgREUgQ1JFQVRJVkUgQ09NTU9OUyAo4oCcTFBDQ+KAnSBPIOKAnExJQ0VOQ0lB4oCdKS4gTEEgT0JSQSBFU1TDgSBQUk9URUdJREEgUE9SIERFUkVDSE9TIERFIEFVVE9SIFkvVSBPVFJBUyBMRVlFUyBBUExJQ0FCTEVTLiBRVUVEQSBQUk9ISUJJRE8gQ1VBTFFVSUVSIFVTTyBRVUUgU0UgSEFHQSBERSBMQSBPQlJBIFFVRSBOTyBDVUVOVEUgQ09OIExBIEFVVE9SSVpBQ0nDk04gUEVSVElORU5URSBERSBDT05GT1JNSURBRCBDT04gTE9TIFTDiVJNSU5PUyBERSBFU1RBIExJQ0VOQ0lBIFkgREUgTEEgTEVZIERFIERFUkVDSE8gREUgQVVUT1IuCgpNRURJQU5URSBFTCBFSkVSQ0lDSU8gREUgQ1VBTFFVSUVSQSBERSBMT1MgREVSRUNIT1MgUVVFIFNFIE9UT1JHQU4gRU4gRVNUQSBMSUNFTkNJQSwgVVNURUQgQUNFUFRBIFkgQUNVRVJEQSBRVUVEQVIgT0JMSUdBRE8gRU4gTE9TIFRFUk1JTk9TIFFVRSBTRSBTRcORQUxBTiBFTiBFTExBLiBFTCBMSUNFTkNJQU5URSBDT05DRURFIEEgVVNURUQgTE9TIERFUkVDSE9TIENPTlRFTklET1MgRU4gRVNUQSBMSUNFTkNJQSBDT05ESUNJT05BRE9TIEEgTEEgQUNFUFRBQ0nDk04gREUgU1VTIFRFUk1JTk9TIFkgQ09ORElDSU9ORVMuIAoKMS4gRGVmaW5pY2lvbmVzCmEuIE9icmEgQ29sZWN0aXZhIGVzIHVuYSBvYnJhLCB0YWwgY29tbyB1bmEgcHVibGljYWNpw7NuIHBlcmnDs2RpY2EsIHVuYSBhbnRvbG9nw61hLCBvIHVuYSBlbmNpY2xvcGVkaWEsIGVuIGxhIHF1ZSBsYSBvYnJhIGVuIHN1IHRvdGFsaWRhZCwgc2luIG1vZGlmaWNhY2nDs24gYWxndW5hLCBqdW50byBjb24gdW4gZ3J1cG8gZGUgb3RyYXMgY29udHJpYnVjaW9uZXMgcXVlIGNvbnN0aXR1eWVuIG9icmFzIHNlcGFyYWRhcyBlIGluZGVwZW5kaWVudGVzIGVuIHPDrSBtaXNtYXMsIHNlIGludGVncmFuIGVuIHVuIHRvZG8gY29sZWN0aXZvLiBVbmEgT2JyYSBxdWUgY29uc3RpdHV5ZSB1bmEgb2JyYSBjb2xlY3RpdmEgbm8gc2UgY29uc2lkZXJhcsOhIHVuYSBPYnJhIERlcml2YWRhIChjb21vIHNlIGRlZmluZSBhYmFqbykgcGFyYSBsb3MgcHJvcMOzc2l0b3MgZGUgZXN0YSBsaWNlbmNpYS4gYXF1ZWxsYSBwcm9kdWNpZGEgcG9yIHVuIGdydXBvIGRlIGF1dG9yZXMsIGVuIHF1ZSBsYSBPYnJhIHNlIGVuY3VlbnRyYSBzaW4gbW9kaWZpY2FjaW9uZXMsIGp1bnRvIGNvbiB1bmEgY2llcnRhIGNhbnRpZGFkIGRlIG90cmFzIGNvbnRyaWJ1Y2lvbmVzLCBxdWUgY29uc3RpdHV5ZW4gZW4gc8OtIG1pc21vcyB0cmFiYWpvcyBzZXBhcmFkb3MgZSBpbmRlcGVuZGllbnRlcywgcXVlIHNvbiBpbnRlZ3JhZG9zIGFsIHRvZG8gY29sZWN0aXZvLCB0YWxlcyBjb21vIHB1YmxpY2FjaW9uZXMgcGVyacOzZGljYXMsIGFudG9sb2fDrWFzIG8gZW5jaWNsb3BlZGlhcy4KYi4gT2JyYSBEZXJpdmFkYSBzaWduaWZpY2EgdW5hIG9icmEgYmFzYWRhIGVuIGxhIG9icmEgb2JqZXRvIGRlIGVzdGEgbGljZW5jaWEgbyBlbiDDqXN0YSB5IG90cmFzIG9icmFzIHByZWV4aXN0ZW50ZXMsIHRhbGVzIGNvbW8gdHJhZHVjY2lvbmVzLCBhcnJlZ2xvcyBtdXNpY2FsZXMsIGRyYW1hdGl6YWNpb25lcywg4oCcZmljY2lvbmFsaXphY2lvbmVz4oCdLCB2ZXJzaW9uZXMgcGFyYSBjaW5lLCDigJxncmFiYWNpb25lcyBkZSBzb25pZG/igJ0sIHJlcHJvZHVjY2lvbmVzIGRlIGFydGUsIHJlc8O6bWVuZXMsIGNvbmRlbnNhY2lvbmVzLCBvIGN1YWxxdWllciBvdHJhIGVuIGxhIHF1ZSBsYSBvYnJhIHB1ZWRhIHNlciB0cmFuc2Zvcm1hZGEsIGNhbWJpYWRhIG8gYWRhcHRhZGEsIGV4Y2VwdG8gYXF1ZWxsYXMgcXVlIGNvbnN0aXR1eWFuIHVuYSBvYnJhIGNvbGVjdGl2YSwgbGFzIHF1ZSBubyBzZXLDoW4gY29uc2lkZXJhZGFzIHVuYSBvYnJhIGRlcml2YWRhIHBhcmEgZWZlY3RvcyBkZSBlc3RhIGxpY2VuY2lhLiAoUGFyYSBldml0YXIgZHVkYXMsIGVuIGVsIGNhc28gZGUgcXVlIGxhIE9icmEgc2VhIHVuYSBjb21wb3NpY2nDs24gbXVzaWNhbCBvIHVuYSBncmFiYWNpw7NuIHNvbm9yYSwgcGFyYSBsb3MgZWZlY3RvcyBkZSBlc3RhIExpY2VuY2lhIGxhIHNpbmNyb25pemFjacOzbiB0ZW1wb3JhbCBkZSBsYSBPYnJhIGNvbiB1bmEgaW1hZ2VuIGVuIG1vdmltaWVudG8gc2UgY29uc2lkZXJhcsOhIHVuYSBPYnJhIERlcml2YWRhIHBhcmEgbG9zIGZpbmVzIGRlIGVzdGEgbGljZW5jaWEpLgpjLiBMaWNlbmNpYW50ZSwgZXMgZWwgaW5kaXZpZHVvIG8gbGEgZW50aWRhZCB0aXR1bGFyIGRlIGxvcyBkZXJlY2hvcyBkZSBhdXRvciBxdWUgb2ZyZWNlIGxhIE9icmEgZW4gY29uZm9ybWlkYWQgY29uIGxhcyBjb25kaWNpb25lcyBkZSBlc3RhIExpY2VuY2lhLgpkLiBBdXRvciBvcmlnaW5hbCwgZXMgZWwgaW5kaXZpZHVvIHF1ZSBjcmXDsyBsYSBPYnJhLgplLiBPYnJhLCBlcyBhcXVlbGxhIG9icmEgc3VzY2VwdGlibGUgZGUgcHJvdGVjY2nDs24gcG9yIGVsIHLDqWdpbWVuIGRlIERlcmVjaG8gZGUgQXV0b3IgeSBxdWUgZXMgb2ZyZWNpZGEgZW4gbG9zIHTDqXJtaW5vcyBkZSBlc3RhIGxpY2VuY2lhCmYuIFVzdGVkLCBlcyBlbCBpbmRpdmlkdW8gbyBsYSBlbnRpZGFkIHF1ZSBlamVyY2l0YSBsb3MgZGVyZWNob3Mgb3RvcmdhZG9zIGFsIGFtcGFybyBkZSBlc3RhIExpY2VuY2lhIHkgcXVlIGNvbiBhbnRlcmlvcmlkYWQgbm8gaGEgdmlvbGFkbyBsYXMgY29uZGljaW9uZXMgZGUgbGEgbWlzbWEgcmVzcGVjdG8gYSBsYSBPYnJhLCBvIHF1ZSBoYXlhIG9idGVuaWRvIGF1dG9yaXphY2nDs24gZXhwcmVzYSBwb3IgcGFydGUgZGVsIExpY2VuY2lhbnRlIHBhcmEgZWplcmNlciBsb3MgZGVyZWNob3MgYWwgYW1wYXJvIGRlIGVzdGEgTGljZW5jaWEgcGVzZSBhIHVuYSB2aW9sYWNpw7NuIGFudGVyaW9yLgoJICAKMi4gRGVyZWNob3MgZGUgVXNvcyBIb25yYWRvcyB5IGV4Y2VwY2lvbmVzIExlZ2FsZXMuCk5hZGEgZW4gZXN0YSBMaWNlbmNpYSBwb2Ryw6Egc2VyIGludGVycHJldGFkbyBjb21vIHVuYSBkaXNtaW51Y2nDs24sIGxpbWl0YWNpw7NuIG8gcmVzdHJpY2Npw7NuIGRlIGxvcyBkZXJlY2hvcyBkZXJpdmFkb3MgZGVsIHVzbyBob25yYWRvIHkgb3RyYXMgbGltaXRhY2lvbmVzIG8gZXhjZXBjaW9uZXMgYSBsb3MgZGVyZWNob3MgZGVsIGF1dG9yIGJham8gZWwgcsOpZ2ltZW4gbGVnYWwgdmlnZW50ZSBvIGRlcml2YWRvIGRlIGN1YWxxdWllciBvdHJhIG5vcm1hIHF1ZSBzZSBsZSBhcGxpcXVlLgogIAozLiBDb25jZXNpw7NuIGRlIGxhIExpY2VuY2lhLgpCYWpvIGxvcyB0w6lybWlub3MgeSBjb25kaWNpb25lcyBkZSBlc3RhIExpY2VuY2lhLCBlbCBMaWNlbmNpYW50ZSBvdG9yZ2EgYSBVc3RlZCB1bmEgbGljZW5jaWEgbXVuZGlhbCwgbGlicmUgZGUgcmVnYWzDrWFzLCBubyBleGNsdXNpdmEgeSBwZXJwZXR1YSAoZHVyYW50ZSB0b2RvIGVsIHBlcsOtb2RvIGRlIHZpZ2VuY2lhIGRlIGxvcyBkZXJlY2hvcyBkZSBhdXRvcikgcGFyYSBlamVyY2VyIGVzdG9zIGRlcmVjaG9zIHNvYnJlIGxhIE9icmEgdGFsIHkgY29tbyBzZSBpbmRpY2EgYSBjb250aW51YWNpw7NuOgphLiBSZXByb2R1Y2lyIGxhIE9icmEsIGluY29ycG9yYXIgbGEgT2JyYSBlbiB1bmEgbyBtw6FzIE9icmFzIENvbGVjdGl2YXMsIHkgcmVwcm9kdWNpciBsYSBPYnJhIGluY29ycG9yYWRhIGVuIGxhcyBPYnJhcyBDb2xlY3RpdmFzLgpiLiBEaXN0cmlidWlyIGNvcGlhcyBvIGZvbm9ncmFtYXMgZGUgbGFzIE9icmFzLCBleGhpYmlybGFzIHDDumJsaWNhbWVudGUsIGVqZWN1dGFybGFzIHDDumJsaWNhbWVudGUgeS9vIHBvbmVybGFzIGEgZGlzcG9zaWNpw7NuIHDDumJsaWNhLCBpbmNsdXnDqW5kb2xhcyBjb21vIGluY29ycG9yYWRhcyBlbiBPYnJhcyBDb2xlY3RpdmFzLCBzZWfDum4gY29ycmVzcG9uZGEuCmMuIERpc3RyaWJ1aXIgY29waWFzIGRlIGxhcyBPYnJhcyBEZXJpdmFkYXMgcXVlIHNlIGdlbmVyZW4sIGV4aGliaXJsYXMgcMO6YmxpY2FtZW50ZSwgZWplY3V0YXJsYXMgcMO6YmxpY2FtZW50ZSB5L28gcG9uZXJsYXMgYSBkaXNwb3NpY2nDs24gcMO6YmxpY2EuCgpMb3MgZGVyZWNob3MgbWVuY2lvbmFkb3MgYW50ZXJpb3JtZW50ZSBwdWVkZW4gc2VyIGVqZXJjaWRvcyBlbiB0b2RvcyBsb3MgbWVkaW9zIHkgZm9ybWF0b3MsIGFjdHVhbG1lbnRlIGNvbm9jaWRvcyBvIHF1ZSBzZSBpbnZlbnRlbiBlbiBlbCBmdXR1cm8uIExvcyBkZXJlY2hvcyBhbnRlcyBtZW5jaW9uYWRvcyBpbmNsdXllbiBlbCBkZXJlY2hvIGEgcmVhbGl6YXIgZGljaGFzIG1vZGlmaWNhY2lvbmVzIGVuIGxhIG1lZGlkYSBxdWUgc2VhbiB0w6ljbmljYW1lbnRlIG5lY2VzYXJpYXMgcGFyYSBlamVyY2VyIGxvcyBkZXJlY2hvcyBlbiBvdHJvIG1lZGlvIG8gZm9ybWF0b3MsIHBlcm8gZGUgb3RyYSBtYW5lcmEgdXN0ZWQgbm8gZXN0w6EgYXV0b3JpemFkbyBwYXJhIHJlYWxpemFyIG9icmFzIGRlcml2YWRhcy4gVG9kb3MgbG9zIGRlcmVjaG9zIG5vIG90b3JnYWRvcyBleHByZXNhbWVudGUgcG9yIGVsIExpY2VuY2lhbnRlIHF1ZWRhbiBwb3IgZXN0ZSBtZWRpbyByZXNlcnZhZG9zLCBpbmNsdXllbmRvIHBlcm8gc2luIGxpbWl0YXJzZSBhIGFxdWVsbG9zIHF1ZSBzZSBtZW5jaW9uYW4gZW4gbGFzIHNlY2Npb25lcyA0KGQpIHkgNChlKS4KICAgIAo0LiBSZXN0cmljY2lvbmVzLgpMYSBsaWNlbmNpYSBvdG9yZ2FkYSBlbiBsYSBhbnRlcmlvciBTZWNjacOzbiAzIGVzdMOhIGV4cHJlc2FtZW50ZSBzdWpldGEgeSBsaW1pdGFkYSBwb3IgbGFzIHNpZ3VpZW50ZXMgcmVzdHJpY2Npb25lczoKYS4gVXN0ZWQgcHVlZGUgZGlzdHJpYnVpciwgZXhoaWJpciBww7pibGljYW1lbnRlLCBlamVjdXRhciBww7pibGljYW1lbnRlLCBvIHBvbmVyIGEgZGlzcG9zaWNpw7NuIHDDumJsaWNhIGxhIE9icmEgc8OzbG8gYmFqbyBsYXMgY29uZGljaW9uZXMgZGUgZXN0YSBMaWNlbmNpYSwgeSBVc3RlZCBkZWJlIGluY2x1aXIgdW5hIGNvcGlhIGRlIGVzdGEgbGljZW5jaWEgbyBkZWwgSWRlbnRpZmljYWRvciBVbml2ZXJzYWwgZGUgUmVjdXJzb3MgZGUgbGEgbWlzbWEgY29uIGNhZGEgY29waWEgZGUgbGEgT2JyYSBxdWUgZGlzdHJpYnV5YSwgZXhoaWJhIHDDumJsaWNhbWVudGUsIGVqZWN1dGUgcMO6YmxpY2FtZW50ZSBvIHBvbmdhIGEgZGlzcG9zaWNpw7NuIHDDumJsaWNhLiBObyBlcyBwb3NpYmxlIG9mcmVjZXIgbyBpbXBvbmVyIG5pbmd1bmEgY29uZGljacOzbiBzb2JyZSBsYSBPYnJhIHF1ZSBhbHRlcmUgbyBsaW1pdGUgbGFzIGNvbmRpY2lvbmVzIGRlIGVzdGEgTGljZW5jaWEgbyBlbCBlamVyY2ljaW8gZGUgbG9zIGRlcmVjaG9zIGRlIGxvcyBkZXN0aW5hdGFyaW9zIG90b3JnYWRvcyBlbiBlc3RlIGRvY3VtZW50by4gTm8gZXMgcG9zaWJsZSBzdWJsaWNlbmNpYXIgbGEgT2JyYS4gVXN0ZWQgZGViZSBtYW50ZW5lciBpbnRhY3RvcyB0b2RvcyBsb3MgYXZpc29zIHF1ZSBoYWdhbiByZWZlcmVuY2lhIGEgZXN0YSBMaWNlbmNpYSB5IGEgbGEgY2zDoXVzdWxhIGRlIGxpbWl0YWNpw7NuIGRlIGdhcmFudMOtYXMuIFVzdGVkIG5vIHB1ZWRlIGRpc3RyaWJ1aXIsIGV4aGliaXIgcMO6YmxpY2FtZW50ZSwgZWplY3V0YXIgcMO6YmxpY2FtZW50ZSwgbyBwb25lciBhIGRpc3Bvc2ljacOzbiBww7pibGljYSBsYSBPYnJhIGNvbiBhbGd1bmEgbWVkaWRhIHRlY25vbMOzZ2ljYSBxdWUgY29udHJvbGUgZWwgYWNjZXNvIG8gbGEgdXRpbGl6YWNpw7NuIGRlIGVsbGEgZGUgdW5hIGZvcm1hIHF1ZSBzZWEgaW5jb25zaXN0ZW50ZSBjb24gbGFzIGNvbmRpY2lvbmVzIGRlIGVzdGEgTGljZW5jaWEuIExvIGFudGVyaW9yIHNlIGFwbGljYSBhIGxhIE9icmEgaW5jb3Jwb3JhZGEgYSB1bmEgT2JyYSBDb2xlY3RpdmEsIHBlcm8gZXN0byBubyBleGlnZSBxdWUgbGEgT2JyYSBDb2xlY3RpdmEgYXBhcnRlIGRlIGxhIG9icmEgbWlzbWEgcXVlZGUgc3VqZXRhIGEgbGFzIGNvbmRpY2lvbmVzIGRlIGVzdGEgTGljZW5jaWEuIFNpIFVzdGVkIGNyZWEgdW5hIE9icmEgQ29sZWN0aXZhLCBwcmV2aW8gYXZpc28gZGUgY3VhbHF1aWVyIExpY2VuY2lhbnRlIGRlYmUsIGVuIGxhIG1lZGlkYSBkZSBsbyBwb3NpYmxlLCBlbGltaW5hciBkZSBsYSBPYnJhIENvbGVjdGl2YSBjdWFscXVpZXIgcmVmZXJlbmNpYSBhIGRpY2hvIExpY2VuY2lhbnRlIG8gYWwgQXV0b3IgT3JpZ2luYWwsIHNlZ8O6biBsbyBzb2xpY2l0YWRvIHBvciBlbCBMaWNlbmNpYW50ZSB5IGNvbmZvcm1lIGxvIGV4aWdlIGxhIGNsw6F1c3VsYSA0KGMpLgpiLiBVc3RlZCBubyBwdWVkZSBlamVyY2VyIG5pbmd1bm8gZGUgbG9zIGRlcmVjaG9zIHF1ZSBsZSBoYW4gc2lkbyBvdG9yZ2Fkb3MgZW4gbGEgU2VjY2nDs24gMyBwcmVjZWRlbnRlIGRlIG1vZG8gcXVlIGVzdMOpbiBwcmluY2lwYWxtZW50ZSBkZXN0aW5hZG9zIG8gZGlyZWN0YW1lbnRlIGRpcmlnaWRvcyBhIGNvbnNlZ3VpciB1biBwcm92ZWNobyBjb21lcmNpYWwgbyB1bmEgY29tcGVuc2FjacOzbiBtb25ldGFyaWEgcHJpdmFkYS4gRWwgaW50ZXJjYW1iaW8gZGUgbGEgT2JyYSBwb3Igb3RyYXMgb2JyYXMgcHJvdGVnaWRhcyBwb3IgZGVyZWNob3MgZGUgYXV0b3IsIHlhIHNlYSBhIHRyYXbDqXMgZGUgdW4gc2lzdGVtYSBwYXJhIGNvbXBhcnRpciBhcmNoaXZvcyBkaWdpdGFsZXMgKGRpZ2l0YWwgZmlsZS1zaGFyaW5nKSBvIGRlIGN1YWxxdWllciBvdHJhIG1hbmVyYSBubyBzZXLDoSBjb25zaWRlcmFkbyBjb21vIGVzdGFyIGRlc3RpbmFkbyBwcmluY2lwYWxtZW50ZSBvIGRpcmlnaWRvIGRpcmVjdGFtZW50ZSBhIGNvbnNlZ3VpciB1biBwcm92ZWNobyBjb21lcmNpYWwgbyB1bmEgY29tcGVuc2FjacOzbiBtb25ldGFyaWEgcHJpdmFkYSwgc2llbXByZSBxdWUgbm8gc2UgcmVhbGljZSB1biBwYWdvIG1lZGlhbnRlIHVuYSBjb21wZW5zYWNpw7NuIG1vbmV0YXJpYSBlbiByZWxhY2nDs24gY29uIGVsIGludGVyY2FtYmlvIGRlIG9icmFzIHByb3RlZ2lkYXMgcG9yIGVsIGRlcmVjaG8gZGUgYXV0b3IuCmMuIFNpIHVzdGVkIGRpc3RyaWJ1eWUsIGV4aGliZSBww7pibGljYW1lbnRlLCBlamVjdXRhIHDDumJsaWNhbWVudGUgbyBlamVjdXRhIHDDumJsaWNhbWVudGUgZW4gZm9ybWEgZGlnaXRhbCBsYSBPYnJhIG8gY3VhbHF1aWVyIE9icmEgRGVyaXZhZGEgdSBPYnJhIENvbGVjdGl2YSwgVXN0ZWQgZGViZSBtYW50ZW5lciBpbnRhY3RhIHRvZGEgbGEgaW5mb3JtYWNpw7NuIGRlIGRlcmVjaG8gZGUgYXV0b3IgZGUgbGEgT2JyYSB5IHByb3BvcmNpb25hciwgZGUgZm9ybWEgcmF6b25hYmxlIHNlZ8O6biBlbCBtZWRpbyBvIG1hbmVyYSBxdWUgVXN0ZWQgZXN0w6kgdXRpbGl6YW5kbzogKGkpIGVsIG5vbWJyZSBkZWwgQXV0b3IgT3JpZ2luYWwgc2kgZXN0w6EgcHJvdmlzdG8gKG8gc2V1ZMOzbmltbywgc2kgZnVlcmUgYXBsaWNhYmxlKSwgeS9vIChpaSkgZWwgbm9tYnJlIGRlIGxhIHBhcnRlIG8gbGFzIHBhcnRlcyBxdWUgZWwgQXV0b3IgT3JpZ2luYWwgeS9vIGVsIExpY2VuY2lhbnRlIGh1YmllcmVuIGRlc2lnbmFkbyBwYXJhIGxhIGF0cmlidWNpw7NuICh2LmcuLCB1biBpbnN0aXR1dG8gcGF0cm9jaW5hZG9yLCBlZGl0b3JpYWwsIHB1YmxpY2FjacOzbikgZW4gbGEgaW5mb3JtYWNpw7NuIGRlIGxvcyBkZXJlY2hvcyBkZSBhdXRvciBkZWwgTGljZW5jaWFudGUsIHTDqXJtaW5vcyBkZSBzZXJ2aWNpb3MgbyBkZSBvdHJhcyBmb3JtYXMgcmF6b25hYmxlczsgZWwgdMOtdHVsbyBkZSBsYSBPYnJhIHNpIGVzdMOhIHByb3Zpc3RvOyBlbiBsYSBtZWRpZGEgZGUgbG8gcmF6b25hYmxlbWVudGUgZmFjdGlibGUgeSwgc2kgZXN0w6EgcHJvdmlzdG8sIGVsIElkZW50aWZpY2Fkb3IgVW5pZm9ybWUgZGUgUmVjdXJzb3MgKFVuaWZvcm0gUmVzb3VyY2UgSWRlbnRpZmllcikgcXVlIGVsIExpY2VuY2lhbnRlIGVzcGVjaWZpY2EgcGFyYSBzZXIgYXNvY2lhZG8gY29uIGxhIE9icmEsIHNhbHZvIHF1ZSB0YWwgVVJJIG5vIHNlIHJlZmllcmEgYSBsYSBub3RhIHNvYnJlIGxvcyBkZXJlY2hvcyBkZSBhdXRvciBvIGEgbGEgaW5mb3JtYWNpw7NuIHNvYnJlIGVsIGxpY2VuY2lhbWllbnRvIGRlIGxhIE9icmE7IHkgZW4gZWwgY2FzbyBkZSB1bmEgT2JyYSBEZXJpdmFkYSwgYXRyaWJ1aXIgZWwgY3LDqWRpdG8gaWRlbnRpZmljYW5kbyBlbCB1c28gZGUgbGEgT2JyYSBlbiBsYSBPYnJhIERlcml2YWRhICh2LmcuLCAiVHJhZHVjY2nDs24gRnJhbmNlc2EgZGUgbGEgT2JyYSBkZWwgQXV0b3IgT3JpZ2luYWwsIiBvICJHdWnDs24gQ2luZW1hdG9ncsOhZmljbyBiYXNhZG8gZW4gbGEgT2JyYSBvcmlnaW5hbCBkZWwgQXV0b3IgT3JpZ2luYWwiKS4gVGFsIGNyw6lkaXRvIHB1ZWRlIHNlciBpbXBsZW1lbnRhZG8gZGUgY3VhbHF1aWVyIGZvcm1hIHJhem9uYWJsZTsgZW4gZWwgY2Fzbywgc2luIGVtYmFyZ28sIGRlIE9icmFzIERlcml2YWRhcyB1IE9icmFzIENvbGVjdGl2YXMsIHRhbCBjcsOpZGl0byBhcGFyZWNlcsOhLCBjb21vIG3DrW5pbW8sIGRvbmRlIGFwYXJlY2UgZWwgY3LDqWRpdG8gZGUgY3VhbHF1aWVyIG90cm8gYXV0b3IgY29tcGFyYWJsZSB5IGRlIHVuYSBtYW5lcmEsIGFsIG1lbm9zLCB0YW4gZGVzdGFjYWRhIGNvbW8gZWwgY3LDqWRpdG8gZGUgb3RybyBhdXRvciBjb21wYXJhYmxlLiAgCmQuIFBhcmEgZXZpdGFyIHRvZGEgY29uZnVzacOzbiwgZWwgTGljZW5jaWFudGUgYWNsYXJhIHF1ZSwgY3VhbmRvIGxhIG9icmEgZXMgdW5hIGNvbXBvc2ljacOzbiBtdXNpY2FsOgoKaS4gUmVnYWzDrWFzIHBvciBpbnRlcnByZXRhY2nDs24geSBlamVjdWNpw7NuIGJham8gbGljZW5jaWFzIGdlbmVyYWxlcy4gRWwgTGljZW5jaWFudGUgc2UgcmVzZXJ2YSBlbCBkZXJlY2hvIGV4Y2x1c2l2byBkZSBhdXRvcml6YXIgbGEgZWplY3VjacOzbiBww7pibGljYSBvIGxhIGVqZWN1Y2nDs24gcMO6YmxpY2EgZGlnaXRhbCBkZSBsYSBvYnJhIHkgZGUgcmVjb2xlY3Rhciwgc2VhIGluZGl2aWR1YWxtZW50ZSBvIGEgdHJhdsOpcyBkZSB1bmEgc29jaWVkYWQgZGUgZ2VzdGnDs24gY29sZWN0aXZhIGRlIGRlcmVjaG9zIGRlIGF1dG9yIHkgZGVyZWNob3MgY29uZXhvcyAocG9yIGVqZW1wbG8sIFNBWUNPKSwgbGFzIHJlZ2Fsw61hcyBwb3IgbGEgZWplY3VjacOzbiBww7pibGljYSBvIHBvciBsYSBlamVjdWNpw7NuIHDDumJsaWNhIGRpZ2l0YWwgZGUgbGEgb2JyYSAocG9yIGVqZW1wbG8gV2ViY2FzdCkgbGljZW5jaWFkYSBiYWpvIGxpY2VuY2lhcyBnZW5lcmFsZXMsIHNpIGxhIGludGVycHJldGFjacOzbiBvIGVqZWN1Y2nDs24gZGUgbGEgb2JyYSBlc3TDoSBwcmltb3JkaWFsbWVudGUgb3JpZW50YWRhIHBvciBvIGRpcmlnaWRhIGEgbGEgb2J0ZW5jacOzbiBkZSB1bmEgdmVudGFqYSBjb21lcmNpYWwgbyB1bmEgY29tcGVuc2FjacOzbiBtb25ldGFyaWEgcHJpdmFkYS4KaWkuIFJlZ2Fsw61hcyBwb3IgRm9ub2dyYW1hcy4gRWwgTGljZW5jaWFudGUgc2UgcmVzZXJ2YSBlbCBkZXJlY2hvIGV4Y2x1c2l2byBkZSByZWNvbGVjdGFyLCBpbmRpdmlkdWFsbWVudGUgbyBhIHRyYXbDqXMgZGUgdW5hIHNvY2llZGFkIGRlIGdlc3Rpw7NuIGNvbGVjdGl2YSBkZSBkZXJlY2hvcyBkZSBhdXRvciB5IGRlcmVjaG9zIGNvbmV4b3MgKHBvciBlamVtcGxvLCBsb3MgY29uc2FncmFkb3MgcG9yIGxhIFNBWUNPKSwgdW5hIGFnZW5jaWEgZGUgZGVyZWNob3MgbXVzaWNhbGVzIG8gYWxnw7puIGFnZW50ZSBkZXNpZ25hZG8sIGxhcyByZWdhbMOtYXMgcG9yIGN1YWxxdWllciBmb25vZ3JhbWEgcXVlIFVzdGVkIGNyZWUgYSBwYXJ0aXIgZGUgbGEgb2JyYSAo4oCcdmVyc2nDs24gY292ZXLigJ0pIHkgZGlzdHJpYnV5YSwgZW4gbG9zIHTDqXJtaW5vcyBkZWwgcsOpZ2ltZW4gZGUgZGVyZWNob3MgZGUgYXV0b3IsIHNpIGxhIGNyZWFjacOzbiBvIGRpc3RyaWJ1Y2nDs24gZGUgZXNhIHZlcnNpw7NuIGNvdmVyIGVzdMOhIHByaW1vcmRpYWxtZW50ZSBkZXN0aW5hZGEgbyBkaXJpZ2lkYSBhIG9idGVuZXIgdW5hIHZlbnRhamEgY29tZXJjaWFsIG8gdW5hIGNvbXBlbnNhY2nDs24gbW9uZXRhcmlhIHByaXZhZGEuCiAgICAgIAplLiBHZXN0acOzbiBkZSBEZXJlY2hvcyBkZSBBdXRvciBzb2JyZSBJbnRlcnByZXRhY2lvbmVzIHkgRWplY3VjaW9uZXMgRGlnaXRhbGVzIChXZWJDYXN0aW5nKS4gUGFyYSBldml0YXIgdG9kYSBjb25mdXNpw7NuLCBlbCBMaWNlbmNpYW50ZSBhY2xhcmEgcXVlLCBjdWFuZG8gbGEgb2JyYSBzZWEgdW4gZm9ub2dyYW1hLCBlbCBMaWNlbmNpYW50ZSBzZSByZXNlcnZhIGVsIGRlcmVjaG8gZXhjbHVzaXZvIGRlIGF1dG9yaXphciBsYSBlamVjdWNpw7NuIHDDumJsaWNhIGRpZ2l0YWwgZGUgbGEgb2JyYSAocG9yIGVqZW1wbG8sIHdlYmNhc3QpIHkgZGUgcmVjb2xlY3RhciwgaW5kaXZpZHVhbG1lbnRlIG8gYSB0cmF2w6lzIGRlIHVuYSBzb2NpZWRhZCBkZSBnZXN0acOzbiBjb2xlY3RpdmEgZGUgZGVyZWNob3MgZGUgYXV0b3IgeSBkZXJlY2hvcyBjb25leG9zIChwb3IgZWplbXBsbywgQUNJTlBSTyksIGxhcyByZWdhbMOtYXMgcG9yIGxhIGVqZWN1Y2nDs24gcMO6YmxpY2EgZGlnaXRhbCBkZSBsYSBvYnJhIChwb3IgZWplbXBsbywgd2ViY2FzdCksIHN1amV0YSBhIGxhcyBkaXNwb3NpY2lvbmVzIGFwbGljYWJsZXMgZGVsIHLDqWdpbWVuIGRlIERlcmVjaG8gZGUgQXV0b3IsIHNpIGVzdGEgZWplY3VjacOzbiBww7pibGljYSBkaWdpdGFsIGVzdMOhIHByaW1vcmRpYWxtZW50ZSBkaXJpZ2lkYSBhIG9idGVuZXIgdW5hIHZlbnRhamEgY29tZXJjaWFsIG8gdW5hIGNvbXBlbnNhY2nDs24gbW9uZXRhcmlhIHByaXZhZGEuCiAgCjUuIFJlcHJlc2VudGFjaW9uZXMsIEdhcmFudMOtYXMgeSBMaW1pdGFjaW9uZXMgZGUgUmVzcG9uc2FiaWxpZGFkLgpBIE1FTk9TIFFVRSBMQVMgUEFSVEVTIExPIEFDT1JEQVJBTiBERSBPVFJBIEZPUk1BIFBPUiBFU0NSSVRPLCBFTCBMSUNFTkNJQU5URSBPRlJFQ0UgTEEgT0JSQSAoRU4gRUwgRVNUQURPIEVOIEVMIFFVRSBTRSBFTkNVRU5UUkEpIOKAnFRBTCBDVUFM4oCdLCBTSU4gQlJJTkRBUiBHQVJBTlTDjUFTIERFIENMQVNFIEFMR1VOQSBSRVNQRUNUTyBERSBMQSBPQlJBLCBZQSBTRUEgRVhQUkVTQSwgSU1QTMONQ0lUQSwgTEVHQUwgTyBDVUFMUVVJRVJBIE9UUkEsIElOQ0xVWUVORE8sIFNJTiBMSU1JVEFSU0UgQSBFTExBUywgR0FSQU5Uw41BUyBERSBUSVRVTEFSSURBRCwgQ09NRVJDSUFCSUxJREFELCBBREFQVEFCSUxJREFEIE8gQURFQ1VBQ0nDk04gQSBQUk9Qw5NTSVRPIERFVEVSTUlOQURPLCBBVVNFTkNJQSBERSBJTkZSQUNDScOTTiwgREUgQVVTRU5DSUEgREUgREVGRUNUT1MgTEFURU5URVMgTyBERSBPVFJPIFRJUE8sIE8gTEEgUFJFU0VOQ0lBIE8gQVVTRU5DSUEgREUgRVJST1JFUywgU0VBTiBPIE5PIERFU0NVQlJJQkxFUyAoUFVFREFOIE8gTk8gU0VSIEVTVE9TIERFU0NVQklFUlRPUykuIEFMR1VOQVMgSlVSSVNESUNDSU9ORVMgTk8gUEVSTUlURU4gTEEgRVhDTFVTScOTTiBERSBHQVJBTlTDjUFTIElNUEzDjUNJVEFTLCBFTiBDVVlPIENBU08gRVNUQSBFWENMVVNJw5NOIFBVRURFIE5PIEFQTElDQVJTRSBBIFVTVEVELgogIAo2LiBMaW1pdGFjacOzbiBkZSByZXNwb25zYWJpbGlkYWQuCkEgTUVOT1MgUVVFIExPIEVYSUpBIEVYUFJFU0FNRU5URSBMQSBMRVkgQVBMSUNBQkxFLCBFTCBMSUNFTkNJQU5URSBOTyBTRVLDgSBSRVNQT05TQUJMRSBBTlRFIFVTVEVEIFBPUiBEQcORTyBBTEdVTk8sIFNFQSBQT1IgUkVTUE9OU0FCSUxJREFEIEVYVFJBQ09OVFJBQ1RVQUwsIFBSRUNPTlRSQUNUVUFMIE8gQ09OVFJBQ1RVQUwsIE9CSkVUSVZBIE8gU1VCSkVUSVZBLCBTRSBUUkFURSBERSBEQcORT1MgTU9SQUxFUyBPIFBBVFJJTU9OSUFMRVMsIERJUkVDVE9TIE8gSU5ESVJFQ1RPUywgUFJFVklTVE9TIE8gSU1QUkVWSVNUT1MgUFJPRFVDSURPUyBQT1IgRUwgVVNPIERFIEVTVEEgTElDRU5DSUEgTyBERSBMQSBPQlJBLCBBVU4gQ1VBTkRPIEVMIExJQ0VOQ0lBTlRFIEhBWUEgU0lETyBBRFZFUlRJRE8gREUgTEEgUE9TSUJJTElEQUQgREUgRElDSE9TIERBw5FPUy4gQUxHVU5BUyBMRVlFUyBOTyBQRVJNSVRFTiBMQSBFWENMVVNJw5NOIERFIENJRVJUQSBSRVNQT05TQUJJTElEQUQsIEVOIENVWU8gQ0FTTyBFU1RBIEVYQ0xVU0nDk04gUFVFREUgTk8gQVBMSUNBUlNFIEEgVVNURUQuCiAgCjcuIFTDqXJtaW5vLgkKYS4gRXN0YSBMaWNlbmNpYSB5IGxvcyBkZXJlY2hvcyBvdG9yZ2Fkb3MgZW4gdmlydHVkIGRlIGVsbGEgdGVybWluYXLDoW4gYXV0b23DoXRpY2FtZW50ZSBzaSBVc3RlZCBpbmZyaW5nZSBhbGd1bmEgY29uZGljacOzbiBlc3RhYmxlY2lkYSBlbiBlbGxhLiBTaW4gZW1iYXJnbywgbG9zIGluZGl2aWR1b3MgbyBlbnRpZGFkZXMgcXVlIGhhbiByZWNpYmlkbyBPYnJhcyBEZXJpdmFkYXMgbyBDb2xlY3RpdmFzIGRlIFVzdGVkIGRlIGNvbmZvcm1pZGFkIGNvbiBlc3RhIExpY2VuY2lhLCBubyB2ZXLDoW4gdGVybWluYWRhcyBzdXMgbGljZW5jaWFzLCBzaWVtcHJlIHF1ZSBlc3RvcyBpbmRpdmlkdW9zIG8gZW50aWRhZGVzIHNpZ2FuIGN1bXBsaWVuZG8gw61udGVncmFtZW50ZSBsYXMgY29uZGljaW9uZXMgZGUgZXN0YXMgbGljZW5jaWFzLiBMYXMgU2VjY2lvbmVzIDEsIDIsIDUsIDYsIDcsIHkgOCBzdWJzaXN0aXLDoW4gYSBjdWFscXVpZXIgdGVybWluYWNpw7NuIGRlIGVzdGEgTGljZW5jaWEuCmIuIFN1amV0YSBhIGxhcyBjb25kaWNpb25lcyB5IHTDqXJtaW5vcyBhbnRlcmlvcmVzLCBsYSBsaWNlbmNpYSBvdG9yZ2FkYSBhcXXDrSBlcyBwZXJwZXR1YSAoZHVyYW50ZSBlbCBwZXLDrW9kbyBkZSB2aWdlbmNpYSBkZSBsb3MgZGVyZWNob3MgZGUgYXV0b3IgZGUgbGEgb2JyYSkuIE5vIG9ic3RhbnRlIGxvIGFudGVyaW9yLCBlbCBMaWNlbmNpYW50ZSBzZSByZXNlcnZhIGVsIGRlcmVjaG8gYSBwdWJsaWNhciB5L28gZXN0cmVuYXIgbGEgT2JyYSBiYWpvIGNvbmRpY2lvbmVzIGRlIGxpY2VuY2lhIGRpZmVyZW50ZXMgbyBhIGRlamFyIGRlIGRpc3RyaWJ1aXJsYSBlbiBsb3MgdMOpcm1pbm9zIGRlIGVzdGEgTGljZW5jaWEgZW4gY3VhbHF1aWVyIG1vbWVudG87IGVuIGVsIGVudGVuZGlkbywgc2luIGVtYmFyZ28sIHF1ZSBlc2EgZWxlY2Npw7NuIG5vIHNlcnZpcsOhIHBhcmEgcmV2b2NhciBlc3RhIGxpY2VuY2lhIG8gcXVlIGRlYmEgc2VyIG90b3JnYWRhICwgYmFqbyBsb3MgdMOpcm1pbm9zIGRlIGVzdGEgbGljZW5jaWEpLCB5IGVzdGEgbGljZW5jaWEgY29udGludWFyw6EgZW4gcGxlbm8gdmlnb3IgeSBlZmVjdG8gYSBtZW5vcyBxdWUgc2VhIHRlcm1pbmFkYSBjb21vIHNlIGV4cHJlc2EgYXRyw6FzLiBMYSBMaWNlbmNpYSByZXZvY2FkYSBjb250aW51YXLDoSBzaWVuZG8gcGxlbmFtZW50ZSB2aWdlbnRlIHkgZWZlY3RpdmEgc2kgbm8gc2UgbGUgZGEgdMOpcm1pbm8gZW4gbGFzIGNvbmRpY2lvbmVzIGluZGljYWRhcyBhbnRlcmlvcm1lbnRlLgogIAo4LiBWYXJpb3MuCmEuIENhZGEgdmV6IHF1ZSBVc3RlZCBkaXN0cmlidXlhIG8gcG9uZ2EgYSBkaXNwb3NpY2nDs24gcMO6YmxpY2EgbGEgT2JyYSBvIHVuYSBPYnJhIENvbGVjdGl2YSwgZWwgTGljZW5jaWFudGUgb2ZyZWNlcsOhIGFsIGRlc3RpbmF0YXJpbyB1bmEgbGljZW5jaWEgZW4gbG9zIG1pc21vcyB0w6lybWlub3MgeSBjb25kaWNpb25lcyBxdWUgbGEgbGljZW5jaWEgb3RvcmdhZGEgYSBVc3RlZCBiYWpvIGVzdGEgTGljZW5jaWEuCmIuIFNpIGFsZ3VuYSBkaXNwb3NpY2nDs24gZGUgZXN0YSBMaWNlbmNpYSByZXN1bHRhIGludmFsaWRhZGEgbyBubyBleGlnaWJsZSwgc2Vnw7puIGxhIGxlZ2lzbGFjacOzbiB2aWdlbnRlLCBlc3RvIG5vIGFmZWN0YXLDoSBuaSBsYSB2YWxpZGV6IG5pIGxhIGFwbGljYWJpbGlkYWQgZGVsIHJlc3RvIGRlIGNvbmRpY2lvbmVzIGRlIGVzdGEgTGljZW5jaWEgeSwgc2luIGFjY2nDs24gYWRpY2lvbmFsIHBvciBwYXJ0ZSBkZSBsb3Mgc3VqZXRvcyBkZSBlc3RlIGFjdWVyZG8sIGFxdcOpbGxhIHNlIGVudGVuZGVyw6EgcmVmb3JtYWRhIGxvIG3DrW5pbW8gbmVjZXNhcmlvIHBhcmEgaGFjZXIgcXVlIGRpY2hhIGRpc3Bvc2ljacOzbiBzZWEgdsOhbGlkYSB5IGV4aWdpYmxlLgpjLiBOaW5nw7puIHTDqXJtaW5vIG8gZGlzcG9zaWNpw7NuIGRlIGVzdGEgTGljZW5jaWEgc2UgZXN0aW1hcsOhIHJlbnVuY2lhZGEgeSBuaW5ndW5hIHZpb2xhY2nDs24gZGUgZWxsYSBzZXLDoSBjb25zZW50aWRhIGEgbWVub3MgcXVlIGVzYSByZW51bmNpYSBvIGNvbnNlbnRpbWllbnRvIHNlYSBvdG9yZ2FkbyBwb3IgZXNjcml0byB5IGZpcm1hZG8gcG9yIGxhIHBhcnRlIHF1ZSByZW51bmNpZSBvIGNvbnNpZW50YS4KZC4gRXN0YSBMaWNlbmNpYSByZWZsZWphIGVsIGFjdWVyZG8gcGxlbm8gZW50cmUgbGFzIHBhcnRlcyByZXNwZWN0byBhIGxhIE9icmEgYXF1w60gbGljZW5jaWFkYS4gTm8gaGF5IGFycmVnbG9zLCBhY3VlcmRvcyBvIGRlY2xhcmFjaW9uZXMgcmVzcGVjdG8gYSBsYSBPYnJhIHF1ZSBubyBlc3TDqW4gZXNwZWNpZmljYWRvcyBlbiBlc3RlIGRvY3VtZW50by4gRWwgTGljZW5jaWFudGUgbm8gc2UgdmVyw6EgbGltaXRhZG8gcG9yIG5pbmd1bmEgZGlzcG9zaWNpw7NuIGFkaWNpb25hbCBxdWUgcHVlZGEgc3VyZ2lyIGVuIGFsZ3VuYSBjb211bmljYWNpw7NuIGVtYW5hZGEgZGUgVXN0ZWQuIEVzdGEgTGljZW5jaWEgbm8gcHVlZGUgc2VyIG1vZGlmaWNhZGEgc2luIGVsIGNvbnNlbnRpbWllbnRvIG11dHVvIHBvciBlc2NyaXRvIGRlbCBMaWNlbmNpYW50ZSB5IFVzdGVkLgo= |
