Análisis comparativo del desempeño de modelos de series de tiempo tradicionales, redes neuronales artificiales y modelos híbridos para pronosticar los casos por infecciones respiratorias agudas (IRA) en la ciudad de Montería

En este trabajo investigativo, se ha llevado a cabo el modelado de los casos de IRA en la ciudad de Montería en el periodo 2012-2023 presentados por semana epidemiológica, mediante tres diferentes técnicas de pronóstico: Series de tiempo tradicionales, redes neuronales artificiales y modelos híbrido...

Full description

Autores:
Moreno Santamaría, Iván Josué
Varilla Mendoza, Fernando Arturo
Tipo de recurso:
Trabajo de grado de pregrado
Fecha de publicación:
2023
Institución:
Universidad de Córdoba
Repositorio:
Repositorio Institucional Unicórdoba
Idioma:
spa
OAI Identifier:
oai:repositorio.unicordoba.edu.co:ucordoba/7960
Acceso en línea:
https://repositorio.unicordoba.edu.co/handle/ucordoba/7960
https://repositorio.unicordoba.edu.co/
Palabra clave:
Infección respiratoria aguda
Pronóstico
Modelo ARIMA
Modelo SARIMA
Red neuronal artificial
Modelo híbrido
Acute respiratory infection
forecast
ARIMA model
SARIMA model
artificial neural network
hybrid model
Rights
embargoedAccess
License
Copyright Universidad de Córdoba, 2023
Description
Summary:En este trabajo investigativo, se ha llevado a cabo el modelado de los casos de IRA en la ciudad de Montería en el periodo 2012-2023 presentados por semana epidemiológica, mediante tres diferentes técnicas de pronóstico: Series de tiempo tradicionales, redes neuronales artificiales y modelos híbridos, con el objetivo de comparar sus desempeños y encontrar la metodología que mejor modela los datos. Para ello, se consideraron cinco horizontes de pronóstico: 52, 35, 17, 9 y 4 semanas epidemiológicas, donde el primer horizonte corresponde al periodo de la serie y los cuatro valores restantes corresponden a horizontes que se han sido sugeridos en la literatura para datos similares a los aquí analizados (véase por ejemplo Becerra et al. (2020), Cogollo et al. (2021)). Se encuentra que el desempeño de las tres técnicas de pronóstico consideradas en este estudio, mejora a medida que se incrementa la cantidad de datos para entrenar el modelo. Con respecto a los modelos tradicionales el más adecuado para modelar los casos de IRA es el modelo autorregresivo integrado de media móvil estacional (SARIMA) debido a la presencia de tendencia y estacionalidad. Por otra parte, se evidencia que el modelo de redes neuronales artificiales es el que presenta mejores resultados, en los distintos horizontes, en términos de la calidad del pronóstico. Adicionalmente, se demuestra que el uso de una metodología híbrida no mejora la calidad del pronóstico de los casos de IRA hallados con el modelo autorregresivo integrado de media móvil (ARIMA) y SARIMA. Se demuestra que es posible emplear los datos históricos reportados de los casos de IRA para proporcionar información estadística verídica a las entidades de salud en la ciudad de Montería, que pueda apoyar la elaboración del organigrama de prevención y control de la enfermedad.